VPC Prediction: Reducing the Cost of Indirect Branches
via Hardware-Based Dynamic Devirtualization

Hyesoon Kir§ Jos A.Joao Onur Mutlet Chang Joo Lee Yale N. Patt Robert Cohn

High Performance Systems Group
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, Texas 78712-0240

School of Computer Science
Georgia Institute of Technology
Atlanta, GA

§Computer Architecture Group
Microsoft Research
Redmond, WA

TVSSAD Group
Intel Corporation
Hudson, MA

TR-HPS-2007-002
March 2007 (Updated September 2007)

This page is intentionally left blank.

VPC Prediction: Reducing the Cost of Indirect Branches
via Hardware-Based Dynamic Devirtualization

Hyesoon Kinf[f Jo® A.Joad OnurMutlls Chang Joo Lee Yale N. Patt Robert Cohi

qSchool of Computer iDepartment of ECE
Science University of Texas at Austin §Microsoft Research fIntel Corporation
Georgia Inst. of Technology {hyesoon, joao, cjlee, onur@microsoft.com robert.s.conn@intel.com
hyesoon@cc.gatech.edu pattt @ece.utexas.edu
Abstract

Indirect branches have become increasingly common in raogubgrams written in modern object-oriented lan-
guages and virtual-machine based runtime systems. Umfarely, the prediction accuracy of indirect branches has
not improved as much as that of conditional branches. Funtiuee, previously proposed indirect branch predictors
usually require a significant amount of extra hardware sggand complexity, which makes them less attractive to
implement.

This paper proposes a new technique for handling indireatbhes, calle®irtual Program Counter (VPC) predic-
tion. The key idea of VPC prediction is to treat a single indire@ricth asmultiple “virtual” conditional branchem
hardware for prediction purposes. Our technique predi@sheof the virtual conditional branches using the existing
conditional branch prediction hardware. Thus, no sepasit#age structure is required for predicting indirect bicn
targets.

Our comprehensive evaluation shows that VPC predictiorrdugs average performance by 26.7% and reduces
average energy consumption by 19% compared to a commoet/aranch target buffer based predictor on 12 in-
direct branch intensive C/C++ applications. VPC predictiachieves the performance improvement provided by at
least a 12KB (and usually a 192KB) tagged target cache ptedan half of these applications. Furthermore, VPC
prediction improves the average performance of the full$etbject-oriented Java DaCapo applications by 21.9%,
while reducing their average energy consumption by 22%.Aershat VPC prediction can be used with any existing
conditional branch prediction mechanism and that the aacyrof VPC prediction improves when a more accurate
conditional branch predictor is used.

1. Introduction

Object-oriented programs are becoming more common as nroggegms are written in modern high-level lan-
guages such as Java, C++, and C#. These languages supparoputism [7], which significantly eases the devel-
opment and maintenance of large modular software projdassupport polymorphism, modern languages include
dynamically-dispatched function calls (i.e. virtual ftions) whose targets are not known until run-time becausg th
depend on the dynamic type of the object on which the funddaralled. Virtual function calls are usually imple-
mented using indirect branch/call instructions in therimsion set architecture. Previous research has shown that
modern object-oriented languages result in significantbrerindirect branches than traditional C and Fortran lan-
guages [6]. Unfortunately, an indirect branch instruciemore costly on processor performance because predicting
an indirect branch is more difficult than predicting a coiwhial branch as it requires the prediction of the target ad-

dress instead of the prediction of the branch directione&ion prediction is inherently simpler because it ls@ary

decisionas the branch direction can take only two values (taken otal@n), whereas indirect target prediction is an
N-ary decisiorwhereN is the number of possible target addresses. Hence, witnthedsed use of object-oriented
languages, indirect branch target mispredictions haverbecan important performance limiter in high-performance
processord. Moreover, the lack of efficient architectural support towately predict indirect branches has resulted
in an increased performance difference between prograrttemwin object-oriented languages and programs writ-
ten in traditional languages, thereby rendering the bemefibbject-oriented languages unusable by many software

developers who are primarily concerned with the perforneasfdheir code [52].

= S
X (%]
o
= ” £ 59
PP == conditional 2 451
212 S I S
5 == indirect 5
2 < 404
S 3
7 S 35 = indirect branche%
= 0 30+
o S
Z | £2
& T 201
5 o i
k5 g 104
S 2 I
o O 5l
a o
2 g o] d ! . .
; O oF F Lo P S
. Q& & O S LT FLSTS
& & O \@L@Q @ & QQQ\9'5$ & é“@ & ,,,d‘o FE¥
& F
Figure 1. Indirect branch mispredictions in Windows applic ations: MPKI for conditional and indirect branches (left), percentage of

mispredictions due to indirect branches (right)

Figure 1 shows the number and fraction of indirect branchpnaidictions per 1K retired instructions (MPKI) in
different Windows applications run on an Intel Core Duo T@p0ocessor [27] which includes a specialized indirect
branch predictor [19]. The data is collected with hardwasgqgrmance counters using VTune [28]. In the examined
Windows applications, on average 28% of the branch misptiedis are due to indirect branches. In two programs,
Virtutech Simics [38] and Microsoft Excel 2003, almost haffthe branch mispredictions are caused by indirect
branches. These results show that indirect branches causes@erable fraction of all mispredictions even in today’
relatively small-scale desktop applications.

Previously proposed indirect branch prediction technégj@e 11, 33, 12, 13, 48] require large hardware resources
to store the target addresses of indirect branches. Forgram1024-entry gshare conditional branch predictor [40]
requires only 2048 bits but a 1024-entry gshare-like irdditeanch predictor (tagged target cache [9]) needs at least
2048 bytes along with additional tag storage even if the ggsar stores only the least significant 16 bits of an

indirect branch target address in each eftris such a large hardware storage comes with an expensiveaser

1In the rest of this paper, an “indirect branch” refers to a-meturn unconditional branch instruction whose targe&gedmined by reading a general purpose
register or a memory location. We do not consider returrrire$tons since they are usually very easy to predict usingreware return address stack [32].
2with a 64-bit address space, a conventional indirect branetictor likely requires even more hardware resourcesai@she target addresses [33].

in power/energy consumption and complexity, most curregh{performance processors do not dedicate separate
hardware but instead use the branch target buffer (BTB)adipt indirect branches [1, 22, 34], which implicitly —and
usually inaccurately— assumes that the indirect brandhwaiip to the same target address it jumped to in its previous
execution [9, 33 To our knowledge, only Intel Pentium M implements spece@lihardware to help the prediction

of indirect branches [19], demonstrating that hardwareghess are increasingly concerned with the performance
impact of indirect branches. However, as we showed in Fidureven on a processor based on the Pentium M,
indirect branch mispredictions are still relatively freni.

In order to efficiently support polymorphism in object-aried languages without significantly increasing complex-
ity in the processor front-end, a simple and low-cost —yftaiive— indirect branch predictor is necessary. A current
high-performance processor already employs a large andaecconditional branch predictor. Our goal is to use this
existing conditional branch prediction hardware to alsedpct indirect branches instead of building separate Jxost
indirect branch prediction structures.

We propose a new indirect branch prediction algorith¥fictual Program Counter (VPChprediction. A VPC
predictor treats a single indirect branch as multiple cbodal branchegvirtual branches)n hardware for prediction
purposes. Conceptually, each virtual branch has its owguéaniarget address, and the target address is stored in the
BTB with a unique “fake” PC, which we callirtual PC. The processor uses the outcome of the existing conditional
branch predictor to predict each virtual branch. The pregeaccesses the conditional branch predictor and the BTB
with the virtual PC address of a virtual branch. If the préidic for the virtual branch is “taken,” the target address
provided by the BTB is predicted as the next fetch address the predicted target of the indirect branch). If the
prediction of the virtual branch is “not-taken,” the prosesmoves on to the next virtual branch: it tries a conditiona
branch prediction again with a different virtual PC. The gessor repeats this process until the conditional branch
predictor predicts a virtual branch as taken. VPC predicsimps if none of the virtual branches is predicted as taken
after a limited number of virtual branch predictions. AfiPC prediction stops, the processor can stall the front-end
until the target address of the indirect branch is resolved.

The VPC prediction algorithm is inspired by a compiler optation, calledeceiver class prediction optimization
(RCPO)[10, 24, 20, 5] odevirtualization[29]. This optimization statically converts an indirecbch to multiple
direct conditional branches (in other words, it “deviri@ak” a virtual function call). Unfortunately, devirtuadition
requires extensive static program analysis or accurafdipgy and it is applicable to only a subset of indirect braes

with a limited number of targets that can be determinedcsiliyi [29]. Our proposed VPC prediction mechanism

SPrevious research has shown that the prediction accuraayg@B-based indirect branch predictor, which is essentimlast-target predictor, is low (about
50%) because the target addresses of many indirect braatthesate rather than stay stable for long periods of tim&$).

3

provides the benefit of using conditional branch predicforsindirect branches without requiring static analysis
or profiling by the compiler. In other words, VPC predictidgnamically devirtualizean indirect branch without
compiler support. Unlike compiler-based devirtualizatid/PC prediction can be applied amy indirect branch

regardless of the number and locations of its targets.

Contributions. The contributions of this paper are as follows:

1. To our knowledge, VPC prediction is the first mechanisnt tls@s the existing conditional branch prediction
hardware to predict the targets of indirect branches, witliequiring any program transformation or compiler

support.

2. VPC prediction can be applied using any current as wellasd conditional branch prediction algorithm without
requiring changes to the conditional branch predictiomaigm. Since VPC prediction transforms the problem
of indirect branch prediction into the prediction of mulépvirtual conditional branches, future improvements
in conditional branch prediction accuracy can implicitgsult in improving the accuracy of indirect branch

prediction.

3. Unlike previously proposed indirect branch predictiehemes, VPC prediction does not require extra storage
structures to maintain the targets of indirect branchesrdfore, VPC prediction provides a low-cost indirect
branch prediction scheme that does not significantly carafdi the front-end of the processor while providing

the same performance as more complicated indirect bramehigbors that require significant amounts of storage.

4. We comprehensively evaluate the performance and enemgumption of VPC prediction on both traditional
C/C++ and modern object-oriented Java applications. Gaultg show that VPC prediction provides significant
performance and energy improvements, increasing ave@fermance by 26.7%/21.9% and decreasing energy
consumption by 19%/22% respectively for 12 C/C++ and 11 adaydications. We find that the effectiveness of

VPC prediction improves as the baseline BTB size and canditibranch prediction accuracy increase.

2. Background on Indirect Branch Prediction

We first provide a brief background on how indirect branchdprs work to motivate the similarity between
indirect and conditional branch prediction. There are typet of indirect branch predictors: history-based and
precomputation-based [45]. The technique we introducdim gaper utilizes history information, so we focus on

history-based indirect branch predictors.

2.1. Why Does History-Based Indirect Branch Prediction Wok?

History-based indirect branch predictors exploit inforirnatabout the control-flow followed by the executing pro-
gram to differentiate between the targets of an indirechtina The insight is that the control-flow path leading to an
indirect branch is strongly correlated with the target af thdirect branch [9]. This is very similar to modern condi-
tional branch predictors, which operate on the observdtiahthe control-flow path leading to a branch is correlated

with the direction of the branch [15].

2.1.1. A Source Code ExampleThe example in Figure 2 shows an indirect branch from the GA&ignam [16] to
provide insight into why history-based prediction of irelit branch targets works. GAP implements and interprets a
language that performs mathematical operations. One ttatdwge in the GAP language is a list. When a mathemati-
cal function is applied to a list element, the program firgtleates the value of the index of the element in the list (line
13 in Figure 2). The index can be expressed in many differata types, and a different function is called to evaluate
the index value based on the data type (line 10). For exarimpéxpressions L(1), L(n), and L(n+1), the index is of
three different data types:_INT, T_VAR, and T_SUM, respectively. An indirect jump through a jump table (&l
in lines 2, 3 and 10) determines which evaluation functioraléed based on the data type of the index. Consider the
mathematical function L2(n) = L1(n) + L1(n+1). For each re fhrogram calculates three index values; EVAR,
EvalL.SUM, and EvalVAR functions are called respectively to evaluate indexugalfor L1(n), L1(n+1), and L2(n).
The targets of the indirect branch that determines the atialu function of the index are therefore respectively the
addresses of the two evaluation functions. Hence, thettafghis indirect branch alternates between the two func-
tions, making it unpredictable with a BTB-based last-taggedictor. In contrast, a predictor that uses branch hjsto
information to predict the target easily distinguishesamztn the two target addresses because the branch histories
followed in the functions EvaBUM and EvalVAR are different; hence the histories leading into the niegtance of
the indirect branch used to evaluate the index of the eleendlifferent. Note that a combination of the regularity
in the input index expressions and the code structure altbes$arget address to be predictable using branch history
information.
2.2. Previous Work on Indirect Branch Prediction

The indirect branch predictor described by Lee and Smit {&&d the branch target buffer (BTB) to predict
indirect branches. This scheme predicts that the targdteottirrent instance of the branch will be the same as the
target taken in the last execution of the branch. This schdmee not work well for indirect branches that frequently
switch between different target addresses. Such indinectdnes are commonly used to implement virtual function

calls that act on many different objects and switch stateswith many ‘case’ targets that are exercised at run-time.

