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Virtual Memory
Is a cornerstone of
modern computing systems



Does Virtual Memory
come for free?



Virtual memory causes high
performance overheads

Memory Address
Allocation Translation
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Memory Allocation Overheads

e Emerging Workloads
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Function-as-a-Service Short-input Short-output
Large Language Model Inference

Short Running (<1s) High spawning throughput

Time spentin OS cannot be amortized due to short execution

Allocation Routines

Time



Physical Memory Allocation Overheads
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JSON
AES
IMG-RES
WCNT
DB
Llama
Bagel
Mistral
3D Transp
Hadamard
2D-Sum
GMEAN

On average 32% of execution time (measured
in a real system) spent on physical memory allocation
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Address Translation Overheads

9 Emerging Workloads

43

et
Sparse Machine Bioinformatics Graph Analytics Databases
Learning

Long Running (>100s) Irregular Memory Accesses

High Latency Address Translation

TLB Miss ] Page Table Walk Data Fetching

Time



Address Translation Overheads
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On average 26% of execution time (measured
In a real system) is spent on address translation
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High VM Overheads

40
20

Fraction of execution time (%)

B Minor Page Faults 0OAddress Translation
NEFMNMOPT T OO Q0 Z w L o Aoz
MWzAESEEESeZ: |IRROEGREBRRSZ
<rQ0 ®©88uvaec £ gu IS ) o W
G 0= eg=20= $) 72 =
S S ® o O X O
-— |—I %
o
Short Running Long Running

VM causes high overheads
In diverse emerging workloads
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Virtual Memory overheads are
expected to increase as we transition
to larger physical address spaces
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Going into the Future

0 Unified Virtual Memory

GPU Memory D CPU Memory

High Bandwidth High Capacity
Limited Capacity Low cost/bit



Going into the Future

0 Unified Virtual Memory

GPU Memory D CPU Memory

High Bandwidth High Capacity
Limited Capacity Low cost/bit

@ Direct Storage Access
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High-end SSD

Byte-addressable
interface




Going into the Future
0 Unified Virtual Memory

GPU Memory D CPU Memory

High Bandwidth High Capacity
Limited Capacity Low cost/bit

g Direct Storage Access Memory Disaggregation e

1nnnnn
) ) INTEL OPTANE™ §

|

High-end SSD

Access to both local and remote

Byte-addressable memory modules

interface
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@e=en
Researchers try to
save the day
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Co-design the hardware and the OS
to reduce VM overheads

Software-managed TLB Subsystem

Nagle+ ISCA 1993

Design Tradeoffs for Software-Managed TLBs Ryoo+ ISCA 2017

Rethinking TLB Designs in Virtualized Environments:
A Very Large Part-of-Memory TLB

Marathe+ MICRO 2017

CSALT: Context Switch Aware Large TLB
- T Jaleel+ TACO 2019

DUCATI: High-performance Address Translation
by Extending TLB Reach of GPU-accelerated Systems
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Co-design the hardware and the OS
to reduce VM overheads

Leveraging VA-to-PA Contiguity
Pham+ MICRO 2012

CoLT: Coalesced Large-Reach TLB
oL+ Coalesced Large-Reach 1LDBs Karakostas*,Ghandhi*+ISCA 2015

Redundant Memory Mappings for Fast Access to Large Memories

Ausavarungnirun+ MICRO 2017

Mosaic: An Application-Transparent

Hardware-Software Cooperative Memory Manager for GPUs
Zhao+ ISCA 2022

Contiguitas: The Pursuit of Physical Memory Contiguity in
Datacenters
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Co-design the hardware and the OS
to reduce VM overheads

Accelerating Memory Allocation

Lee+ ISCA 2020
A Case for Hardware-Based Demand Paging

Tirumalasetty+ TACO 2022

Reducing Minor Page Fault Overheads through Enhanced
Page Walker

Wang+ MICRO 2023

Memento: Architectural Support for Ephemeral Memory
Management in Serverless Environments
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Co-design the hardware and the OS
to reduce VM overheads

Alternative Address Mappings

Picorel+ PACT 2016

Near-Memory Address Translation
Gosakan+ ASPLOS 2023
Mosaic Pages: Big TLB Reach with Small Pages

Kanellopoulos+ MICRO 2023

Utopia: Fast and Efficient Address Translation via Hybrid |
Restrictive & Flexible Virtual-to-Physical Address Mappings
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Co-design the hardware and the OS
to reduce VM overheads

Rethinking the Page Table Design

Employing Multiple Page Sizes

and more...
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Co-design the hardware and the OS

toreduce VM overheads

Rethinking the Page
Table Design

xR

Software-managed
TLB Subsystem

Employing multiple page sizes

Leverage VA-to- AI(\:/ICeenlwec:?;e
PA Contiguity Allocation

Alternative Address Mappings

Wide range of hardware-OS co-design
techniques that aim to improve virtual memory
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Effectively evaluating VM techniques
Is crucial for progress in the domain
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Challenges in Evaluation

