
VRL-DRAM: Improving DRAM Performance
via Variable Refresh Latency

Anup Das
Drexel University

Philadelphia, PA, USA
anup.das@drexel.edu

Hasan Hassan
ETH Zürich

Zürich, Switzerland
hhasan@ethz.ch

Onur Mutlu
ETH Zürich

Zürich, Switzerland
omutlu@gmail.com

ABSTRACT
A DRAM chip requires periodic refresh operations to prevent data
loss due to charge leakage in DRAM cells. Refresh operations incur
significant performance overhead as a DRAM bank/rank becomes
unavailable to service access requests while being refreshed. In this
work, our goal is to reduce the performance overhead of DRAM
refresh by reducing the latency of a refresh operation. We observe
that a significant number of DRAM cells can retain their data for
longer than the worst-case refresh period of 64ms . Such cells do
not always need to be fully refreshed; a low-latency partial refresh
is sufficient for them.

We propose Variable Refresh Latency DRAM (VRL-DRAM), a
mechanism that fully refreshes a DRAM cell only when necessary,
and otherwise ensures data integrity by issuing low-latency partial
refresh operations. We develop a new detailed analytical model to
estimate the minimum latency of a refresh operation that ensures
data integrity of a cell with a given retention time profile. We
evaluate VRL-DRAM with memory traces from real workloads, and
show that it reduces the average refresh performance overhead by
34% compared to the state-of-the-art approach.

CCS CONCEPTS
• Hardware → Dynamic memory; Modeling and parameter ex-
traction; Hardware-software codesign;

KEYWORDS
DRAM, refresh cycle time (tRFC), DRAM circuit modeling
ACM Reference Format:
Anup Das, Hasan Hassan, and Onur Mutlu. 2018. VRL-DRAM: Improving
DRAM Performance via Variable Refresh Latency. In DAC ’18: The 55th
Annual Design Automation Conference 2018, June 24–29, 2018, San Francisco,
CA, USA.ACM,NewYork, NY, USA, 6 pages. https://doi.org/10.1145/3195970.
3196136

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196136

1 INTRODUCTION
Dynamic Random Access Memory (DRAM) is the prevalent main
memory technology in modern computing platforms. A DRAM cell,
which stores a single bit of data, consists of a capacitor and an access
transistor. Unfortunately, charge leaks from the capacitor over time.
To ensure that a DRAM cell does not lose its data, the cell needs to
be periodically refreshed, typically with a refresh period of 64ms [11,
27]). To refresh all cells in a DRAM chip, the memory controller
issues a refresh command once every 7.8µs ,1 which is known as the
refresh interval, tREFI . Each refresh operation completes within a
time interval tRFC , known as the refresh cycle time. A DRAMbank is
unavailable to service any access requests during the tRFC portion
of each tREFI interval. Hence, the refresh performance overhead
(i.e., data throughput loss due to refresh) of a bank is tRFC

tREF I . The
refresh overhead is significant in current DRAM devices, and it is
expected to become even more critical in the future as DRAM chip
capacity increases [1, 4, 13, 17, 25, 27–33].

Although a DRAM chip is typically refreshed every 64ms , most
of the DRAM cells can retain their charge for a much longer time [9,
17, 27, 28, 32, 33]. If we know the retention time profile of DRAM
cells, we can reduce the refresh overhead by increasing tREFI [7,
22, 27, 32, 33, 36] for those cells that can retain data longer than
tREFI . Liu et al. propose RAIDR [27] to do exactly so. RAIDR relies
on retention time profiling [32] data of a DRAM chip to classify
the DRAM rows based on the retention time of the weakest cell in
each row. Instead of refreshing each row at the fixed 64ms interval,
rows that can retain their data for a longer time are refreshed less
frequently.

In this work, we show that the refresh overhead can be further
reduced (beyond RAIDR) by exploiting DRAM circuit characteris-
tics to reduce tRFC , i.e., the latency of each refresh operation. To
this end, we make the following two key observations.
Observation 1. During a refresh operation, more than half of the
refresh cycle time is spent injecting the last 5% of the charge of
a fully-charged DRAM cell. We validate this observation using
detailed SPICE simulations. In Figure 1a, we plot the fraction of
tRFC required to restore different fractions of charge of a fully-
charged DRAM cell. We see that approximately 60% of tRFC is
spent charging the cell to 95% of its capacity. During the remaining
40% of the time, only the last 5% of charge is injected to the capacitor.
These simulation results are consistent with those reported in prior
work [5, 14, 23–25, 32]. Our motivation is that, if a refresh operation
is truncated at 95% of a cell’s charge capacity (i.e., if we perform
a partial refresh), the refresh latency (tRFC) can theoretically be
reduced by up to 40%. tRFC is influenced by several factors such as

1During a 64ms refresh period, the memory controller issues a total of 8192 refresh
commands to a DRAM chip.

