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Executive Summary

* Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

* However, current real-world PIM systems have very constrained hardware,
which results in limited instruction sets
- Difficulty/impossibility of computing complex operations, such as

transcendental functions (e.g., trigonometric, exp, log) and other hard-to-
calculate functions (e.g., square root)

- These functions are important for modern workloads, e.g., activation functions
in machine learning applications

* TransPimLib is the first library for transcendental and other hard-to-
calculate functions on general-purpose PIM systems

- CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic
functions, exponentiation, logarithm, square root, etc.

- Source code: https://github.com/CMU-SAFARI/transpimlib

* We implement TransPimLib for the UPMEM PIM architecture and evaluate
its methods in terms of performance, accuracy, memory requirements, and
setup time

- Three real workloads (Blackscholes, Sigmoid, Softmax)
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Processing-in-Memory (PIM)

* PIM is a computing paradigm that advocates for memory-
centric computing systems, where processing elements are
placed near or inside the memory arrays

* Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AXDIMM, SK Hynix AiM,
Alibaba HB-PNM

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1) standard
main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements
(PEs) with high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number
of registers and small (or no) cache/scratchpad

4. PIM PEs may need to communicate via the host processor
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A State-of-the-Art PIM System
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* In our work, we use the UPMEM PIM architecture

- General-purpose processing cores called DRAM Processing
Units (DPUs)

* Up to 24 PIM threads, called tasklets

* 32-bit integer arithmetic, but multiplication/division are
emulated¥®, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)
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How to Calculate Transcendental Functions
in a PIM System?

* Three possible alternatives
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How to Calculate Transcendental Functions
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TransPimLib: Implementation

* Various methods to calculate transcendental functions:
- Taylor approximation, minimax polynomials, CORDIC, LUTs

* CORDICis aniterative method that uses bit-shifts, additions, and
table lookups

- In rotation mode, CORDIC computes the function value for an input 0 by
rotating a vector [1, o] iteratively

- The rotation is done by multiplying the vector and a matrix
- The matrix represents the rotation angle, which decreases in each iteration

* Fuzzy Lookup Tables (LUTs) return an (approximate) output f(x)
for each input x

- A function a(x) returns an address to access the LUT
- The table returns LUT(a(x)) = f(x)

- To generate the LUT, we need a helper function a’(), such that x = a(a’'(x))
- LUTs’ accuracy improves with interpolation:

f(x) =~ LUT(a(x)) + LUT(a(x)+1) - LUT(a(x))-A
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TransPimLib: CORDIC-based Methods

* TransPimLib contains
CORDIC implementations
of trigonometric (sin, cos,
tan) and hyperbolic (sinh,
cosh, tanh) functions,
exponentiation,
logarithm, and square
root

* Example: Sine function
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TransPimLib: LUT-based Methods

Map interval [0, 5] to a 12-entry LUT

 Multiplication-based LUT (M-LUT)

- Regular spacing between table entries
- a(x) =round((x - p) - k), where k represents the
LUT density 012345638

Inpu
- LDEXP-based LUT (L-LUT) P
- Multiplication is cheaper if we multiply by 2"

Density
O~ N Wk

- Idexp(arg, exp) to perform arg - 2¢xp
- a(x) =round((x-p) - 2")

* kis a power-of-two, which results in less precision 012345678
. T Input
but avoids multiplication

Density
O = DN Wk

* Direct Float Conversion-based LUT (D-LUT) 4
>
- d(x) uses the last n bits of the exponent and p Z g
bits of the mantissa A1
- Piece-wise linear density: 2" steps of 2P 012345678

Tnput
addresses Py
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TransPimLib: Combined Methods

* Direct Float Conversion L M-LUT
+ LDEXP-based LUT 21
012345678
(DL-LUT) A nput
23 4 L-LUT
- Uses an L-LUT between £ ? g3
A a1
0 and the smallest 0} ey S rryray
exponent and a D-LUT Input |

A4

for larger inputs

Density
O~ N W

012345678
Input

e CORDIC+L-LUT (CORDIC+LUT)
- Replaces the first few iterations of CORDIC with a LUT

- Flexible tradeoff between computing cost, table size, and
precision
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TransPimLib: Supported Functions

Supported Functions

Implementation . .
P sin cos | tan  sinh | cosh | tanh exp log | sqrt GELU

Method

CORDIC v |V |V |V V|V VYV

M-LUT v | V|V v | V|V
M-LUT+Interp. v v v v v v

L-LUT v | V|V v | V|V
L-LUT+Interp. v v v v v v
D-LUT+Interp. v v v
DL-LUT+Interp. v v v
CORDIC+LUT v |V |V V|V |V |V

Based on our preliminary analysis, we provide the most suitable methods for each of the
supported functions (other than sine).
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Evaluation Methodology

* Evaluated systems

- LDJFF;IX\I\IE‘M PIM system with 2,545 PIM cores (@ 350 MHz and 159 GB of

- 2-socket Intel Xeon CPU (32 cores)

* Microbenchmarks
- Performance evaluation
* We measure execution cycles
Accuracy evaluation

* Root-mean-square absolute error (RMSE) with respect to the CPU with the
standard math library

Setup time

* Generation on the host CPU and transfers to the PIM side
Memory consumption

* All tables and variables allocated in the DRAM bank of a PIM core
We use sine, as a representative function

* Real-world Benchmarks
- Blackscholes: exp, log, sqrt, cumulative normal distribution (CNDF)
- Sigmoid
- Softmax

SAFARI
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Microbenchmark Results: Performance (1)

