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GPUs

CPUs NICs

Accelerator

Virtual Memory 
is a cornerstone of 

modern computing systems
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Does Virtual Memory 
come for free?
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Virtual memory causes high 
performance overheads

Memory 
Allocation  

Address 
Translation

1 2
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Memory Allocation Overheads 

Emerging Workloads

Short Running (<1s)

OS Memory 
Allocation Routines

High spawning throughput

Time

Execution 

Time spent in OS cannot be amortized due to short execution

1
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On average 32% of execution time (measured 
in a real system) spent on physical memory allocation

Physical Memory Allocation Overheads 
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Address Translation Overheads

Emerging Workloads

Long Running (>100s) Irregular Memory Accesses

Data FetchingTLB Miss Page Table Walk

High Latency Address Translation

Time

2
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On average 26% of execution time (measured 
in a real system) is spent on address translation 

Address Translation Overheads
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Minor Page Faults Address Translation

VM causes high overheads 
in diverse emerging workloads

High VM Overheads
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Virtual Memory overheads are 
expected to increase as we transition 

to larger physical address spaces 
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Going into the Future

GPU Memory CPU Memory

Unified Virtual Memory

High Bandwidth
Limited Capacity

High Capacity
Low cost/bit

1
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Going into the Future

GPU Memory CPU Memory

Unified Virtual Memory

High Bandwidth
Limited Capacity

High Capacity
Low cost/bit

Direct Storage Access 

High-end SSD
Byte-addressable 

interface

1

2
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Going into the Future

GPU Memory CPU Memory

Unified Virtual Memory

High Bandwidth
Limited Capacity

High Capacity
Low cost/bit

Memory Disaggregation Direct Storage Access 

High-end SSD
Byte-addressable 

interface

Access to both local and remote 
memory modules

1

2 3
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Researchers try to 
save the day 
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Co-design the hardware and the OS 
to reduce VM overheads

Software-managed TLB Subsystem

Nagle+ ISCA 1993

Ryoo+ ISCA 2017

Marathe+ MICRO 2017

Jaleel+ TACO 2019
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Co-design the hardware and the OS 
to reduce VM overheads
Leveraging VA-to-PA Contiguity

Pham+ MICRO 2012

Karakostas*,Ghandhi*+ ISCA 2015

Zhao+ ISCA 2022

Ausavarungnirun+ MICRO 2017
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Co-design the hardware and the OS 
to reduce VM overheads

Accelerating Memory Allocation

Wang+ MICRO 2023

Lee+ ISCA 2020

Tirumalasetty+ TACO 2022
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Co-design the hardware and the OS 
to reduce VM overheads

Alternative Address Mappings

Picorel+ PACT 2016

Gosakan+ ASPLOS 2023

Kanellopoulos+ MICRO 2023
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Co-design the hardware and the OS 
to reduce VM overheads

Rethinking the Page Table Design

Employing Multiple Page Sizes

and more...
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Co-design the hardware and the OS 
to reduce VM overheads

Leverage VA-to-
PA Contiguity

Software-managed 
TLB Subsystem

Accelerate 
Memory 

Allocation

Alternative Address Mappings

Rethinking the Page 
Table Design Employing multiple page sizes

Wide range of hardware-OS co-design 
techniques that aim to improve virtual memory  
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Effectively evaluating VM techniques
is crucial for progress in the domain
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Challenges in Evaluation

Interplay between system components

Hardware 
MMU

Software-level 
Memory Management

System 
Components
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Example: Page Table and Large Pages

Page Table 
Size

OS Allocation 
Policy

Size of the page table depends on the 
number of large pages provided by the OS 
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Example: Page Table and Large Pages

”I can provide plenty
 of large pages”

2MB Pages

Page Table

# 
En

tr
ie

s

OS Kernel

Fr
ee
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Example: Page Table and Large Pages

“Fragmentation is rising so
I cannot allocate 2MB pages”

4KB Pages

Page Table

# 
En

tr
ie

s

OS Kernel
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Page Table and Memory Interference

DRAM Bank 
Ro

w
s

Row 
Buffer

App 1

App 2

App 2

Page Table 
Entries

Program  
Data

Program  
Data

...
...
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Page Table and Memory Interference

DRAM Bank 
Ro

w
s

Row 
Buffer

App 1

App 2

App 2

...
...

