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Hyesoon Kim¶ Jośe A. Joao Onur Mutlu§ Chang Joo Lee Yale N. Patt Robert Cohn†

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

¶School of Computer Science
Georgia Institute of Technology

Atlanta, GA

§Computer Architecture Group
Microsoft Research

Redmond, WA

†VSSAD Group
Intel Corporation

Hudson, MA

TR-HPS-2007-002
March 2007 (Updated September 2007)



This page is intentionally left blank.



VPC Prediction: Reducing the Cost of Indirect Branches
via Hardware-Based Dynamic Devirtualization
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Abstract
Indirect branches have become increasingly common in modular programs written in modern object-oriented lan-

guages and virtual-machine based runtime systems. Unfortunately, the prediction accuracy of indirect branches has
not improved as much as that of conditional branches. Furthermore, previously proposed indirect branch predictors
usually require a significant amount of extra hardware storage and complexity, which makes them less attractive to
implement.

This paper proposes a new technique for handling indirect branches, calledVirtual Program Counter (VPC) predic-
tion. The key idea of VPC prediction is to treat a single indirect branch asmultiple “virtual” conditional branchesin
hardware for prediction purposes. Our technique predicts each of the virtual conditional branches using the existing
conditional branch prediction hardware. Thus, no separatestorage structure is required for predicting indirect branch
targets.

Our comprehensive evaluation shows that VPC prediction improves average performance by 26.7% and reduces
average energy consumption by 19% compared to a commonly-used branch target buffer based predictor on 12 in-
direct branch intensive C/C++ applications. VPC prediction achieves the performance improvement provided by at
least a 12KB (and usually a 192KB) tagged target cache predictor on half of these applications. Furthermore, VPC
prediction improves the average performance of the full setof object-oriented Java DaCapo applications by 21.9%,
while reducing their average energy consumption by 22%. We show that VPC prediction can be used with any existing
conditional branch prediction mechanism and that the accuracy of VPC prediction improves when a more accurate
conditional branch predictor is used.

1. Introduction

Object-oriented programs are becoming more common as more programs are written in modern high-level lan-

guages such as Java, C++, and C#. These languages support polymorphism [7], which significantly eases the devel-

opment and maintenance of large modular software projects.To support polymorphism, modern languages include

dynamically-dispatched function calls (i.e. virtual functions) whose targets are not known until run-time because they

depend on the dynamic type of the object on which the functionis called. Virtual function calls are usually imple-

mented using indirect branch/call instructions in the instruction set architecture. Previous research has shown that

modern object-oriented languages result in significantly more indirect branches than traditional C and Fortran lan-

guages [6]. Unfortunately, an indirect branch instructionis more costly on processor performance because predicting

an indirect branch is more difficult than predicting a conditional branch as it requires the prediction of the target ad-

dress instead of the prediction of the branch direction. Direction prediction is inherently simpler because it is abinary
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decisionas the branch direction can take only two values (taken or not-taken), whereas indirect target prediction is an

N-ary decisionwhereN is the number of possible target addresses. Hence, with the increased use of object-oriented

languages, indirect branch target mispredictions have become an important performance limiter in high-performance

processors.1 Moreover, the lack of efficient architectural support to accurately predict indirect branches has resulted

in an increased performance difference between programs written in object-oriented languages and programs writ-

ten in traditional languages, thereby rendering the benefits of object-oriented languages unusable by many software

developers who are primarily concerned with the performance of their code [52].
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Figure 1. Indirect branch mispredictions in Windows applic ations: MPKI for conditional and indirect branches (left), percentage of

mispredictions due to indirect branches (right)

Figure 1 shows the number and fraction of indirect branch mispredictions per 1K retired instructions (MPKI) in

different Windows applications run on an Intel Core Duo T2500 processor [27] which includes a specialized indirect

branch predictor [19]. The data is collected with hardware performance counters using VTune [28]. In the examined

Windows applications, on average 28% of the branch mispredictions are due to indirect branches. In two programs,

Virtutech Simics [38] and Microsoft Excel 2003, almost halfof the branch mispredictions are caused by indirect

branches. These results show that indirect branches cause aconsiderable fraction of all mispredictions even in today’s

relatively small-scale desktop applications.

Previously proposed indirect branch prediction techniques [9, 11, 33, 12, 13, 48] require large hardware resources

to store the target addresses of indirect branches. For example, a 1024-entry gshare conditional branch predictor [40]

requires only 2048 bits but a 1024-entry gshare-like indirect branch predictor (tagged target cache [9]) needs at least

2048 bytes along with additional tag storage even if the processor stores only the least significant 16 bits of an

indirect branch target address in each entry.2 As such a large hardware storage comes with an expensive increase

1In the rest of this paper, an “indirect branch” refers to a non-return unconditional branch instruction whose target is determined by reading a general purpose
register or a memory location. We do not consider return instructions since they are usually very easy to predict using a hardware return address stack [32].

2With a 64-bit address space, a conventional indirect branchpredictor likely requires even more hardware resources to store the target addresses [33].
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in power/energy consumption and complexity, most current high-performance processors do not dedicate separate

hardware but instead use the branch target buffer (BTB) to predict indirect branches [1, 22, 34], which implicitly –and

usually inaccurately– assumes that the indirect branch will jump to the same target address it jumped to in its previous

execution [9, 33].3 To our knowledge, only Intel Pentium M implements specialized hardware to help the prediction

of indirect branches [19], demonstrating that hardware designers are increasingly concerned with the performance

impact of indirect branches. However, as we showed in Figure1, even on a processor based on the Pentium M,

indirect branch mispredictions are still relatively frequent.

In order to efficiently support polymorphism in object-oriented languages without significantly increasing complex-

ity in the processor front-end, a simple and low-cost –yet effective– indirect branch predictor is necessary. A current

high-performance processor already employs a large and accurate conditional branch predictor. Our goal is to use this

existing conditional branch prediction hardware to also predict indirect branches instead of building separate, costly

indirect branch prediction structures.

We propose a new indirect branch prediction algorithm:Virtual Program Counter (VPC)prediction. A VPC

predictor treats a single indirect branch as multiple conditional branches(virtual branches)in hardware for prediction

purposes. Conceptually, each virtual branch has its own unique target address, and the target address is stored in the

BTB with a unique “fake” PC, which we callvirtual PC. The processor uses the outcome of the existing conditional

branch predictor to predict each virtual branch. The processor accesses the conditional branch predictor and the BTB

with the virtual PC address of a virtual branch. If the prediction for the virtual branch is “taken,” the target address

provided by the BTB is predicted as the next fetch address (i.e. the predicted target of the indirect branch). If the

prediction of the virtual branch is “not-taken,” the processor moves on to the next virtual branch: it tries a conditional

branch prediction again with a different virtual PC. The processor repeats this process until the conditional branch

predictor predicts a virtual branch as taken. VPC prediction stops if none of the virtual branches is predicted as taken

after a limited number of virtual branch predictions. AfterVPC prediction stops, the processor can stall the front-end

until the target address of the indirect branch is resolved.

The VPC prediction algorithm is inspired by a compiler optimization, calledreceiver class prediction optimization

(RCPO)[10, 24, 20, 5] ordevirtualization[29]. This optimization statically converts an indirect branch to multiple

direct conditional branches (in other words, it “devirtualizes” a virtual function call). Unfortunately, devirtualization

requires extensive static program analysis or accurate profiling, and it is applicable to only a subset of indirect branches

with a limited number of targets that can be determined statically [29]. Our proposed VPC prediction mechanism

3Previous research has shown that the prediction accuracy ofa BTB-based indirect branch predictor, which is essentially a last-target predictor, is low (about
50%) because the target addresses of many indirect branchesalternate rather than stay stable for long periods of time [9, 33].
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provides the benefit of using conditional branch predictorsfor indirect branches without requiring static analysis

or profiling by the compiler. In other words, VPC predictiondynamically devirtualizesan indirect branch without

compiler support. Unlike compiler-based devirtualization, VPC prediction can be applied toany indirect branch

regardless of the number and locations of its targets.

Contributions. The contributions of this paper are as follows:

1. To our knowledge, VPC prediction is the first mechanism that uses the existing conditional branch prediction

hardware to predict the targets of indirect branches, without requiring any program transformation or compiler

support.

2. VPC prediction can be applied using any current as well as future conditional branch prediction algorithm without

requiring changes to the conditional branch prediction algorithm. Since VPC prediction transforms the problem

of indirect branch prediction into the prediction of multiple virtual conditional branches, future improvements

in conditional branch prediction accuracy can implicitly result in improving the accuracy of indirect branch

prediction.

3. Unlike previously proposed indirect branch prediction schemes, VPC prediction does not require extra storage

structures to maintain the targets of indirect branches. Therefore, VPC prediction provides a low-cost indirect

branch prediction scheme that does not significantly complicate the front-end of the processor while providing

the same performance as more complicated indirect branch predictors that require significant amounts of storage.

4. We comprehensively evaluate the performance and energy consumption of VPC prediction on both traditional

C/C++ and modern object-oriented Java applications. Our results show that VPC prediction provides significant

performance and energy improvements, increasing average performance by 26.7%/21.9% and decreasing energy

consumption by 19%/22% respectively for 12 C/C++ and 11 Javaapplications. We find that the effectiveness of

VPC prediction improves as the baseline BTB size and conditional branch prediction accuracy increase.

2. Background on Indirect Branch Prediction

We first provide a brief background on how indirect branch predictors work to motivate the similarity between

indirect and conditional branch prediction. There are two types of indirect branch predictors: history-based and

precomputation-based [45]. The technique we introduce in this paper utilizes history information, so we focus on

history-based indirect branch predictors.
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2.1. Why Does History-Based Indirect Branch Prediction Work?

History-based indirect branch predictors exploit information about the control-flow followed by the executing pro-

gram to differentiate between the targets of an indirect branch. The insight is that the control-flow path leading to an

indirect branch is strongly correlated with the target of the indirect branch [9]. This is very similar to modern condi-

tional branch predictors, which operate on the observationthat the control-flow path leading to a branch is correlated

with the direction of the branch [15].