1

https://doi.org/10.1145/3195970.3196136
https://doi.org/10.1145/3195970.3196136
https://doi.org/10.1145/3195970.3196136

0 10 20 30 40 50 60 70 80 90 100
Fraction of Time (tRFC) to Charge the DRAM Cell

0
10
20
30
40
50
60
70
80
90

100

%
 F

ra
ct

io
n

of
 C

ha
rg

e
 o

n
th

e
DR

AM
 C

el
l C

ap
ac

ito
r

(a) The charge restoration status of a DRAM cell during a refresh operation.

0 64 128 192
Time (ms)

40
50
60
70
80
90

100

%
 F

ra
ct

io
n

of
 C

ha
rg

e
 o

n
th

e
DR

AM
 C

el
l C

ap
ac

ito
r With full refresh With partial refresh

(b) Refreshing a DRAM cell with full and partial refresh operations.

Figure 1: Two key observations on DRAM refresh.

data pattern dependence [15, 16, 28], sneak paths leaking charge
over time [27, 28, 32, 33], and bitline/wordline parasitic capacitance
coupling effects [15, 26]. To estimate the practically possible tRFC
reduction for partial refresh operations, we can perform detailed
circuit-level SPICE simulations. However, such simulations are very
time consuming. As a faster alternative, we develop a new analytical
model for refresh operations based on a rigorous analysis of the
DRAM circuit characteristics. Our model can accurately estimate
tRFC required to restore a DRAM cell to any given fraction of the
cell’s full charge capacity.
Observation 2. We observe that a DRAM cell that has a retention
time higher than the refresh period, once fully restored, can sustain
partial refreshes without sacrificing data integrity. To validate this,
in Figure 1b, we analyze the charge leakage and restoration behavior
of an example DRAM cell that is refreshed every 64ms . We plot
two cases where the cell is refreshed using (1) a large tRFC value
(i.e., full refresh) and (2) a small tRFC value (i.e., partial refresh). In
both cases, the cell is initially charged to its full capacity. When
we use full refresh, each refresh operation restores the cell to its
full capacity. Thus, the cell correctly retains its data value with full
refresh, but each refresh operation incurs high latency. In contrast,
when we use partial refresh, we see that the cell can still retain its
data value when a full refresh is followed by a partial refresh, yet
the partial refresh has low latency. This is because the DRAM cell
in the example has a retention time higher than the refresh period
of 64ms . However, the same cell cannot sustain two back-to-back
partial refreshes as the charge level drops below the 50% threshold,
and the cell loses its data value. Hence, to operate correctly, the cell
needs a full refresh during the next refresh period after it is partially
refreshed. Due to the large amount of heterogeneity (variance) in

the retention time distribution [12, 17, 24, 25, 27, 28, 32, 33] of real
DRAM chips, different cells can sustain different numbers of partial
refresh operations2 between two consecutive full refreshes.

Based on our two observations, we propose Variable Refresh
Latency DRAM (VRL-DRAM), a mechanism that (1) accurately
estimates the number of partial refreshes that a DRAM cell can
reliably sustain, and (2) whenever possible, issues partial refreshes
to reduce the refresh overhead. To this end, we develop a new circuit-
level analytical model. Using our analytical model and the retention
time profile data of a DRAM chip, our mechanism determines the
number of partial refreshes for each DRAM row. Our evaluations
show that VRL-DRAM (1) reduces the average refresh performance
overhead for real workloads by 34% on top of RAIDR [27] and
(2) requires less than 2% of the area of a DRAM bank at the 90nm
technology node.

We make the following major contributions:
• We develop a new detailed circuit-level analytical model
for DRAM refresh that takes into account factors such as
data pattern dependence, sneak paths, and bitline/wordline
parasitic coupling (Sec. 2) to estimate the amount of refresh
latency a DRAM cell requires. Our model is available as an
open-source tool [38] to engender future research.
• We propose Variable Refresh Latency DRAM (VRL-DRAM),
a new mechanism that enables partial refresh operations to
reduce DRAM refresh performance overhead (Sec. 3).

2 ANALYTICAL MODELING
In this section, we describe our analytical model for DRAM refresh
and charge leakage in DRAM cells. For detailed explanations of
DRAM architecture and operation, we refer the reader to prior work
[5, 6, 8, 9, 16–18, 20, 21, 23–25, 27, 32, 34, 35].