Conflict
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Page Table and Memory Interference

DRAM Bank 
Ro

w
s

Row 
Buffer

App 1

App 2

App 1

...
...
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Page Table and Memory Interference

DRAM Bank 
Ro
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Page Table and Memory Interference

DRAM Bank 
Ro

w
s

Row 
Buffer

App 1

App 2

App 1

...
...

Conflict

Frequent accesses 
to page table entries cause 

high interference in main memory
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Challenges in Evaluation

Hardware 
MMU

Software-level 
Memory Management

System 
Components
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Challenges in Evaluation

Hardware 
MMU

Software-level 
Memory 

Management

System 
Components

Evaluating the interplay between 
components  is critical when assessing 

current and new VM techniques
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Researchers have 
architectural simulators

 at their disposal
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Existing Architectural Simulators

Emulation-based

Full-system

1

2

Two main classes of simulators
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Ramulator

Sniper ChampSim

Emulation-based Simulators

Limited support for 
OS primitives

ZSim

Analytically estimate
 VM Overheads

High simulation speed with a focus on 
modeling microarchitectural features 
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Analytical Estimation of VM Overheads

Page Table Walk Latency = 100 cycles (fixed)
Minor Page Fault Latency = 2000 cycles (fixed)

Example

First-order Models

Is this good enough?

Simple mathematical or algorithmic approximation
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Variable PTW Latency

Average PTW Latency (measured in a real 
system) ranges from 33 up to 184 cycles
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Variable Memory Allocation Latency

THP
Enabled

THP
Disabled

Physical Memory Allocation Latency (μs) in Log Scale

Contribution of outliers to total minor page fault latency: 25%

Contribution of outliers to total memory allocation latency: 67%

Median

25th 
percentile

75th 
percentile
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Variable Memory Allocation Latency

The latency of handling memory allocation
 (measured in a real system) 

exhibits high variability 

THP
Enabled

THP
Disabled

Physical Memory Allocation Latency (μs) in Log Scale

Contribution of outliers to total minor page fault latency: 25%

Contribution of outliers to total memory allocation latency: 67%
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Variable Memory Allocation Latency

The latency of handling memory allocation
 (measured in a real system) 

exhibits high variability 

THP
Enabled

THP
Disabled

Physical Memory Allocation Latency (μs) in Log Scale

Contribution of outliers to total minor page fault latency: 25%

Contribution of outliers to total memory allocation latency: 67%
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Analytical Estimation of VM Overheads

Use of First-order Models

First-order models do not accurately 
capture the dynamic nature of VM overheads
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Full-System Simulators

gem5-FS

QFlex PTLsim

Enable the execution of a full-blown OS 
on top of a hardware simulator

Low simulation 
speed Hard to develop
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Existing Architectural Simulators

Emulation-based

Full-System

1

2

Two main classes of simulators
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Existing Architectural Simulators

Emulation-
based

Si
m

ul
at

io
n 

Sp
ee

d

Accuracy in Estimating VM overheads

Full-
System
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Existing Architectural Simulators

Emulation-
based

Si
m

ul
at

io
n 

Sp
ee

d

Accuracy in Estimating VM overheads

Our goal

Full-
System
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Enabling Fast and Accurate VM Research 

New simulation framework that enables 
fast and accurate prototyping and evaluation of 
the software and hardware components of VM 

Virtuoso
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Imitation-based Simulation Methodology

Lightweight Userspace Kernel 
written in a high-level programming language  

Choose OS modules only related 
to the desired research

“I will try to imitate 
the full-blown OS”
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Imitation-based Simulation Methodology

