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Executive Summary
• Processing-in-Memory (PIM) promises to alleviate the data movement 

bottleneck
• However, current real-world PIM systems have very constrained hardware, 

which results in limited instruction sets
- Difficulty/impossibility of computing complex operations, such as 

transcendental functions (e.g., trigonometric, exp, log) and other hard-to-
calculate functions (e.g., square root)

- These functions are important for modern workloads, e.g., activation functions 
in machine learning applications

• TransPimLib is the first library for transcendental and other hard-to-
calculate functions on general-purpose PIM systems
- CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic 

functions, exponentiation, logarithm, square root, etc.
- Source code: https://github.com/CMU-SAFARI/transpimlib

• We implement TransPimLib for the UPMEM PIM architecture and evaluate 
its methods in terms of performance, accuracy, memory requirements, and 
setup time
- Three real workloads (Blackscholes, Sigmoid, Softmax)

https://github.com/CMU-SAFARI/transpimlib
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Processing-in-Memory (PIM)
• PIM is a computing paradigm that advocates for memory-

centric computing systems, where processing elements are 
placed near or inside the memory arrays
• Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AxDIMM, SK Hynix AiM, 
Alibaba HB-PNM

• These PIM systems have some common characteristics:
1. There is a host processor (CPU or GPU) with access to (1) standard 

main memory, and (2) PIM-enabled memory
2. PIM-enabled memory contains multiple PIM processing elements

(PEs) with high bandwidth and low latency memory access
3. PIM PEs run only at a few hundred MHz and have a small number 

of registers and small (or no) cache/scratchpad
4. PIM PEs may need to communicate via the host processor
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A State-of-the-Art PIM System

• In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing 

Units (DPUs)
• Up to 24 PIM threads, called tasklets
• 32-bit integer arithmetic, but multiplication/division are 

emulated*, as well as floating-point operations
- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

* 8-bit integer multiplication is natively supported
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How to Calculate Transcendental Functions 
in a PIM System?
• Three possible alternatives
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TransPimLib
An open-source library with 

CORDIC- and LUT-based 
methods for trigonometric 

functions, hyperbolic 
functions, exponentiation, 

logarithm…

https://github.com/CMU-SAFARI/transpimlib

• Three possible alternatives

https://github.com/CMU-SAFARI/transpimlib
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TransPimLib: Implementation
• Various methods to calculate transcendental functions: 

- Taylor approximation, minimax polynomials, CORDIC, LUTs

• CORDIC is an iterative method that uses bit-shifts, additions, and 
table lookups
- In rotation mode, CORDIC computes the function value for an input θ by 

rotating a vector [1, 0] iteratively
- The rotation is done by multiplying the vector and a matrix
- The matrix represents the rotation angle, which decreases in each iteration

• Fuzzy Lookup Tables (LUTs) return an (approximate) output f(x)
for each input x
- A function a(x) returns an address to access the LUT
- The table returns LUT(a(x)) ≃ f(x)
- To generate the LUT, we need a helper function a-1(), such that x = a(a-1(x))
- LUTs’ accuracy improves with interpolation: 

f(x) ≃ LUT(a(x)) + LUT(a(x)+1) - LUT(a(x))·Δ
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TransPimLib: CORDIC-based Methods
• TransPimLib contains 

CORDIC implementations
of trigonometric (sin, cos, 
tan) and hyperbolic (sinh, 
cosh, tanh) functions, 
exponentiation, 
logarithm, and square 
root

• Example: Sine function
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TransPimLib: LUT-based Methods
• Multiplication-based LUT (M-LUT)

- Regular spacing between table entries
- a(x) = round((x - p) · k), where k represents the 

LUT density

• LDEXP-based LUT (L-LUT)
- Multiplication is cheaper if we multiply by 2n

- ldexp(arg, exp) to perform arg · 2exp

- a(x) = round((x - p) · 2n)
• k is a power-of-two, which results in less precision 

but avoids multiplication

• Direct Float Conversion-based LUT (D-LUT)
- a(x) uses the last n bits of the exponent and p

bits of the mantissa
- Piece-wise linear density: 2n steps of 2p
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Fig. 6: Example lookup table density (y axis) for the input
range [0, 5] (x axis) and 12 LUT entries.