The refresh cycle time tRFC is composed of three main phases:
(1) equalization delay, i.e., the time required to deassert the wordline
of the currently-open row and equalize the voltages of the bitlines,
(2) pre-sensing delay, i.e., the time required to activate the row to
refresh and share the charge of the cells with the bitlines, and
(3) post-sensing delay, i.e., the time required to sense the voltage
difference on a bitline and its complement and restore the charge
of the DRAM cell accordingly.

2.1 Equalization Delay
DRAM typically implements a differential voltage sense ampli-
fier [10] that detects the voltage difference between a bitline pair,
i.e., a bitline and its complement, connected to different terminals
of a sense amplifier. Before activating a DRAM row, the bitline pair
needs to be prepared for activation by equalizing the voltage of both
bitlines to Veq = Vdd/2. Figure 2a illustrates a DRAM cell array
with an equalization circuit [39]. Prior to enabling the equalization
circuit, since a row in the DRAM cell array is activated, the voltage
of one of the bitlines is Vdd and the other Vss . The equalization
logic is connected to the bitline pair (i.e., Bi and B̄i) via two NMOS
transistors,M2 andM3. When the EQ signal is asserted, the equaliza-
tion circuit drives Veq into the bitlines. We explain the two phases
of the equalization process in detail.

Phase 1: At time t = 0+ (i.e., shortly after EQ is asserted),M2 and
M3 enter saturation mode, where the saturation current is Idsat2 .
The bitline capacitor voltage discharges until it drops (or increases

2Partial refresh is different from partial restore [41], where charge in a DRAM cell is
partially replenished after a read/write access to the cell.

2

wordlineW1

WM

bitline

CsM1 CsM1

..
.

..
.

CsM1CsM1

SA
Bi Bi

Rbl RblEQ

M2 M3

VeqRbl Rbl
CblCbl

(a) DRAM equalization
circuit.

B1 BN

Wj

Cs
Ron1

Rbl

Rbl

Rbl

Cbl

Cbl

SA

Cs
Ron1

Rbl

Rbl

Rbl

Cbl

Cbl

SA

...

(b) Bitlines after wordline
activation.

Bi-1 Bi

Wj

Bi+1

Cbw

Cbb Cbb Cbb

CsM1 CsM1 CsM1

Cbl Cbl Cbl

cell-to-bitline
leakage

bitline-to-bitline
leakage

bitline-to-wordline
leakage

(c) Sneak paths and parasitic capacitance
coupling.

Wj

CsM1

Bi Bi

M11 M6

Vdd

M8 M12
SA_EN

M5 M7

M9 M10C

M13

OY
OX

IX IY

Equalization Circuit

(d) Latch-based voltage sense amplifier [40].

Figure 2: Circuits used for our analytical model.

for the complementary bitline) byVtn2 . The time required for Phase
1 is calculated by

to =
Cbl ∆Vbli (to)

Idsat2
=

CblVtn2
βn2

2 (Vд −Veq −Vtn2)
2

(1)

where βn2 = µn2Coxn2

Wn2
Ln2

is the NMOS process parameter cal-
culated using electron mobility µn2 , gate oxide capacitance Coxn2

,
channel widthWn2 and channel length Ln2 .

Phase 2: At time t = t+o , theM2 andM3 transistors enter into the
linear region with ON resistance ron2 . In this phase, given enough
time, the bitline capacitor voltage eventually reachesVeq . For Phase
2, the bitline voltage can be formulated as a function of time τeq as

Vbli (τeq) = Veq +
(
Vbli (to) −Veq

)
e
−(τeq−to)
ReqCbl , where

Req = Rbl + ron2 = Rbl +
1

βn2 (Vд−Veq−Vtn2)
(2)

2.2 Pre-sensing Delay
In Figure 2b, we show the state of two DRAM cells after wordline
activation, where the access transistor of each activated cell is
turned on. During this phase, an activated cell shares its charge
with the bitline that should be ideally precharged to Vdd

2 .
Let Vs (τ+eq) be the voltage on a DRAM cell after equalization.