Full-blown Kernel

Thread Scheduler

Data Sharing 
Support

Managing NUMA

Virtual Memory 
Area Handling

Block device 
driver

Protection 

Transparent 
Huge Pages

hugetlbfs

Cgroups

SLAB Allocator

Swapping

InterruptsMonitoring

Boot process
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Imitation-based Simulation Methodology

Lightweight Userspace Kernel

Virtual Memory 
Area Handling

Transparent 
Huge Pages

Swapping
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Rapid development and prototyping

High simulation speed by executing 
only the desired OS kernel functionality

Accurate evaluation by integrating 
Virtuoso with an architectural simulator

1

2

3

Imitation-based Simulation Methodology



add R1, R1 ,R2

load R1, [0xA]

52

Lightweight Userspace Kernel

Desired Memory Management 
modules written in a high-level language

Simulator

Binary Instrumentation

Core Model

Userspace Kernel 
Instruction Stream

Imitation-based Simulation Methodology

+ Imitates the OS-level
Overhead



add R1, R1 ,R2

load R1, [0xA]

53

Lightweight Userspace Kernel

Desired Memory Management 
modules written in a high-level language

Simulator

Binary Instrumentation

Core Model

Userspace Kernel 
Instruction Stream

Imitation-based Simulation Methodology

Functional 
Outcome

+ Enables emulation 
of kernel modules
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Workflow: Page Fault Handling Example

Example Userspace Kernel

Page Fault Handler

Transparent 
Huge Pages

Buddy 
Allocator
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Workflow: Page Fault Handling Example

Core 
Model

Example: Sniper Simulator [Carlson+ TACO 12]

MMU 
Model

Translation 
Request

Example Userspace Kernel

Workload2

Memory 
Access
3

4

5

Page Fault Handler

1

Binary 
Instrumentation

Page Fault

6

7

8
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Workflow: Page Fault Handling Example

Core 
Model

Example: Sniper Simulator [Carlson+ TACO 12]

MMU 
Model

Translation 
Request

Example Userspace Kernel

Workload

Memory 
Access

Page Fault Handler

Page Fault
Outcome
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MimicOS: Imitating the Linux Kernel

MimicOS modules written in C++

Transparent 
Huge Pages

Buddy 
Allocator

Radix-based 
page table hugetlbfs

Swap Space Page Cache

More details in the paper

https://arxiv.org/pdf/2403.04635
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VirTool: State-of-the-art VM techniques

Nested MMU
Support

4 page table 
designs

2 THP 
Policies

2 Hash-based 
address mapping 

schemes

2 Memory 
Tagging Schemes

Software-
Managed TLB

2 Contiguity-
aware Schemes

Page-Size Prediction

2 Intermediate Address Space Schemes

Toolset encompassing the HW/SW components 
of multiple state-of-the-art VM techniques 

Speculative Translation TLB Prefetching
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VirTool: State-of-the-art VM techniques

Nested MMU
Support

4 page table 
designs

2 THP 
Policies

2 Hash-based 
mapping 
schemes

2 Memory 
Tagging Schemes

Software-
Managed TLB

2 Contiguity-
aware Schemes

Page-Size Prediction

2 Intermediate Address Space Schemes

Toolset encompassing multiple 
state-of-the-art VM techniques 

Enables researchers to evaluate 
and prototype current and 
brand new VM techniques 
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VirTool: State-of-the-art VM techniques

Nested MMU
Support

4 page table 
designs

2 THP 
Policies

2 Hash-based 
mapping 
schemes

2 Memory 
Tagging Schemes

Software-
Managed TLB

2 Contiguity-
aware Schemes

Page-Size Prediction

2 Intermediate Address Space Schemes

Toolset encompassing multiple 
state-of-the-art VM techniques 

Virtuoso is a highly versatile 
simulation framework
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Integrated Virtuoso with 5 Diverse 
Architectural Simulators 

gem5-SE
System-call emulation 

mode of gem5

http://gem5.org/

http://gem5.org/

[Lowe-Power+ arXiv 2020]

[Binkert+ SIGARCH News 2011]

http://gem5.org/
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Integrated Virtuoso with 5 Diverse 
Architectural Simulators 