3) Direct Float Conversion-based Fuzzy Lookup Table (D-
LUT): As we mention in Section II-B2, a good spacing
depends on the approximated function to minimize the error.
This may need non-linear address generation functions, which
are generally more computationally expensive than multiplica-
tions. We circumvent this issue by exploiting the natural non-
linearity of the floating-point format. We propose an address
generation function that uses (1) the last n bits of the exponent,
and (2) p bits of the mantissa. This results in a piece-wise
linear density with 2n steps of 2p addresses each. The density
of each step is inverse to the input value, i.e., high density for
small inputs and low density for large inputs. For example, for
our 12-entry table, we can use n = 2 (thus, exponents 20, 21,
22) and p = 2 (thus, 4 entries per exponent). As Figure 6(c)
shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and 1
in [4, 8).

The limitation of the D-LUT is that there are no LUT entries
between the smallest exponent (e.g., 20) and 0, which may
cause large inaccuracy for LUT queries near 0. To deal with

this issue, we propose a combined L-LUT + D-LUT method
(Section III-C1).

C. Combined Implementations
In addition to the previous implementations, TransPim-

Lib combines pairs of methods to inherit the strengths of both.
1) Direct Float Conversion + LDEXP-based Fuzzy Lookup

Tables (DL-LUT): This combination solves the limitation of
D-LUT (i.e., no entries between the smallest exponent and 0)
by combining with a D-LUT with an L-LUT. The DL-LUT
uses (1) an L-LUT between 0 and the smallest exponent, and
(2) a D-LUT for larger inputs, providing a density pattern as
depicted in Figure 6(d).

2) CORDIC + LDEXP-based Fuzzy Lookup Table
(CORDIC+LUT): Prior work [2] proposes to replace the
first few iterations of CORDIC with an L-LUT (while still
updating ✓i). This provides a flexible tradeoff between
computing cost, table size, and precision, within the bounds
of pure CORDIC and pure L-LUT approaches, and more
freedom than interpolation.

IV. EVALUATION

A. Methodology
We evaluate TransPimLib on a real-world system with the

UPMEM PIM architecture. It consists of a host CPU (2-socket
Intel Xeon at 2.10 GHz), standard main memory (128 GB),
and 20 UPMEM PIM DIMMs (160 GB and 2560 PIM cores).

In Section IV-B, we evaluate TransPimLib’s CORDIC,
LUT-based, and combined implementations on a single PIM
core using microbenchmarks, in order to compare them in
terms of performance, precision, memory consumption, and
setup time. Our microbenchmarks compute transcendental
functions (all versions of all functions in Table II) for the
elements of an array (of 216 floating-point values) that resides
in a DRAM bank (MRAM in UPMEM terminology). The
PIM core moves chunks of the array into the scratchpad
memory (WRAM in UPMEM terminology) and operates on
each element. For performance comparison, we measure total
execution cycles using a hardware counter [34]. For precision
comparison, we compare to the output of the host CPU,
computed with the standard math library.

In Section IV-C, we evaluate two full workloads that use
transcendental functions (Blackscholes, Softmax) and compare
them to a CPU-only version.

B. Microbenchmarks
C. Benchmarks
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shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and 1
in [4, 8).

The limitation of the D-LUT is that there are no LUT entries
between the smallest exponent (e.g., 20) and 0, which may
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(2) a D-LUT for larger inputs, providing a density pattern as
depicted in Figure 6(d).
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PIM core moves chunks of the array into the scratchpad
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each element. For performance comparison, we measure total
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comparison, we compare to the output of the host CPU,
computed with the standard math library.
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LUT): As we mention in Section II-B2, a good spacing
depends on the approximated function to minimize the error.
This may need non-linear address generation functions, which
are generally more computationally expensive than multiplica-
tions. We circumvent this issue by exploiting the natural non-
linearity of the floating-point format. We propose an address
generation function that uses (1) the last n bits of the exponent,
and (2) p bits of the mantissa. This results in a piece-wise
linear density with 2n steps of 2p addresses each. The density
of each step is inverse to the input value, i.e., high density for
small inputs and low density for large inputs. For example, for
our 12-entry table, we can use n = 2 (thus, exponents 20, 21,
22) and p = 2 (thus, 4 entries per exponent). As Figure 6(c)
shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and 1
in [4, 8).