Applying the charge conservation principle, the bitline voltage
during charge-sharing at time t is

∆Vbli (t) =
Cs

Cs +Cbl
���Vsi, j (τeq) −Vbli (τeq)

���
[
1 −U (t)

]

whereU (t) =
Cs · e

−(t−τeq)
RpreCbl +Cbl · e

−(t−τeq)
RpreCs

Cs +Cbl
(3)

where i and j are used to denote the DRAM cell at the intersection
of the ith bitline and the jth wordline, and Rpre = ron1 +Rbl , where
ron1 is the ON resistance of the access transistor. As time t → ∞,
U (t) → 0, and thus

∆Vbli (t) →
Cs

Cs +Cbl

���Vsi, j (τeq) −Vbli (τeq)
��� = Vsensei (4)

whereVsensei is the maximum possible change in voltage on bitline
Bi . Equation 3 can be rewritten for time t = τpre as

∆Vbli (τpre) = Vsensei

[
1 −U (τpre)

]
(5)

In the presence of leakage paths and parasitic components, the
maximum voltage change Vsensei would be lower. Figure 2c shows

the charge leakage paths in the presence of bitline to bitline (Cbb)
and bitline to wordline parasitic (Cbw) capacitance coupling. Ap-
plying the charge conservation principle, we find:

dQs = dQ1 + dQ2 + dQ3 + dQ4 (6)

where dQs is the change in the DRAM cell charge. dQ1, dQ2, dQ3
and dQ4 are the changes in the ith bitline capacitor charge, ith to
(i − 1)th bitline-to-bitline parasitic, ith to (i + 1)th bitline-to-bitline
parasitic and bitline-to-wordline parasitic, respectively, shown by
the arrows in Figure 2c. These delta changes are

dQs = Cs
���Vsi, j (τeq) −Vsi, j (t)

���
dQ1 = CblVsensei and dQ2 = Cbb

[
Vsensei −Vsensei−1

]

dQ3 = Cbb
[
Vsensei −Vsensei+1

]
and dQ4 = CbwVsensei

We solve Equation 6 using the voltage equality for the bitline Bi
and the DRAM cell i.e., Vsi, j (t) = Vbli (t) as

Vsensei = K1Lsel fi, j + K2Vsensei−1 + K2Vsensei+1 (7)

where Lsel fi, j =
���Vsi, j (τeq) −Vbli (τeq)

���

K1 =
Cs

Cs +Cbl + 2Cbb +Cbw
and K2 =

Cbb
Cs +Cbl + 2Cbb +Cbw

As seen from Equation 7, the maximum voltage change on a
bitline depends not only on the voltage difference between a DRAM
cell and the bitline, but also on the maximum voltage change on the
neighboring bitlines. This cyclic dependency is not considered in
existing modeling techniques [26]. Our contribution is a closed-form
solution of Equation 7 for N bitlines of the jth wordline, as follows:

Vsense = K1K−1 · Lself , where

K =



k0,0 k0,1 · · · k0,N−1
k1,0 k1,1 · · · k1,N−1
.
.
.

.

.

.
. . .

.

.

.
kN−1,0 kN−1,1 · · · kN−1,N−1



, kx,y =



1 for x = y
−K2 for |x − y | = 1
0 otherwise

Vsense =
[
Vsense0 Vsense1 · · · VsenseN−1

]T

Lself =
[
Lsel f0, j Lsel f1, j · · · Lsel fN−1, j

]T
(8)

2.3 Post-sensing Delay
Figure 2d shows the circuit of a latch-based voltage sense ampli-
fier [40]. The circuit amplifies the voltage difference on Ix and Iy ,
and drives the output terminals Ox and Oy to Vdd and Vss , respec-
tively, or vice versa. There are four sub-phases of the post-sensing
delay.

3

Phase 1: Right after the sense amplifier is enabled, the PMOS
transistorsM6,M8,M11, andM12 are in cut-off mode, whereas the
NMOS transistorsM5,M7,M9, andM10 are in saturation mode, and
the tail NMOS transistorM13 is in the linear region.

During Phase 1, the saturation current ofM5 andM7 gradually
discharges the voltage of the output nodesOx andOy (pre-charged
to Vdd), respectively. The rate of discharge depends on the respec-
tive saturation currents Idsat9 and Idsat10

. Thus, a voltage difference
starts building up at the output terminals. This continues until the
voltage at one of the output terminals drops toVdd −Vtp , when the
corresponding PMOS transistorM11 orM12 turns ON. Assuming
Ix > Iy , the time delay is

t1 =
CblVtp
Idsat10

, Idsat10
= βn (Veq −Vthn)

2 *..
,
1 − 0.75

1 + Vdd −Vthn
Veq−Vthn

+//
-

2

(9)

Phase 2: Once one of the PMOS transistors (e.g.,M6 orM8) turns
ON, the corresponding output voltage starts increasing, which
increases the voltage difference due to the positive feedback in the
circuit. The delay of this process is

t2 =
Cbl
дme

ln *.
,

1
Vtp

2
√

Idsat10
βn

Vdd −Vtp −Veq
∆Vbli (τpre)

+/
-

(10)

where дme is the effective transconductance of the cross-coupled
inverter.

