2023 |IEEE International Symposium on Performance Analysis of Systems and Software

TransPimLib:

Efficient Transcendental Functions for
Processing-in-Memory Systems

Maurus Item, Juan GOdmez Luna, Yuxin Guo,
Geraldo F. Oliveira, Mohammad Sadrosadati, Onur Mutlu

https://arxiv.org/pdf/2304.01951.pdf
https://github.com/CMU-SAFARI/transpimlib
juang@ethz.ch

m Ziirich SA F A R l

Tuesday, April 25, 2023

https://arxiv.org/pdf/2304.01951.pdf
https://github.com/CMU-SAFARI/transpimlib
mailto:juang@ethz.ch

Executive Summary

* Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

* However, current real-world PIM systems have very constrained hardware,
which results in limited instruction sets
- Difficulty/impossibility of computing complex operations, such as

transcendental functions (e.g., trigonometric, exp, log) and other hard-to-
calculate functions (e.g., square root)

- These functions are important for modern workloads, e.g., activation functions
in machine learning applications

* TransPimLib is the first library for transcendental and other hard-to-
calculate functions on general-purpose PIM systems

- CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic
functions, exponentiation, logarithm, square root, etc.

- Source code: https://github.com/CMU-SAFARI/transpimlib

* We implement TransPimLib for the UPMEM PIM architecture and evaluate
its methods in terms of performance, accuracy, memory requirements, and
setup time

- Three real workloads (Blackscholes, Sigmoid, Softmax)

SAFARI 2

https://github.com/CMU-SAFARI/transpimlib

Outline

(Processing-in-memory \
. and transcendental functions)
g TransPimLib: h
A library for transcendental
_ and other hard-to-calculate functions y
4)
Evaluation
_ J

SAFARI

Processing-in-Memory (PIM)

* PIM is a computing paradigm that advocates for memory-
centric computing systems, where processing elements are
placed near or inside the memory arrays

* Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AXDIMM, SK Hynix AiM,
Alibaba HB-PNM

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1) standard
main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements
(PEs) with high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number
of registers and small (or no) cache/scratchpad

4. PIM PEs may need to communicate via the host processor

SAFARI 4

A State-of-the-Art PIM System

Standard Main Memory

DRAM DRAM DRAM DRAM DRAM DRAM DRAM
Chp Chp (‘.hp Chp Chp Chp Chp

y =
y =
p Al

(]
DRAM
Chip

(Host CPU | - L=

-~ s , S
'\ A A A A A A A X m :l Memory Bankls

g ;
S/
_“U’l - e N
v , —— 2 Instruction Scratchpad|/
m\ Memory Memory Memory '@ Memory ; Memory Cache
ﬁ ? - Bank/s Bank/s Bank/s : Bank/s '

Ost-PI : (i X o X Ex YMEm{wsB)

< > [PIM Core][PIM Core][PIM Core J[PIM Core]: L PIM Core Pipeline)

e = ’/’ n
PIM-enabled Memory

* In our work, we use the UPMEM PIM architecture

- General-purpose processing cores called DRAM Processing
Units (DPUs)

* Up to 24 PIM threads, called tasklets

* 32-bit integer arithmetic, but multiplication/division are
emulated¥®, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

SAFARI * 8-bit integer multiplication is natively supported 5

How to Calculate Transcendental Functions
in a PIM System?

* Three possible alternatives

[[Transcen.dental]
) Unit
Host : :
function

N
' ~

Time

N\ !

PIM
kernel

Transcendental
PIM
kernel

function
Pd

rd

vy 7

Host
function

(a) Transcendental
function executed in
special PIM unit

SAFARI

How to Calculate Transcendental Functions
in a PIM System?

* Three possible alternatives

ceu | piv core Transcen.dental
Unit
Host
function

N
' ~ '
\ .