2.1.1. A Source Code ExampleThe example in Figure 2 shows an indirect branch from the GAP program [16] to

provide insight into why history-based prediction of indirect branch targets works. GAP implements and interprets a

language that performs mathematical operations. One data structure in the GAP language is a list. When a mathemati-

cal function is applied to a list element, the program first evaluates the value of the index of the element in the list (line

13 in Figure 2). The index can be expressed in many different data types, and a different function is called to evaluate

the index value based on the data type (line 10). For example,in expressions L(1), L(n), and L(n+1), the index is of

three different data types: TINT, T VAR, and T SUM, respectively. An indirect jump through a jump table (EvTab

in lines 2, 3 and 10) determines which evaluation function iscalled based on the data type of the index. Consider the

mathematical function L2(n) = L1(n) + L1(n+1). For each n, the program calculates three index values; EvalVAR,

Eval SUM, and EvalVAR functions are called respectively to evaluate index values for L1(n), L1(n+1), and L2(n).

The targets of the indirect branch that determines the evaluation function of the index are therefore respectively the

addresses of the two evaluation functions. Hence, the target of this indirect branch alternates between the two func-

tions, making it unpredictable with a BTB-based last-target predictor. In contrast, a predictor that uses branch history

information to predict the target easily distinguishes between the two target addresses because the branch histories

followed in the functions EvalSUM and EvalVAR are different; hence the histories leading into the nextinstance of

the indirect branch used to evaluate the index of the elementare different. Note that a combination of the regularity

in the input index expressions and the code structure allowsthe target address to be predictable using branch history

information.

2.2. Previous Work on Indirect Branch Prediction

The indirect branch predictor described by Lee and Smith [36] used the branch target buffer (BTB) to predict

indirect branches. This scheme predicts that the target of the current instance of the branch will be the same as the

target taken in the last execution of the branch. This schemedoes not work well for indirect branches that frequently

switch between different target addresses. Such indirect branches are commonly used to implement virtual function

calls that act on many different objects and switch statements with many ‘case’ targets that are exercised at run-time.
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1: // Set up the array of function pointers (i.e. jump table)
2: EvTab[T_INT] = Eval_INT; EvTab[T_VAR] = Eval_VAR;
3: EvTab[T_SUM] = Eval_SUM;
4: // ...
5:
6: // EVAL evaluates an expression by calling the function
7: // corresponding to the type of the expression
8: // using the EvTab[] array of function pointers
9:
10: #define EVAL(hd) ((*EvTab[TYPE(hd)])((hd))) /*INDIRECT*/
11:
12: TypHandle Eval_LISTELEMENT ( TypHandle hdSel ) {
13: hdPos = EVAL( hdSel );
14: // evaluate the index of the list element
15: // check if index is valid and within bounds
16: // if within bounds, access the list
17: // at the given index and return the element
18: }

Figure 2. An indirect branch example from GAP

Therefore, the BTB-based predictor has low (about 50%) prediction accuracy [36, 9, 11, 33].

Chang et al. [9] first proposed to use branch history information to distinguish between different target addresses

accessed by the same indirect branch. They proposed the “target cache,” which is similar to a two-level gshare [40]

conditional branch predictor. The target cache is indexed using the XOR of the indirect branch PC and the branch

history register. Each cache entry contains a target address. Each entry can be tagged, which reduces interference be-

tween different indirect branches. The tagged target cachesignificantly improves indirect branch prediction accuracy

compared to a BTB-based predictor. However, it also requiresseparate structures for predicting indirect branches,

increasing complexity in the processor front-end.

Later work on indirect branch prediction by Driesen and Hölzle focused on improving the prediction accuracy by

enhancing the indexing functions of two-level predictors [11] and by combining multiple indirect branch predictors

using a cascaded predictor [12, 13]. The cascaded predictoris a hybrid of two or more target predictors. A relatively

simple first-stage predictor is used to predict easy-to-predict (single-target) indirect branches, whereas a complex

second-stage predictor is used to predict hard-to-predictindirect branches. Driesen and Hölzle [13] concluded that a

3-stage cascaded predictor performed the best for a particular set of C and C++ benchmarks.

Kalamatianos and Kaeli [33] proposed predicting indirect branches via data compression. Their predictor uses

prediction by partial matching (PPM) with a set of Markov predictors of decreasing size indexed by the result of

hashing a decreasing number of bits from previous targets. The Markov predictor is a large set of tables where

each table entry contains a single target address and bookkeeping bits. The prediction comes from the highest order

table that can predict, similarly to a cascaded predictor. The PPM predictor requires significant additional hardware

complexity in the indexing functions, Markov tables, and additional muxes used to select the predicted target address.

In a recent work, Seznec and Michaud [48] proposed extendingtheir TAGE conditional branch predictor to also

6



predict indirect branches. Their mechanism (ITTAGE) uses atagless base predictor and a number of tagged tables (4 or

7 in the paper) indexed by an increasingly long history. The predicted target comes from the component with longer

history that has a hit. This mechanism is conceptually similar to a multi-stage cascaded predictor with geometric

history lengths, and therefore, it also requires significant additional storage space for indirect target addresses and

significant complexity to handle indirect branches.

2.3. Our Motivation

All previously proposed indirect branch predictors (except the BTB-based predictor) require separate hardware

structures to store target addresses in addition to the conditional branch prediction hardware. This not only requires

significant die area (which translates into extra energy/power consumption), but also increases the design complexity

of the processor front-end, which is already a complex and cycle-critical part of the design.4 Moreover, many of the

previously proposed indirect branch predictors are themselves complicated [12, 13, 33, 48], which further increases the

overall complexity and development time of the design. For these reasons, most current processors do not implement

separate structures to predict indirect branch targets.

Our goal in this paper is to designa low-cost technique that accurately predicts indirect branch targets (by utiliz-

ing branch history information to distinguish between the different target addresses of a branch) without requiring

separate complex structures for indirect branch prediction. To this end, we propose Virtual Program Counter (VPC)

prediction.

3. Virtual Program Counter (VPC) Prediction
3.1. Overview

A VPC predictor treats an indirect branch as a sequence of multiple virtual conditional branches.5 Each virtual

branch is predicted in sequence using the existing conditional branch prediction hardware, which consists of the

direction predictor and the BTB (Figure 3). If the virtual branch is predicted to be not-taken, the VPC predictor moves

on to predict the next virtual branch in the sequence. If the virtual branch is predicted to be taken, VPC prediction

uses the target associated with the virtual branch in the BTBas the next fetch address, completing the prediction of

the indirect branch. Note that the virtual branches are visible only to the branch prediction hardware.

3.2. Prediction Algorithm

The detailed VPC prediction algorithm is shown in Algorithm1. The key implementation issue in VPC prediction

is how to distinguish between different virtual branches. Each virtual branch should access a different location in the

4Using a separate predictor for indirect branch targets addsone more input to the mux that determines the predicted next fetch address. Increasing the delay
of this mux can result in increased cycle time, adversely affecting the clock frequency.

5We call the conditional branches “virtual” because they arenot encoded in the program binary. Nor are they micro-operations since they are only visible to
the VPC predictor.
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Figure 3. High-level conceptual overview of the VPC predict or

direction predictor and the BTB (so that a separate direction and target prediction can be made for each branch).To

accomplish this, the VPC predictor accesses the conditional branch prediction structures with a different virtual PC

address (VPCA) and a virtual global history register (GHR) value (VGHR) for each virtual branch. VPCA values are

distinct for different virtual branches. VGHR values provide the context (branch history) information associated with

each virtual branch.

VPC prediction is an iterative prediction process, where each iteration takes one cycle. In the first iteration (i.e. for

the first virtual branch), VPCA is the same as the original PC address of the indirect branch and VGHR is the same as

the GHR value when the indirect branch is fetched. If the virtual branch is predicted not-taken, the prediction algorithm

moves to the next iteration (i.e. the next virtual branch) byupdating the VPCA and VGHR.6 The VPCA value for an

iteration (other than the first iteration) is computed by hashing the original PC value with a randomized constant value

that is specific to the iteration. In other words,V PCA = PC ⊕ HASHV AL[iter], where HASHVAL is a hard-

coded hardware table of randomized numbers that are different from one another. The VGHR is simply left-shifted

by one bit at the end of each iteration to indicate that the last virtual branch was predicted not taken.7

The iterative prediction process stops when a virtual branch is predicted to be taken. Otherwise, the prediction

process iterates until either the number of iterations is greater than MAXITER or there is a BTB miss (!pred target

in Algorithm 1 means there is a BTB miss).8 If the prediction process stops without predicting a target, the processor

stalls until the indirect branch is resolved.

6In the first iteration, the processor does not even know that the fetched instruction is an indirect branch. This is determined only after the BTB access. If
the BTB access is a hit, the BTB entry provides the type of the branch. VPC prediction algorithm continues iterating only if all of the following three conditions
are satisfied: 1) the first iteration hits in the BTB, 2) the branch type indicated by the BTB entry is an indirect branch, and3) the prediction outcome of the first
iteration is not-taken.

7Note that VPC addresses (VPCAs) can conflict with real PC addresses in the program, thereby increasing aliasing and contention in the BTB and the
direction prediction structures. The processor does not require any special action when aliasing happens. To reduce such aliasing, the processor designer should:
(1) provide a good randomizing hashing function and values to generate VPCAs and (2) co-design the VPC prediction schemeand the conditional branch
prediction structures carefully to minimize the effects ofaliasing. Conventional techniques proposed to reduce aliasing in conditional branch predictors [40,
8] can also be used to reduce aliasing due to VPC prediction. However, our experimental results in Sections 5.6 and 7.5 show that the negative effect of VPC
prediction on the BTB miss rate and conditional branch misprediction rate is tolerable.

8The VPC predictor can continue iterating the prediction process even if there is BTB miss. However, we found that continuing in this case does not improve
the prediction accuracy. Hence, to simplify the predictionprocess, our VPC predictor design stops the prediction process when there is a BTB miss in any
iteration.
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Note that the value of MAXITER determines how many attempts will be made to predict an indirect branch. It

also dictates how many different target addresses can be stored for an indirect branch at a given time in the BTB.