Interplay between system components

Software-level
Memory Management

<\

Hardware System
MMU Components
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Example: Page Table and Large Pages

Page Table OS Allocation
Size Policy

=4

Size of the page table depends on the
number of large pages provided by the OS
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Example: Page Table and Large Pages

OS Kernel

”I can provide plenty Page Table
of large pages” A

# Entries

> <

Free

2MB Pages '
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Example: Page Table and Large Pages

OS Kernel
“Fragmentation is rising so

| cannot allocate 2MB pages”

4KB Pages

# Entries

Page Table

A
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Page Table and Memory Interference

DRAM Bank

Page Table
Entries

Program
Data

Program
Data
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Page Table and Memory Interference

DRAM Bank

Conflict

Row |
Buffer
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Page Table and Memory Interference

DRAM Bank

Row |
Buffer

45



Page Table and Memory Interference

DRAM Bank

Conflict

G
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Page Table and Memory Interference

Frequent accesses
to page table entries cause
high interference in main memory
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Challenges in Evaluation

Software-level
Memory Management

<\

Hardware System
MMU Components
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Challenges in Evaluation

Evaluating the interplay between
components is critical when assessing
current and new VM techniques
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Researchers have
architectural simulators
at their disposal
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Existing Architectural Simulators

Two main classes of simulators

? Emulation-based

2,

Full-system
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Emulation-based Simulators

Ramulator 78im

Sniper ChampSim

High simulation speed with a focus on
modeling microarchitectural features

Limited support for Analytically estimate
OS primitives VM Overheads
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Analytical Estimation of VM Overheads

First-order Models

Simple mathematical or algorithmic approximation

Example

Page Table Walk Latency =100 cycles (fixed)
Minor Page Fault Latency = 2000 cycles (fixed)

Is this good enough?
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Variable PTW Latency

N
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Low Memory
Intensity
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Average PTW
Latency (cycles)
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High Memory
Intensity
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53 Benchmarks with Varying Memory Intensity Levels

Average PTW Latency (measured in a real
system) ranges from 33 up to 184 cycles
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Variable Memory Allocation Latency

THP
Enabled

THP
Disabled
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Variable Memory Allocation Latency

Contribution of outliers to total memory allocation latency: 67%

THP |
Enabled

Physical Memory Allocation Latency (ps) in Log Scale

The latency of handling memory allocation
(measured in a real system)

exhibits high variability
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Variable Memory Allocation Latency

Contri;bution of outliel:'s to total minoripage fault laten@:y: 25%

THP ——

Disabled | 1

1 10 100 1000 10000
Physical Memory Allocation Latency (ps) in Log Scale

The latency of handling memory allocation
(measured in a real system)

exhibits high variability
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Analytical Estimation of VM Overheads

Use of First-order Models

First-order models do not accurately
capture the dynamic nature of VM overheads

42



Full-System Simulators

gem>S-FS

QFlex PTLsim

Enable the execution of a full-blown OS
on top of a hardware simulator

Low simulation

speed Hard to develop
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Existing Architectural Simulators

Two main classes of simulators

? Emulation-based

2,

Full-System
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Existing Architectural Simulators

Simulation Speed

Emulation- AO/
based o<°

Accuracy in Estimating VM overheads
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Existing Architectural Simulators

Simulation Speed

Emulation-
based

Our goal

6

Full-

Accuracy in Estimating VM overheads
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Enabling Fast and Accurate VM Research

New simulation framework that enables
fast and accurate prototyping and evaluation of
the software and hardware components of VM
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Imitation-based Simulation Methodology

Lightweight Userspace Kernel
written in a high-level programming language

“I will try to imitate
the full-blown OS”

Choose OS modules only related
to the desired research
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Imitation-based Simulation Methodology

Monitoring Full-blown Kernel Interrupts

Thread Scheduler Managing NUMA

Data Sharing Transparent
Support Huge Pages
Swapping Virtual Memory
Area Handling
Cgroups

Boot process Protection

Block device
driver SLAB Allocator hugetlbfs



Imitation-based Simulation Methodology

Lightweight Userspace Kernel

Swapping

Virtual Memory
Area Handling

Transparent
Huge Pages
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Imitation-based Simulation Methodology

0 Rapid development and prototyping

9 High simulation speed by executing
only the desired OS kernel functionality

e Accurate evaluation by integrating
Virtuoso with an architectural simulator
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Imitation-based Simulation Methodology

Lightweight Userspace Kernel

Desired Memory Management
modules written in a high-level language

"
Y

Binary Instrumentation

+ Imitates the OS-level add R1, R1,R2
Overhead load R1, [OXA]
Simulator Core Model