PIM
kernel

Transcendental
PIM
kernel

function
Pd

rd

.
.
.
vy 7
i

(a) Transcendental
function executed in
special PIM unit

Time Time

CPU PIM Core
Host
function

CPU | PIM Core

TransPimLib

An open-source library with

. -~ CORDIC- and LUT-based
function methods for trigonometric

functions, hyperbolic
functions, exponentiation,
logarithm...

the transcendental
function in the PIM core

Host
V function

(b) Transcendental
function executed
in host CPU

(c) Transcendental
function executed
in PIM core

SAFARI

https://github.com/CMU-SAFARI/transpimlib 7

https://github.com/CMU-SAFARI/transpimlib

Outline

(Processing-in-memory \
. and transcendental functions)
g TransPimLib: h
A library for transcendental
_ and other hard-to-calculate functions y
4)
Evaluation
_ J

SAFARI

TransPimLib: Implementation

* Various methods to calculate transcendental functions:
- Taylor approximation, minimax polynomials, CORDIC, LUTs

* CORDICis aniterative method that uses bit-shifts, additions, and
table lookups

- In rotation mode, CORDIC computes the function value for an input 0 by
rotating a vector [1, o] iteratively

- The rotation is done by multiplying the vector and a matrix
- The matrix represents the rotation angle, which decreases in each iteration

* Fuzzy Lookup Tables (LUTs) return an (approximate) output f(x)
for each input x

- A function a(x) returns an address to access the LUT
- The table returns LUT(a(x)) = f(x)

- To generate the LUT, we need a helper function a’(), such that x = a(a’'(x))
- LUTs’ accuracy improves with interpolation:

f(x) =~ LUT(a(x)) + LUT(a(x)+1) - LUT(a(x))-A

SAFARI

TransPimLib: CORDIC-based Methods

* TransPimLib contains
CORDIC implementations
of trigonometric (sin, cos,
tan) and hyperbolic (sinh,
cosh, tanh) functions,
exponentiation,
logarithm, and square
root

* Example: Sine function

SAFARI

[-00, 0]

Range reduction

[0, 27]

Floating point to fixed point

[0, 2]
Quadrant in

0, /2
y [0l
CORDIC

0, 1
Vo]

Quadrant out

['1’1]

Fixed point to floating point

1]

-

[0, 3]

10

TransPimLib: LUT-based Methods

Map interval [0, 5] to a 12-entry LUT

 Multiplication-based LUT (M-LUT)

- Regular spacing between table entries
- a(x) =round((x - p) - k), where k represents the
LUT density 012345638

Inpu
- LDEXP-based LUT (L-LUT) P
- Multiplication is cheaper if we multiply by 2"

Density
O~ N Wk

- Idexp(arg, exp) to perform arg - 2¢xp
- a(x) =round((x-p) - 2")

* kis a power-of-two, which results in less precision 012345678
. T Input
but avoids multiplication

Density
O = DN Wk

* Direct Float Conversion-based LUT (D-LUT) 4
>
- d(x) uses the last n bits of the exponent and p Z g
bits of the mantissa A1
- Piece-wise linear density: 2" steps of 2P 012345678

Tnput
addresses Py

SAFARI

TransPimLib: Combined Methods

* Direct Float Conversion L M-LUT
+ LDEXP-based LUT 21
012345678
(DL-LUT) A nput
23 4 L-LUT
- Uses an L-LUT between £ ? g3
A a1
0 and the smallest 0} ey S rryray
exponent and a D-LUT Input |

A4

for larger inputs

Density
O~ N W

012345678
Input

e CORDIC+L-LUT (CORDIC+LUT)
- Replaces the first few iterations of CORDIC with a LUT

- Flexible tradeoff between computing cost, table size, and
precision

SAFARI

TransPimLib: Supported Functions

Supported Functions

Implementation . .
P sin cos | tan sinh | cosh | tanh exp log | sqrt GELU

Method

CORDIC v |V |V |V V|V VYV

M-LUT v | V|V v | V|V
M-LUT+Interp. v v v v v v

L-LUT v | V|V v | V|V
L-LUT+Interp. v v v v v v
D-LUT+Interp. v v v
DL-LUT+Interp. v v v
CORDIC+LUT v |V |V V|V |V |V

Based on our preliminary analysis, we provide the most suitable methods for each of the
supported functions (other than sine).