Algorithm 1 VPC prediction algorithm
iter ← 1
V PCA← PC

V GHR← GHR

done← FALSE

while (!done) do
pred target← accessBTB(V PCA)
pred dir ← accessconditionalBP(V PCA, V GHR)
if (pred target and (pred dir = TAKEN)) then

next PC ← pred target

done← TRUE

else if(!pred target or (iter ≥MAX ITER)) then
STALL← TRUE

done← TRUE

end if
V PCA← Hash(PC, iter)
V GHR← Left-Shift(V GHR)
iter++

end while

3.2.1. Prediction ExampleFigure 4a,b shows an example virtual function call and the corresponding simplified

assembly code with an indirect branch. Figure 4c shows the virtual conditional branches corresponding to the indirect

branch. Even though the static assembly code has only one indirect branch, the VPC predictor treats the indirect branch

as multiple conditional branches that have different targets and VPCAs. Note that the hardware does not actually

generate multiple conditional branches. The instructionsin Figure 4c are shown to demonstrate VPC prediction

conceptually. We assume, for this example, that MAXITER is 3, so there are only 3 virtual conditional branches.

a = s->area ();
(a) Source code

R1 = MEM[R2]
INDIRECT_CALL R1 // PC: L

(b) Corresponding assembly code with an indirect branch

iter1: cond. br TARG1 // VPCA: L
iter2: cond. br TARG2 // VPCA: VL2 = L XOR HASHVAL[1]
iter3: cond. br TARG3 // VPCA: VL3 = L XOR HASHVAL[2]

(c) Virtual conditional branches (for prediction purposes)
Figure 4. VPC prediction example: source, assembly, and the corresponding virtual branches

Table 1. Possible VPC Predictor states and outcomes when bra nch in Figure 4b is predicted
1st iteration 2nd iteration 3rd iteration

Case inputs outputs inputs outputs input output Prediction
VPCA VGHR BTB BP VPCA VGHR BTB BP VPCA VGHR BTB BP

1 L 1111 TARG1 T - - TARG1
2 L 1111 TARG1 NT VL2 1110 TARG2 T - TARG2
3 L 1111 TARG1 NT VL2 1110 TARG2 NT VL3 1100 TARG3 T TARG3
4 L 1111 TARG1 NT VL2 1110 TARG2 NT VL3 1100 TARG3 NT stall
5 L 1111 TARG1 NT VL2 1110 MISS - - stall

9



Table 1 demonstrates the five possible cases when the indirect branch in Figure 4 is predicted using VPC prediction,

by showing the inputs and outputs of the VPC predictor in eachiteration. We assume that the GHR is 1111 when the

indirect branch is fetched. Cases 1, 2, and 3 correspond to cases where respectively the first, second, or third virtual

branch is predicted taken by the conditional branch direction predictor (BP). As VPC prediction iterates, VPCA and

VGHR values are updated as shown in the table. Case 4 corresponds to the case where all three of the virtual branches

are predicted not-taken and therefore the outcome of the VPCpredictor is a stall. Case 5 corresponds to a BTB miss

for the second virtual branch and thus also results in a stall.

3.3. Training Algorithm

The VPC predictor is trained when an indirect branch is committed. The detailed VPC training algorithm is shown

in Algorithms 2 and 3. Algorithm 2 is used when the VPC prediction was correct and Algorithm 3 is used when the

VPC prediction was incorrect. The VPC predictor trains boththe BTB and the conditional branch direction predictor

for each predicted virtual branch. The key functions of the training algorithm are:

1. to update the direction predictor as not-taken for the virtual branches that have the wrong target (because the

targets of those branches were not taken) and to update it as taken for the virtual branch, if any, that has the

correct target.

2. to update the replacement policy bits of the correct target in the BTB (if the correct target exists in the BTB)

3. to insert the correct target address into the BTB (if the correct target does not exist in the BTB)

Like prediction, training is also an iterative process. To facilitate training on a correct prediction, an indirect branch

carries with it through the pipeline the number of iterations performed to predict the branch (predicted iter). VPCA

and VGHR values for each training iteration are recalculated exactly the same way as in the prediction algorithm.

Note that only one virtual branch trains the prediction structures in a given cycle.9

3.3.1. Training on a Correct Prediction If the predicted target for an indirect branch was correct, all virtual

branches except for the last one (i.e. the one that has the correct target) train the direction predictor as not-taken

(as shown in Algorithm 2). The last virtual branch trains theconditional branch predictor as taken and updates the

replacement policy bits in the BTB entry corresponding to the correctly-predicted target address. Note that Algo-

rithm 2 is a special case of Algorithm 3 in that it is optimizedto eliminate unnecessary BTB accesses when the target

prediction is correct.

9It is possible to have more than one virtual branch update theprediction structures by increasing the number of write ports in the BTB and the direction
predictor. We do not pursue this option as it would increase the complexity of prediction structures.
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Algorithm 2 VPC training algorithm when the branch target is correctly predicted. Inputs:predicted iter, PC,
GHR

iter ← 1
V PCA← PC

V GHR← GHR

while (iter < predicted iter) do
if (iter == predicted iter) then

updateconditionalBP(V PCA, V GHR, TAKEN)
updatereplacementBTB(V PCA)

else
updateconditionalBP(V PCA, V GHR, NOT-TAKEN)

end if
V PCA← Hash(PC,iter)
V GHR← Left-Shift(V GHR)
iter++

end while

Algorithm 3 VPC training algorithm when the branch target is mispredicted. Inputs: PC, GHR,
CORRECT TARGET

iter ← 1
V PCA← PC

V GHR← GHR

found correct target← FALSE

while ((iter ≤MAX ITER) and (found correct target = FALSE)) do
pred target← accessBTB(V PCA)
if (pred target = CORRECTTARGET) then

updateconditionalBP(V PCA, V GHR, TAKEN)
updatereplacementBTB(V PCA)
found correct target← TRUE

else if(pred target) then
updateconditionalBP(V PCA, V GHR, NOT-TAKEN)

end if
V PCA← Hash(PC,iter)
V GHR← Left-Shift(V GHR)
iter++

end while

/* no-target case */
if (found correct target = FALSE) then

V PCA← VPCA corresponding to the virtual branch with a BTB-Miss or Least-frequently-used target among all virtual branches

V GHR← VGHR corresponding to the virtual branch with a BTB-Miss or Least-frequently-used target among all virtual branches

insert BTB(V PCA, CORRECTTARGET)
updateconditionalBP(V PCA, V GHR, TAKEN)

end if

3.3.2. Training on a Wrong Prediction If the predicted target for an indirect branch was wrong, there are two

misprediction cases: (1)wrong-target: one of the virtual branches has the correct target stored inthe BTB but the

direction predictor predicted that branch as not-taken, (2) no-target: none of the virtual branches has the correct target

stored in the BTB so the VPC predictor could not have predicted the correct target. In theno-targetcase, the correct

target address needs to be inserted into the BTB.
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To distinguish betweenwrong-targetand no-targetcases, the training logic accesses the BTB for each virtual

branch (as shown in Algorithm 3).10 If the target address stored in the BTB for a virtual branch isthe same as the

correct target address of the indirect branch (wrong-targetcase), the direction predictor is trained as taken and the

replacement policy bits in the BTB entry corresponding to the target address are updated. Otherwise, the direction

predictor is trained as not-taken. Similarly to the VPC prediction algorithm, when the training logic finds a virtual

branch with the correct target address, it stops training.

If none of the iterations (i.e. virtual branches) has the correct target address stored in the BTB, the training logic

inserts the correct target address into the BTB. One design question is what VPCA/VGHR values should be used

for the newly inserted target address. Conceptually, the choice of VPCA value determines theorder of the newly

inserted virtual branch among all virtual branches. To insert the new target in the BTB, our current implementation

of the training algorithm uses the VPCA/VGHR values corresponding to the virtual branch that missed in the BTB.

If none of the virtual branches missed in the BTB, our implementation uses the VPCA/VGHR values corresponding

to the virtual branch whose BTB entry has the smallest least frequently used (LFU) value. Note that the virtual

branch that missed in the BTB or that has the smallest LFU-value in its BTB entry can be determined easily while the

training algorithm iterates over virtual branches (However, we do not show this computation in Algorithm 3 to keep

the algorithm more readable).11

3.4. Supporting Multiple Iterations per Cycle

The iterative prediction process can take multiple cycles.The number of cycles needed to make an indirect branch

prediction with a VPC predictor can be reduced if the processor already supports the prediction of multiple conditional

branches in parallel [53]. The prediction logic can performthe calculation of VPCA values for multiple iterations in

parallel since VPCA values do not depend on previous iterations. VGHR values for multiple iterations can also

be calculated in parallel assuming that previous iterations were “not taken” since the prediction process stops when

an iteration results in a “taken” prediction. Section 5.4 evaluates the performance impact of performing multiple

prediction iterations in parallel.

10Note that these extra BTB accesses for training are requiredonly on a misprediction and they do not require an extra BTB read port. An extra BTB access
holds only one BTB bank per training-iteration. Even if the access results in a bank conflict with the accesses from the fetch engine for all the mispredicted indirect
branches, we found that the performance impact is negligible due to the low frequency of indirect branch mispredictionsin the VPC prediction mechanism.

11This scheme does not necessarily find and replace the least frequently used of the targets corresponding to an indirect branch – this is difficult to implement
as it requires keeping LFU information on a per-indirect branch basis across different BTB sets. Rather, our scheme is anapproximation that replaces the target
that has the lowest value for LFU-bits (corresponding to theLFU within a set) stored in the BTB entry, assuming the baseline BTB implements an LFU-based
replacement policy. Other heuristics are possible to determine the VPCA/VGHR of a new target address (i.e. new virtual branch). We experimented with schemes
that select among the VPCA/VGHR values corresponding to theiterated virtual branches randomly, or based on the recencyinformation that could be stored in
the corresponding BTB entries and found that LFU performs best with LRU/random selection a close second/third (see Section 5.5 for a quantitative evaluation).
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3.5. Pipelining the VPC Predictor

So far our discussion assumed that conditional branch prediction structures (the BTB and the direction predictor)

can be accessed in a single processor clock cycle. However, in some modern processors, access of the conditional

branch prediction structures takes multiple cycles. To accommodate this, the VPC prediction process needs to be

pipelined. We briefly show that our mechanism can be trivially adjusted to accommodate pipelining.