Phase 3: In this phase, the voltage of the output terminals is
driven toVdd orVss . LetVr esidue be themarginal voltage difference
between the output terminals. The delay in this process is

t3 ≈ RpostCbl ln
Veq

Vr esidue
where Rpost = Rbl + ron (11)

Phase 4: In this phase, the DRAM cell capacitor is driven to the
desired logic value using the voltage developed on the bitlines. As-
suming the memory controller allocates τpost time for the complete
post-sensing process, the voltage restored to the cell is

Vsi, j (τpost) = Vsi, j (τpre) +Va
*...
,

1 − e
−
(
τpost −t1−t2−t3

)
Rpost Cpost

+///
-

or

Vsi, j (τpost) = Vr esidue +Vb
*...
,

e

−
(
τpost −t1−t2−t3

)
Rpost Cpost

+///
-

, (12)

Va = Vdd −Vsi, j (τpre) − τpre andVb = Vsi, j (τpre) −Vr esidue

where Cpost = Cs +Cbl + 2Cbb +Cw .
Finally, we calculate the refresh cycle time, tRFC , as

tRFC = τeq + τpre + τpost + τf ixed (13)

where τf ixed is the aggregate of the other fixed delays (e.g., time
to assert and deassert a wordline).

The analytical model presented in this section allows us to de-
termine tRFC for full and partial refresh operations. The analytical
model is available online as an open-source tool [38] to engender
future research.

3 VARIABLE REFRESH LATENCY DRAM
Our Variable Refresh Latency DRAM (VRL-DRAM) mechanism
reduces the refresh overhead by using low-latency partial refresh
operations whenever possible. We define the number of partial
refreshes that a DRAM cell can reliably sustain as mean partial
refreshes to sensing failure (MPRSF). The MPRSF of a row is the
minimum of the MPRSFs of all cells in the row. VRL-DRAM deter-
mines the MPRSF of a DRAM row using (1) the analytical model
we develop in Section 2 and (2) DRAM retention time profiling data

which we assume is available, e.g., using methods in previous works
[16, 27, 32, 33]. VRL-DRAM adapts the refresh command scheduling
policy of the memory controller to selectively issue partial and full
refresh commands to reduce the refresh overhead while ensuring
data integrity.

3.1 Determining the Reduced Refresh Latency
and MPRSF

When using partial refresh, there is a trade-off between the latency
reduction in a partial refresh operation (i.e., the amount of charge
restored on refresh) and the number of partial refresh operations a
row can sustain, i.e., MPRSF. We define the latency of partial and
full refresh operations as τpar tial and τf ull , respectively.

Our goal is to find a τpar tial that maximizes the refresh over-
head reduction, given the retention time distribution data of the
DRAM chip, which can be collected using a profiler such as [32, 33].
For our evaluations, we assume a typical DRAM retention time
distribution [27], as we show in Figure 3a. In Figure 3b, we show
how we bin the DRAM rows into four refresh periods based on
their retention times. Based on those refresh periods, we determine
the best τpar tial and MPRSF for each row.

65 29
6

52
6

75
7

98
8

12
19

14
50

16
80

19
11

21
42

23
73

26
04

28
34

30
65

32
96

35
27

37
58

39
88

42
19

44
50

46
81

Retention Time of Cells (ms)

0

10000

20000

30000

40000
Nu

m
be

r o
f O

cc
ur

re
nc

es

(a) DRAM retention time distribution from Liu et al. [27].

Refresh period (ms) Number of rows in a bank
64 68
128 101
192 145
256 7878

(b) Refresh rates after binning of rows in a DRAM bank.

Figure 3: Retention time binning of DRAM cells.

If we use a large value for τpar tial (e.g., close to τf ull), DRAM
cells of a row would be refreshed almost to their full capacity after
every partial refresh operation. Hence, there would only be neg-
ligible reduction of refresh overhead from using partial refreshes.
On the other hand, if we use a small value for τpar tial , DRAM cells
would be refreshed to a state with much lower charge compared to
their full charge capacity. In such a case, a DRAM row would be
less likely to retain correct data until the next refresh operation. In
the worst case, the DRAM row would have 0 MPRSF, which would
prevent using partial refresh for the row. Thus, VRL-DRAM would
not provide any benefit. Therefore, we need to intelligently choose
a value for τpar tial .