SAFARI

Outline

(Processing-in-memory \
. and transcendental functions)
g TransPimLib: h
A library for transcendental
_ and other hard-to-calculate functions y
4)
Evaluation
_ J

SAFARI

14

Evaluation Methodology

* Evaluated systems

- LDJFF;IX\I\IE‘M PIM system with 2,545 PIM cores (@ 350 MHz and 159 GB of

- 2-socket Intel Xeon CPU (32 cores)

* Microbenchmarks
- Performance evaluation
* We measure execution cycles
Accuracy evaluation

* Root-mean-square absolute error (RMSE) with respect to the CPU with the
standard math library

Setup time

* Generation on the host CPU and transfers to the PIM side
Memory consumption

* All tables and variables allocated in the DRAM bank of a PIM core
We use sine, as a representative function

* Real-world Benchmarks
- Blackscholes: exp, log, sqrt, cumulative normal distribution (CNDF)
- Sigmoid
- Softmax

SAFARI

15

Microbenchmark Results: Performance (1)

* We measure the execution cycles for an accuracy range between
104 and 1079

* LUT-based versions place the LUT in either the PIM core’s DRAM
bank (MRAM) or the scratchpad (WRAM)

i CORDIC H D-LUT (Interp.) <= Fix. L-LUT (Interp.) @ L-LUT (Interp.) M-LUT (Interp.) = MRAM
= CORDIC+LUT & DL-LUT (Interp.) @ Fix. L-LUT (Not interp.) & L-LUT (Not interp.) A M-LUT (Not interp.) = WRAM

(Performance of\ i :izzz
LUT-based
methods is

independent of

the accuracy

\) 2000

[0]
(=]

4000 -

Execu

Root-Mean-Square Absolute Error

\

(Fixed-point version of the L-LUT

* Interp. Fix. L-LUT doubles the
performance of inter. L-LUT due to
faster fixed-point multiplication

 Execution cycles depend on the number of multiplications:
: 2 FP multiplications

* Non-interp. M-LUT and inter. L-LUT: 1 FP multiplication

* Non-interp. L-LUT: No FP multiplication JAR

.

\.

SAFARI

16

Microbenchmark Results: Performance (1)

* We measure the execution cycles for an accuracy range between

104 and 1079

* CORDIC-based methods take more execution cycles to provide

higher accuracy

i CORDIC
= CORDIC+LUT & DL-LUT (Interp.) @ Fix. L-LUT (Not interp.

CORDIC accuracy
increases with

cle

12000 -

» 10 -

¥X D-LUT (Interp.) < Fix. L-LUT (Interp.)

® L-LU
) @ L-LUT (Notinterp.) 2 M-LUT (Not interp.)

T (Interp.) M-LUT (Interp.)

= MRAM
= WRAM

each iteration of
the CORDIC
algorithm

Executio

- J

IS
o
o
o

Root-Mean-Square Absolute Error

r

CORDIC, as it replaces the
initial iterations with an
kL-LUT query

CORDIC+LUT runs faster than |

(At some point (~109), further

increasing the LUT size or
CORDIC iterations does not
kimprove accuracy

\

(" Little benefit from placing

LUTs in the scratchpad
(WRAM) instead of the DRAM

_bank (MRAM)

\

J

SAFARI

1

Z

Microbenchmark Results: Performance (lil)

Key Takeaway 1
Interpolated L-LUT methods (lookup table
with LDEXP operation)

offer the best tradeoff in terms of
performance and accuracy

SAFARI 18

Microbenchmark Results: Setup Time (1)

* The setup time can also impact the decision of what
method to use

i CORDIC H D-LUT (Interp.) @ L-LUT (Interp.) M-LUT (Interp.)
= CORDIC+LUT # DL-LUT (Interp.) & L-LUT (Notinterp.) 2 M-LUT (Not interp.)

[ForLUT-based | oo

methods, setup 0.025-
times increase
k Wlth LUT Size y

o
o
[¥]
o

Setup Time (s)
o
e
[6)]

\

4)
CORDIC methods

have flat setup
times 0.000

o
o
=
o

\. J

Root-Mean-Square Absolute Error

2 CORDIC methods can provide higher overall performance R
(i.e., setup time + PIM kernel time) than LUT-based methods
when the total number of transcendental functions in a workload is low.