5

/] Set up the array of function pointers (i.e. junp table)
EvTab[T_I NT] Eval _INT; EvTab[T_VAR] = Eval VAR

EvTab[T_SUM Eval _SUM

...

/1 EVAL eval uates an expression by calling the function
/1 corresponding to the type of the expression
/1 using the EvTab[] array of function pointers

ocxNakONR

10: #define EVAL(hd) ((*EvTab[TYPE(hd)])((hd))) /I NDI RECT+/

12: TypHandl e Eval _LI STELEMENT (TypHandl e hdSel) {
13: hdPos = EVAL(hdSel);

14: /1 evaluate the index of the list elenent

15: /1l check if index is valid and wi thin bounds
16: /1 if wthin bounds, access the |ist

17: // at the given index and return the el enent

Figure 2. An indirect branch example from GAP

Therefore, the BTB-based predictor has low (about 50%)iptieth accuracy [36, 9, 11, 33].

Chang et al. [9] first proposed to use branch history inforomato distinguish between different target addresses
accessed by the same indirect branch. They proposed tlget'teache,” which is similar to a two-level gshare [40]
conditional branch predictor. The target cache is index@dguthe XOR of the indirect branch PC and the branch
history register. Each cache entry contains a target asldeexch entry can be tagged, which reduces interference be-
tween different indirect branches. The tagged target caigméficantly improves indirect branch prediction accyrac
compared to a BTB-based predictor. However, it also requiegmrate structures for predicting indirect branches,
increasing complexity in the processor front-end.

Later work on indirect branch prediction by Driesen andlHe focused on improving the prediction accuracy by
enhancing the indexing functions of two-level predictdr&][and by combining multiple indirect branch predictors
using a cascaded predictor [12, 13]. The cascaded predicéonybrid of two or more target predictors. A relatively
simple first-stage predictor is used to predict easy-talptgsingle-target) indirect branches, whereas a complex
second-stage predictor is used to predict hard-to-prédidtect branches. Driesen andile [13] concluded that a
3-stage cascaded predictor performed the best for a plattiset of C and C++ benchmarks.

Kalamatianos and Kaeli [33] proposed predicting indire@niches via data compression. Their predictor uses
prediction by partial matching (PPM) with a set of Markov gliitors of decreasing size indexed by the result of
hashing a decreasing number of bits from previous targetse Nlarkov predictor is a large set of tables where
each table entry contains a single target address and bepikigebits. The prediction comes from the highest order
table that can predict, similarly to a cascaded predicttie PPM predictor requires significant additional hardware
complexity in the indexing functions, Markov tables, andigidnal muxes used to select the predicted target address.

In a recent work, Seznec and Michaud [48] proposed extentlieig TAGE conditional branch predictor to also

6

predictindirect branches. Their mechanism (ITTAGE) useg#ess base predictor and a number of tagged tables (4 or
7 in the paper) indexed by an increasingly long history. Tresljgted target comes from the component with longer
history that has a hit. This mechanism is conceptually sintib a multi-stage cascaded predictor with geometric
history lengths, and therefore, it also requires significaditional storage space for indirect target addressds an

significant complexity to handle indirect branches.

2.3. Our Motivation

All previously proposed indirect branch predictors (excte BTB-based predictor) require separate hardware
structures to store target addresses in addition to theitbomal branch prediction hardware. This not only requires
significant die area (which translates into extra energyggaconsumption), but also increases the design complexity
of the processor front-end, which is already a complex amtkegritical part of the desigh.Moreover, many of the
previously proposed indirect branch predictors are théwaseeomplicated [12, 13, 33, 48], which further increades t
overall complexity and development time of the design. Rese reasons, most current processors do not implement
separate structures to predict indirect branch targets.

Our goal in this paper is to designlow-cost technique that accurately predicts indirectrimh targets (by utiliz-
ing branch history information to distinguish between tliéedent target addresses of a branch) without requiring
separate complex structures for indirect branch predittido this end, we propose Virtual Program Counter (VPC)

prediction.

3. Virtual Program Counter (VPC) Prediction
3.1. Overview

A VPC predictor treats an indirect branch as a sequence dipteuirtual conditional branche8 Each virtual
branch is predicted in sequence using the existing comditibranch prediction hardware, which consists of the
direction predictor and the BTB (Figure 3). If the virtuabioich is predicted to be not-taken, the VPC predictor moves
on to predict the next virtual branch in the sequence. If tineial branch is predicted to be taken, VPC prediction
uses the target associated with the virtual branch in the B Bhe next fetch address, completing the prediction of

the indirect branch. Note that the virtual branches arébl@sinly to the branch prediction hardware.
3.2. Prediction Algorithm

The detailed VPC prediction algorithm is shown in AlgoritimThe key implementation issue in VPC prediction

is how to distinguish between different virtual brancheacHevirtual branch should access a different location in the

4Using a separate predictor for indirect branch targets atésmore input to the mux that determines the predicted meéahfaddress. Increasing the delay
of this mux can result in increased cycle time, adverselyddifig the clock frequency.

5We call the conditional branches “virtual” because theyrareencoded in the program binary. Nor are they micro-ojimmatsince they are only visible to
the VPC predictor.

‘ GHR H VGHR }—»Conditional _ Taken/Not Taken

Branch
Predictor
(BP)

Predict?

BTB Cond/Indirect

Target Address

Iteration
Counter

Figure 3. High-level conceptual overview of the VPC predict or

direction predictor and the BTB (so that a separate dirattimd target prediction can be made for each brandf).
accomplish this, the VPC predictor accesses the conditlmaach prediction structures with a different virtual PC
address (VPCA) and a virtual global history register (GHRIue (VGHR) for each virtual branch. VPCA values are
distinct for different virtual branches. VGHR values prdeithe context (branch history) information associated wit
each virtual branch.

VPC prediction is an iterative prediction process, whemhateration takes one cycle. In the first iteration (i.e. for
the first virtual branch), VPCA is the same as the original B@rass of the indirect branch and VGHR is the same as
the GHR value when the indirect branch is fetched. If thamirbranch is predicted not-taken, the prediction algarith
moves to the next iteration (i.e. the next virtual branchlpgating the VPCA and VGHRThe VPCA value for an
iteration (other than the first iteration) is computed bytiag the original PC value with a randomized constant value
that is specific to the iteration. In other wordSPCA = PC & HASHV ALliter], where HASHVAL is a hard-
coded hardware table of randomized numbers that are différem one another. The VGHR is simply left-shifted
by one bit at the end of each iteration to indicate that thieviasial branch was predicted not takén.

The iterative prediction process stops when a virtual bnasqredicted to be taken. Otherwise, the prediction
process iterates until either the number of iterations é&atpr than MAXITER or there is a BTB misdjred_target
in Algorithm 1 means there is a BTB mis$)f the prediction process stops without predicting a tartjet processor

stalls until the indirect branch is resolved.

8In the first iteration, the processor does not even know tiafétched instruction is an indirect branch. This is deteeah only after the BTB access. If
the BTB access is a hit, the BTB entry provides the type of thead¢h. VPC prediction algorithm continues iterating ofilgili of the following three conditions
are satisfied: 1) the first iteration hits in the BTB, 2) thertmtatype indicated by the BTB entry is an indirect branch, 8nthe prediction outcome of the first
iteration is not-taken.

"Note that VPC addresses (VPCAs) can conflict with real PCesddis in the program, thereby increasing aliasing and miioreein the BTB and the
direction prediction structures. The processor does riptire any special action when aliasing happens. To redudealiasing, the processor designer should:
(1) provide a good randomizing hashing function and valewegenerate VPCAs and (2) co-design the VPC prediction schardethe conditional branch
prediction structures carefully to minimize the effectsatibsing. Conventional techniques proposed to reducsiagiain conditional branch predictors [40,
8] can also be used to reduce aliasing due to VPC predictiaweier, our experimental results in Sections 5.6 and 7.%ghat the negative effect of VPC
prediction on the BTB miss rate and conditional branch nedpation rate is tolerable.

8The VPC predictor can continue iterating the predictioncess even if there is BTB miss. However, we found that coitinin this case does not improve
the prediction accuracy. Hence, to simplify the predictimocess, our VPC predictor design stops the predictionga®evhen there is a BTB miss in any
iteration.

Note that the value of MAXTER determines how many attempts will be made to predictndirect branch. It

also dictates how many different target addresses can teddimr an indirect branch at a given time in the BTB.

Algorithm 1 VPC prediction algorithm
iter +— 1
VPCA «— PC
VGHR «— GHR
done «— FALSE
while (done) do
pred_target «+— accesBTB(V PCA)
pred_dir «— accessonditionalBP(V PC A, VGHR)
if (pred_target and (pred_dir = TAKEN)) then
next_PC «— pred_target
done — TRUFE
else if(Ipred_target or (iter > M AX_ITER)) then
STALL «— TRUE
done — TRUFE
end if
VPCA «— HashPC, iter)
VGHR « Left-Shift(VGHR)
iter++
end while

3.2.1. Prediction Example Figure 4a,b shows an example virtual function call and theesponding simplified

assembly code with an indirect branch. Figure 4c¢ shows titeaticonditional branches corresponding to the indirect
branch. Even though the static assembly code has only oimedhdranch, the VPC predictor treats the indirect branch
as multiple conditional branches that have different targend VPCAs. Note that the hardware does not actually
generate multiple conditional branches. The instructionEigure 4c are shown to demonstrate VPC prediction
conceptually. We assume, for this example, that MER is 3, so there are only 3 virtual conditional branches.

a =s->area ();

RL = MEM R2]
I NDI RECT_CALL R1 // PC L

(a) Source code

(b) Corresponding assembly code with an indirect branch

iterl: cond. br TARGL // VPCA: L
iter2: cond. br TARR // VPCA. VL2
iter3: cond. br TARG3 // VPCA: VL3

L XOR HASHVAL[1]
L XOR HASHVAL[2]

(c) Virtual conditional branches (for prediction purposes
Figure 4. VPC prediction example: source, assembly, and the corresponding virtual branches

Table 1. Possible VPC Predictor states and outcomes when bra nch in Figure 4b is predicted

1st iteration 2nd iteration 3rd iteration
Case inputs outputs inputs outputs input output Prediction
VPCA | VGHR BTB | BP VPCA | VGHR BTB | BP VPCA | VGHR BTB | BP
1111 TARG1 T - - TARG1

1111 | TARG1 | NT VL2 1110 | TARG2 | T - TARG2
1111 | TARG1 | NT VL2 1110 | TARG2 | NT VL3 1100 | TARG3 | T TARG3
1111 | TARG1 | NT VL2 1110 | TARG2 | NT VL3 1100 | TARG3 | NT stall
1111 | TARG1 | NT VL2 1110 MISS - - stall

9

g B W[NfF-
[l el M M el M

Table 1 demonstrates the five possible cases when the ihldreeh in Figure 4 is predicted using VPC prediction,
by showing the inputs and outputs of the VPC predictor in étehtion. We assume that the GHR is 1111 when the
indirect branch is fetched. Cases 1, 2, and 3 correspondsesashere respectively the first, second, or third virtual
branch is predicted taken by the conditional branch dioectiredictor (BP). As VPC prediction iterates, VPCA and
VGHR values are updated as shown in the table. Case 4 comdspmthe case where all three of the virtual branches
are predicted not-taken and therefore the outcome of the MR@ictor is a stall. Case 5 corresponds to a BTB miss
for the second virtual branch and thus also results in a stall
3.3. Training Algorithm

The VPC predictor is trained when an indirect branch is cottani The detailed VPC training algorithm is shown
in Algorithms 2 and 3. Algorithm 2 is used when the VPC predittwas correct and Algorithm 3 is used when the
VPC prediction was incorrect. The VPC predictor trains hibin BTB and the conditional branch direction predictor

for each predicted virtual branch. The key functions of tlaéning algorithm are:

1. to update the direction predictor as not-taken for theusirbranches that have the wrong target (because the
targets of those branches were not taken) and to update dkas for the virtual branch, if any, that has the
correct target.