Ramulator

Focus on main 
memory subsystem

https://github.com/CMU-SAFARI/ramulator2

https://github.com/CMU-SAFARI/ramulator2

[Luo+ CAL 2023]

https://github.com/CMU-SAFARI/ramulator2
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Integrated Virtuoso with 5 Diverse 
Architectural Simulators 

Sniper Focus on 
multicore systems

[Carlson+ TACO 2012]
https://github.com/snipersim/snipersim

https://github.com/snipersim/snipersim

https://github.com/snipersim/snipersim
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Integrated Virtuoso with 5 Diverse 
Architectural Simulators 

ChampSim

Focus on 
microarchitecture

https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim

[Gober+ arXiv 2022]

https://github.com/ChampSim/ChampSim
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Integrated Virtuoso with 5 Diverse 
Architectural Simulators 

MQSim
Focus on 

storage devices
[Tavakkol+ FAST 2018]

https://github.com/CMU-SAFARI/MQSim

https://github.com/CMU-SAFARI/MQSim

https://github.com/CMU-SAFARI/MQSim
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Validation against a Real System

Virtuoso Sniper

High-end
Server-grade

CPU

Against
Linux Kernel
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Validation: Instructions Per Cycle (IPC)

Virtuoso integrated with Sniper improves
 IPC modeling accuracy by 21%
 compared to baseline Sniper
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Validation: Instructions Per Cycle (IPC)

Virtuoso integrated with Sniper achieves IPC 
modeling accuracy within 9% of gem5-FS
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Validation: Page Fault Handling Latency

Virtuoso integrated with Sniper models the 
page fault handling latency with 66% accuracy, 

within 15% of gem5-FS
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Simulation Speed Comparison
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MimicOS leads to an average 20% simulation time 
overhead over the baseline version of the simulator
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Simulation Speed Comparison

13%
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20%

77%
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Enabling full-system execution mode in gem5 
leads to 77% simulation time overhead 
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Virtuoso’s Versatility

We showcase Virtuoso’s
 versatility by evaluating multiple 

different use cases

5 use cases in the paper 
https://arxiv.org/pdf/2403.04635

Demonstrate new insights on 
state-of-the-art VM techniques



73

Virtuoso Example Use Cases

Evaluating Different
Page Table Designs

Evaluating Physical Memory 
Allocation Policies
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Virtuoso Example Use Cases

Evaluating Different
Page Table Designs



Radix: Baseline radix-based page table
ECH1: Elastic Cuckoo Hash-based Page Table

75

Evaluation Methodology

Fragmentation: Number of available 2MB pages 
compared to the total number of 2MB pages 

[1] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking 
Virtual Memory Translation for Parallelism” ASPLOS 2020

Workloads:  GraphBIG, XSBench, HPCC
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Reduction in PTW Latency

As memory fragmentation decreases, the PTW 
latency reduction of ECH compared to Radix increases
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Main Memory Interference
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ECH leads to an average 52% increase 
in DRAM row buffer conflicts over Radix

2.5x 2.7x

52%
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Virtuoso Example Use Cases

Evaluating Physical Memory 
Allocation Policies
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Evaluation Methodology

Buddy: Baseline allocator with the buddy system

Utopia:1 Part of memory is organized using a 
hash-based mapping

 
Workloads: Short-input Short-output LLM inference

[1] Kanellopoulos et al. “Utopia: Fast and Efficient Address Translation via Hybrid 
Restrictive & Flexible Virtual-to-Physical Address Mappings” MICRO 2023

Mistral-7B Llama-2-7B Bagel-2.8B
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Accelerating Memory Allocation
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Restricting the virtual-to-physical mapping 
speeds up memory allocation by up to 2.17x
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More Details in the Paper

- Detailed description of communication primitives

- Detailed description of MimicOS modules

- Integration methodology with different simulators

- Integration with heterogeneous system simulation

- Evaluation of intermediate address space schemes
- Evaluation of swapping activity and translation latency 
in  hash-based address mapping schemes