\ For example, we estimate ~40 sine operations (see paper)

SAFARI 19

Microbenchmark Results: Setup Time (II)

Key Takeaway 2
CORDIC-based methods are preferable

when a PIM kernel needs to execute just a
few transcendental functions due to their
low setup time in the host CPU

SAFARI 20

Microbenchmark Results: Memory (1)

* We also obtain the memory consumption (in bytes) in
the DRAM bank of a PIM core

(Accuracy of non-\
. i CORDIC H D-LUT (Interp.) = Fix. L-LUT (Interp.) @ L-LUT (Interp.) M-LUT (Interp.)
mterp, LUT = CORDIC+LUT 8 DL-LUT (Interp.) €> Fix. L-LUT (Not interp.) & L—-LUT (Notinterp.) A M-LUT (Not interp.)
methods is = X
limited by the
\available memory

5

ek

(=]
=)
1

yte

—

o
o
1

-

o
ES
1

—

o
w
1

4 Memory N
consumption of
CORDIC methods
does not increase

_ exponentially)

Memory Consumption (B

\ 1
\

—

o

©

—

o

@©

—
o
™

1077 107° 107° 107
Root-Mean—Bquare Absolute Error

Interpolation is an effective way of increasing accuracy
without increasing LUT size

SAFARI 21

Microbenchmark Results: Memory (lI)

Key Takeaway 3
Interpolated L-LUT methods offer a good
tradeoff in terms of accuracy, execution cycles,
and memory consumption.

However, CORDIC and CORDIC+LUT methods
are recommended for applications that require
high accuracy, where the available memory is
limited (e.g., needed for large datasets)

SAFARI

More in the Paper

* Analysis of other supported functions
* Evaluation of range reduction/extension

* Discussion and takeaway about D-LUT and
DL-LUT methods

TransPimLib: Efficient Transcendental Functions
for Processing-in-Memory Systems

Maurus Item Juan Gémez-Luna Yuxin Guo
Geraldo F. Oliveira Mohammad Sadrosadati Onur Mutlu
ETH Zirich

SAFARI

Real-world Benchmark Results (1)

2.0
i 1 & 32 CPU Cores P 1.6 .CPUBaseIine
%1.5- = i:m Bj_srelinep_ "
L ° £ w/ TransPimLi
* PIM baseline: Polynomial ...
g Blackscholes
= Blackscholes,\ 3 0% 0.25 ﬁ A
TranSPIleb = 5- 00 1 Core 32 Cores Polynomial ~ M-LUT T FP L-LUT
12x faster than ”o
\the PIM basellne) - 1,63
£ : :
" Fretbming LLUT | 519 Sigmoid
is 92% faster than /g:gﬂ 0.39
the 32-thread ik — 5 E
CPU b I 00 1C 32? Pol ial CORDIC+LUT M-LUT LL-UT
ase Ine ore ores (0] 1a + - -
. J
4 For Sigmoid and Softmax,
TransPimLib outperforms the PIM Softmax
baseline and shows that it can save
data movement from executing 029 028 027

\activation functions in the host CPU

1 Core

32 Cores Polynomial CORDIC+LUT M-LUT L-LUT

SAFARI

24

Real-world Benchmark Results (II)

Host
function

N
' ~ '
~ '

PIM
kernel

P
- '

Ek/
Transcendental

function

o~
HEEN

T

PIM
kernel

rd
. rd
N 7

(b) Transcendental
function executed
in host CPU

Host
function

N
. ~ .
N\

PIM
kernel

+ Transcendental
function

PIM
kernel

rd
rd

Host
function

Time saved by executing
the transcendental

Host .
5 unction in the PIM core
function v f I

(c) Transcendental
function executed
in PIM core

SAFARI

Key Takeaway 4
TransPimLib can reduce data
movement from PIM cores
to the CPU (Fig. (b)) for
applications running on the
PIM cores.

As a result, the execution of
transcendental functions in
the PIM cores (Fig. (c)) could
be 6-8x faster than the
execution in the host CPU.

TransPimLib: arXiv Version

TransPimLib: A Library for Efficient Transcendental Functions
on Processing-in-Memory Systems

Maurus Item Juan Gémez-Luna Yuxin Guo
Geraldo F. Oliveira Mohammad Sadrosadati Onur Mutlu
ETH Ziirich

https://arxiv.org/pdf/2304.01951.pdf

SAFARI 26

https://arxiv.org/pdf/2304.01951.pdf

Source Code

& CMU-SAFARI/transpimlib public

<> Code () Issues {7 Pullrequests () Actions [Projects

* https://github.com/ .
CMU-

Lo

el1goluj readme

SA FA R I /t ra n S_p i m | i b M benchmarks commit files
- . . M dpu commit files
M host commit files
8 microbenchmarks readme
f» validation commit files
[LICENSE commit files
[README.md readme
:= README.md