2. to update the replacement policy bits of the correct targthe BTB (if the correct target exists in the BTB)

3. toinsert the correct target address into the BTB (if theeem target does not exist in the BTB)

Like prediction, training is also an iterative process. adilitate training on a correct prediction, an indirectrch
carries with it through the pipeline the number of iteraigrerformed to predict the branchvedicted_iter). VPCA
and VGHR values for each training iteration are recalculaeactly the same way as in the prediction algorithm.

Note that only one virtual branch trains the prediction stues in a given cycl@.

3.3.1. Training on a Correct Prediction If the predicted target for an indirect branch was corredit,vatual
branches except for the last one (i.e. the one that has tlmectdarget) train the direction predictor as not-taken
(as shown in Algorithm 2). The last virtual branch trains tmaditional branch predictor as taken and updates the
replacement policy bits in the BTB entry corresponding te dorrectly-predicted target address. Note that Algo-
rithm 2 is a special case of Algorithm 3 in that it is optimizeceliminate unnecessary BTB accesses when the target

prediction is correct.

91t is possible to have more than one virtual branch updatepthdiction structures by increasing the number of writetpar the BTB and the direction
predictor. We do not pursue this option as it would increasecomplexity of prediction structures.

10

Algorithm 2 VPC training algorithm when the branch target is correctigdicted. Inputs:predicted_iter, PC,
GHR
iter +— 1
VPCA « PC
VGHR «— GHR
while (iter < predicted_iter) do
if (iter == predicted_iter) then
updateconditionalBP(V PC A, VGH R, TAKEN)
updatereplacemenBTB(V PC A)
else
updateconditionalBP(V PC A, VG H R, NOT-TAKEN)
end if
V PCA «— Hash(PCjter)
VGHR «+ Left-Shift(VGHR)
iter++
end while

Algorithm 3 VPC training algorithm when the branch target is misprestict Inputs: PC, GHR,
CORRECT TARGET
iter — 1
VPCA «— PC
VGHR «— GHR
found_correct_target — FALSE
while ((iter < MAX_ITER) and (found_correct_target = FALSE)) do
pred_target «+— accesBTB(V PCA)
if (pred_target = CORRECTTARGET)then
updateconditionalBP(V PC A, VGH R, TAKEN)
updatereplacemenBTB(V PC A)
found_correct_target — TRUFE
else if(pred_target) then
updateconditionalBP(VV PC A, VGH R, NOT-TAKEN)
end if
V PCA «— Hash(PCjter)
VGHR < Left-Shift(V GH R)
iter++
end while

[* no-target case */

if (found_correct_target = FALSFE) then
V PC A «— VPCA corresponding to the virtual branch with a BTB-Miss @ast-frequently-used target among all virtual branches
VG HR + VGHR corresponding to the virtual branch with a BTB-Miss @aist-frequently-used target among all virtual branches
insertBTB(V PC A, CORRECTTARGET)
updateconditionalBP(VV PC A, VGH R, TAKEN)

end if

3.3.2. Training on a Wrong Prediction If the predicted target for an indirect branch was wrong reh&re two
misprediction cases: (Mrong-target one of the virtual branches has the correct target storddarBTB but the
direction predictor predicted that branch as not-takepn¢2target none of the virtual branches has the correct target
stored in the BTB so the VPC predictor could not have predithe correct target. In theo-targetcase, the correct

target address needs to be inserted into the BTB.

11

To distinguish betweemvrong-targetand no-targetcases, the training logic accesses the BTB for each virtual
branch (as shown in Algorithm 39. If the target address stored in the BTB for a virtual brancthessame as the
correct target address of the indirect branehong-targetcase), the direction predictor is trained as taken and the
replacement policy bits in the BTB entry corresponding te target address are updated. Otherwise, the direction
predictor is trained as not-taken. Similarly to the VPC fcddn algorithm, when the training logic finds a virtual
branch with the correct target address, it stops training.

If none of the iterations (i.e. virtual branches) has theaxtrtarget address stored in the BTB, the training logic
inserts the correct target address into the BTB. One dedigstipn is what VPCA/VGHR values should be used
for the newly inserted target address. Conceptually, trecehof VPCA value determines thader of the newly
inserted virtual branch among all virtual branches. Tolindee new target in the BTB, our current implementation
of the training algorithm uses the VPCA/VGHR values cormegting to the virtual branch that missed in the BTB.
If none of the virtual branches missed in the BTB, our implatagon uses the VPCA/VGHR values corresponding
to the virtual branch whose BTB entry has the smallest le@stuently used (LFU) value. Note that the virtual
branch that missed in the BTB or that has the smallest LFUevad its BTB entry can be determined easily while the
training algorithm iterates over virtual branches (Howevee do not show this computation in Algorithm 3 to keep

the algorithm more readablé).

3.4. Supporting Multiple Iterations per Cycle

The iterative prediction process can take multiple cycléswe number of cycles needed to make an indirect branch
prediction with a VPC predictor can be reduced if the prooeakeady supports the prediction of multiple conditional
branches in parallel [53]. The prediction logic can perfahma calculation of VPCA values for multiple iterations in
parallel since VPCA values do not depend on previous itemati VGHR values for multiple iterations can also
be calculated in parallel assuming that previous iteratiwere “not taken” since the prediction process stops when
an iteration results in a “taken” prediction. Section 5.4laates the performance impact of performing multiple

prediction iterations in parallel.

10Note that these extra BTB accesses for training are reqoingdon a misprediction and they do not require an extra BT&ingort. An extra BTB access
holds only one BTB bank per training-iteration. Even if tlee@ss results in a bank conflict with the accesses from tble étgine for all the mispredicted indirect
branches, we found that the performance impact is negéigibk to the low frequency of indirect branch mispredictionthe VPC prediction mechanism.

11This scheme does not necessarily find and replace the legsigitly used of the targets corresponding to an indiregtdir — this is difficult to implement
as it requires keeping LFU information on a per-indirectimtabasis across different BTB sets. Rather, our schemeapmoximation that replaces the target
that has the lowest value for LFU-bits (corresponding toltR& within a set) stored in the BTB entry, assuming the bageBTB implements an LFU-based
replacement policy. Other heuristics are possible to dates the VPCA/VGHR of a new target address (i.e. new virtuahbh). We experimented with schemes
that select among the VPCA/VGHR values corresponding tat¢inated virtual branches randomly, or based on the recerioymation that could be stored in
the corresponding BTB entries and found that LFU perfornst tith LRU/random selection a close second/third (seei@e6t5 for a quantitative evaluation).

12

3.5. Pipelining the VPC Predictor

So far our discussion assumed that conditional branch gfedistructures (the BTB and the direction predictor)
can be accessed in a single processor clock cycle. Howevegme modern processors, access of the conditional
branch prediction structures takes multiple cycles. Tooamnodate this, the VPC prediction process needs to be
pipelined. We briefly show that our mechanism can be triyiatljusted to accommodate pipelining.

In a pipelined implementation of VPC prediction, the negtdtion of VPC prediction is started in the next cycle
without knowing the outcome of the previous iteration in aghined fashion. In other words, consecutive VPC
prediction iterations are fed into the pipeline of the cadiadial branch predictor one after another, one iteration pe
cycle. Pipelining VPC prediction is similar to supportingitiiple iterations in parallel. As explained in Section 3.4
the VPCA value of a later iteration is not dependent on previterations; hence, VPCA values of different iterations
are computed independently. The VGHR value of a later itamas calculated assuming that previous iterations were
“not taken” since the VPC prediction process stops anywagnadn iteration results in a “taken” prediction. If it turns
out that an iteration is not needed because a previousiiterats predicted as “taken,” then the later iterations @ th
branch predictor pipeline are simply discarded when thegdpce a prediction. As such, VPC prediction naturally
yields itself to pipelining without significant hardware difications.

3.6. Hardware Cost and Complexity
The extra hardware required by the VPC predictor on top ofettisting conditional branch prediction scheme is

as follows:

1. Three registers to stoieer, V PC A, andV GH R for prediction purposes (Algorithm 1).

2. Ahard-coded tablef ASHV AL, of 32-bit randomized values. The table idsAX _ITE R number of entries.
Our experimental results show thaf AX I'TFE R does not need to be greater than 16. The table is dual-ported
to support one prediction and one update concurrently.

3. A predicted_iter value that is carried with each indirect branch throughbetpipeline. This value cannot be
greater thal/ AX _ITER.

4. Three registers to stokeer, V PC' A, andV G H R for training purposes (Algorithms 2 and 3).

5. Two registers to store tHé PC'A andV G H R values that may be needed to insert a new target into the BarB (f

theno-targetcase in Algorithm 3).

Note that the cost of the required storage is very small. Rénireviously proposed history-based indirect branch

predictors, no large or complex tables are needed to stertathet addresses. Instead, target addresses are yaturall

13

stored in the existing BTB.

The combinational logic needed to perform the computatieqsiired for prediction and training is also simple.
Actual PC and GHR values are used to access the branch jpoedttucture in the first iteration of indirect branch
prediction. While an iteration is performed, the VPCA and W& values for the next iteration are calculated and
loaded into the corresponding registers. Therefore, tpglatPCA and VGHR for the next iterations is not on the
critical path of the branch predictor access.

The training of the VPC predictor on a misprediction mayl#igincrease the complexity of the BTB update logic
because it requires multiple iterations to access the BT@®vever, the VPC training logic needs to access the BTB
multiple times only on a target misprediction, which is tedaly infrequent, and the update logic of the BTB is not on
the critical path of instruction execution. If needed, pegd3TB and branch predictor updates due to VPC prediction
can be buffered in a queue to be performed in consecutivesyblote that such a queue to update conditional branch
prediction structures already exists in some modern psmreisnplementations with limited number of read/write
ports in the BTB or the direction predictor [39]).

4. Experimental Methodology

We use a Pin-based [37] cycle-accurate x86 simulator taiat@NVPC prediction. The parameters of our baseline

processor are shown in Table 2. The baseline processorhes@IB to predict indirect branches [36].
Table 2. Baseline processor configuration
64KB, 2-way, 2-cycle I-cache; fetch ends at the first predidaken br.;

fetch up to 3 conditional branches or 1 indirect branch
64KB (64-bit history, 1021-entry) perceptron branch pogati [30];

Front End

E:éelgii:r:ors 4K-entry, 4-way BTB with pseudo-LFU replacement;
64-entry return address stack; min. branch mispred. peisaB0 cycles
Execution 8-wide fetch/issue/execute/retire; _512_-entry ROB; 38yts;i1‘m_1l regis‘ters
Core 128-entry LD-ST queue; 4-cycle pipelined wake-up and sieledogic;
scheduling window is partitioned into 8 sub-windows of 64res each
on-chip L1 D-ggche: 64KB, 4-way, 2-cycle, 2 Id/st ports;
Caches | -2 unified cache: 1MB, 8-way, 8 banks, 10-cycle latency;

All caches use LRU replacement and have 64B line size
Buses and 300-cycle minimum memory latency; 32 memory banks;
Memory | 32B-wide core-to-memory bus at 4:1 frequency ratio
Stream prefetcher with 32 streams and

16 cache line prefetch distance (lookahead) [51]

Prefetcher

The experiments are run using 5 SPEC CPU2000 INT benchnmna&BEC CPU2006 INT/C++ benchmarks, and
2 other C++ benchmarks. We chose those benchmarks in SPEQQABIIand 2006 INT/C++ suites that gain at least
5% performance with a perfect indirect branch predictotbl@&e8 provides a brief description of the other two C++

benchmarks.
Table 3. Evaluated C++ benchmarks that are not included in SP EC CPU 2000 or 2006

XX translator from IDL (Interface Definition Language) to C++
richards || simulates the task dispatcher in the kernel of an operajisgm [52]

We use Pinpoints [44] to select a representative simulatgion for each benchmark using the reference input

14

set. Each benchmark is run for 200 million x86 instructiori@ble 4 shows the characteristics of the examined

benchmarks on the baseline processor. All binaries are tedwwith Intel’s production compiler (ICC) [26] with the

-O3 optimization level.