* We measure the execution cycles for an accuracy range between
104 and 1079

* LUT-based versions place the LUT in either the PIM core’s DRAM
bank (MRAM) or the scratchpad (WRAM)

i CORDIC H D-LUT (Interp.) <= Fix. L-LUT (Interp.) @ L-LUT (Interp.) M-LUT (Interp.) = MRAM
= CORDIC+LUT & DL-LUT (Interp.) @ Fix. L-LUT (Not interp.) & L-LUT (Not interp.) A M-LUT (Not interp.) =  WRAM
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Microbenchmark Results: Performance (1)

* We measure the execution cycles for an accuracy range between

104 and 1079

* CORDIC-based methods take more execution cycles to provide

higher accuracy
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Microbenchmark Results: Performance (lil)

Key Takeaway 1
Interpolated L-LUT methods (lookup table
with LDEXP operation)

offer the best tradeoff in terms of
performance and accuracy
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Microbenchmark Results: Setup Time (1)

* The setup time can also impact the decision of what
method to use

i CORDIC H D-LUT (Interp.) @ L-LUT (Interp.) M-LUT (Interp.)
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2 CORDIC methods can provide higher overall performance R
(i.e., setup time + PIM kernel time) than LUT-based methods
when the total number of transcendental functions in a workload is low.

\ For example, we estimate ~40 sine operations (see paper)
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Microbenchmark Results: Setup Time (II)

Key Takeaway 2
CORDIC-based methods are preferable

when a PIM kernel needs to execute just a
few transcendental functions due to their
low setup time in the host CPU
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Microbenchmark Results: Memory (1)

* We also obtain the memory consumption (in bytes) in
the DRAM bank of a PIM core
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Interpolation is an effective way of increasing accuracy
without increasing LUT size
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Microbenchmark Results: Memory (lI)

Key Takeaway 3
Interpolated L-LUT methods offer a good
tradeoff in terms of accuracy, execution cycles,
and memory consumption.

However, CORDIC and CORDIC+LUT methods
are recommended for applications that require
high accuracy, where the available memory is
limited (e.g., needed for large datasets)
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More in the Paper

* Analysis of other supported functions
* Evaluation of range reduction/extension

* Discussion and takeaway about D-LUT and
DL-LUT methods

TransPimLib: Efficient Transcendental Functions
for Processing-in-Memory Systems

Maurus Item Juan Gémez-Luna Yuxin Guo
Geraldo F. Oliveira Mohammad Sadrosadati Onur Mutlu
ETH Zirich
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Real-world Benchmark Results (1)
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Real-world Benchmark Results (II)
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Key Takeaway 4
TransPimLib can reduce data
movement from PIM cores
to the CPU (Fig. (b)) for
applications running on the
PIM cores.

As a result, the execution of
transcendental functions in
the PIM cores (Fig. (c)) could
be 6-8x faster than the
execution in the host CPU.
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TransPimLib: A Library for Efficient Transcendental
Functions on Processing-in-Memory Systems

Processing-in-memory (PIM) promises to alleviate the data movement bottleneck in modern computing
systems. However, current real-world PIM systems have the inherent disadvantage that their hardware is
more constrained than in conventional processors (CPU, GPU), due to the difficulty and cost of building
processing elements near or inside the memory. As a result, general-purpose PIM architectures support fairly
limited instruction sets and struggle to execute complex operations such as transcendental functions and
other hard-to-calculate operations (e.g., square root). These operations are particularly important for some
modern workloads, e.g., activation functions in machine learning applications.

To provide support for transcendental (and other hard-to-calculate) functions in general-purpose PIM
systems, TransPimLib is a library that provides CORDIC-based and LUT-based methods for trigonometric
functions, hyperbolic functions, exponentiation, logarithm, square root, etc. The first implementation of

TransPimLib is for the UPMEM PIM architecture.
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Executive Summary

* Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

* However, current real-world PIM systems have very constrained hardware,
which results in limited instruction sets
- Difficulty/impossibility of computing complex operations, such as

transcendental functions (e.g., trigonometric, exp, log) and other hard-to-
calculate functions (e.g., square root)

- These functions are important for modern workloads, e.g., activation functions
in machine learning applications

* TransPimLib is the first library for transcendental and other hard-to-
calculate functions on general-purpose PIM systems

- CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic
functions, exponentiation, logarithm, square root, etc.

- Source code: https://github.com/CMU-SAFARI/transpimlib

* We implement TransPimLib for the UPMEM PIM architecture and evaluate
its methods in terms of performance, accuracy, memory requirements, and
setup time

- Three real workloads (Blackscholes, Sigmoid, Softmax)
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Real PIM Tutorial (ISCA 2023)
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bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement
between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the
first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and
target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two
years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called
processing near memory (PNM).

PIM can provide large improvements in both performance and energy
consumption for many modern applications, thereby enabling a
commercially viable way of dealing with huge amounts of data that is
bottlenecking our computing systems. Yet, it is critical to (1) study and
understand the characteristics that make a workload suitable for a PIM
architecture, (2) propose optimization strategies for PIM kernels, and (3)
develop programming frameworks and tools that can lower the learning
curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload
characterization for PIM, and programming and optimizing PIM kernels. We
will (1) provide an introduction to PIM and taxonomy of PIM systems, (2)
give an overview and a rigorous analysis of existing real-world PIM
hardware, (3) conduct hand-on labs about important workloads (machine

. learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems,
and (4) shed light on how to improve future PIM systems for such workloads.

ps:/ /arxiv.org/pdf/2105.03814.pdf
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