In a pipelined implementation of VPC prediction, the next iteration of VPC prediction is started in the next cycle

without knowing the outcome of the previous iteration in a pipelined fashion. In other words, consecutive VPC

prediction iterations are fed into the pipeline of the conditional branch predictor one after another, one iteration per

cycle. Pipelining VPC prediction is similar to supporting multiple iterations in parallel. As explained in Section 3.4,

the VPCA value of a later iteration is not dependent on previous iterations; hence, VPCA values of different iterations

are computed independently. The VGHR value of a later iteration is calculated assuming that previous iterations were

“not taken” since the VPC prediction process stops anyway when an iteration results in a “taken” prediction. If it turns

out that an iteration is not needed because a previous iteration was predicted as “taken,” then the later iterations in the

branch predictor pipeline are simply discarded when they produce a prediction. As such, VPC prediction naturally

yields itself to pipelining without significant hardware modifications.

3.6. Hardware Cost and Complexity

The extra hardware required by the VPC predictor on top of theexisting conditional branch prediction scheme is

as follows:

1. Three registers to storeiter, V PCA, andV GHR for prediction purposes (Algorithm 1).

2. A hard-coded table,HASHV AL, of 32-bit randomized values. The table hasMAX ITER number of entries.

Our experimental results show thatMAX ITER does not need to be greater than 16. The table is dual-ported

to support one prediction and one update concurrently.

3. A predicted iter value that is carried with each indirect branch throughout the pipeline. This value cannot be

greater thanMAX ITER.

4. Three registers to storeiter, V PCA, andV GHR for training purposes (Algorithms 2 and 3).

5. Two registers to store theV PCA andV GHR values that may be needed to insert a new target into the BTB (for

theno-targetcase in Algorithm 3).

Note that the cost of the required storage is very small. Unlike previously proposed history-based indirect branch

predictors, no large or complex tables are needed to store the target addresses. Instead, target addresses are naturally
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stored in the existing BTB.

The combinational logic needed to perform the computationsrequired for prediction and training is also simple.

Actual PC and GHR values are used to access the branch prediction structure in the first iteration of indirect branch

prediction. While an iteration is performed, the VPCA and VGHR values for the next iteration are calculated and

loaded into the corresponding registers. Therefore, updating VPCA and VGHR for the next iterations is not on the

critical path of the branch predictor access.

The training of the VPC predictor on a misprediction may slightly increase the complexity of the BTB update logic

because it requires multiple iterations to access the BTB. However, the VPC training logic needs to access the BTB

multiple times only on a target misprediction, which is relatively infrequent, and the update logic of the BTB is not on

the critical path of instruction execution. If needed, pending BTB and branch predictor updates due to VPC prediction

can be buffered in a queue to be performed in consecutive cycles (Note that such a queue to update conditional branch

prediction structures already exists in some modern processor implementations with limited number of read/write

ports in the BTB or the direction predictor [39]).

4. Experimental Methodology

We use a Pin-based [37] cycle-accurate x86 simulator to evaluate VPC prediction. The parameters of our baseline

processor are shown in Table 2. The baseline processor uses the BTB to predict indirect branches [36].
Table 2. Baseline processor configuration

64KB, 2-way, 2-cycle I-cache; fetch ends at the first predicted-taken br.;Front End
fetch up to 3 conditional branches or 1 indirect branch
64KB (64-bit history, 1021-entry) perceptron branch predictor [30];Branch
4K-entry, 4-way BTB with pseudo-LFU replacement;Predictors
64-entry return address stack; min. branch mispred. penalty is 30 cycles
8-wide fetch/issue/execute/retire; 512-entry ROB; 384 physical registers;Execution
128-entry LD-ST queue; 4-cycle pipelined wake-up and selection logic;Core
scheduling window is partitioned into 8 sub-windows of 64 entries each
L1 D-cache: 64KB, 4-way, 2-cycle, 2 ld/st ports;On-chip
L2 unified cache: 1MB, 8-way, 8 banks, 10-cycle latency;Caches
All caches use LRU replacement and have 64B line size

Buses and 300-cycle minimum memory latency; 32 memory banks;
Memory 32B-wide core-to-memory bus at 4:1 frequency ratio

Stream prefetcher with 32 streams andPrefetcher
16 cache line prefetch distance (lookahead) [51]

The experiments are run using 5 SPEC CPU2000 INT benchmarks,5 SPEC CPU2006 INT/C++ benchmarks, and

2 other C++ benchmarks. We chose those benchmarks in SPEC INT2000 and 2006 INT/C++ suites that gain at least

5% performance with a perfect indirect branch predictor. Table 3 provides a brief description of the other two C++

benchmarks.
Table 3. Evaluated C++ benchmarks that are not included in SP EC CPU 2000 or 2006

ixx translator from IDL (Interface Definition Language) to C++
richards simulates the task dispatcher in the kernel of an operating system [52]

We use Pinpoints [44] to select a representative simulationregion for each benchmark using the reference input
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set. Each benchmark is run for 200 million x86 instructions.Table 4 shows the characteristics of the examined

benchmarks on the baseline processor. All binaries are compiled with Intel’s production compiler (ICC) [26] with the

-O3 optimization level.

Table 4. Characteristics of the evaluated benchmarks: language and type of the benchmark (Lang/Type), baseline IPC (BASE IPC), potential IPC

improvement with perfect indirect branch prediction (PIBPIPC ∆), static number of indirect branches (Static IB), dynamic number of indirect branches (Dyn.

IB), indirect branch prediction accuracy (IBP Acc), indirect branch mispredictions per kilo instructions (IB MPKI), conditional branch mispredictions per kilo

instructions (CB MPKI). gcc06 is 403.gcc in CPU2006 and gcc is 176.gcc in CPU2000.

gcc crafty eon perlbmk gap perlbench gcc06 sjeng namd povray richards ixx AVG

Lang/Type C/int C/int C++/int C/int C/int C/int C/int C/int C++/fp C++/fp C++/int C++/int -
BASE IPC 1.20 1.71 2.15 1.29 1.29 1.18 0.66 1.21 2.62 1.79 0.91 1.62 1.29

PIBP IPC∆ 23.0% 4.8% 16.2% 105.5% 55.6% 51.7% 17.3% 18.5% 5.4% 12.1% 107.1% 12.8% 32.5%
Static IB 987 356 1857 864 1640 1283 1557 369 678 1035 266 1281 -
Dyn. IB 1203K 195K 1401K 2908K 3454K 1983K 1589K 893K 517K 1148K 4533K 252K -

IBP Acc (%) 34.9 34.1 72.2 30.0 55.3 32.6 43.9 28.8 83.3 70.8 40.9 80.7 50.6
IB MPKI 3.9 0.6 1.9 10.2 7.7 6.7 4.5 3.2 0.4 1.7 13.4 1.4 4.63
CB MPKI 3.0 6.1 0.2 0.9 0.8 3.0 3.7 9.5 1.1 2.1 1.4 4.2 3.0

For completeness, Table 5 shows the sensitivity of the remaining SPEC CPU2000 and CPU2006 integer bench-

marks to perfect indirect branch prediction. Since indirect branches do not significantly affect the performance of

these applications, VPC prediction neither improves nor degrades their performance.

Table 5. Characteristics of the remaining SPEC CPU2000 INT a nd SPEC CPU2006 INT/C++ benchmarks: baseline IPC, IPC with perfect

indirect branch prediction (PIBP IPC), IPC when VPC prediction is used (VPC IPC). lib., xal., omn. are abbreviations forlibquantum, xalancbmk, and omnetpp

respectively.

SPEC CPU2000 INT SPEC CPU2006 INT
gzip vpr mcf parser vortex bzip2 twolf bzip2 mcf gobmk hmmer lib. h264ref omn. astar xal. dealII soplex

BASE IPC 0.87 1.00 0.17 1.26 1.14 1.10 0.90 1.32 0.17 0.98 1.30 3.83 1.78 0.50 0.52 0.76 2.74 1.46
PIBP IPC 0.87 1.00 0.17 1.26 1.15 1.10 0.90 1.32 0.17 0.98 1.30 3.83 1.79 0.51 0.52 0.80 2.76 1.46
VPC IPC 0.87 1.00 0.17 1.26 1.14 1.10 0.90 1.32 0.17 0.98 1.30 3.83 1.79 0.50 0.52 0.78 2.75 1.46

5. Results
5.1. Dynamic Target Distribution

Figure 5 shows the distribution of the number of dynamic targets for executed indirect branches. In eon, gap, and

ixx, more than 40% of the executed indirect branches have only one target. These single-target indirect branches are

easily predictable with a simple BTB-based indirect branchpredictor. However, in gcc (50%), crafty (100%), perlbmk

(94%), perlbench (98%), sjeng (100%) and povray (97%), over50% of the dynamic indirect branches have more than

5 targets. On average, 51% of the dynamic indirect branches in the evaluated benchmarks have more than 5 targets.

5.2. Performance of VPC Prediction

Figure 6 (left) shows the performance improvement of VPC prediction over the baseline BTB-based predictor when

MAX ITER is varied from 2 to 16. Figure 6 (right) shows the indirect branch MPKI in the baseline and with VPC

prediction. In eon, gap, and namd, where over 60% of all executed indirect branches have at most 2 unique targets (as

shown in Figure 5), VPC prediction with MAXITER=2 eliminates almost all indirect branch mispredictions. Almost
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Figure 5. Distribution of the number of dynamic targets acro ss executed indirect branches

all indirect branches in richards have 3 or 4 different targets. Therefore, when the VPC predictor can hold 4 different

targets per indirect branch (MAXITER=4), indirect branch MPKI is reduced to only 0.7 (from 13.4 in baseline and

1.8 with MAX ITER=2). The performance of only perlbmk and perlbench continues to improve significantly as

MAX ITER is increased beyond 6, because at least 65% of the indirect branches in these two benchmarks have at

least 16 dynamic targets (This is due to the large switch-case statements in perl that are used to parse and pattern-

match the input expressions. The most frequently executed/mispredicted indirect branch in perlbench belongs to a

switch statement with 57 static targets). Note that even though the number of mispredictions can be further reduced

when MAX ITER is increased beyond 12, the performance improvement actually decreases for perlbench. This is

due to two reasons: (1) storing more targets in the BTB via a larger MAX ITER value starts creating conflict misses,

(2) some correct predictions take longer when MAXITER is increased, which increases the idle cycles in which no

instructions are fetched.