The limitation of the D-LUT is that there are no LUT entries
between the smallest exponent (e.g., 20) and 0, which may
cause large inaccuracy for LUT queries near 0. To deal with
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uses (1) an L-LUT between 0 and the smallest exponent, and
(2) a D-LUT for larger inputs, providing a density pattern as
depicted in Figure 6(d).
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(CORDIC+LUT): Prior work [2] proposes to replace the
first few iterations of CORDIC with an L-LUT (while still
updating ✓i). This provides a flexible tradeoff between
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of pure CORDIC and pure L-LUT approaches, and more
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A. Methodology
We evaluate TransPimLib on a real-world system with the
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and 20 UPMEM PIM DIMMs (160 GB and 2560 PIM cores).

In Section IV-B, we evaluate TransPimLib’s CORDIC,
LUT-based, and combined implementations on a single PIM
core using microbenchmarks, in order to compare them in
terms of performance, precision, memory consumption, and
setup time. Our microbenchmarks compute transcendental
functions (all versions of all functions in Table II) for the
elements of an array (of 216 floating-point values) that resides
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PIM core moves chunks of the array into the scratchpad
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each element. For performance comparison, we measure total
execution cycles using a hardware counter [34]. For precision
comparison, we compare to the output of the host CPU,
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3) Direct Float Conversion-based Fuzzy Lookup Table (D-
LUT): As we mention in Section II-B2, a good spacing
depends on the approximated function to minimize the error.
This may need non-linear address generation functions, which
are generally more computationally expensive than multiplica-
tions. We circumvent this issue by exploiting the natural non-
linearity of the floating-point format. We propose an address
generation function that uses (1) the last n bits of the exponent,
and (2) p bits of the mantissa. This results in a piece-wise
linear density with 2n steps of 2p addresses each. The density
of each step is inverse to the input value, i.e., high density for
small inputs and low density for large inputs. For example, for
our 12-entry table, we can use n = 2 (thus, exponents 20, 21,
22) and p = 2 (thus, 4 entries per exponent). As Figure 6(c)
shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and 1
in [4, 8).

The limitation of the D-LUT is that there are no LUT entries
between the smallest exponent (e.g., 20) and 0, which may
cause large inaccuracy for LUT queries near 0. To deal with

this issue, we propose a combined L-LUT + D-LUT method
(Section III-C1).

C. Combined Implementations
In addition to the previous implementations, TransPim-

Lib combines pairs of methods to inherit the strengths of both.
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by combining with a D-LUT with an L-LUT. The DL-LUT
uses (1) an L-LUT between 0 and the smallest exponent, and
(2) a D-LUT for larger inputs, providing a density pattern as
depicted in Figure 6(d).
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(CORDIC+LUT): Prior work [2] proposes to replace the
first few iterations of CORDIC with an L-LUT (while still
updating ✓i). This provides a flexible tradeoff between
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A. Methodology
We evaluate TransPimLib on a real-world system with the
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and 20 UPMEM PIM DIMMs (160 GB and 2560 PIM cores).
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LUT-based, and combined implementations on a single PIM
core using microbenchmarks, in order to compare them in
terms of performance, precision, memory consumption, and
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elements of an array (of 216 floating-point values) that resides
in a DRAM bank (MRAM in UPMEM terminology). The
PIM core moves chunks of the array into the scratchpad
memory (WRAM in UPMEM terminology) and operates on
each element. For performance comparison, we measure total
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comparison, we compare to the output of the host CPU,
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3) Direct Float Conversion-based Fuzzy Lookup Table (D-
LUT): As we mention in Section II-B2, a good spacing
depends on the approximated function to minimize the error.
This may need non-linear address generation functions, which
are generally more computationally expensive than multiplica-
tions. We circumvent this issue by exploiting the natural non-
linearity of the floating-point format. We propose an address
generation function that uses (1) the last n bits of the exponent,
and (2) p bits of the mantissa. This results in a piece-wise
linear density with 2n steps of 2p addresses each. The density
of each step is inverse to the input value, i.e., high density for
small inputs and low density for large inputs. For example, for
our 12-entry table, we can use n = 2 (thus, exponents 20, 21,
22) and p = 2 (thus, 4 entries per exponent). As Figure 6(c)
shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and 1
in [4, 8).