We perform thorough simulations to select the best value for
τpar tial , which results in maximum refresh overhead reduction.
Our simulation framework uses four data patterns (i.e., all 0’s, all

4

1’s, alternate 0’s/1’s and random) [17, 28] to determine τpar tial by
taking into account data pattern dependence of DRAM cells. Via
our simulations, we find the following breakdown for τpar tial and
τf ull , in DRAM cycles:

τpar t ial = tRFC |τeq=1,τpre =2,τpost =4,τf ixed =4 (partial refresh) = 11 cycles

τf ul l = tRFC |(τeq=1,τpre =2,τpost =12,τf ixed =4 (full refresh) = 19 cycles

3.2 Implementation
VRL-DRAM schedules a full or partial refresh operation based on
the MPRSF of the row to be refreshed. Let mi be the MPRSF of
the ith row of the DRAM bank. VRL-DRAM issues a full refresh at
everymth

i refresh period of the row. For all other refreshes of the
row, VRL-DRAM issues a partial refresh with τpar tial latency. We
propose two variants of our mechanism: VRL and VRL-Access.

VRL-DRAM can be implemented entirely inside the memory
controller. Algorithm 1 provides the pseudo-code of the logic that
the memory controller implements to support VRL-DRAM. Two
variables (mprsf and rcount) store theMPRSF and the number of re-
fresh operations that have been issued to a DRAM row, respectively.
In the actual hardware implementation, those two variables can
be defined as nbits-wide counters.3 We evaluate the performance
of VRL-DRAM with nbits = 2, which leads to a very low-cost
implementation. In Line 1, the memory controller gets a set of rows
that need to be refreshed. Then, the memory controller compares
the rcount and mprsf values of each row. If rcount is equal to
mprsf, the memory controller issues a full refresh using τf ull la-
tency (Line 4) to fully restore the charge of the cells in the refreshed
row. If rcount is not equal to mprsf, the memory controller issues
a partial refresh using τpar tial latency (Line 7) to reduce the refresh
overhead.

Algorithm 1: VRL-DRAM Refresh Scheduling Policy.
Input: τpar t ial , τf ul l , mprsf, rcount
Output: mprsf, rcount

1 rows-to-refresh = Get rows to be refreshed;
2 foreach r ∈ rows-to-refresh do
3 if rcount[r] == mprsf[r] then
4 Set tRFC = τf ul l , rcount[r] = 0 and refresh row r ;
5 end
6 else
7 Set tRFC = τpar t ial , rcount[r] += 1 and refresh row r ;
8 end
9 end

The second variant of VRL-DRAM optimizes the baseline scheme
in Algorithm 1 by exploiting the memory access patterns of the
workloads running on the system. In this optimized version, called
VRL-Access, we take advantage of the fact that a DRAM activa-
tion caused by a read or write access fully restores the charge in
the DRAM row. Thus, the memory controller can use τpar tial for
the subsequent refresh operations to the same row as dictated by
MPRSF. Thus, on a read or write access to a row, the memory
controller resets the value of rcount to 0.

3We evaluate the area overhead of VRL-DRAM for different nbits values in Section 4.3.

4 RESULTS
We evaluate VRL-DRAM using an in-house simulator and 90nm
technology parameters [37]. Our framework can be extended with
small effort to other technology nodes.

4.1 Evaluation with Memory Traces
We evaluate VRL-DRAM using benchmarks from the PARSEC-3.0
suite [2] and one server benchmark bgsave [19]. Memory traces
for these benchmarks are generated using Ramulator [19]. These
traces are input to our in-house simulator configured to simulate an
8192x32 (rows × columns) memory bank. We compare the refresh
performance overhead (as measured in cycles spent refreshing the
bank) of VRL-DRAM variants (VRL and VRL-Access) to that of
RAIDR [27]. Figure 4 reports these comparisons. All results are nor-
malized to the refresh overhead of RAIDR. As seen from the figure,
refresh overheads of RAIDR and VRL are fixed for all benchmarks
because these techniques are application independent. The refresh
overhead of VRL is 23% lower than that of RAIDR. This reduction
is due to using low-latency tRFC in VRL for partial refresh opera-
tions. VRL-Access further reduces the refresh overhead over VRL
and RAIDR by 13% and 34%, respectively, on average across our
applications. We also find that, VRL-DRAM reduces refresh power
by 12% over RAIDR (evaluated using the DRAMPower tool [3]).

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
ed

 R
ef

re
sh

 O
ve

rh
ea

d
RAIDR VRL VRL-Access

Figure 4: Refresh performance overhead with real traces.