Table 4. Characteristics of the evaluated benchmarks: language and type of the benchmark (Lang/Type), baseli@e(BASE IPC), potential IPC
improvement with perfect indirect branch prediction (PIBRC A), static number of indirect branches (Static IB), dynamiciver of indirect branches (Dyn.
IB), indirect branch prediction accuracy (IBP Acc), inditéoranch mispredictions per kilo instructions (IB MPKIpraitional branch mispredictions per kilo
instructions (CB MPKI). gcc06 is 403.gcc in CPU2006 and gct76.gcc in CPU2000.

| [gcc [crafty] eon [perlbmk] gap [perlbench gccO6| sjeng| namd [povray|richards| ixx [AVG |
Lang/Type || Clint | Cl/int | C++/int| Clint Clint Clint Clint | Clint | C++/fp | C++/fp | C++/int | C++/int -
BASE IPC 1.20 | 1.71 2.15 1.29 1.29 1.18 0.66 | 1.21 2.62 1.79 0.91 1.62 1.29
PIBP IPCA || 23.0%| 4.8% | 16.2% | 105.5%| 55.6%| 51.7% | 17.3%| 18.5%| 5.4% | 12.1% | 107.1%| 12.8% || 32.5%
Static IB 987 356 1857 864 1640 1283 1557 | 369 678 1035 266 1281
Dyn. 1B 1203K| 195K | 1401K | 2908K | 3454K| 1983K | 1589K| 893K | 517K | 1148K| 4533K | 252K -
IBP Acc (%)|| 34.9 | 34.1 72.2 30.0 55.3 32.6 43.9 28.8 83.3 70.8 40.9 80.7 50.6
IB MPKI 3.9 0.6 1.9 10.2 7.7 6.7 4.5 3.2 0.4 1.7 13.4 1.4 4.63
CB MPKI 3.0 6.1 0.2 0.9 0.8 3.0 3.7 9.5 1.1 2.1 14 4.2 3.0

For completeness, Table 5 shows the sensitivity of the nemzaiSPEC CPU2000 and CPU2006 integer bench-
marks to perfect indirect branch prediction. Since indife@nches do not significantly affect the performance of

these applications, VPC prediction neither improves ngralges their performance.

Table 5. Characteristics of the remaining SPEC CPU2000 INT a nd SPEC CPU2006 INT/C++ benchmarks: baseline IPC, IPC with perfect

indirect branch prediction (PIBP IPC), IPC when VPC praditis used (VPC IPC). lib., xal., omn. are abbreviationslifaqquantum, xalancbmk, and omnetpp
respectively.

SPEC CPU2000 INT SPEC CPU2006 INT
gzip| vpr [mcf [parser] vortex | bzip2] twolf || bzip2] mcf | gobmk] hmmer][lib. [h264ref] omn.] astar] xal. | dealll | soplex
BASE IPC|| 0.87| 1.00| 0.17| 1.26 | 1.14 | 1.10| 0.90 || 1.32|0.17| 0.98 1.30 | 3.83| 1.78 | 0.50| 0.52|0.76| 2.74 | 1.46
PIBP IPC | 0.87| 1.00|0.17| 1.26 | 1.15| 1.10 | 0.90 (| 1.32|0.17| 0.98 1.30 | 3.83] 1.79 | 051|0.52|0.80| 2.76 | 1.46
VPCIPC || 0.87| 1.00|0.127| 1.26 | 1.14 | 1.10 | 0.90 || 1.32|0.17| 0.98 1.30 | 3.83] 1.79 | 0.50| 0.52|0.78| 2.75 | 1.46

5. Results
5.1. Dynamic Target Distribution

Figure 5 shows the distribution of the number of dynamicegsdor executed indirect branches. In eon, gap, and
ixx, more than 40% of the executed indirect branches hawe am target. These single-target indirect branches are
easily predictable with a simple BTB-based indirect brapidictor. However, in gcc (50%), crafty (100%), perlomk
(94%), perlbench (98%), sjeng (100%) and povray (97%), 6@8t of the dynamic indirect branches have more than
5 targets. On average, 51% of the dynamic indirect branchtteei evaluated benchmarks have more than 5 targets.
5.2. Performance of VPC Prediction

Figure 6 (left) shows the performance improvement of VPGljtéon over the baseline BTB-based predictor when
MAX _ITER is varied from 2 to 16. Figure 6 (right) shows the indirbcanch MPKI in the baseline and with VPC
prediction. In eon, gap, and namd, where over 60% of all exelcundirect branches have at most 2 unique targets (as

shown in Figure 5), VPC prediction with MAXTER=2 eliminates almost all indirect branch mispredinsoAlmost

15

100

=16+
—11-15
=6-10
—5
-

=3

901 |

80+
70H
601
50— 2

40— =1
301 i

20H

Percent of Executed Indirect Branches (%)

10+ —

& &

Figure 5. Distribution of the number of dynamic targets acro ss executed indirect branches

all indirect branches in richards have 3 or 4 different té&sg&herefore, when the VPC predictor can hold 4 different
targets per indirect branch (MAXTER=4), indirect branch MPKI is reduced to only 0.7 (from.4# baseline and
1.8 with MAX_ITER=2). The performance of only perlomk and perlbench icwas to improve significantly as
MAX _ITER is increased beyond 6, because at least 65% of the ahdiranches in these two benchmarks have at
least 16 dynamic targets (This is due to the large switcle-statements in perl that are used to parse and pattern-
match the input expressions. The most frequently exeauisgrfedicted indirect branch in perlbench belongs to a
switch statement with 57 static targets). Note that evenghdhe number of mispredictions can be further reduced
when MAX_ITER is increased beyond 12, the performance improvemdntly decreases for perlbench. This is
due to two reasons: (1) storing more targets in the BTB viagelaMAX_ITER value starts creating conflict misses,
(2) some correct predictions take longer when MAPER is increased, which increases the idle cycles in whizh n
instructions are fetched.

On average, VPC prediction improves performance by 26.7%r athe BTB-based predictor (when
MAX _ITER=12), by reducing the average indirect branch MPKI frér63 to 0.52. Since a MAXTER value of
12 provides the best performance, most later experimerntssrsection use MAXTER=12. We found that using
VPC prediction does not significantly impact the predicémcuracy of conditional branches in the benchmark set we

examined as shown in Table 7.

100 15
9 - ii =baseline
% " «VPC-ITER-2 El; =VPC-ITER-2
§ =VPC-ITER-4 Sn =VPC-ITER-4
5 0 =VPC-ITER-6 T s =VPC-ITER-6
& 60 =VPC-ITER-8 I 209 =VPC-ITER-8
é i aVPC-ITER-10 i:i 8 sVPC-ITER-10
] =VPC-ITER-12 s 7 =VPC-ITER-12
g 40 =VPC-ITER-14] 5 E =VPC-ITER-14
£ 30 g° oVPC-ITER-16
1 -
s ® g3
T 2 23 W
M L N
s c}""é S an & g N £ & N (\()@ & s e S QQ’&() & é\& cgp £ & Qo\\« _\\é@ &

Figure 6. Performance of VPC prediction: IPC improvement (I eft), indirect branch MPKI (right)

16

Figure 7 shows the distribution of the number of iteratioeeded to generate a correct target prediction. On
average 44.6% of the correct predictions occur in the fiestation (i.e. zero idle cycles) and 81% of the correct
predictions occur within three iterations. Only in perlbirkd sjeng more than 30% of all correct predictions require
at least 5 iterations. Hence, most correct predictions artopned quickly resulting in few idle cycles during which

the fetch engine stalls.

Percent of all correct predictions (%)

Figure 7. Distribution of the number of iterations (for corr ect predictions) (MAX _ITER=12)

5.3. Comparisons with Other Indirect Branch Predictors

100 15
=TTC-384B 14 =baseline
L9 =TTC-768B S13 «+TTC-384B
£ w0 «TTC-1.5KB P +TTC-768B
§ s TTC-3KB E 11 s TTC-1.5KB
7 «TTC-6KB 10 +TTC-3KB
3 60 =TTC-12KB g0 »TTC-6KB
g 5 «TTC-24KB g0 +TTC-12KB
o - s o -
g | TTC-48KB s TTC-24KB
g sTTC-96KB 5 . s TTC-48KB
E 30+ =TTC-192KB £, 1 *TTC-96KB |
T 20— g 3 I |-TTC-192KB
g 5 2 *VPC-ITER-12
g
mi £
[T
° ¢ & TR SO S s ° ¢ & S T LSS S E
§ & FF TN Ly TS ML A S R RO

Figure 8. Performance of VPC prediction vs. tagged targetca che: IPC (left), MPKI (right)

Figure 8 compares the performance and MPKI of VPC prediatitin the tagged target cache (TTC) predictor [9].
The size of the 4-way TTC predictor is calculated assumibgté-targets and 2-byte tags for each eAtrdn average,
VPC prediction provides the performance provided by a 3-6KIE predictor. However, as shown in Table 6, in six
benchmarks, the VPC predictor performs at least as well ZK8 T TC (and on 4 benchmarks better than a 192KB
TTC). As shown in Table 6, the size of TTC that provides edentperformance is negatively correlated with
the average number of dynamic targets for each indirectdbrém a benchmark: the higher the average number of
targets the smaller the TTC that performs as well as VPC (e.grafty, perlomk, and perlbench). This is because

TTC provides separate storage to cache the large numbemaintig targets in addition to the BTB whereas VPC

12Note that we simulated full 8-byte tags for TTC and hence eufggmance results reflect full tags, but we assume thatistied TC will not be implemented
with full tags so we do not penalize it in terms of area costaiyét cache entry is allocated only on a BTB mispredictiagrafoindirect branch. Our results do
not take into account the increase in cycle time that mighbtseduced due to the addition of the TTC predictor into thegessor front-end.

17

prediction uses only the available BTB space. As the avenageber of targets increases, the contention for space
in the BTB also increases, and reducing this contention axdna relatively small separate structure (as TTC does)

provides significant performance gains.

Table 6. The sizes of tagged target cache (TTC) and cascaded p redictors that provide the same performance as the VPC predi ctor
(MAX_ITER=12) in terms of IPC

| | gcc Jcrafty] eon [perlbmk| gap [perlbencH gccO6] sieng] namd | povray | richards] ixx |
TTC size (B) 12KB |1.5KB|>192KB| 1.5KB | 6KB | 512B |[12KB| 3KB |>192KB| >192KB| >192KB| 3KB

cascaded size (B)>176KB| 2.8KB| >176KB| 2.8KB [11KB| 1.4KB |44KB|5.5KB|>176KB|>176KB|>176KB| >176KB
avg. # of target§ 6.1 8.0 2.1 15.6 1.8 17.9 5.8 9.0 2.0 59 34 4.1

Figure 9 compares the performance of VPC prediction withsta8e cascaded predictor [12, 13]. On average,
VPC prediction provides the same performance improvemeat22KB cascaded predictor. As shown in Table 6, in

six benchmarks, VPC prediction provides the performancat tfast a 176KB cascaded predictor.

=
>

100

=base

% , =cascaded-704B =1 =cascaded-704B

= cascaded-1.4KH I =cascaded-1.4KH
80 =cascaded-2.8KB™ § 12 scascaded-2.8KB
70 = cascaded-5.5KB—|

=cascaded-5.5KH
=cascaded-11KB
=cascaded-22KB
=cascaded-44KB
scascaded-88KB
=cascaded-176KB

s VPC-ITER-12
_‘m Om
L & o N RS
<R

NS >
O O . @ \j‘ Q' O
& ¢ Q@«\° g & & ¢ & T S & @

=cascaded-11KB| |
= cascaded-22KB|
50 = cascaded-44KB
40 = cascaded-88KB|
= cascaded-176K
=VPC-ITER-12

=
o

60

o

30+

I
-

% IPC improvement over baseline

20

0

Indirect branch Mispredictions (MPKI
o<}

N

Figure 9. Performance of VPC prediction vs. cascaded predic tor: IPC (left), MPKI (right)

5.4. Effect of VPC Prediction Delay

So far we have assumed that a VPC predictor can predict aesirgial branch per cycle. Providing the ability to
predict multiple virtual branches per cycle (assuming theearlying conditional branch predictor supports this) Wou
reduce the number of idle cycles spent during multiple VP€Jmtion iterations. Figure 10 shows the performance
impact when multiple iterations can take only one cycle. fupng, unrealistically, even 10 prediction iterations
per cycle further improves the performance benefit of VPGljoten by only 2.2%. As we have already shown in
Figure 7, only 19% of all correct predictions require morarit8 iterations. Therefore, supporting multiple iteration
per cycle does not provide significant improvement. We aatielthat, to simplify the design, the VPC predictor can

be implemented to support only one iteration per cycle.

Bwe found that a 3-stage cascaded predictor performs sligiitse than an equally-sized TTC predictor. This is becahsenumber of static indirect
branches in the evaluated benchmarks is relatively smé2() and a cascaded predictor performs better than a TT® Wieze is a larger number of static
branches [12, 13].