The limitation of the D-LUT is that there are no LUT entries
between the smallest exponent (e.g., 20) and 0, which may
cause large inaccuracy for LUT queries near 0. To deal with

this issue, we propose a combined L-LUT + D-LUT method
(Section III-C1).

C. Combined Implementations
In addition to the previous implementations, TransPim-

Lib combines pairs of methods to inherit the strengths of both.
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Tables (DL-LUT): This combination solves the limitation of
D-LUT (i.e., no entries between the smallest exponent and 0)
by combining with a D-LUT with an L-LUT. The DL-LUT
uses (1) an L-LUT between 0 and the smallest exponent, and
(2) a D-LUT for larger inputs, providing a density pattern as
depicted in Figure 6(d).

2) CORDIC + LDEXP-based Fuzzy Lookup Table
(CORDIC+LUT): Prior work [2] proposes to replace the
first few iterations of CORDIC with an L-LUT (while still
updating ✓i). This provides a flexible tradeoff between
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of pure CORDIC and pure L-LUT approaches, and more
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and 20 UPMEM PIM DIMMs (160 GB and 2560 PIM cores).
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LUT-based, and combined implementations on a single PIM
core using microbenchmarks, in order to compare them in
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elements of an array (of 216 floating-point values) that resides
in a DRAM bank (MRAM in UPMEM terminology). The
PIM core moves chunks of the array into the scratchpad
memory (WRAM in UPMEM terminology) and operates on
each element. For performance comparison, we measure total
execution cycles using a hardware counter [34]. For precision
comparison, we compare to the output of the host CPU,
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3) Direct Float Conversion-based Fuzzy Lookup Table (D-
LUT): As we mention in Section II-B2, a good spacing
depends on the approximated function to minimize the error.
This may need non-linear address generation functions, which
are generally more computationally expensive than multiplica-
tions. We circumvent this issue by exploiting the natural non-
linearity of the floating-point format. We propose an address
generation function that uses (1) the last n bits of the exponent,
and (2) p bits of the mantissa. This results in a piece-wise
linear density with 2n steps of 2p addresses each. The density
of each step is inverse to the input value, i.e., high density for
small inputs and low density for large inputs. For example, for
our 12-entry table, we can use n = 2 (thus, exponents 20, 21,
22) and p = 2 (thus, 4 entries per exponent). As Figure 6(c)
shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and 1
in [4, 8).

The limitation of the D-LUT is that there are no LUT entries
between the smallest exponent (e.g., 20) and 0, which may
cause large inaccuracy for LUT queries near 0. To deal with

this issue, we propose a combined L-LUT + D-LUT method
(Section III-C1).

C. Combined Implementations
In addition to the previous implementations, TransPim-

Lib combines pairs of methods to inherit the strengths of both.
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Tables (DL-LUT): This combination solves the limitation of
D-LUT (i.e., no entries between the smallest exponent and 0)
by combining with a D-LUT with an L-LUT. The DL-LUT
uses (1) an L-LUT between 0 and the smallest exponent, and
(2) a D-LUT for larger inputs, providing a density pattern as
depicted in Figure 6(d).