Userspace Kernel
Instruction Stream
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Imitation-based Simulation Methodology

Lightweight Userspace Kernel

Desired Memory Management
modules written in a high-level language

Functional

Outcome
+ Enables emulation

of kernel modules

Simulator Core Model
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Workflow: Page Fault Handling Example

Example Userspace Kernel

Transparent Buddy
Huge Pages Allocator
Page Fault Handler
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Workflow: Page Fault Handling Example

Example Userspace Kernel @

Page Fault Handler
l : @ 9 Workload
Binary o Page Fault Memory
Instrumentation e Acass
MMU «Translation Core
Model Reaest Model

Example: Sniper Simulator [Carlson+ TA005152]



Workflow: Page Fault Handling Example

Example Userspace Kernel

Page Fault Handler
Workload
Page Fault Memory
Outcome Access
MMU ._Translation Core
Model Request Model

Example: Sniper Simulator [Carlson+ TACO 12]
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MimicOS: Imitating the Linux Kernel

MimicOS modules written in C++

Buddy Radix-based hugetlbfs
Allocator page table g
Transparent

P h
T Swap Space age Cache

More details in the paper

https://arxiv.org/pdf/2403.04635
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VirTool: State-of-the-art VM technigues

Toolset encompassing the HW/SW components
of multiple state-of-the-art VM techniques

-

\_

\

4 page table Software- Page-Size Prediction
designs Managed TLB 2 Memory
Nested MMU 2 Hash-based Tagging Schemes
Support address mapping 2 Contiguity-

5 THP schemes aware Schemes
Policies 2 Intermediate Address Space Schemes
Speculative Translation TLB Prefetching

58



VirTool: State-of-the-art VM techniques

Enables researchers to evaluate
and prototype current and
brand new VM techniques
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VirTool: State-of-the-art VM techniques

Virtuoso is a highly versatile
simulation framework

60



Integrated Virtuoso with 5 Diverse
Architectural Simulators

System-call emulation

gem>5S-SE mode of gem5

[Lowe-Power+ arXiv 2020]
[Binkert+ SIGARCH News 2011]

http://gemb5.org/
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http://gem5.org/

Integrated Virtuoso with 5 Diverse
Architectural Simulators

Ramulator

Focus on main
memory subsystem

[Luo+ CAL 2023]
https://github.com/CMU-SAFARI/ramulator2
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https://github.com/CMU-SAFARI/ramulator2

Integrated Virtuoso with 5 Diverse
Architectural Simulators

Focus on
multicore systems

[Carlson+ TACO 2012]
https://github.com/snipersim/snipersim

Sniper

63


https://github.com/snipersim/snipersim

Integrated Virtuoso with 5 Diverse
Architectural Simulators

ChampSim

Focus on
microarchitecture
[Gober+ arXiv 2022]
https://github.com/ChampSim/ChampSim
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https://github.com/ChampSim/ChampSim

Integrated Virtuoso with 5 Diverse
Architectural Simulators

Focus on

storage devices M QSI m
[Tavakkol+ FAST 2018]

https://github.com/CMU-SAFARI/MQSim
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https://github.com/CMU-SAFARI/MQSim

Validation against a Real System

VIrtuoSO oo  Sniper

Against

Linux Kernel

High-end
OGO  Server-grade
CPU

66



Validation: Instructions Per Cycle (IPC)

OBaseline Sniper B Virtuoso + Sniper @Bgem5-FS

)
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Virtuoso integrated with Sniper improves
IPC modeling accuracy by 21%
compared to baseline Sniper
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Validation: Instructions Per Cycle (IPC)

OBaseline Sniper B Virtuoso + Sniper @Bgem5-FS
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Virtuoso integrated with Sniper achieves IPC
modeling accuracy within 9% of gem5-FS
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Validation: Page Fault Handling Latency

B Virtuoso+Sniper Bgemb5-FS

>
_ 8 100%
3§ .
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2 60%
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=
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S NNC: &P
S P L

Virtuoso integrated with Sniper models the
page fault handling latency with 66% accuracy,

within 15% of gem>b5-FS
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Simulation Speed Comparison

80%

&
i % . Owith MimicOS
235 60%
§.§
(dp) 0
£ 40% 35% .
H—] (o)
28 20% | 13% 207%
m 00 2%
/0 | e— |

ChampSim Sniper Ramulator gemb GMEAN

MimicOS leads to an average 20% simulation time
overhead over the baseline version of the simulator
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Simulation Speed Comparison

80%

o
53 600
23S 60%
c £
2D 40%
g“:’
5 B 20%
o

O with MimicOS

35%

13%

O with Full-blown Linux Kernel

2%

28%

77%

20%

ChampSim  Sniper

Ramulator

gemb

GMEAN

Enabling full-system execution mode in gemb5
leads to 77% simulation time overhead
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Virtuoso’s Versatility