18

100

90

=1 br/cycle

80

=2 bricycle
70 =4 br/cycle
60 I =6 br/cycle
=8 br/cycle

=10br/cycle

40-1

30+

20

% IPC improvement over baseline
u
o

10

')

< S

<& > QO N4

§ [N Q
© < &

Figure 10. Performance impact of supporting multiple VPC pr ediction iterations per cycle

5.5. Effect of VPC Training: Where to Insert the Correct Target Address

In Section 3.3.2, we described how the VPC training algorithserts the correct target into the BTB if the VPC
prediction was wrong. Where the correct target is insenethé BTB with respect to other targets of the branch
could affect performance because 1) it determines whigetawill be replaced by the new target and 2) it affects the
“order” of appearance of targets in a future VPC predictimop. This section evaluates different policies for inseti
a target address into the BTB upon a VPC misprediction.

Figure 11 shows the performance improvement provided by different policies we examineNaive-Insert-
MAXITERInserts the target address into the BTB without first cheghkimether or not it already exists in the BTB
entries corresponding to the virtual branches. The tarddtess is inserted into the first available virtual branch
position, i.e. that corresponding to a virtual branch thagsed in the BTB. If none of the virtual branches had missed
in the BTB, the target is always inserted in the MARER position. The benefit of this mechanism is that it dods no
require the VPC training logic to check all the BTB entriesresponding to the virtual branches; hence it is simpler to
implement. The disadvantage is it increases the redundzfiieyget addresses in the BTB (hence the area-efficiency
of the BTB) since the target address of each virtual brandotisecessarily unique.

The other three policies we examine require each virtuaidirdo have a unique target address, but diffexinch
virtual branch they replace if the VPC prediction was wrong aeither the correct target of the indirect branch nor
an empty virtual branch slot corresponding to the indirgenich was found in the BTBJnique-Randomeplaces a
BTB entry randomly among all the virtual branchddnique-LRUreplaces the target address corresponding to the
virtual branch whose entry has the smallest least-recershd (LRU) value Unique-LFUis the default scheme we
described in Section 3.3.2, which replaces the target addrerresponding to the virtual branch whose entry has the
smallest LFU-value.

According to Figure 11, the performance of most benchmaessept perlbmk, perlbench, and sjeng— is not sen-

sitive to the different training policies. Since the numioérdynamic targets per branch is very high in perlbomk,

19

perlbench, and sjeng (shown in Figure 5 and Table 6), theeation for virtual branch slots in the BTB is high. For
our set of benchmarks, thénique-LFUscheme provides the highest performance (1% and 2% bedtereéispectively
Unique-LRUandUnique-Random We found that frequently used targets in the recent pastare likely to be used

in the near future and therefore it is better to replace lespuently used target addresses. Therefore, we have chosen

theUnique-LFUscheme as our default VPC training scheme.

100

90

= Naive-Insert-MAXITER
= Unigue-Random
70 =Unique-LRU
60 = Unique-LFU

80

50

40
30+

% IPC improvement over baseline

20+

10+

ol
IS
§ @

b N/
&
N

S

N
(d B
&

Figure 11. Performance impact of different VPC training sch emes

5.6. Sensitivity of VPC Prediction to Microarchitecture Paameters
5.6.1. Different Conditional Branch Predictors We evaluated VPC prediction with various baseline condélo
branch predictors. Figure 12 compares the performanceeo IrC predictor and the VPC predictor on a baseline
processor with a 64KB O-GEHL predictor [47]. On average, \fRR€diction improves performance by 31% over the
baseline with an O-GEHL predictor and outperforms a 12KB Tpr€dictor. Figure 13 shows that VPC prediction
improves performance by 23.8% on a baseline processor withkdB gshare [40] predictor. These results show
that VPC prediction can be used with other conditional binapiediction mechanisms without changing the VPC
prediction algorithm solely because indirect branchedraged the same way as “multiple” conditional branches.
Table 7 summarizes the results of our comparisons. Redtiingonditional branch misprediction rate via a better
predictor results in also reducing the indirect branch madption rate with VPC prediction. Hence, as the baseline
conditional branch predictor becomes better, the perfamaamprovement provided by VPC prediction increases.
We conclude that, with VPC prediction, any research eftwat improves conditional branch prediction accuracy will
likely result in also improving indirect branch predictiaecuracy — without requiring the significant extra effort to
design complex and specialized indirect branch predictors

Table 7. Effect of different conditional branch predictors

Cond. BP queljne VPC_prgdiction
cond. MPKIJindi. MPKIT IPC | cond. MPKI]indi. MPKITIPCA
gshare 3.70 4.63 1.25 3.78 0.65 23.8%
perceptror) 3.00 4.63 1.29 3.00 0.52 26.7%
O-GEHL 1.82 4.63 1.37 1.84 0.32 31.0%

20

N 14 =base
. 100 T =TTC-384B] S1 =TTC-384B
% 90 =TTC-768B L g1 «TTC-768B
£ w0 = TTC-1.5KB - Tu s TTC-1.5KB
3 70 d = TTC-3KB % 15 = TTC-3KB
£ 60 PIgN 35 - TTC-6KB
5 = TTC-12KB 5 = TTC-12KB
§ 501 = TTC-24KB $7 = TTC-24KB
< o ~ <
g 40 Efé ‘IleKs " 2 5 «TTC-48KB
o 30 YPmER g =VPC-ITER-12
% 20- 23 |.
g 10‘ﬂ:” m -g 2
7 T
0 N T o 0 T8 S
< & N SEES) S @ & 2 o & o N S & ® > < >
§ & & Q2§0 & QQ§° £ %c’g é\é\ ﬁ\'z’é\ 3 ;\\é\lZ> + ‘(\é\e § & L Qe§0 & Qe‘@ Q(’o ¥ Q’Z}Q Q§ g\é& < -25&

Figure 12. Performance of VPC prediction vs. TTC on a process or with an O-GEHL conditional branch predictor: IPC (left), MPKI (right)

100 15

14 =base
90 13 s TTC-384B
2 = TTC-384B &
£ g0 12 «TTC-768B
5 =
3 =TTC-768B Su «TTC-1.5KB
ERC] =TTC-1.5KB S 10 = TTC-3KB
3 60 = TTC-3KB g9 = TTC-6KB
g 50 T 50 +TTC-12KB
5 - s s TTC-24KB
§ 40 s TTC-24KB 5 6 s TTC-48KB
E 304 = TTC-48KB g -VPC-ITER-12
0 «VPC-ITER-12 5
= 20+ o 3 "
s g2 |
101 =
1
° RIS ‘04 R 9 S @ fo’\;, & & ° R SIS ‘Jg -z‘w S O & & &+ &
& L FF FTE S F TS I TS e Y

Figure 13. Performance of VPC prediction vs. TTC on a process or with a gshare conditional branch predictor: IPC (left), M PKI (right)

5.6.2. Different BTB sizesWe evaluated VPC prediction with different BTB sizes: 51024, 2048, 4096 (base),
8192 and 16384 entri¢é. As Table 8 shows, even with smaller BTB sizes VPC predictiilhpgovides significant
performance improvements. With a very small (512-entryBBVPC prediction improves performance by 18.5%.
With a very large (16K-entry) BTB, the performance improwris 27.1%. Even though VPC prediction slightly
increases the BTB miss rate for conditional branch insitbast(due to the contention it introduces by storing mudtipl
targets per indirect branch in the BTB), the negative impdthis is easily offset by the positive performance impact
the large reductions in the indirect branch mispredictiate (as Table 8 shows). We conclude that VPC prediction

becomes more effective as BTB size increases, but it isffittive with a small BTB.

Table 8. Effect of different BTB sizes

BTR entries Baseline VPC prediction

indirect MPKI] cond br. BTB miss (%) IPC || indirect MPKI] cond br. BTB miss (%) IPCA
512 4.81 8.2 1.16 1.31 8.4 18.5%
1K 4.65 2.9 1.25 0.95 3.0 21.7%
2K 4.64 0.7 1.28 0.78 0.7 23.8%
4K 4.63 0.1 1.29 0.52 0.1 26.7%
8K 4.63 0.01 1.29 0.46 0.01 27.0%
16K 4.63 0.006 1.29 0.45 0.006 27.1%

5.6.3. VPC Prediction on a Less Aggressive Processéiigure 14 shows the performance of VPC and TTC pre-

dictors on a less aggressive baseline processor that has@a@® pipeline, 4-wide fetch/issue/retire rate, 128yent

14Note that many modern processors have large BTBs: AMD Atf@ttrentry) [1], Intel Pentium 4 (4K-entry) [22], IBM z990 K8entry) [49].

21

instruction window, 16KB perceptron branch predictor, éktry BTB, and 200-cycle memory latency. Since the
less aggressive processor incurs a smaller penalty forrechmaisprediction, improved indirect branch handling pro-
vides smaller performance improvements than in the basgincessor. However, VPC prediction still improves
performance by 17.6%.

100

00 =TTC-384B
o =TTC-768
‘s 80 =TTC-1.5KB
3 70 = TTC-3KB
2w = TTC-6KB
£ = TTC-12KB
£ 50 = TTC-24KB
3 40 = TTC-48KB
E 3l *VPC-ITER-12 -
O
a
X

20+
N ﬁﬂm
0

S

o N & & o O I 2
o 3 > SN > . &
@ QQ'\\ FTF & & & ¢ & o+ N

Figure 14. VPC prediction vs. TTC on a less aggressive proces sor

5.7. Effect of VPC Prediction on Power and Energy Consumptio

Figure 15 shows the impact of VPC prediction and TTC predsotd different sizes on maximum processor power,
overall energy consumption, energy-delay product of tfee@ssor, and the energy consumption of the branch pre-
diction logic (which includes conditional/indirect prethrs and the BTB). We used the Wattch infrastructure [4] to
measure power/energy consumption, faithfully modelingrgyrocessing structure and the additional accesses to the
branch predictors. The power model is based on 100nm teay@ind a 4GHz processor.

On average, VPC prediction reduces the overall energy ecopgan by 19%, which is higher than the energy
reduction provided by the most energy-efficient TTC preati¢l2KB). The energy reduction is due to the reduced
pipeline flushes and thus reduced amount of time the procsgeads fetching and executing wrong-path instructions.
Furthermore, VPC prediction reduces the energy delay mto(EDP) by 42%, which is also higher than the EDP
reduction provided by the most energy-efficient TTC premlict/ PC prediction improves EDP significantly because
it improves performance while at the same time reducinggneonsumption.

VPC prediction does not significantly increase the maximuamvgr consumption of the processor whereas even a
3KB TTC predictor results in a 0.3% increase in maximum pog@rsumption due to its additional hardware over-
head. Note that relatively large TTC predictors signifibaimcrease not only the complexity but also the energy
consumption of the branch prediction unit. We conclude YRC prediction is an energy-efficient way of improv-
ing processor performance without significantly incregdime complexity of the processor frontend and the overall

processor power consumption.

22

= max power
== energy
==EDP

= BP energy

w
al

15 — —
10 =

0 |

delta(%)

VPC TTC-768B TTC-1.5KB TTC-3KB TTC-6KB TTC-12KB

Figure 15. Effect of VPC prediction on energy/power consump tion

5.8. Performance of VPC Prediction on Server Applications

We also evaluated the VPC predictor with commercial on-tia@saction processing (OLTP) applications [21].
Each OLTP trace is collected from an IBM System 390 zSerieshina [25] for 22M instructions. Unlike the
SPEC CPU benchmarks, OLTP applications have a much highebe&uof static indirect branches (OLTP1:7601,
OLTP2:7991, and OLTP3:15733) and very high indirect bramsisprediction rate$®> The VPC predictor
(MAX _ITER=10) reduces the indirect branch misprediction rat&8%, from 12.2 MPKI to 8.7 MPKI. The VPC
predictor performs better than a 12KB TTC predictor on aplagations and almost as well as a 24KB TTC on oltp2.

Hence, we conclude that the VPC predictor is also very effeat large-scale server applications.

I}
-
o]

= baseline
=TTC-384B
=TTC-768B
=TTC-1.5KB
=TTC-3KB
=TTC-6KB
=TTC-12KB
=TTC-24KB
=TTC-48KB

= VPC-ITER-10

= baseline
=VPC-ITER-2
| =VPC-ITER4
=VPC-ITER-6
=VPC-ITER-8
=VPC-ITER-10
=VPC-ITER-12
=VPC-ITER-14
=VPC-ITER-16

BRRRD e
S LR o

B e e
SR o

PERLLOONP PR

Indirect branch Mispredictions (MPKI)
Indirect branch Mispredictions (MPKI)

erhesaoNBReOR

oltp1 oltp2 oltp3 amean oltpl oltp2 0Itp§7 amean

Figure 16. MPKI of VPC prediction on OLTP Applications: effe ct of MAX _ITER (left) and vs. TTC predictor (right)

6. VPC Prediction and Compiler-Based Devirtualization

Devirtualizationis the substitution of an indirect method call with directthmal calls in object-oriented lan-
guages [10, 24, 20, 5, 29]. Ishizaki et al. [29] classify tlegidualization techniques intguarded devirtualization
anddirect devirtualization

Guarded devirtualization: Figure 17a shows an example virtual function call in the Ganiguage. In the example,
depending on the actual type Shape s, differentar ea functions are called at run-time. However, even though

there could be many different shapes in the program, if tipesyof shapes are mostly either an instance of the

155ystem 390 ISA has both unconditional indirect and condiitiondirect branch instructions. For this experiment, wdyaonsider unconditional indirect
branches and use a 16K-entry 4-way BTB in the baseline psoceSince server applications have very large indireatdnavorking sets, BTBs of processors
designed for use in server systems are also large [49].