On average, VPC prediction improves performance by 26.7% over the BTB-based predictor (when

MAX ITER=12), by reducing the average indirect branch MPKI from4.63 to 0.52. Since a MAXITER value of

12 provides the best performance, most later experiments inthis section use MAXITER=12. We found that using

VPC prediction does not significantly impact the predictionaccuracy of conditional branches in the benchmark set we

examined as shown in Table 7.
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Figure 6. Performance of VPC prediction: IPC improvement (l eft), indirect branch MPKI (right)
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Figure 7 shows the distribution of the number of iterations needed to generate a correct target prediction. On

average 44.6% of the correct predictions occur in the first iteration (i.e. zero idle cycles) and 81% of the correct

predictions occur within three iterations. Only in perlbmkand sjeng more than 30% of all correct predictions require

at least 5 iterations. Hence, most correct predictions are performed quickly resulting in few idle cycles during which

the fetch engine stalls.

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f a

ll 
co

rr
ec

t p
re

di
ct

io
ns

 (
%

)

11-12
9-10
7-8
5-6
4
3
2
1

gc
c

cr
af

ty
eo

n

pe
rlb

m
k

ga
p

pe
rlb

en
ch

gc
c0

6

sje
ng

na
m

d

po
vr

ay

ric
ha

rd
s

ixx am
ea

n

Figure 7. Distribution of the number of iterations (for corr ect predictions) (MAX ITER=12)

5.3. Comparisons with Other Indirect Branch Predictors
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Figure 8. Performance of VPC prediction vs. tagged target ca che: IPC (left), MPKI (right)

Figure 8 compares the performance and MPKI of VPC predictionwith the tagged target cache (TTC) predictor [9].

The size of the 4-way TTC predictor is calculated assuming 4-byte targets and 2-byte tags for each entry.12 On average,

VPC prediction provides the performance provided by a 3-6KBTTC predictor. However, as shown in Table 6, in six

benchmarks, the VPC predictor performs at least as well as a 12KB TTC (and on 4 benchmarks better than a 192KB

TTC). As shown in Table 6, the size of TTC that provides equivalent performance is negatively correlated with

the average number of dynamic targets for each indirect branch in a benchmark: the higher the average number of

targets the smaller the TTC that performs as well as VPC (e.g.in crafty, perlbmk, and perlbench). This is because

TTC provides separate storage to cache the large number of dynamic targets in addition to the BTB whereas VPC

12Note that we simulated full 8-byte tags for TTC and hence our performance results reflect full tags, but we assume that a realistic TTC will not be implemented
with full tags so we do not penalize it in terms of area cost. A target cache entry is allocated only on a BTB misprediction for an indirect branch. Our results do
not take into account the increase in cycle time that might beintroduced due to the addition of the TTC predictor into the processor front-end.
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prediction uses only the available BTB space. As the averagenumber of targets increases, the contention for space

in the BTB also increases, and reducing this contention evenwith a relatively small separate structure (as TTC does)

provides significant performance gains.

Table 6. The sizes of tagged target cache (TTC) and cascaded p redictors that provide the same performance as the VPC predi ctor

(MAX ITER=12) in terms of IPC

gcc crafty eon perlbmk gap perlbench gcc06 sjeng namd povray richards ixx

TTC size (B) 12KB 1.5KB >192KB 1.5KB 6KB 512B 12KB 3KB >192KB >192KB >192KB 3KB
cascaded size (B)>176KB 2.8KB >176KB 2.8KB 11KB 1.4KB 44KB 5.5KB >176KB >176KB >176KB >176KB
avg. # of targets 6.1 8.0 2.1 15.6 1.8 17.9 5.8 9.0 2.0 5.9 3.4 4.1

Figure 9 compares the performance of VPC prediction with a 3-stage cascaded predictor [12, 13]. On average,

VPC prediction provides the same performance improvement as a 22KB cascaded predictor. As shown in Table 6, in

six benchmarks, VPC prediction provides the performance ofat least a 176KB cascaded predictor.13
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Figure 9. Performance of VPC prediction vs. cascaded predic tor: IPC (left), MPKI (right)

5.4. Effect of VPC Prediction Delay

So far we have assumed that a VPC predictor can predict a single virtual branch per cycle. Providing the ability to

predict multiple virtual branches per cycle (assuming the underlying conditional branch predictor supports this) would

reduce the number of idle cycles spent during multiple VPC prediction iterations. Figure 10 shows the performance

impact when multiple iterations can take only one cycle. Supporting, unrealistically, even 10 prediction iterations

per cycle further improves the performance benefit of VPC prediction by only 2.2%. As we have already shown in

Figure 7, only 19% of all correct predictions require more than 3 iterations. Therefore, supporting multiple iterations

per cycle does not provide significant improvement. We conclude that, to simplify the design, the VPC predictor can

be implemented to support only one iteration per cycle.

13We found that a 3-stage cascaded predictor performs slightly worse than an equally-sized TTC predictor. This is becausethe number of static indirect
branches in the evaluated benchmarks is relatively small (10-20) and a cascaded predictor performs better than a TTC when there is a larger number of static
branches [12, 13].
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Figure 10. Performance impact of supporting multiple VPC pr ediction iterations per cycle

5.5. Effect of VPC Training: Where to Insert the Correct Target Address

In Section 3.3.2, we described how the VPC training algorithm inserts the correct target into the BTB if the VPC

prediction was wrong. Where the correct target is inserted in the BTB with respect to other targets of the branch

could affect performance because 1) it determines which target will be replaced by the new target and 2) it affects the

“order” of appearance of targets in a future VPC prediction loop. This section evaluates different policies for inserting

a target address into the BTB upon a VPC misprediction.

Figure 11 shows the performance improvement provided by four different policies we examine.Naive-Insert-

MAXITERinserts the target address into the BTB without first checking whether or not it already exists in the BTB

entries corresponding to the virtual branches. The target address is inserted into the first available virtual branch

position, i.e. that corresponding to a virtual branch that missed in the BTB. If none of the virtual branches had missed

in the BTB, the target is always inserted in the MAXITER position. The benefit of this mechanism is that it does not

require the VPC training logic to check all the BTB entries corresponding to the virtual branches; hence it is simpler to

implement. The disadvantage is it increases the redundancyof target addresses in the BTB (hence the area-efficiency

of the BTB) since the target address of each virtual branch isnot necessarily unique.

The other three policies we examine require each virtual branch to have a unique target address, but differ inwhich

virtual branch they replace if the VPC prediction was wrong and neither the correct target of the indirect branch nor

an empty virtual branch slot corresponding to the indirect branch was found in the BTB.Unique-Randomreplaces a

BTB entry randomly among all the virtual branches.Unique-LRUreplaces the target address corresponding to the

virtual branch whose entry has the smallest least-recently-used (LRU) value.Unique-LFUis the default scheme we

described in Section 3.3.2, which replaces the target address corresponding to the virtual branch whose entry has the

smallest LFU-value.

According to Figure 11, the performance of most benchmarks –except perlbmk, perlbench, and sjeng– is not sen-

sitive to the different training policies. Since the numberof dynamic targets per branch is very high in perlbmk,
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perlbench, and sjeng (shown in Figure 5 and Table 6), the contention for virtual branch slots in the BTB is high. For

our set of benchmarks, theUnique-LFUscheme provides the highest performance (1% and 2% better than respectively

Unique-LRUandUnique-Random). We found that frequently used targets in the recent past are more likely to be used

in the near future and therefore it is better to replace less frequently used target addresses. Therefore, we have chosen

theUnique-LFUscheme as our default VPC training scheme.
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Figure 11. Performance impact of different VPC training sch emes

5.6. Sensitivity of VPC Prediction to Microarchitecture Parameters

5.6.1. Different Conditional Branch Predictors We evaluated VPC prediction with various baseline conditional

branch predictors. Figure 12 compares the performance of the TTC predictor and the VPC predictor on a baseline

processor with a 64KB O-GEHL predictor [47]. On average, VPCprediction improves performance by 31% over the

baseline with an O-GEHL predictor and outperforms a 12KB TTCpredictor. Figure 13 shows that VPC prediction

improves performance by 23.8% on a baseline processor with a64KB gshare [40] predictor. These results show

that VPC prediction can be used with other conditional branch prediction mechanisms without changing the VPC

prediction algorithm solely because indirect branches aretreated the same way as “multiple” conditional branches.

Table 7 summarizes the results of our comparisons. Reducingthe conditional branch misprediction rate via a better

predictor results in also reducing the indirect branch misprediction rate with VPC prediction. Hence, as the baseline

conditional branch predictor becomes better, the performance improvement provided by VPC prediction increases.

We conclude that, with VPC prediction, any research effort that improves conditional branch prediction accuracy will

likely result in also improving indirect branch predictionaccuracy – without requiring the significant extra effort to

design complex and specialized indirect branch predictors.

Table 7. Effect of different conditional branch predictors

Baseline VPC predictionCond. BP
cond. MPKI indi. MPKI IPC cond. MPKI indi. MPKI IPC∆

gshare 3.70 4.63 1.25 3.78 0.65 23.8%
perceptron 3.00 4.63 1.29 3.00 0.52 26.7%
O-GEHL 1.82 4.63 1.37 1.84 0.32 31.0%
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Figure 12. Performance of VPC prediction vs. TTC on a process or with an O-GEHL conditional branch predictor: IPC (left), MPKI (right)
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Figure 13. Performance of VPC prediction vs. TTC on a process or with a gshare conditional branch predictor: IPC (left), M PKI (right)

5.6.2. Different BTB sizesWe evaluated VPC prediction with different BTB sizes: 512, 1024, 2048, 4096 (base),

8192 and 16384 entries.14 As Table 8 shows, even with smaller BTB sizes VPC prediction still provides significant

performance improvements. With a very small (512-entry) BTB, VPC prediction improves performance by 18.5%.