2) CORDIC + LDEXP-based Fuzzy Lookup Table
(CORDIC+LUT): Prior work [2] proposes to replace the
first few iterations of CORDIC with an L-LUT (while still
updating ✓i). This provides a flexible tradeoff between
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of pure CORDIC and pure L-LUT approaches, and more
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LUT-based, and combined implementations on a single PIM
core using microbenchmarks, in order to compare them in
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in a DRAM bank (MRAM in UPMEM terminology). The
PIM core moves chunks of the array into the scratchpad
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each element. For performance comparison, we measure total
execution cycles using a hardware counter [34]. For precision
comparison, we compare to the output of the host CPU,
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3) Direct Float Conversion-based Fuzzy Lookup Table (D-
LUT): As we mention in Section II-B2, a good spacing
depends on the approximated function to minimize the error.
This may need non-linear address generation functions, which
are generally more computationally expensive than multiplica-
tions. We circumvent this issue by exploiting the natural non-
linearity of the floating-point format. We propose an address
generation function that uses (1) the last n bits of the exponent,
and (2) p bits of the mantissa. This results in a piece-wise
linear density with 2n steps of 2p addresses each. The density
of each step is inverse to the input value, i.e., high density for
small inputs and low density for large inputs. For example, for
our 12-entry table, we can use n = 2 (thus, exponents 20, 21,
22) and p = 2 (thus, 4 entries per exponent). As Figure 6(c)
shows, the resulting density is 4 in [1, 2), 2 in [2, 4), and 1
in [4, 8).

The limitation of the D-LUT is that there are no LUT entries
between the smallest exponent (e.g., 20) and 0, which may
cause large inaccuracy for LUT queries near 0. To deal with

this issue, we propose a combined L-LUT + D-LUT method
(Section III-C1).

C. Combined Implementations
In addition to the previous implementations, TransPim-

Lib combines pairs of methods to inherit the strengths of both.
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Tables (DL-LUT): This combination solves the limitation of
D-LUT (i.e., no entries between the smallest exponent and 0)
by combining with a D-LUT with an L-LUT. The DL-LUT
uses (1) an L-LUT between 0 and the smallest exponent, and
(2) a D-LUT for larger inputs, providing a density pattern as
depicted in Figure 6(d).

2) CORDIC + LDEXP-based Fuzzy Lookup Table
(CORDIC+LUT): Prior work [2] proposes to replace the
first few iterations of CORDIC with an L-LUT (while still
updating ✓i). This provides a flexible tradeoff between
computing cost, table size, and precision, within the bounds
of pure CORDIC and pure L-LUT approaches, and more
freedom than interpolation.

IV. EVALUATION

A. Methodology
We evaluate TransPimLib on a real-world system with the

UPMEM PIM architecture. It consists of a host CPU (2-socket
Intel Xeon at 2.10 GHz), standard main memory (128 GB),
and 20 UPMEM PIM DIMMs (160 GB and 2560 PIM cores).

In Section IV-B, we evaluate TransPimLib’s CORDIC,
LUT-based, and combined implementations on a single PIM
core using microbenchmarks, in order to compare them in
terms of performance, precision, memory consumption, and
setup time. Our microbenchmarks compute transcendental
functions (all versions of all functions in Table II) for the
elements of an array (of 216 floating-point values) that resides
in a DRAM bank (MRAM in UPMEM terminology). The
PIM core moves chunks of the array into the scratchpad
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(2) a D-LUT for larger inputs, providing a density pattern as
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2) CORDIC + LDEXP-based Fuzzy Lookup Table
(CORDIC+LUT): Prior work [2] proposes to replace the
first few iterations of CORDIC with an L-LUT (while still
updating ✓i). This provides a flexible tradeoff between
computing cost, table size, and precision, within the bounds
of pure CORDIC and pure L-LUT approaches, and more
freedom than interpolation.
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We evaluate TransPimLib on a real-world system with the
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and 20 UPMEM PIM DIMMs (160 GB and 2560 PIM cores).
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core using microbenchmarks, in order to compare them in
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functions (all versions of all functions in Table II) for the
elements of an array (of 216 floating-point values) that resides
in a DRAM bank (MRAM in UPMEM terminology). The
PIM core moves chunks of the array into the scratchpad
memory (WRAM in UPMEM terminology) and operates on
each element. For performance comparison, we measure total
execution cycles using a hardware counter [34]. For precision
comparison, we compare to the output of the host CPU,
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TransPimLib: Supported Functions

Supported Functions

Implementation 
Method sin cos tan sinh cosh tanh exp log sqrt GELU

CORDIC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

M-LUT ✔ ✔ ✔ ✔ ✔ ✔

M-LUT+Interp. ✔ ✔ ✔ ✔ ✔ ✔

L-LUT ✔ ✔ ✔ ✔ ✔ ✔

L-LUT+Interp. ✔ ✔ ✔ ✔ ✔ ✔

D-LUT+Interp. ✔ ✔ ✔

DL-LUT+Interp. ✔ ✔ ✔

CORDIC+LUT ✔ ✔ ✔ ✔ ✔ ✔ ✔

Based on our preliminary analysis, we provide the most suitable methods for each of the 
supported functions (other than sine).
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Evaluation Methodology
• Evaluated systems