- Evaluation of two additional hash-based page tables

and more to come …
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More Details in the Paper

https://arxiv.org/pdf/2403.04635
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Virtuoso is Open-Source

https://github.com/CMU-SAFARI/Virtuoso



84

Virtuoso Website – Getting Started

https://github.com/CMU-SAFARI/Virtuoso/website
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Virtuoso Website - Documentation

https://safari.ethz.ch/virtuoso
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Virtuoso Website – Incoming Features

https://safari.ethz.ch/virtuoso
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Conclusion
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VM causes high overheads 
in emerging workloads



New simulation framework that enables 
fast and accurate prototyping and evaluation of 
the software and hardware components of VM 

Virtuoso

https://github.com/CMU-SAFARI/Virtuoso



Imitation-based 
Simulation Methodology

90

Rapid development and versatility

High simulation speed

Accurate simulation

1

2

3
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Validation against high-end server-grade CPU

Implemented 5 diverse use cases to 
showcase Virtuoso’s versatility 

VirToo

l
Integration with 

5 simulators
Toolset encompassing 

multiple state-of-the-art 
VM techniques 

gem5-SE Ramulator

Sniper

ChampSim

MQSim

https://github.com/CMU-SAFARI/Virtuoso
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We hope Virtuoso establishes a
 common ground for VM research



Virtuoso

Konstantinos Kanellopoulos     Konstantinos Sgouras     F. Nisa Bostanci

Andreas Kosmas Kakolyris     Berkin Kerim Konar     Rahul Bera 

Mohammad Sadrosadati     Rakesh Kumar    Nandita Vijaykumar    Onur Mutlu

Enabling Fast and Accurate Virtual Memory 
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Operating System Simulation Methodology 
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Why do we need
Virtual Memory?
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Programmer-transparent 
memory management

Process isolation

Data sharing between processes

1

2

3

Virtual Memory Benefits
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How does Virtual 
Memory work?
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Physical Address Space (e.g., physical memory)

Virtual Address 
Space #1

Virtual Address 
Space #2

App 1 App 2
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Page

Page

Physical Address Space (e.g., physical memory)

Virtual Address 
Space #1

Virtual Address 
Space #2

App 1 App 2

Page Page Page

Page Page Page Page

(e.g., 4KB)
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Physical Address Space

Virtual Address 
Space #1

Virtual Address 
Space #2

App 1 App 2
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Physical Address Space

Virtual Address 
Space #1

Virtual Address 
Space #2

App 1 App 2

Virtual-to-Physical Address Mapping
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Who establishes 
virtual-to-physical

address mappings? 
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Physical Memory

Virtual Address Space App

Map virtual addresses 
to physical memory
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Virtual Address Space 

Physical Address Space 

Fault
Virtual address
 not mapped to

physical memory
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Operating 
System

Physical Memory

Handles memory 
allocation

Virtual Address Space App
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Operating System

Finds free space in
physical memory 

Fetches data 
from the disk

Application is stalled

Minor Fault Major Fault
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Virtual Address Space 

Operating 
System

Physical Memory

Page Table

Store/Update the 
virtual-to-physical address mapping
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How does the CPU 
discover the virtual-

to-physical mapping?
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Memory 
HierarchyCore

Memory 
Management Unit

Virtual 
Address

Address Translation

Page 
Table

Hardware unit responsible
 for address translation



TLB Hierarchy Page Table 
WalkerMiss

109

Memory 
Hierarchy

Memory Management Unit

Page 
Table

Address Translation
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Validation against a Real System

MMU 
Performance

Validation Metrics
Instructions

Per Cycle
Page Fault 

Latency

Virtuoso Sniper

High-end
Server-grade

CPU
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Validation: L2 TLB MPKI 

Virtuoso integrated with Sniper models 
the L2 TLB misses per kilo instructions 

of a real high-end CPU with 82% accuracy
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Validation: Page Table Walk Latency
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Virtuoso integrated with Sniper models the 
Page Table Walk latency of a real high-end CPU 

with 86% accuracy
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Instructions vs Simulation Time
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