4.2 Accuracy of our Analytical Model
Figure 5 plots voltage responses for bitline Bi and B̄i during voltage
equalization, prior to activating a wordline. We report results for
three approaches: (1) our two-phase analytical model (Equation 2),
(2) the single-cell capacitor model of Li et al. [26], and (3) SPICE
simulation of the equalization circuit in Figure 2a. As seen in Fig-
ure 5, results for all three approaches are similar for B̄i (plotted
below the dashed line at 0.6V). However, for Bi (plotted above the
dashed line), our analytical model is closer to SPICE results than
the model used in [26]. Accuracy results are consistently similar for
the charge sharing circuit of Figure 2b and the post-sensing charge
replenishment circuit of Figure 2d.

Table 1 reports the pre-sensing time τpre (in memory cycles)
needed to refresh a DRAM cell to 95% of its capacity. We report re-
sults for six memory configurations using three approaches: SPICE
simulation, single-cell capacitor model [26], and our analytical
model. The table also reports the corresponding simulation time.
As seen in the table, τpre estimated using our analytical model is
within 0%-12.5% of that obtained using SPICE simulation, demon-
strating the high accuracy of our model. The accuracy of the single
cell model is within 6.25%-62.5% of the SPICE simulation. In terms

5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time (ns)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
o
lt

a
g
e
 (

V
)

Bitline Bi (Using the model of Li et al. [26])

Bitline Bi (Using our 2-Phase model)

SPICE simulation for Bitline Bi

Complementary Bitline B̄i (2-Phase/Li et al. [19])

SPICE simulation for Complementary Bitline B̄i

Figure 5: Voltage response during the equalization stage.

of simulation time, the single cell model is the fastest. Our analytical
model is a few orders of magnitude faster than SPICE and its speed
scales proportionally with DRAM size.

Table 1: Accuracy trade-offs of our analytical model.

Bank Size
Pre-sensing time (cycles) Simulation time

SPICE Single cell Our SPICE Single cell Our
Sim. Model Model Sim. Model Model

2048x32 7 6 7 1h 36m 5ms 10s
2048x128 8 6 8 1h 57m 5ms 51s
8192x32 9 6 9 4h 23m 21ms 20s
8192x128 11 6 10 5h 17m 21ms 108s
16384x32 14 6 12 17h 12m 44ms 90s
16384x128 16 6 14 21h 1m 44ms 209s

4.3 Area Overhead of VRL-DRAM
Table 2 reports the area overhead of VRL-DRAM for a DRAM bank
of size 8192x32, synthesized at the 90nm feature size [37]. We pro-
vide results for three different values of nbits (see Section 3.2).
The area overhead of VRL-DRAM is within 1-2% of the area of a
DRAM bank.

Table 2: Area overhead of VRL-DRAM at 90nm.

nbits Logic area (µm2) % DRAM bank area (µm2)

2 105 0.97%
3 152 1.4%
4 200 1.85%

5 CONCLUSIONS
We introduce VRL-DRAM, a mechanism to reduce the refresh la-
tency overhead in modern DRAM chips. VRL-DRAM requires a
long-latency full refresh of a DRAM row only when necessary. It
otherwise schedules short-latency partial refreshes, reducing the
refresh overhead. We develop a circuit-level analytical model to
determine the number of partial refreshes that can be sustained
by a DRAM cell without losing data integrity. Our model incorpo-
rates memory content in neighboring cells, sneak paths, and bit-
line/wordline parasitic capacitance coupling, and is freely available
online [38]. Using memory traces from real workloads, we demon-
strate that VRL-DRAM reduces the refresh performance overhead
by 34% over a state-of-the-art approach, RAIDR [27]. We conclude
that VRL-DRAM is an effective method for reducing DRAM refresh
latency.

REFERENCES
[1] I. Bhati et al., “DRAM Refresh Mechanisms, Penalties, and Trade-Offs,” in TC,

2016.
[2] C. Bienia et al., “The PARSEC Benchmark Suite: Characterization and Architec-

tural Implications,” in PACT, 2008.
[3] K. Chandrasekar et al., “Towards Variation-Aware System-Level Power Estimation

of DRAMs: An Empirical Approach,” in DAC, 2013.
[4] K. Chang et al., “Improving DRAM Performance by Parallelizing Refreshes with

Accesses,” in HPCA, 2014.
[5] K. Chang et al., “Understanding Latency Variation in Modern DRAM Chips:

Experimental Characterization, Analysis, and Optimization,” in SIGMETRICS,
2016.