With a very large (16K-entry) BTB, the performance improvement is 27.1%. Even though VPC prediction slightly

increases the BTB miss rate for conditional branch instructions (due to the contention it introduces by storing multiple

targets per indirect branch in the BTB), the negative impactof this is easily offset by the positive performance impact

the large reductions in the indirect branch misprediction rate (as Table 8 shows). We conclude that VPC prediction

becomes more effective as BTB size increases, but it is stilleffective with a small BTB.

Table 8. Effect of different BTB sizes
Baseline VPC predictionBTB entries

indirect MPKI cond br. BTB miss (%) IPC indirect MPKI cond br. BTB miss (%) IPC∆

512 4.81 8.2 1.16 1.31 8.4 18.5%
1K 4.65 2.9 1.25 0.95 3.0 21.7%
2K 4.64 0.7 1.28 0.78 0.7 23.8%
4K 4.63 0.1 1.29 0.52 0.1 26.7%
8K 4.63 0.01 1.29 0.46 0.01 27.0%
16K 4.63 0.006 1.29 0.45 0.006 27.1%

5.6.3. VPC Prediction on a Less Aggressive ProcessorFigure 14 shows the performance of VPC and TTC pre-

dictors on a less aggressive baseline processor that has a 20-stage pipeline, 4-wide fetch/issue/retire rate, 128-entry

14Note that many modern processors have large BTBs: AMD Athlon(2K-entry) [1], Intel Pentium 4 (4K-entry) [22], IBM z990 (8K-entry) [49].
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instruction window, 16KB perceptron branch predictor, 1K-entry BTB, and 200-cycle memory latency. Since the

less aggressive processor incurs a smaller penalty for a branch misprediction, improved indirect branch handling pro-

vides smaller performance improvements than in the baseline processor. However, VPC prediction still improves

performance by 17.6%.
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Figure 14. VPC prediction vs. TTC on a less aggressive proces sor

5.7. Effect of VPC Prediction on Power and Energy Consumption

Figure 15 shows the impact of VPC prediction and TTC predictors of different sizes on maximum processor power,

overall energy consumption, energy-delay product of the processor, and the energy consumption of the branch pre-

diction logic (which includes conditional/indirect predictors and the BTB). We used the Wattch infrastructure [4] to

measure power/energy consumption, faithfully modeling every processing structure and the additional accesses to the

branch predictors. The power model is based on 100nm technology and a 4GHz processor.

On average, VPC prediction reduces the overall energy consumption by 19%, which is higher than the energy

reduction provided by the most energy-efficient TTC predictor (12KB). The energy reduction is due to the reduced

pipeline flushes and thus reduced amount of time the processor spends fetching and executing wrong-path instructions.

Furthermore, VPC prediction reduces the energy delay product (EDP) by 42%, which is also higher than the EDP

reduction provided by the most energy-efficient TTC predictor. VPC prediction improves EDP significantly because

it improves performance while at the same time reducing energy consumption.

VPC prediction does not significantly increase the maximum power consumption of the processor whereas even a

3KB TTC predictor results in a 0.3% increase in maximum powerconsumption due to its additional hardware over-

head. Note that relatively large TTC predictors significantly increase not only the complexity but also the energy

consumption of the branch prediction unit. We conclude thatVPC prediction is an energy-efficient way of improv-

ing processor performance without significantly increasing the complexity of the processor frontend and the overall

processor power consumption.
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Figure 15. Effect of VPC prediction on energy/power consump tion

5.8. Performance of VPC Prediction on Server Applications

We also evaluated the VPC predictor with commercial on-linetransaction processing (OLTP) applications [21].

Each OLTP trace is collected from an IBM System 390 zSeries machine [25] for 22M instructions. Unlike the

SPEC CPU benchmarks, OLTP applications have a much higher number of static indirect branches (OLTP1:7601,

OLTP2:7991, and OLTP3:15733) and very high indirect branchmisprediction rates.15 The VPC predictor

(MAX ITER=10) reduces the indirect branch misprediction rate by28%, from 12.2 MPKI to 8.7 MPKI. The VPC

predictor performs better than a 12KB TTC predictor on all applications and almost as well as a 24KB TTC on oltp2.

Hence, we conclude that the VPC predictor is also very effective in large-scale server applications.
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Figure 16. MPKI of VPC prediction on OLTP Applications: effe ct of MAX ITER (left) and vs. TTC predictor (right)

6. VPC Prediction and Compiler-Based Devirtualization

Devirtualization is the substitution of an indirect method call with direct method calls in object-oriented lan-

guages [10, 24, 20, 5, 29]. Ishizaki et al. [29] classify the devirtualization techniques intoguarded devirtualization

anddirect devirtualization.

Guarded devirtualization: Figure 17a shows an example virtual function call in the C++ language. In the example,

depending on the actual type ofShape s, differentarea functions are called at run-time. However, even though

there could be many different shapes in the program, if the types of shapes are mostly either an instance of the

15System 390 ISA has both unconditional indirect and conditional indirect branch instructions. For this experiment, we only consider unconditional indirect
branches and use a 16K-entry 4-way BTB in the baseline processor. Since server applications have very large indirect branch working sets, BTBs of processors
designed for use in server systems are also large [49].
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Rectangle class or theCircle class at run-time, the compiler can convert the indirect call to multiple guarded

direct calls [20, 17, 5] as shown in Figure 17(b). This compiler optimization is called Receiver Class Prediction

Optimization (RCPO) and the compiler can perform RCPO based on profiling.

Shape* s = ... ;
a = s->area(); // an indirect call

(a) A virtual function call in C++
Shape * s = ...;
if (s->class == Rectangle) // a cond. br at PC: X

a = Rectangle::area(); // a direct call
else if (s->class == Circle) // a cond. br at PC: Y

a = Circle::area(); // a direct call
else

a = s->area(); // an indirect call at PC: Z

(b) Devirtualized form of the above virtual function call

Figure 17. A virtual function call and its devirtualized for m

The benefits of this optimization are: (1) It enables other compiler optimizations. The compiler could inline the

direct function calls or perform interprocedural analysis[17]. Removing function calls also reduces the register

save/restore overhead. (2) The processor can predict the virtual function call using a conditional branch predictor,

which usually has higher accuracy than an indirect branch predictor [5]. However, not all indirect calls can be con-

verted to multiple conditional branches. In order to perform RCPO, the following conditions need to be fulfilled [17,

5]:

1. The number of frequent target addresses from a caller siteshould be small (1-2).

2. The majority of target addresses should be similar acrossinput sets.

3. The target addresses must be available at compile-time.

Direct devirtualization: Direct devirtualization converts an indirect call into a single unconditional direct call if

the compiler can prove that there is only one possible targetfor the indirect call. Hence, direct devirtualization does

not require a guard before the direct call, but requires whole-program analysis to make sure there is only one possible

target. This approach enables code optimizations that would otherwise be hindered by the indirect call. However, this

approach cannot be used statically if the language supportsdynamic class loading, like Java. Dynamic recompilation

can overcome this limitation, but it requires an expensive mechanism called on-stack replacement [29].

6.1. Limitations of Compiler-Based Devirtualization

6.1.1. Need for Static Analysis or Accurate ProfilingThe application of devirtualization to large commercial soft-

ware bases is limited by the cost and overhead of the static analysis or profiling required to guide the method call

transformation. Devirtualization based on static analysis requires type analysis, which in turn requires whole program

24



analysis [29], and unsafe languages like C++ also require pointer alias analysis. Note that these analyses need to

be conservative in order to guarantee correct program semantics. Guarded devirtualization usually requires accurate

profile information, which may be very difficult to obtain forlarge applications. Due to the limited applicability of

static devirtualization, [29] reports only an average 40% reduction in the number of virtual method calls on a set of

Java benchmarks, with the combined application of aggressive guarded and direct devirtualization techniques.

6.1.2. Impact on Code Size and Branch MispredictionsGuarded devirtualization can sometimes reduce perfor-

mance since (1) it increases the static code size by converting a single indirect branch instruction into multiple guard

test instructions and direct calls; (2) it could replace onepossibly mispredicted indirect call with multiple conditional

branch mispredictions, if the guard tests become hard-to-predict branches [50].

6.1.3. Lack of Adaptivity to Run-Time Input-Set and Phase Behavior The most frequently-taken targets chosen

for devirtualization can be based on profiling, which averages the whole execution of the program for one particular

input set. However, the most frequently-taken targets can bedifferent across different input sets. Furthermore, the

most frequently-taken targets can change during differentphases of the program. Additionally, dynamic linking and

dynamic class loading can introduce new targets at runtime.Compiler-based devirtualization cannot adapt to these

changes in program behavior because the most frequent targets of a method call are determined statically and encoded

in the binary.

Due to these limitations, many state-of-the-art compilerseither do not implement any form of devirtualization (e.g.

GCC 4.0 [18]16) or they implement a limited form of direct devirtualization that converts only provably-monomorphic

virtual function calls into direct function calls (e.g. theBartok compiler [50, 41] or the .NET Runtime [42]).

6.2. VPC Prediction vs. Compiler-Based Devirtualization

VPC prediction is essentially adynamic devirtualizationmechanism used for indirect branch prediction purposes.

However, VPC’s devirtualization is visible only to the branch prediction structures. VPC has the following advantages

over compiler-based devirtualization:

1. As it is a hardware mechanism, it can be applied toany indirect branchwithout requiring any static analy-

sis/guarantees or profiling.

2. Adaptivity: Unlike compiler-based devirtualization, the dynamic training algorithms allow the VPC predictor to

adapt to changes in the most frequently-taken targets or even to new targets introduced by dynamic linking or dynamic

class loading.

3. Because virtual conditional branches are visible only tothe branch predictor, VPC prediction does not increase

16GCC only implements a form of devirtualization based on class hierarchy analysis in theipa-branchexperimental branch, but not in the main branch [43].
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the code size, nor does it possibly convert a single indirectbranch misprediction into multiple conditional branch

mispredictions.