- UPMEM PIM system with 2,545 PIM cores @ 350 MHz and 159 GB of 
DRAM

- 2-socket Intel Xeon CPU (32 cores)
• Microbenchmarks

- Performance evaluation
• We measure execution cycles

- Accuracy evaluation
• Root-mean-square absolute error (RMSE) with respect to the CPU with the 

standard math library
- Setup time

• Generation on the host CPU and transfers to the PIM side
- Memory consumption

• All tables and variables allocated in the DRAM bank of a PIM core
- We use sine, as a representative function

• Real-world Benchmarks
- Blackscholes: exp, log, sqrt, cumulative normal distribution (CNDF)
- Sigmoid
- Softmax
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Microbenchmark Results: Performance (I)
• We measure the execution cycles for an accuracy range between 

10-4 and 10-9

• LUT-based versions place the LUT in either the PIM core’s DRAM 
bank (MRAM) or the scratchpad (WRAM)
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DL−LUT (Interp.)

Fix. L−LUT (Interp.)
Fix. L−LUT (Not interp.)

L−LUT (Interp.)
L−LUT (Not interp.)

M−LUT (Interp.)
M−LUT (Not interp.)

MRAM
WRAM

Execution cycles depend on the number of multiplications:
• Interp. M-LUT: 2 FP multiplications
• Non-interp. M-LUT and inter. L-LUT: 1 FP multiplication
• Non-interp. L-LUT: No FP multiplication

Fixed-point version of the L-LUT
• Interp. Fix. L-LUT doubles the 

performance of inter. L-LUT due to 
faster fixed-point multiplication

Performance of 
LUT-based 
methods is 

independent of 
the accuracy



17

Microbenchmark Results: Performance (II)
• We measure the execution cycles for an accuracy range between 

10-4 and 10-9

• CORDIC-based methods take more execution cycles to provide 
higher accuracy
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CORDIC+LUT runs faster than 
CORDIC, as it replaces the 
initial iterations with an 
L-LUT query

CORDIC accuracy 
increases with 

each iteration of 
the CORDIC 
algorithm

Little benefit from placing 
LUTs in the scratchpad 
(WRAM) instead of the DRAM 
bank (MRAM)

At some point (~10-9), further 
increasing the LUT size or 
CORDIC iterations does not 
improve accuracy
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Microbenchmark Results: Performance (III)
• We measure the execution cycles for an accuracy range between 

10-4 and 10-9

• CORDIC-based methods take more execution cycles to provide 
higher accuracy
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CORDIC+LUT runs faster than 
CORDIC, as it replaces the 
initial iterations with an 
L-LUT query

CORDIC accuracy 
increases with 

each iteration of 
the CORDIC 
algorithm

Little benefit from placing 
LUTs in the scratchpad 
(WRAM) instead of the DRAM 
bank (MRAM)

At some point (~10-9), further 
increasing the LUT size or 
CORDIC iterations does not 
improve accuracy

Key Takeaway 1
Interpolated L-LUT methods (lookup table 

with LDEXP operation) 
offer the best tradeoff in terms of 

performance and accuracy
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Microbenchmark Results: Setup Time (I)

• The setup time can also impact the decision of what 
method to use

CORDIC methods 
have flat setup 

times

For LUT-based 
methods, setup 
times increase 
with LUT size

CORDIC methods can provide higher overall performance 
(i.e., setup time + PIM kernel time) than LUT-based methods 

when the total number of transcendental functions in a workload is low.
For example, we estimate ~40 sine operations (see paper)
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Microbenchmark Results: Setup Time (II)

• The setup time can also impact the decision of what 
method to use

CORDIC methods 
have flat setup 

times

For LUT-based 
methods, setup 
times increase 
with LUT size

CORDIC methods can provide higher overall performance 
(i.e., setup time + PIM kernel time) than LUT-based methods 

when the total number of transcendental functions in a workload is low.
For example, we estimate ~40 sine operations (see paper)