23

Rect angl e class or theCi r ¢l e class at run-time, the compiler can convert the indiredttoamultiple guarded
direct calls [20, 17, 5] as shown in Figure 17(b). This compibptimization is called Receiver Class Prediction

Optimization RCPQ and the compiler can perform RCPO based on profiling.

Shape* s = ... ;
a = s->area(); // an indirect call
(a) A virtual function call in C++

Shape * s = ...;

if (s->class == Rectangl e) /1l a cond. br at PC. X
a = Rectangle::area(); /1 a direct call

else if (s->class == Circle) // a cond. br at PC. Y
a =Crcle::area(); /1 a direct call

el se
a = s->area(); /1 an indirect call at PC. Z

(b) Devirtualized form of the above virtual function call

Figure 17. A virtual function call and its devirtualized for m

The benefits of this optimization are: (1) It enables othenpiter optimizations. The compiler could inline the
direct function calls or perform interprocedural analygig]. Removing function calls also reduces the register
save/restore overhead. (2) The processor can predict thehfunction call using a conditional branch predictor,
which usually has higher accuracy than an indirect braneldiptor [5]. However, not all indirect calls can be con-
verted to multiple conditional branches. In order to parfdRCPO, the following conditions need to be fulfilled [17,

5]

1. The number of frequent target addresses from a calleskdald be small (1-2).
2. The majority of target addresses should be similar adrgmsg sets.

3. The target addresses must be available at compile-time.

Direct devirtualization: Direct devirtualization converts an indirect call into agle unconditional direct call if
the compiler can prove that there is only one possible tdogehe indirect call. Hence, direct devirtualization does
not require a guard before the direct call, but requires ehmbgram analysis to make sure there is only one possible
target. This approach enables code optimizations thatdwvathlerwise be hindered by the indirect call. However, this
approach cannot be used statically if the language supgpnamic class loading, like Java. Dynamic recompilation
can overcome this limitation, but it requires an expensieehanism called on-stack replacement [29].

6.1. Limitations of Compiler-Based Devirtualization
6.1.1. Need for Static Analysis or Accurate Profiling The application of devirtualization to large commercidtso
ware bases is limited by the cost and overhead of the statilysia or profiling required to guide the method call

transformation. Devirtualization based on static analysguires type analysis, which in turn requires whole progr

24

analysis [29], and unsafe languages like C++ also requinetgoalias analysis. Note that these analyses need to
be conservative in order to guarantee correct program seesarGuarded devirtualization usually requires accurate
profile information, which may be very difficult to obtain ftarge applications. Due to the limited applicability of
static devirtualization, [29] reports only an average 4@xuction in the number of virtual method calls on a set of

Java benchmarks, with the combined application of aggresgiarded and direct devirtualization techniques.

6.1.2. Impact on Code Size and Branch MispredictionsgGuarded devirtualization can sometimes reduce perfor-
mance since (1) it increases the static code size by congeaatsingle indirect branch instruction into multiple guard
test instructions and direct calls; (2) it could replace possibly mispredicted indirect call with multiple conditial

branch mispredictions, if the guard tests become hardgdigt branches [50].

6.1.3. Lack of Adaptivity to Run-Time Input-Set and Phase Bbavior The most frequently-taken targets chosen
for devirtualization can be based on profiling, which avesathe whole execution of the program for one particular
input set. However, the most frequently-taken targets cadifferent across different input sets. Furthermore, the
most frequently-taken targets can change during diffepbiases of the program. Additionally, dynamic linking and
dynamic class loading can introduce new targets at runti@@mpiler-based devirtualization cannot adapt to these
changes in program behavior because the most frequentsargee method call are determined statically and encoded
in the binary.

Due to these limitations, many state-of-the-art compittser do not implement any form of devirtualization (e.g.
GCC 4.0 [18}°) or they implement a limited form of direct devirtualizatithat converts only provably-monomorphic
virtual function calls into direct function calls (e.g. tBartok compiler [50, 41] or the .NET Runtime [42]).

6.2. VPC Prediction vs. Compiler-Based Devirtualization

VPC prediction is essentially @dynamic devirtualizatiomechanism used for indirect branch prediction purposes.
However, VPC's devirtualization is visible only to the bedrprediction structures. VPC has the following advantages
over compiler-based devirtualization:

1. As it is a hardware mechanism, it can be applieény indirect branchwithout requiring any static analy-
sis/guarantees or profiling.

2. Adaptivity: Unlike compiler-based devirtualizatiohgtdynamic training algorithms allow the VPC predictor to
adapt to changes in the most frequently-taken targets orteveew targets introduced by dynamic linking or dynamic
class loading.

3. Because virtual conditional branches are visible onlhebranch predictor, VPC prediction does not increase

16GCC only implements a form of devirtualization based onskigsrarchy analysis in thipa-branchexperimental branch, but not in the main branch [43].

25

the code size, nor does it possibly convert a single indibeahch misprediction into multiple conditional branch
mispredictions.

On the other hand, the main advantage of compiler-basedta@ization over VPC prediction is that it enables
compile-time code optimizations. However, as we show imidee section, the two techniques can be used in combi-
nation and VPC prediction provides performance benefitoprof compiler-based devirtualization.

Table 9. The number of static and dynamic indirect branches i n BASE and RCPO binaries
gcc| crafty| eon | perlomk| gap | perlbench gcc06| sjeng | namd| povray
Static BASE 987| 356 |1857| 864 |1640| 1283 | 1557| 369 | 678 | 1035
Static RCPO 984| 358 [1854| 764 |1709| 930 1293| 369 | 333 | 578
Dynamic BASE (M)|| 144| 174 | 628 | 1041 |2824| 8185 304 |10130| 7 8228
Dynamic RCPO (M}| 94 | 119 | 619 | 1005 |[2030{ 1136 202 {10132 4 7392

6.3. Performance of VPC Prediction on Binaries Optimized wih Compiler-Based Devirtualization

A compiler that performs devirtualization reduces the nemdf indirect branches and therefore reduces the po-
tential performance improvement of VPC prediction. Thist®m evaluates the effectiveness of VPC prediction on
binaries that are optimized using aggressive profile-glim@imizations, which include RCPO. ICC [26] performs a
form of RCPO [46] when value-profiling feedback is enablddng with other profile-based optimizatiohs.

Table 9 shows the number of static/dynamic indirect braséhehe BASEand RCPObinaries run with the full
reference input seBASEbinaries are compiled with theO3 option. RCPObinaries are compiled with all profile-
guided optimizations, including RCP®.Table 9 shows that RCPO binaries reduce the number of statiamic
indirect branches by up to 51%/86%.

Figure 18 shows the performance impact of VPC prediction G R binaries. Even though RCPO binaries have
fewer indirect branches, VPC prediction still reduces iiadi branch mispredictions by 80% on average, improving
performance by 11.5% over a BTB-based predictor. Figurehb®vs the performance comparison of VPC prediction
with a tagged target cache on RCPO binaries. The performaih¢®C is better than a tagged predictor of 48KB
(for eon, namd, povray), and equivalent to a tagged predaft@4KB (for gap), of 12KB (for gcc), of 3KB (for
perlbmk, gcc06, and sjeng), of 1.5KB (for crafty), and 768& perlbench). Hence, a VPC predictor provides the
performance of a large and more complicated tagged targeeqgaredictor even when the RCPO optimization is used
by the compiler.

7. Evaluation of VPC Prediction on Object-Oriented Java Apdications
This section evaluates VPC prediction using a set of modejectoriented Java applications, the full set of Da-

Capo benchmarks [3]. Our goal is to demonstrate the benéfit®@ prediction on real object-oriented applications

17Since it is not possible to selectively enable only RCPO i@ |@e could not isolate the impact of RCPO on performance celgne only present the effect
of VPC prediction on binaries optimized with RCPO.

18RCPO binaries were compiled in two passes with ICC: the fastsys a profiling run with the train input setgr of _gen switch), and the second pass
optimizes the binaries based on the profile (we use fireof _use switch, which enables all profile-guided optimizations).

26

o fl =~ 9 I =baseline —
£50 E s I =VPC-ITER-4
ﬁ =VPC-ITER-4 ‘é’ . =\VPC-ITER-6 |
g 40 =VPC-ITER-6 ———— % =VPC-ITER-8
; =\PC-ITER-8 3 6 =VPC-ITER-10 —
g 30 = VPC-ITER-1 55 =VPCTER-12 |
g =VPC-ITER-12 s,
a]
_gzo § 3
a 5]
S 10 g 2
£ 1]
0- 04
< ES) N N & IS IS) > > <) Q N & IS & > >
& & S Q@&O Q@Q g & o S Q& Qo\\\ ‘Q@z § & i~ QQ§° qug p & ¢ szf Qo& ,b&e

Figure 18. Performance of VPC prediction on RCPO binaries: | PC (left) and MPKI (right)

100 10

=baseline
=TTC-384B 9 L
90 — = = TTC-384B
e =TTC-768B g
£ o T g «TTC-768B |
3 - =TTC-1.5KB =
a = =TTC-1.5KB
2 70 T = TTC-3KB c 7 —
- g =TTC-3KB
g =TTC-6KB g 6 L
3 60 E 5 s TTC-6KB
2 aTTC-12KB 8
§ 5 5 5 aTTC-12KB |
£ = TTC-24KB 2
g s = TTC-24KB
8 40 o TTC-48KB = L
g =VPC-ITER-12 £ °TTC-48KB
£ a0 £s =VPC-ITER-12—
g 4 g 2
B 3
10+ £ 14 1
o § S & &\@*' & & & & e & 0 § ESHI NS
N & Q ¢ 9 N &
& & & S 3 N S & S &

Figure 19. VPC prediction vs. tagged target cache on RCPO bin aries: IPC (left) and MPKI (right)

and to analyze the differences in the behavior of VPC praxficn object-oriented Java programs versus on traditional

C/C++ programs (which were evaluated in Section 5).
7.1. Methodology

We have built an iDNA-based [2] cycle-accurate x86 simulaboevaluate VPC prediction on Java applications.
iDNA [2] is a dynamic binary instrumentation tool similar Rin [37], but capable of tracing Java virtual machines.
The DaCapo benchmarks are run with Sun J2SE 118.dRE on Windows Vista. Each benchmark is run for 200
million x86 instructions with the small input set. The paeters of our baseline processor are the same as those we
used to evaluate VPC prediction on C/C++ applications as/stio 2.1°

Table 10 shows the characteristics of the examined Javagrsgon the baseline processor. Compared to the
evaluated C/C++ programs, the evaluated Java programsdigmeicantly higher number of static and dynamic
indirect branches and indirect branch misprediction réaéso see Table 4). We found that this difference is due to the
object-oriented nature of the Java programs, which corgdarge number of virtual functions, and the behavior of
the Java Virtual Machine, which uses a large number of irtliveanches in its interpretation and dynamic translation

phases [14]. As a result, the potential performance imprera possible with perfect indirect branch prediction is

1BWe use a BTB size of 8K entries to evaluate Java applicatime shey are very branch-intensive. However, we also etalother BTB sizes in Sec-
tion 7.5.1.

27

significantly higher in the evaluated Java applicationsX%d than in the evaluated C/C++ applications (32.5%).