On the other hand, the main advantage of compiler-based devirtualization over VPC prediction is that it enables

compile-time code optimizations. However, as we show in thenext section, the two techniques can be used in combi-

nation and VPC prediction provides performance benefits on top of compiler-based devirtualization.

Table 9. The number of static and dynamic indirect branches i n BASE and RCPO binaries
gcc crafty eon perlbmk gap perlbench gcc06 sjeng namd povray

Static BASE 987 356 1857 864 1640 1283 1557 369 678 1035
Static RCPO 984 358 1854 764 1709 930 1293 369 333 578

Dynamic BASE (M) 144 174 628 1041 2824 8185 304 10130 7 8228
Dynamic RCPO (M) 94 119 619 1005 2030 1136 202 10132 4 7392

6.3. Performance of VPC Prediction on Binaries Optimized with Compiler-Based Devirtualization

A compiler that performs devirtualization reduces the number of indirect branches and therefore reduces the po-

tential performance improvement of VPC prediction. This section evaluates the effectiveness of VPC prediction on

binaries that are optimized using aggressive profile-guided optimizations, which include RCPO. ICC [26] performs a

form of RCPO [46] when value-profiling feedback is enabled, along with other profile-based optimizations.17

Table 9 shows the number of static/dynamic indirect branches in theBASEandRCPObinaries run with the full

reference input set.BASEbinaries are compiled with the-O3 option. RCPObinaries are compiled with all profile-

guided optimizations, including RCPO.18 Table 9 shows that RCPO binaries reduce the number of static/dynamic

indirect branches by up to 51%/86%.

Figure 18 shows the performance impact of VPC prediction on RCPO binaries. Even though RCPO binaries have

fewer indirect branches, VPC prediction still reduces indirect branch mispredictions by 80% on average, improving

performance by 11.5% over a BTB-based predictor. Figure 19 shows the performance comparison of VPC prediction

with a tagged target cache on RCPO binaries. The performanceof VPC is better than a tagged predictor of 48KB

(for eon, namd, povray), and equivalent to a tagged predictor of 24KB (for gap), of 12KB (for gcc), of 3KB (for

perlbmk, gcc06, and sjeng), of 1.5KB (for crafty), and 768B (for perlbench). Hence, a VPC predictor provides the

performance of a large and more complicated tagged target cache predictor even when the RCPO optimization is used

by the compiler.

7. Evaluation of VPC Prediction on Object-Oriented Java Applications

This section evaluates VPC prediction using a set of modern object-oriented Java applications, the full set of Da-

Capo benchmarks [3]. Our goal is to demonstrate the benefits of VPC prediction on real object-oriented applications

17Since it is not possible to selectively enable only RCPO in ICC, we could not isolate the impact of RCPO on performance. Hence, we only present the effect
of VPC prediction on binaries optimized with RCPO.

18RCPO binaries were compiled in two passes with ICC: the first pass is a profiling run with the train input set (-prof gen switch), and the second pass
optimizes the binaries based on the profile (we use the-prof use switch, which enables all profile-guided optimizations).
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Figure 18. Performance of VPC prediction on RCPO binaries: I PC (left) and MPKI (right)
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Figure 19. VPC prediction vs. tagged target cache on RCPO bin aries: IPC (left) and MPKI (right)

and to analyze the differences in the behavior of VPC prediction on object-oriented Java programs versus on traditional

C/C++ programs (which were evaluated in Section 5).

7.1. Methodology

We have built an iDNA-based [2] cycle-accurate x86 simulator to evaluate VPC prediction on Java applications.

iDNA [2] is a dynamic binary instrumentation tool similar toPin [37], but capable of tracing Java virtual machines.

The DaCapo benchmarks are run with Sun J2SE 1.4.215 JRE on Windows Vista. Each benchmark is run for 200

million x86 instructions with the small input set. The parameters of our baseline processor are the same as those we

used to evaluate VPC prediction on C/C++ applications as shown in 2.19

Table 10 shows the characteristics of the examined Java programs on the baseline processor. Compared to the

evaluated C/C++ programs, the evaluated Java programs havesignificantly higher number of static and dynamic

indirect branches and indirect branch misprediction rates(also see Table 4). We found that this difference is due to the

object-oriented nature of the Java programs, which containa large number of virtual functions, and the behavior of

the Java Virtual Machine, which uses a large number of indirect branches in its interpretation and dynamic translation

phases [14]. As a result, the potential performance improvement possible with perfect indirect branch prediction is

19We use a BTB size of 8K entries to evaluate Java applications since they are very branch-intensive. However, we also evaluate other BTB sizes in Sec-
tion 7.5.1.
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significantly higher in the evaluated Java applications (73.1%) than in the evaluated C/C++ applications (32.5%).

Table 10. Characteristics of the evaluated Java applicatio ns: baseline IPC (BASE IPC), potential IPC improvement with perfect indirect branch

prediction (PIBP IPC∆), static number of indirect branches (Static IB), dynamic number of indirect branches (Dyn. IB), indirect branch prediction accuracy

(IBP Acc), indirect branch mispredictions per kilo instructions (IB MPKI), conditional branch mispredictions per kilo instructions (CB MPKI), and average

number of dynamic targets.

antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan AVG
BASE IPC 0.98 0.92 0.77 1.20 0.79 1.21 1.20 1.15 1.12 1.01 0.77 0.98

PIBP IPC∆ 80.3% 71.2% 48.4% 56.9% 130.9% 57.5% 57.8% 60.1% 65.3% 70.1% 114.4% 73.1%
Static IB 800 628 917 1579 1155 2533 1548 1587 1585 944 795 -
Dyn. IB 4917K 5390K 4834K 3523K 7112K 3054K 3565K 3744K 4054K 4557K 6923K -

IBP Acc (%) 49.3 54.1 51.8 52.0 44.7 61.2 51.9 51.4 51.8 49.8 44.6 51.2
IB MPKI 12.5 12.4 11.6 8.5 19.7 8.3 8.6 9.1 9.8 11.4 19.2 11.9
CB MPKI 2.5 2.2 2.4 4.5 3.1 3.1 4.4 4.6 4.3 3.9 3.9 3.5

Avg. number of dynamic targets 37.3 37.6 45.9 41.1 37.6 30.3 41.0 40.6 39.9 39.8 39.7 -

7.2. Dynamic Target Distribution of Java Applications

Figure 20 shows the distribution of the number of dynamic targets for executed indirect branches. Unlike C/C++

programs evaluated in Section 5.1, only 14% of executed indirect branches have a single target and 53% of them

have more than 20 targets (Recall that 51% of the indirect branches in the evaluated C/C++ programs had more than

5 targets). On average, 76% of the dynamic indirect branchesin the evaluated Java benchmarks have more than 5

targets, in contrast to the 51% in the evaluated indirect-branch intensive C/C++ programs. Only in hsqldb more than

20% of the dynamic indirect branches have only one target, which are easily predictable with a simple BTB-based

indirect branch predictor. The high number of targets explains why the evaluated Java programs have higher indirect

branch misprediction rates than the evaluated C/C++ programs.

We found that there are two major reasons for the high number of dynamic targets in the Java applications: 1) The

evaluated Java applications are written in object-oriented style. Therefore, they include manypolymorphic virtual

function calls, i.e. virtual function calls that are overridden by many derived classes, whose overridden forms are

exercised at run time. 2) The Java virtual machine itself uses a significant number of indirect jumps with many targets

in its interpretation routines, as shown in previous work onvirtual machines [14].
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Figure 20. Distribution of the number of dynamic targets acr oss executed indirect branches in the Java programs
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7.3. Performance of VPC Prediction on Java Applications

Figure 21 (left) shows the performance improvement of VPC prediction over the baseline BTB-based predictor

when MAX ITER is varied from 2 to 16. Figure 21 (right) shows the indirect branch misprediction rate (MPKI) in the

baseline and with VPC prediction. Similarly to the results for C/C++ benchmarks, a MAXITER value of 12 provides

the highest performance improvement.All of the 11 Java applications experience more than 10% performance im-

provement with VPC prediction and 10 of the 11 applications experience more than 15% performance improvement.

This shows that the benefits of VPC prediction are very consistent across different object-oriented Java applications.

On average, VPC prediction provides 21.9% performance improvement in the Java applications.
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Figure 21. Performance of VPC prediction on Java applicatio ns: IPC improvement (left), indirect branch MPKI (right)

7.3.1. AnalysisSince the majority of indirect branches have more than 10 targets, as MAXITER increases, the

indirect branch MPKI decreases (from 11.9 to 5.2), until MAXITER equals 12. The most significant drop in MPKI

(from 10.9 to 7.9) happens when MAXITER is increased from 2 to 4 (meaning VPC prediction can store four

different targets for a branch rather than two). However, when MAX ITER is greater than 12, MPKI starts increasing

in most of the evaluated Java applications (unlike in C/C++ applications where MPKI continues to decrease). This

is due to the pressure extra virtual branches exert on the BTB: as Java applications have a large number of indirect

branches with a large number of dynamically-exercised targets, more targets contend for the BTB space with higher

values of MAX ITER. As a result, BTB miss rate for virtual branches increases and the prediction accuracy of VPC

prediction decreases. When the MPKI increase is combined with the additional iteration cycles introduced for some

predictions by higher MAXITER values, the performance improvement of VPC predictiondrops from 21.9% (for

MAX ITER=12) to 20.4% (for MAXITER=16).

Even though VPC prediction significantly reduces the misprediction rate from 11.9 to 5.2 MPKI in Java applica-

tions, a significant number of mispredictions still remain.This is in contrast to the results we obtained for C/C++
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applications where VPC prediction was able to eliminate 89%of all mispredictions (down to 0.63 MPKI). Hence,

indirect branches in Java applications are more difficult topredict. Therefore, other techniques like dynamic predica-

tion [31] might be needed to complement VPC prediction to further reduce the impact of indirect branches on Java

application performance.