Key Takeaway 2
CORDIC-based methods are preferable 

when a PIM kernel needs to execute just a 
few transcendental functions due to their 

low setup time in the host CPU
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Microbenchmark Results: Memory (I)
• We also obtain the memory consumption (in bytes) in 

the DRAM bank of a PIM core
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limited by the 
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Memory 
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CORDIC methods 
does not increase 

exponentially

Interpolation is an effective way of increasing accuracy 
without increasing LUT size
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Microbenchmark Results: Memory (II)
• We also obtain the memory consumption (in bytes) in 

the DRAM bank of a PIM core
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Accuracy of non-
interp. LUT 
methods is 

limited by the 
available memory

Memory 
consumption of 

CORDIC methods 
does not increase 

exponentially

Interpolation is an effective way of increasing accuracy 
without increasing LUT size

Key Takeaway 3
Interpolated L-LUT methods offer a good 

tradeoff in terms of accuracy, execution cycles, 
and memory consumption. 

However, CORDIC and CORDIC+LUT methods 
are recommended for applications that require 
high accuracy, where the available memory is 

limited (e.g., needed for large datasets)
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More in the Paper

• Analysis of other supported functions
• Evaluation of range reduction/extension
• Discussion and takeaway about D-LUT and 

DL-LUT methods
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Real-world Benchmark Results (I)
• 1 & 32 CPU cores
• PIM baseline: Polynomial
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For Blackscholes, 
TransPimLib is 5-
12x faster than 

the PIM baseline

Fixed-point L-LUT 
is 92% faster than 

the 32-thread 
CPU baseline

For Sigmoid and Softmax, 
TransPimLib outperforms the PIM 

baseline and shows that it can save 
data movement from executing 

activation functions in the host CPU
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Real-world Benchmark Results (II)
• 1 & 32 CPU cores
• PIM baseline: Polynomial
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For Blackscholes, 
TransPimLib is 5-
12x faster than 

the PIM baseline

Fixed-point L-LUT 
is 92% faster than 

the 32-thread 
CPU baseline

For Sigmoid and Softmax, 
TransPimLib outperforms the PIM 

baseline and shows that it can save 
data movement from executing 

activation functions in the host CPU
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(b) Transcendental 
function executed 
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(a) Transcendental 
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special PIM unit
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Key Takeaway 4
TransPimLib can reduce data 
movement from PIM cores 

to the CPU (Fig. (b)) for 
applications running on the 

PIM cores. 

As a result, the execution of 
transcendental functions in 

the PIM cores (Fig. (c)) could 
be 6−8× faster than the 

execution in the host CPU.
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TransPimLib: arXiv Version

h"ps://arxiv.org/pdf/2304.01951.pdf

https://arxiv.org/pdf/2304.01951.pdf
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• https://github.com/
CMU-
SAFARI/transpimlib

Source Code

https://github.com/CMU-SAFARI/transpimlib
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Executive Summary
• Processing-in-Memory (PIM) promises to alleviate the data movement 

bottleneck
• However, current real-world PIM systems have very constrained hardware, 

which results in limited instruction sets
- Difficulty/impossibility of computing complex operations, such as 

transcendental functions (e.g., trigonometric, exp, log) and other hard-to-
calculate functions (e.g., square root)

- These functions are important for modern workloads, e.g., activation functions 
in machine learning applications

• TransPimLib is the first library for transcendental and other hard-to-
calculate functions on general-purpose PIM systems
- CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic 

functions, exponentiation, logarithm, square root, etc.
- Source code: https://github.com/CMU-SAFARI/transpimlib

• We implement TransPimLib for the UPMEM PIM architecture and evaluate 
its methods in terms of performance, accuracy, memory requirements, and 
setup time
- Three real workloads (Blackscholes, Sigmoid, Softmax)

https://github.com/CMU-SAFARI/transpimlib
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Real PIM Tutorial (ISCA 2023)

h"ps://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start

• June 18th: Lectures + Hands-on labs + Invited lectures

https://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start
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