[6] K. K. Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and Mechanisms,” in SIGMET-
RICS, 2017.

[7] N. Gulur et al., “MicroRefresh: Minimizing Refresh Overhead in DRAM Caches,”
in MEMSYS, 2016.

[8] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by Exploiting Row
Access Locality,” in HPCA, 2016.

[9] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[10] S. Hong et al., “Low-Voltage DRAM Sensing Scheme with Offset-Cancellation
Sense Amplifier,” in JSSC, 2002.

[11] JEDEC, “Double Data Rate (DDR) SDRAM Specification,” in JESD79E, 2005.
[12] M. Jung et al., “A Platform to Analyze DDR3 DRAM’s Power and Retention Time,”

in IEEE Design & Test, 2017.
[13] U. Kang et al., “Co-Architecting Controllers andDRAM to EnhanceDRAMProcess

Scaling,” in The Memory Forum, 2014.
[14] B. Keeth, “DRAM Circuit Design: Fundamental and High-Speed Topics.” John

Wiley & Sons, 2008.
[15] S. Khan et al., “PARBOR: An Efficient System-Level Technique to Detect Data-

Dependent Failures in DRAM,” in DSN, 2016.
[16] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by

Exploiting Current Memory Content,” in MICRO, 2017.
[17] S. Khan et al., “The Efficacy of Error Mitigation Techniques for DRAM Retention

Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.
[18] J. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical Unclonable

Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity
DRAM Devices,” in HPCA, 2018.

[19] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” in CAL, 2016.
[20] Y. Kim et al., “Flipping Bits inMemoryWithout Accessing Them: An Experimental

Study of DRAM Disturbance Errors,” in ISCA, 2014.
[21] Y. Kim et al., “A Case for Exploiting Subarray-level Parallelism (SALP) in DRAM,”

in ISCA, 2012.
[22] J. Kotra et al., “Hardware-Software Co-design to Mitigate DRAM Refresh Over-

heads: A Case for Refresh-Aware Process Scheduling,” in ASPLOS, 2017.
[23] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM

Architecture,” in HPCA, 2013.
[24] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the

Common-Case,” in HPCA, 2015.
[25] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips: Char-

acterization, Analysis, and Latency Reduction Mechanisms,” in SIGMETRICS,
2017.

[26] Y. Li et al., “DRAM Yield Analysis and Optimization by a Statistical Design
Approach,” in TCAS-I, 2011.

[27] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012.
[28] J. Liu et al., “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices: Implications for Retention Time Profiling Mechanisms,” in ISCA,
2013.

[29] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” IMW, 2013.
[30] O. Mutlu, “The RowHammer Problem and Other Issues we may Face as Memory

Becomes Denser,” in DATE, 2017.
[31] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” in SUPERFRI, 2014.
[32] M. Patel et al., “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM

Retention Failures via Profiling at Aggressive Conditions,” in ISCA, 2017.
[33] M. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for

DRAM Systems,” in DSN, 2015.
[34] V. Seshadri et al., “RowClone: Fast and Energy-Efficient in-DRAM Bulk Data

Copy and Initialization,” in MICRO, 2013.
[35] V. Seshadri et al., “Ambit: In-memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” in MICRO, 2017.
[36] H. Shin et al., “Timing Window Wiper: A New Scheme for Reducing Refresh

Power of DRAM,” in ASP-DAC, 2017.
[37] E. Sicard, “Introducing 90 nm Technology in Microwind3,” in Technology, 2004.
[38] VRL-DRAM Analytical Model, https://github.com/anupkdas-nus/VRL-DRAM.
[39] L. Watters et al., “Use of Voltage Equalization in Signal-Sensing Circuits,” US

Patent 5,841,718. 1998.
[40] B. Wicht et al., “Yield and Speed Optimization of a Latch-Type Voltage Sense

Amplifier,” in JSSC, 2004.
[41] X. Zhang et al., “Restore Truncation for Performance Improvement in Future

DRAM Systems,” in HPCA, 2016.

6

https://github.com/anupkdas-nus/VRL-DRAM

	Abstract
	1 Introduction
	2 Analytical Modeling
	2.1 Equalization Delay
	2.2 Pre-sensing Delay
	2.3 Post-sensing Delay

	3 Variable Refresh Latency DRAM
	3.1 Determining the Reduced Refresh Latency and MPRSF
	3.2 Implementation

	4 Results
	4.1 Evaluation with Memory Traces
	4.2 Accuracy of our Analytical Model
	4.3 Area Overhead of VRL-DRAM

	5 Conclusions
	References