Table 10. Characteristics of the evaluated Java applicatio ns: baseline IPC (BASE IPC), potential IPC improvement withfeer indirect branch
prediction (PIBP IPCA), static number of indirect branches (Static I1B), dynamienber of indirect branches (Dyn. IB), indirect branch potidh accuracy
(IBP Acc), indirect branch mispredictions per kilo insttieas (IB MPKI), conditional branch mispredictions perdihstructions (CB MPKI), and average
number of dynamic targets.

antlr | bloat | chart | eclipse| fop | hsqgldb| jython |Iluindex| lusearchi pmd | xalan || AVG
BASE IPC 098 | 092 | 077 | 120 | 0.79 | 121 | 120 | 1.15 1.12 1.01 | 0.77 0.98
PIBP IPCA 80.3%| 71.2%| 48.4%| 56.9% | 130.9%| 57.5%| 57.8%| 60.1% | 65.3% | 70.1%| 114.4%|| 73.1%
Static 1B 800 628 917 1579 | 1155 | 2533 | 1548 | 1587 1585 944 795 -
Dyn. 1B 4917K| 5390K | 4834K | 3523K| 7112K | 3054K| 3565K| 3744K | 4054K | 4557K| 6923K -
IBP Acc (%) 49.3 | 54.1 51.8 52.0 44.7 61.2 51.9 51.4 51.8 49.8 44.6 51.2
IB MPKI 12.5 12.4 11.6 8.5 19.7 8.3 8.6 9.1 9.8 11.4 19.2 11.9
CB MPKI 2.5 2.2 2.4 4.5 3.1 3.1 4.4 4.6 4.3 3.9 3.9 35
Avg. number of dynamic targets 37.3 | 37.6 | 45.9 | 41.1 37.6 30.3 | 41.0 | 40.6 39.9 39.8 39.7 -

7.2. Dynamic Target Distribution of Java Applications

Figure 20 shows the distribution of the number of dynamigets for executed indirect branches. Unlike C/C++
programs evaluated in Section 5.1, only 14% of executeddntlbranches have a single target and 53% of them
have more than 20 targets (Recall that 51% of the indirectdires in the evaluated C/C++ programs had more than
5 targets). On average, 76% of the dynamic indirect branchése evaluated Java benchmarks have more than 5
targets, in contrast to the 51% in the evaluated indireatzbhn intensive C/C++ programs. Only in hsgldb more than
20% of the dynamic indirect branches have only one targeigtwére easily predictable with a simple BTB-based
indirect branch predictor. The high number of targets exglavhy the evaluated Java programs have higher indirect
branch misprediction rates than the evaluated C/C++ progra

We found that there are two major reasons for the high numbéymamic targets in the Java applications: 1) The
evaluated Java applications are written in object-orgrstyle. Therefore, they include mamplymorphic virtual
function calls i.e. virtual function calls that are overridden by manyided classes, whose overridden forms are
exercised at run time. 2) The Java virtual machine itsel§ asgignificant number of indirect jumps with many targets

in its interpretation routines, as shown in previous workvotual machines [14].

= 20+
=—16-19
-11-15
—6-10
=5
=4
=3
==2

—1

Percent of Executed Indirect Branches (%)

Figure 20. Distribution of the number of dynamic targets acr oss executed indirect branches in the Java programs

28

7.3. Performance of VPC Prediction on Java Applications

Figure 21 (left) shows the performance improvement of VP&dfmtion over the baseline BTB-based predictor
when MAX_ITER is varied from 2 to 16. Figure 21 (right) shows the indireranch misprediction rate (MPKI) in the
baseline and with VPC prediction. Similarly to the resutts€/C++ benchmarks, a MAXTER value of 12 provides
the highest performance improvemewdll of the 11 Java applications experience more than 10% pesfocmim-
provement with VPC prediction and 10 of the 11 applicatioqsegience more than 15% performance improvement.
This shows that the benefits of VPC prediction are very comsisacross different object-oriented Java applications.

On average, VPC prediction provides 21.9% performancecdrgnent in the Java applications.

=baseline

=VPC-ITER-2 =VPC-ITER-2
=VPC-ITER-4 =VPC-ITER-4

40 =VPC-ITER-6 20 =VPC-ITER-6
- s VPC-ITER-8 19 = VPC-ITER-8

w
[
©

=VPC-ITER-10 g1 = VPC-ITER-10
20 s VPC-ITER-12] s 1‘3 sVPC-ITER-12
=VPC-ITER-14 214 s VPC-ITER-14
25+ s VPC-ITER-16 =VPC-ITER-16

BREE

ORNWARUIONDOOORNW

-
o

s
?

% IPC improvement over baseline
N
o

o
I

Indirect branch Mispredictio

o

- . - S
> § N &
& & € S FETE S

Figure 21. Performance of VPC prediction on Java applicatio ns: IPC improvement (left), indirect branch MPKI (right)

7.3.1. Analysis Since the majority of indirect branches have more than 1@etar as MAXITER increases, the
indirect branch MPKI decreases (from 11.9 to 5.2), until MAMER equals 12. The most significant drop in MPKI
(from 10.9 to 7.9) happens when MAKER is increased from 2 to 4 (meaning VPC prediction canesfour
different targets for a branch rather than two). HoweverewMAX_ITER is greater than 12, MPKI starts increasing
in most of the evaluated Java applications (unlike in C/Cppliaations where MPKI continues to decrease). This
is due to the pressure extra virtual branches exert on the: B$Bava applications have a large number of indirect
branches with a large number of dynamically-exercisedetatgnore targets contend for the BTB space with higher
values of MAXITER. As a result, BTB miss rate for virtual branches incemaand the prediction accuracy of VPC
prediction decreases. When the MPKI increase is combingdthve additional iteration cycles introduced for some
predictions by higher MAXITER values, the performance improvement of VPC predictioops from 21.9% (for
MAX _ITER=12) to 20.4% (for MAXITER=16).

Even though VPC prediction significantly reduces the midjoteon rate from 11.9 to 5.2 MPKI in Java applica-

tions, a significant number of mispredictions still remaiFhis is in contrast to the results we obtained for C/C++

29

applications where VPC prediction was able to eliminate 88%ll mispredictions (down to 0.63 MPKI). Hence,
indirect branches in Java applications are more difficufiredict. Therefore, other techniques like dynamic predica
tion [31] might be needed to complement VPC prediction téhieir reduce the impact of indirect branches on Java
application performance.

Figure 22 shows the distribution of the number of iteratioegded to generate a correct target prediction. On
average 44.8% of the correct predictions occur in the fiesation (i.e. zero idle cycles) and 78.7% of the correct
predictions occur within four iterations. Hence, most ectrpredictions are performed quickly resulting in few idle
cycles during which the fetch engine stalls. Note that thelner of iterations (cycles) it takes to make a correct
prediction is higher for Java applications than for C/C+plagations because indirect branches in Java applications

have a significantly higher number of dynamically-exergitgets per indirect branch.

100-

=11-12
—09-10
=7-8
=56
—

=3

90
80

70+

60-
50- —
40- =]
30

20+

Percent of all correct predictions (%)

10+

o

Figure 22. Distribution of the number of iterations (for cor rect predictions) in the Java programs (MAX _ITER=12)

7.4. VPC Prediction versus Other Indirect Branch Predictors on Java Applications
Figure 23 compares the performance and MPKI of VPC prediotith the tagged target cache (TTC) predic-
tor [9]. On average, VPC prediction provides performancprisrement equivalent to that provided by a 3-6 KB TTC

predictor (similarly to the results for C/C++ applicatior$

2 =baseline
100 -TTC-7688 [%1 =TTC-7688
o -TTC-15kB ———— dg =TTC-1.5KB
t. 1L mese o
g =TTC-6KB 2l ~TTC-12KB
s = TTC-12KB 51 oKD
3 60 N1 aTTC-24KB LB T
g 50 || =TTC-48KB 21
8 sVPC-ITER-12 S10
3 404 53
Qo c
£ 304 s 7
o 2 6
a S 5
< 20 L4
S =]
10+ = g
1
0- 5 0 Ll
& & & Il N & ¥ ' O B & N &
& F & P @ ¢ ¢ & F ¢ S &

Figure 23. Performance of VPC prediction vs. tagged target c ache: IPC (left), MPKI (right)

20In the examined Java applications, increasing the size=ofTiC predictor up to 48KB continues providing large perfarmoe improvements, whereas doing
so results in very little return in performance for C/C++ hpgtions. A larger TTC predictor is better able to accomiatedthe large indirect branch target
working set of Java applications whereas a small TTC predistgood enough to accommodate the small target workingfsgfC++ applications. Hence the
difference in the effect of TTC size on performance betwesm Yersus C/C++ applications.

30

Figure 24 compares the performance and MPKI of VPC prediatith the cascaded predictor. On average, VPC
prediction provides the performance provided by a 5.5-1tii8caded predictor. Because the number of static indirect
branches is very high in Java applications, a small cascadtictor (cascaded-704B) performs significantly worse
than the baseline BTB-based predictor. This behavior issaet in C/C++ benchmarks because those benchmarks
have much fewer indirect branches with smaller number ajetfs that do not cause significant contention in the
tables of a small cascaded predictor. However, even thdugjie are many static indirect branches in the examined
Java applications, VPC predictor still provides signifigagrformance improvements equaling those of large cascade
predictors, without requiring extra storage for indirecatch targets.

Note that the size of the TTC or cascaded predictor that ges/ihe same performance as VPC prediction is smaller
for Java applications than for C/C++ applications. In otwerds, TTC and cascaded predictors are relatively more
effective in Java than C/C++ applications. This is becadgdelarge indirect branch and target working set size

of Java applications, which can better utilize the extrgetastorage space provided by specialized indirect branch

predictors.
=cascaded-704B =base
=cascaded-1.4KB =cascaded-704B
- 28K
80 - Cascageg 2.8K = cascaded-1.4KE
70 | | =cascaded-5.5KB = cascaded-2.8KE
g =cascaded-11KE = cascaded-5.5KH
g 60 1 Dcascageg-iiig scascaded-11KB|
50 | | =cascaded- = cascaded-22KB|
g ol °VPC-ITER-12 s cascaded-44KB
é =VPC-ITER-12
g 30 "
2 o '
g 10] |
= 'l -
T | m o |||I |
-10 i < o F A < & “ l” I :
N & & & & & S ¥ & & &L N 2 @ &
& F & ¢S g & & ¢ & *i& \\5‘Q & Q &

Figure 24. Performance of VPC prediction vs. cascaded predi ctor on Java applications: IPC (left), MPKI (right)

7.5. Effect of Microarchitecture Parameters on VPC Predicton Performance on Java Applications

7.5.1. Effect of BTB SizeTable 11 shows the effect of the baseline BTB size on VPC ptiedi performance on
Java applications. Similarly to what we observed for C/Cppleations, VPC prediction provides higher performance
improvements as BTB size increases. However, with small& 8Zes, VPC prediction’s performance improvement
is smaller on Java applications than on C/C++ applicatidfsr. example, with a 512-entry BTB, VPC prediction
improves the performance of Java applications by 6.3% vaseitamproves the performance of C/C++ applications
by 18.5% (as was shown in Table 8). As Java applications hemel@rge indirect branch and target address working
sets, VPC prediction results in a larger contention (i.enflict misses) in the BTB in these applications than in

C/C++ applications, thereby delivering a smaller perfongg&improvement. Even so, the performance improvement

31

provided by VPC prediction with very small BTB sizes is sfygant for Java applications. We conclude that VPC
prediction is very effective on Java applications for a wideety of BTB sizes.

Table 11. Effect of different BTB sizes in Java applications

BTB entries Baseline VPC prediction
indirect MPKI] Cond. Br BTB Miss (%] IPC || indirect MPKI[Cond. Br BTB Miss (%) IPCA
512 13.10 8.9 0.87 10.17 9.5 6.3%
1K 12.36 3.7 0.94 8.31 4.8 11.1%
2K 12.05 21 0.97 6.77 23 17.5%
4K 11.92 0.9 0.97 5.99 1.0 19.6%
8K 11.94 0.3 0.98 5.21 0.3 21.9%

7.5.2. Effectof a Less Aggressive Processadiigure 25 shows the performance of VPC and TTC predictorslessa
aggressive baseline processor that has a 20-stage pipklivide fetch/issue/retire rate, 128-entry instructidnaow,
16KB perceptron branch predictor, 4K-entry BTB, and 200keymemory latency. Similarly to our observation for
C/C++ applications, since the less aggressive processorsma smaller penalty for a branch misprediction, improved
indirect branch handling provides smaller performanceroapments than in the baseline processor. However, VPC
prediction still improves performance of Java applicasitny 11.1% on a less aggressive processor. In fact, all Java
applications except xalan experience very close to or nfae 10% performance improvement with VPC prediction.
This is different from what we have seen for C/C++ applicasion the less aggressive processor. some applications
saw very large performance improvements with VPC predictihereas others saw very small (less than 5% as shown
in Figure 14). Thus, we conclude that VPC prediction’s perfance improvements are very consistent across the Java

applications on both aggressive and less aggressive hageticessors.