<% Edit Pins ~ @ Unwatch 2 ~

@ Security |~ Insights 3 Settings

Go to file Add file ~ <> Code ~

3209a33 3 days ago O 6 commits

3 days ago
3 days ago
3 days ago
3 days ago
3 days ago
3 days ago

3 days ago

7

TransPimLib: A Library for Efficient Transcendental
Functions on Processing-in-Memory Systems

Processing-in-memory (PIM) promises to alleviate the data movement bottleneck in modern computing
systems. However, current real-world PIM systems have the inherent disadvantage that their hardware is
more constrained than in conventional processors (CPU, GPU), due to the difficulty and cost of building
processing elements near or inside the memory. As a result, general-purpose PIM architectures support fairly
limited instruction sets and struggle to execute complex operations such as transcendental functions and
other hard-to-calculate operations (e.g., square root). These operations are particularly important for some
modern workloads, e.g., activation functions in machine learning applications.

To provide support for transcendental (and other hard-to-calculate) functions in general-purpose PIM
systems, TransPimLib is a library that provides CORDIC-based and LUT-based methods for trigonometric
functions, hyperbolic functions, exponentiation, logarithm, square root, etc. The first implementation of

TransPimLib is for the UPMEM PIM architecture.

SAFARI

27

https://github.com/CMU-SAFARI/transpimlib

Executive Summary

* Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

* However, current real-world PIM systems have very constrained hardware,
which results in limited instruction sets
- Difficulty/impossibility of computing complex operations, such as

transcendental functions (e.g., trigonometric, exp, log) and other hard-to-
calculate functions (e.g., square root)

- These functions are important for modern workloads, e.g., activation functions
in machine learning applications

* TransPimLib is the first library for transcendental and other hard-to-
calculate functions on general-purpose PIM systems

- CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic
functions, exponentiation, logarithm, square root, etc.

- Source code: https://github.com/CMU-SAFARI/transpimlib

* We implement TransPimLib for the UPMEM PIM architecture and evaluate
its methods in terms of performance, accuracy, memory requirements, and
setup time

- Three real workloads (Blackscholes, Sigmoid, Softmax)

SAFARI 28

https://github.com/CMU-SAFARI/transpimlib

Real PIM Tutorial (ISCA 2023)

e June 18t": Lectures + Hands-on labs + Invited lectures

ISCA 2023 Real-World PIM Tutorial S

Recent Changes Media Manager Sitemap

Trace: « start

start

Table of Contents

Real-world Processing-in-Memory Systems for Modern Workloads Real-world Processing-in-Memory
Systems for Modern Workloads
Tutorial Description Tutorial Description
Organizers
Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement Agenda (June 18, 2023)

Lectures (tentative)
Hands-on Labs (tentative)
Learning Materials

bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement
between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the
first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and
target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two
years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called
processing near memory (PNM).

PIM can provide large improvements in both performance and energy
consumption for many modern applications, thereby enabling a
commercially viable way of dealing with huge amounts of data that is
bottlenecking our computing systems. Yet, it is critical to (1) study and
understand the characteristics that make a workload suitable for a PIM
architecture, (2) propose optimization strategies for PIM kernels, and (3)
develop programming frameworks and tools that can lower the learning
curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload
characterization for PIM, and programming and optimizing PIM kernels. We
will (1) provide an introduction to PIM and taxonomy of PIM systems, (2)
give an overview and a rigorous analysis of existing real-world PIM
hardware, (3) conduct hand-on labs about important workloads (machine

. learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems,
and (4) shed light on how to improve future PIM systems for such workloads.

ps:/ /arxiv.org/pdf/2105.03814.pdf

SAFARI

https://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start

29

https://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start

2023 |IEEE International Symposium on Performance Analysis of Systems and Software

TransPimLib:

Efficient Transcendental Functions for
Processing-in-Memory Systems

Maurus Item, Juan GOdmez Luna, Yuxin Guo,
Geraldo F. Oliveira, Mohammad Sadrosadati, Onur Mutlu

https://arxiv.org/pdf/2304.01951.pdf
https://github.com/CMU-SAFARI/transpimlib
juang@ethz.ch

m Ziirich SA F A R l

Tuesday, April 25, 2023

https://arxiv.org/pdf/2304.01951.pdf
https://github.com/CMU-SAFARI/transpimlib
mailto:juang@ethz.ch