Figure 22 shows the distribution of the number of iterationsneeded to generate a correct target prediction. On

average 44.8% of the correct predictions occur in the first iteration (i.e. zero idle cycles) and 78.7% of the correct

predictions occur within four iterations. Hence, most correct predictions are performed quickly resulting in few idle

cycles during which the fetch engine stalls. Note that the number of iterations (cycles) it takes to make a correct

prediction is higher for Java applications than for C/C++ applications because indirect branches in Java applications

have a significantly higher number of dynamically-exercised targets per indirect branch.
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Figure 22. Distribution of the number of iterations (for cor rect predictions) in the Java programs (MAX ITER=12)

7.4. VPC Prediction versus Other Indirect Branch Predictors on Java Applications

Figure 23 compares the performance and MPKI of VPC prediction with the tagged target cache (TTC) predic-

tor [9]. On average, VPC prediction provides performance improvement equivalent to that provided by a 3-6 KB TTC

predictor (similarly to the results for C/C++ applications).20
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Figure 23. Performance of VPC prediction vs. tagged target c ache: IPC (left), MPKI (right)

20In the examined Java applications, increasing the size of the TTC predictor up to 48KB continues providing large performance improvements, whereas doing
so results in very little return in performance for C/C++ applications. A larger TTC predictor is better able to accommodate the large indirect branch target
working set of Java applications whereas a small TTC predictor is good enough to accommodate the small target working setof C/C++ applications. Hence the
difference in the effect of TTC size on performance between Java versus C/C++ applications.
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Figure 24 compares the performance and MPKI of VPC prediction with the cascaded predictor. On average, VPC

prediction provides the performance provided by a 5.5-11KBcascaded predictor. Because the number of static indirect

branches is very high in Java applications, a small cascadedpredictor (cascaded-704B) performs significantly worse

than the baseline BTB-based predictor. This behavior is notseen in C/C++ benchmarks because those benchmarks

have much fewer indirect branches with smaller number of targets that do not cause significant contention in the

tables of a small cascaded predictor. However, even though there are many static indirect branches in the examined

Java applications, VPC predictor still provides significant performance improvements equaling those of large cascaded

predictors, without requiring extra storage for indirect branch targets.

Note that the size of the TTC or cascaded predictor that provides the same performance as VPC prediction is smaller

for Java applications than for C/C++ applications. In otherwords, TTC and cascaded predictors are relatively more

effective in Java than C/C++ applications. This is because of the large indirect branch and target working set size

of Java applications, which can better utilize the extra target storage space provided by specialized indirect branch

predictors.
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Figure 24. Performance of VPC prediction vs. cascaded predi ctor on Java applications: IPC (left), MPKI (right)

7.5. Effect of Microarchitecture Parameters on VPC Prediction Performance on Java Applications

7.5.1. Effect of BTB SizeTable 11 shows the effect of the baseline BTB size on VPC prediction performance on

Java applications. Similarly to what we observed for C/C++ applications, VPC prediction provides higher performance

improvements as BTB size increases. However, with smaller BTB sizes, VPC prediction’s performance improvement

is smaller on Java applications than on C/C++ applications.For example, with a 512-entry BTB, VPC prediction

improves the performance of Java applications by 6.3% whereas it improves the performance of C/C++ applications

by 18.5% (as was shown in Table 8). As Java applications have very large indirect branch and target address working

sets, VPC prediction results in a larger contention (i.e., conflict misses) in the BTB in these applications than in

C/C++ applications, thereby delivering a smaller performance improvement. Even so, the performance improvement
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provided by VPC prediction with very small BTB sizes is significant for Java applications. We conclude that VPC

prediction is very effective on Java applications for a widevariety of BTB sizes.

Table 11. Effect of different BTB sizes in Java applications

Baseline VPC predictionBTB entries
indirect MPKI Cond. Br BTB Miss (%) IPC indirect MPKI Cond. Br BTB Miss (%) IPC∆

512 13.10 8.9 0.87 10.17 9.5 6.3%
1K 12.36 3.7 0.94 8.31 4.8 11.1%
2K 12.05 2.1 0.97 6.77 2.3 17.5%
4K 11.92 0.9 0.97 5.99 1.0 19.6%
8K 11.94 0.3 0.98 5.21 0.3 21.9%

7.5.2. Effect of a Less Aggressive ProcessorFigure 25 shows the performance of VPC and TTC predictors on aless

aggressive baseline processor that has a 20-stage pipeline, 4-wide fetch/issue/retire rate, 128-entry instruction window,

16KB perceptron branch predictor, 4K-entry BTB, and 200-cycle memory latency. Similarly to our observation for

C/C++ applications, since the less aggressive processor incurs a smaller penalty for a branch misprediction, improved

indirect branch handling provides smaller performance improvements than in the baseline processor. However, VPC

prediction still improves performance of Java applications by 11.1% on a less aggressive processor. In fact, all Java

applications except xalan experience very close to or more than 10% performance improvement with VPC prediction.

This is different from what we have seen for C/C++ applications on the less aggressive processor: some applications

saw very large performance improvements with VPC prediction whereas others saw very small (less than 5% as shown

in Figure 14). Thus, we conclude that VPC prediction’s performance improvements are very consistent across the Java

applications on both aggressive and less aggressive baseline processors.
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Figure 25. VPC prediction vs. TTC on a less aggressive proces sor

7.6. Effect of VPC Prediction on Power and Energy Consumption of Java Applications

Figure 26 shows the impact of VPC prediction and TTC/cascaded predictors of different sizes on maximum pro-

cessor power, overall energy consumption, energy-delay product of the processor, and the energy consumption of the

branch prediction logic. On average, VPC prediction reduces the overall energy consumption by 22%, and energy

delay product (EDP) by 36%. Similarly to what we observed forC/C++ applications, VPC prediction provides larger
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reductions in energy consumption on Java applications thanthe most energy-efficient TTC predictor (12KB) as well as

the most energy-efficient cascaded predictor (11KB). Moreover, VPC prediction does not significantly increase max-

imum power consumption (less than 0.1%) whereas a 12KB TTC predictor and an 11KB cascaded predictor result

in respectively 2.1% and 2.2% increase in power consumptiondue to the extra storage and prediction structures they

require. We conclude that VPC prediction is an energy- and power-efficient indirect branch handling technique that

provides significant performance improvements in object-oriented Java applications without significantly increasing

the energy consumption or complexity of the processor front-end.
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Figure 26. Effect of VPC prediction on energy/power consump tion on Java applications

To provide more insight into the reduction in energy consumption and EDP, Figure 27 shows the percentage change

in pipeline flushes, fetched instructions, and executed instructions due to VPC prediction and TTC/cascaded predic-

tors. VPC prediction reduces the number of pipeline flushes by 30.1%, which results in a 47% reduction in the number

of fetched instructions and a 23.4% reduction in the number of executed instructions. Hence, VPC prediction reduces

energy consumption significantly due to the large reductionin the number of fetched/executed instructions. Notice

that even though a 12KB TTC predictor provides a larger reduction in pipeline flushes, it is less energy-efficient than

the VPC predictor due to the significant extra hardware it requires.
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8. Other Related Work

We have already discussed related work on indirect branch prediction in Section 2.2. Sections 5, 6 and 7 provide

extensive comparisons of VPC prediction with three of the previously proposed indirect branch predictors, finding

that VPC prediction, without requiring significant hardware, provides the performance benefits provided by other

predictors of much larger size. Here, we briefly discuss otherrelated work in handling indirect branches.

We [31] recently proposed handling hard-to-predict indirect branches using dynamic predication [35]. In this

technique, if the target address of an indirect branch is found to be hard to predict, the processor selects two (or more)

likely targets and follows the control-flow paths after all of the targets by dynamically predicating the instructions

on each path. When the indirect branch is resolved, instructions on the control-flow paths corresponding to the

incorrect targets turn into NOPs. Unlike VPC prediction, dynamic predication of indirect branches requires compiler

support, new instructions in the instruction set architecture, and significant hardware support for dynamic predication

(as described in [35]). However, the two approaches can be combined and used together: dynamic predication can

be a promising approach to reduce the performance impact of indirect branches that are hard to predict with VPC

prediction.

Roth et al. [45] proposed dependence-based pre-computation, which pre-computes targets for future virtual function

calls as soon as an object reference is created. This technique avoids a misprediction if the result of the computation

is correct and ready to be used when the future instance of thevirtual function call is fetched. However, it requires a

dedicated and costly precomputation engine. In contrast, VPC prediction has two advantages: 1) it does not require

any pre-computation logic, 2) it is generally applicable toany indirect branch rather than only for virtual function

calls.

Pure software approaches have been proposed specifically for mitigating the performance impact due to virtual

function calls. These approaches include the method cache in Smalltalk-80 [10], polymorphic inline caches [23] and

type feedback/devirtualization [24, 29]. As we show in Section 6, the benefit of devirtualization is limited by its lack

of adaptivity. We compare and contrast VPC prediction with compiler-based devirtualization extensively in Section 6.

Finally, Ertl and Gregg [14] proposed code replication and superinstructions to improve indirect branch prediction

accuracy on virtual machine interpreters. In contrast to this scheme, VPC prediction is not specific to any platform

and is applicable to any indirect branch.

9. Conclusion

This paper proposed and evaluated the VPC prediction paradigm. The key idea of VPC prediction is to treat an

indirect branch instruction as multiple “virtual” conditional branch instructions for prediction purposes in the microar-
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chitecture. As such, VPC prediction enables the use of existing conditional branch prediction structures to predict the

targets of indirect branches without requiring any extra structures specialized for storing indirect branch targets.Our

evaluation shows that VPC prediction, without requiring complicated structures, achieves the performance provided

by other indirect branch predictors that require significant extra storage and complexity. On a set of indirect branch

intensive C/C++ applications and modern object-oriented Java applications, VPC prediction provides respectively

26.7% and 21.9% performance improvement, while also reducing energy consumption significantly.

We believe the performance impact of VPC prediction will further increase in future applications that will be written

in object-oriented programming languages and that will make heavy use of polymorphism since those languages were

shown to result in significantly more indirect branch mispredictions than traditional C/Fortran-style languages. By

making available to indirect branches the rich, accurate, highly-optimized, and continuously-improving hardware

used to predict conditional branches, VPC prediction can serve as an enabler encouraging programmers (especially

those concerned with the performance of their code) to use object-oriented programming styles, thereby improving

the quality and ease of software development.
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