60

=TTC-384B
=TTC-768B
=TTC-1.5KB
=TTC-3KB
=TTC-6KB
=VPC-ITER-10

4

&
& &P
S \\’\Q N4

o
=)

IS
o

n
i

% IPC improvement over baseline
w
o

o
Q

o
I

&

Figure 25. VPC prediction vs. TTC on a less aggressive proces sor

7.6. Effect of VPC Prediction on Power and Energy Consumptino of Java Applications

Figure 26 shows the impact of VPC prediction and TTC/castguiedictors of different sizes on maximum pro-
cessor power, overall energy consumption, energy-delagiyat of the processor, and the energy consumption of the
branch prediction logic. On average, VPC prediction redube overall energy consumption by 22%, and energy

delay product (EDP) by 36%. Similarly to what we observed@dC++ applications, VPC prediction provides larger

32

reductions in energy consumption on Java applicationsttimmost energy-efficient TTC predictor (12KB) as well as
the most energy-efficient cascaded predictor (11KB). Meeed/PC prediction does not significantly increase max-
imum power consumption (less than 0.1%) whereas a 12KB TEQigior and an 11KB cascaded predictor result
in respectively 2.1% and 2.2% increase in power consumputianto the extra storage and prediction structures they
require. We conclude that VPC prediction is an energy- amdgpefficient indirect branch handling technique that

provides significant performance improvements in objettrded Java applications without significantly incregsin

the energy consumption or complexity of the processor fe.

90
80+

| [=max power
=energy

07 —EDp

| | =BP energy

60
50

delta(%)

Figure 26. Effect of VPC prediction on energy/power consump tion on Java applications

To provide more insight into the reduction in energy constiompand EDP, Figure 27 shows the percentage change
in pipeline flushes, fetched instructions, and executetiiiosons due to VPC prediction and TTC/cascaded predic-
tors. VPC prediction reduces the number of pipeline fluslye?001%, which results in a 47% reduction in the number
of fetched instructions and a 23.4% reduction in the numbekecuted instructions. Hence, VPC prediction reduces
energy consumption significantly due to the large reduciothe number of fetched/executed instructions. Notice

that even though a 12KB TTC predictor provides a larger rédadn pipeline flushes, it is less energy-efficient than

the VPC predictor due to the significant extra hardware itines.

20

== pipeline flushes
10 ==fetched instructions
== executed instruction

04l

-104

delta(%)

-201

-301

401

TE L T F g »
K 7 N . S % ne e .
SN A A A A A AN GG LG S
(¢} A & A 9 9 9 o
&£ < & N < PY s o o o s

Figure 27. Pipeline flushes, and fetched/executed instruct ions on Java applications

33

8. Other Related Work

We have already discussed related work on indirect branetligion in Section 2.2. Sections 5, 6 and 7 provide
extensive comparisons of VPC prediction with three of thevimusly proposed indirect branch predictors, finding
that VPC prediction, without requiring significant hardeaprovides the performance benefits provided by other
predictors of much larger size. Here, we briefly discuss athlated work in handling indirect branches.

We [31] recently proposed handling hard-to-predict inciirbranches using dynamic predication [35]. In this
technique, if the target address of an indirect branch iadao be hard to predict, the processor selects two (or more)
likely targets and follows the control-flow paths after all of thegés by dynamically predicating the instructions
on each path. When the indirect branch is resolved, instmogton the control-flow paths corresponding to the
incorrect targets turn into NOPs. Unlike VPC predictionndynic predication of indirect branches requires compiler
support, new instructions in the instruction set architextand significant hardware support for dynamic predicati
(as described in [35]). However, the two approaches can bdioat and used together: dynamic predication can
be a promising approach to reduce the performance impactdifeict branches that are hard to predict with VPC
prediction.

Roth et al. [45] proposed dependence-based pre-computatinch pre-computes targets for future virtual function
calls as soon as an object reference is created. This taahaigpids a misprediction if the result of the computation
is correct and ready to be used when the future instance ofitiual function call is fetched. However, it requires a
dedicated and costly precomputation engine. In contraB€ Yrediction has two advantages: 1) it does not require
any pre-computation logic, 2) it is generally applicableatty indirect branch rather than only for virtual function
calls.

Pure software approaches have been proposed specificaliyifigating the performance impact due to virtual
function calls. These approaches include the method cacBmalltalk-80 [10], polymorphic inline caches [23] and
type feedback/devirtualization [24, 29]. As we show in 8&tB, the benefit of devirtualization is limited by its lack
of adaptivity. We compare and contrast VPC prediction widhmpiler-based devirtualization extensively in Section 6.

Finally, Ertl and Gregg [14] proposed code replication angesinstructions to improve indirect branch prediction
accuracy on virtual machine interpreters. In contrast te scheme, VPC prediction is not specific to any platform

and is applicable to any indirect branch.

9. Conclusion

This paper proposed and evaluated the VPC prediction paradirhe key idea of VPC prediction is to treat an

indirect branch instruction as multiple “virtual” conditial branch instructions for prediction purposes in thergdc

34

chitecture. As such, VPC prediction enables the use ofiagisonditional branch prediction structures to prediet th
targets of indirect branches without requiring any extracttires specialized for storing indirect branch targ€ter
evaluation shows that VPC prediction, without requiringngdicated structures, achieves the performance provided
by other indirect branch predictors that require signiftoaxtra storage and complexity. On a set of indirect branch
intensive C/C++ applications and modern object-orientaeéh Japplications, VPC prediction provides respectively
26.7% and 21.9% performance improvement, while also reduenergy consumption significantly.

We believe the performance impact of VPC prediction wiltlfigr increase in future applications that will be written
in object-oriented programming languages and that will efagavy use of polymorphism since those languages were
shown to result in significantly more indirect branch migpegions than traditional C/Fortran-style languages. By
making available to indirect branches the rich, accuratghlf-optimized, and continuously-improving hardware
used to predict conditional branches, VPC prediction cavesas an enabler encouraging programmers (especially
those concerned with the performance of their code) to uggcbbriented programming styles, thereby improving

the quality and ease of software development.

References
[1] Advanced Micro Devices, InAAMD Athlord”*) XP Processor Model 10 Data SheEeb. 2003.

[2] S. Bhansali, W.-K. Chen, S. D. Jong, A. Edwards, M. Drjriic Mihocka, and J. Chau. Framework for instruction-level
tracing and analysis of programs.WEE 2006.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. Kialey, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. MpA. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks: Jawehimarking development and analysisA®PSLA
2006.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framexkdor architectural-level power analysis and optimizagoln
ISCA-27 2000.

[5] B. Calder and D. Grunwald. Reducing indirect functiofi caerhead in C++ programs. IROPL-21 1994.

[6] B. Calder, D. Grunwald, and B. Zorn. Quantifying behawaiadifferences between C and C++ progradsurnal of Pro-
gramming Language®(4):323-351, 1995.

[7] L. Cardelli and P. Wegner. On understanding types, ddstraction, and polymorphismACM Computing Surveys
17(4):471-523, Dec. 1985.

[8] P.-Y. Chang, M. Evers, and Y. N. Patt. Improving brancldiction accuracy by reducing pattern history table irtefice.
In PACT, 1996.
[9] P.-Y. Chang, E. Hao, and Y. N. Patt. Target predictionifalirect jumps. INSCA-24 1997.
[10] L. P. Deutsch and A. M. Schiffman. Efficient implemeidatof the Smalltalk-80 system. ROPL, 1984.
[11] K. Driesen and U. Holzle. Accurate indirect branchgiotion. InISCA-25 1998.
[12] K. Driesen and U. Holzle. The cascaded predictor: Booical and adaptive branch target predictionMICRO-31, 1998.
[13] K. Driesen and U. Holzle. Multi-stage cascaded prealic In European Conference on Parallel Processifhi§99.
[14] M. A. Ertl and D. Gregg. Optimizing indirect branch pietion accuracy in virtual machine interpreters.RaDI, 2003.
[15] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt. Aal\ais of correlation and predictability: What makes tvewdl
branch predictors work. IIECA-25 1998.
[16] The GAP GroupGAP System for Computational Discrete Algelirat p: / / www. gap- system or g/ .
[17] C. Garrett, J. Dean, D. Grove, and C. Chambers. Measemermnd application of dynamic receiver class distribugion
Technical Report UW-CS 94-03-05, University of Washingtielar. 1994,
[18] GCC-4.0. GNU compiler collection. http://gcc.gnugbr
[19] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, Maveh, A. Saeed, Z. Sperber, and R. C. Valentine. The Intel

35

Pentium M processor: Microarchitecture and performahael Technology Journal7(2), May 2003.
[20] D. Grove, J. Dean, C. Garrett, and C. Chambers. Profildegl receiver class prediction. @OPSLA-101995.
[21] A. Hartstein and T. R. Puzak. The optimum pipeline ddptra microprocessor. ItSCA-29 2002.

[22] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, Aki&ly and P. Roussel. The microarchitecture of the Pentium 4
processotintel Technology JournaFeb. 2001. Q1 2001 Issue.

[23] U. Holzle, C. Chambers, and D. Ungar. Optimizing dynamicafiyeid object-oriented languages with polymorphic inline
caches. IlECOOR, 1991.

[24] U. Holzle and D. Ungar. Optimizing dynamically-digphed calls with run-time type feedback.PiDI, 1994.
[25] IBM Corporation. IBM zSeries mainframe serveins$.t p: / / ww. i bm com systens/ z/.

[26] Intel Corporation. ICC 9.1 for Linuxhttp://wwu. i ntel.com cd/ software/ products/asnop- na/ eng/
conpi | ers/ 284264. %t m

[27] Intel Corporation. Intel Core Duo Processor T25680t p: // processorfinder.intel.com Details.aspx?
sSpec=SL8VT.

[28] Intel Corporationintel VTune Performance Analyzerg t p: // www. i nt el . com vt une/ .

[29] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T.Kdtani. A study of devirtualization techniques for a Javst-Jo-
Time compiler. INOOPSLA-152000.

[30] D. A.Jiménez and C. Lin. Dynamic branch prediction with perceptram§iPCA-7, 2001.

[31] J. A. Joao, O. Mutlu, H. Kim, and Y. N. Patt. Dynamic prestion of indirect jumpslEEE Computer Architecture Letters

May 2007.
[32] D. Kaeli and P. Emma. Branch history table predictiohsoving target branches due to subroutine returngSIDA-18
1991.

[33] J. Kalamatianos and D. R. Kaeli. Predicting indire@rmhes via data compression NiCRO-31, 1998.

[34] R. E. Kessler. The Alpha 21264 microproces#eEE Micro, 19(2):24-36, 1999.

[35] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt. Diverge-mengrocessor (DMP): Dynamic predicated execution of complex
control-flow graphs based on frequently executed pathslI®RO-39 2006.

[36] J. K. F. Lee and A. J. Smith. Branch prediction strategird branch target buffer desidBEE ComputerJan. 1984,

[37] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loey) S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic instruaton. InPLDI, 2005.

[38] P. Magnusson, M. Christensson, J. Eskilson, D. Forsdee Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and Bnéfe
Simics: A full system simulation platformiEEE Computer35(2):50-58, Feb. 2002.

[39] T. McDonald. Microprocessor with branch target addreache update queue. U.S. Patent Number 7,165,168, 2007.

[40] S. McFarling. Combining branch predictors. TechniRalport TN-36, Digital Western Research Laboratory, Jurg819

[41] Microsoft Research. Bartok compildrt t p: // resear ch. m crosoft. confact/.

[42] V. Morrison. Digging into interfface calls in the .NET dmework: Stub-based dispatch.
http://blogs.msdn.com/vancem/archive/2006/03/13290aspX.

[43] D. Novillo, Mar. 2007. Personal communication.

[44] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and Ardgeanidhi. Pinpointing representative portions of largtl
[tanium programs with dynamic instrumentation NWCRO-37 2004.

[45] A. Roth, A. Moshovos, and G. S. Sohi. Improving virtuainttion call target prediction via dependence-based pre-
computation. INCS-13 1999.

[46] D. Sehr, Nov. 2006. Personal communication.

[47] A. Seznec. Analysis of the O-GEometric History Lengthrch predictor. INSCA-32 2005.

[48] A.Seznec and P. Michaud. A case for (partially) TAggde@etric history length branch predictiqlournal of Instruction-
Level Parallelism (JILP)8, Feb. 2006.

[49] T.J. Slegel, E. Pfeffer, and J. A. Magee. The IBM eSer@20 microprocessoBM Journal of Research and Development
48(3/4):295-309, May/July 2004.

[50] D. Tarditi, Nov. 2006. Personal communication.

[51] J. Tendler, S. Dodson, S. Fields, H. Le, and B. SinhdP@WER4 system microarchitectutBM Technical White Paper
Oct. 2001.

[52] M. Wolczko. Benchmarking Java with the Richards benchmdrkt p: / / r esear ch. sun. com peopl e/ mari o/
j ava_benchmar ki ng/ richards/richards. htni .

[53] T.-Y. Yeh, D. Marr, and Y. N. Patt. Increasing the ingtiion fetch rate via multiple branch prediction and brandtrass
cache. INCS, 1993.

36