We showcase Virtuoso’s
versatility by evaluating multiple
different use cases

Demonstrate new insights on
state-of-the-art VM techniques

5 use cases in the paper
https://arxiv.org/pdf/2403.04635
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Virtuoso Example Use Cases

Evaluating Different
Page Table Designs

Evaluating Physical Memory
Allocation Policies
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Virtuoso Example Use Cases

Evaluating Different
Page Table Designs
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Evaluation Methodology

Radix: Baseline radix-based page table
ECH?: Elastic Cuckoo Hash-based Page Table

Fragmentation: Number of available 2MB pages
compared to the total number of 2MB pages

Workloads: GraphBIG, XSBench, HPCC

[1] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking
Virtual Memory Translation for Parallelism” ASPLOS 2020

/5



Reduction in PTW Latency

O Radix BECH

1

10% | gy

0% l
100% 98% 96% 94% 92% 90%

Memory Fragmentation Level

Reduction in total PTW
Latency over Radix
N
o
X

As memory fragmentation decreases, the PTW
latency reduction of ECH compared to Radix increases
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Main Memory Interference

2.5x 2.7x

_g18
<E16 52%

@)
S0 14
()
g 212
Ex10 1
Zp

0.8
A

ECH leads to an average 52% increase
in DRAM row buffer conflicts over Radix
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Virtuoso Example Use Cases

Evaluating Physical Memory
Allocation Policies

78



Evaluation Methodology

Buddy: Baseline allocator with the buddy system

Utopia:? Part of memoryis organized using a
hash-based mapping

Workloads: Short-input Short-output LLM inference

L_-'. 00 {r;} BAGEL

Mistral-7B Llama-2-7B Bagel-2.8B

[1] Kanellopoulos et al. “Utopia: Fast and Efficient Address Translation via Hybrid

Restrictive & Flexible Virtual-to-Physical Address Mappings” MICRO 2023 79



Accelerating Memory Allocation

B Utopia - 32MB Hash-based Segment
2.50

2.00
1.50
1.00
0.50
0.00

Physical Memory
Allocation Speedup

Llama-2-7B Mistral-7/B  Bagel-2.8B

Restricting the virtual-to-physical mapping
speeds up memory allocation by up to 2.17x
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More Detalls Iin the Paper

- Detailed description of communication primitives
- Detailed description of MimicOS modules

- Integration methodology with different simulators
- Integration with heterogeneous system simulation

- Evaluation of intermediate address space schemes

- Evaluation of swapping activity and translation latency
In hash-based address mapping schemes

- Evaluation of two additional hash-based page tables

and more to come. ... 81



More Detalls Iin the Paper

Virtuoso: Enabling Fast and Accurate
Virtual Memory Research via an Imitation-based
Operating System Simulation Methodology

Konstantinos Kanellopoulos!
Andreas Kosmas Kakolyris !
Mohammad Sadrosadati' Rakesh Kumar 2

Konstantinos Sgouras
Berkin Kerim Konar !

1 F. Nisa Bostanci!

Rahul Bera!
Nandita Vijaykumar > Onur Mutlu®

1ETH Ziirich 2Norwegian University of Science and Technology  *University of Toronto

Abstract

The unprecedented growth in data demand from emerging
applications has turned virtual memory (VM) into a major
performance bottleneck. VM'’s overheads are expected to
persist as memory requirements continue to increase. Re-
searchers explore new hardware/OS co-designs to optimize
VM across diverse applications and systems. To evaluate
such designs, researchers rely on various simulation method-
ologies to model VM components. Unfortunately, current
simulation tools (i) either lack the desired accuracy in mod-
eling VM’s software components or (ii) are too slow and
complex to prototype and evaluate schemes that span across
the hardware/software boundary.

We introduce Virtuoso, a new simulation framework that
enables quick and accurate prototyping and evaluation of
the software and hardware components of the VM subsystem.
The key idea of Virtuoso is to employ a lightweight userspace
OS kernel, called MimicOS, that (i) accelerates simulation
time by imitating only the desired kernel functionalities, (ii)
facilitates the development of new OS routines that imitate

1 PURE TR TIPS T | 1

simulation time overhead of only 20%, on top of four baseline
architectural simulators. The source code of Virtuoso is freely
available at https://github.com/CMU-SAFARI/Virtuoso.

1 Introduction

Virtual memory (VM) [1-23] is a cornerstone of modern
computing systems, enabling application-transparent physi-
cal memory management, isolation and data sharing. Con-
temporary applications (e.g., [24-45]) exhibit different char-
acteristics that stress the VM subsystem. We classify these
workloads into two broad categories: (i) long-running work-
loads (i.e., execution time larger than 100s of seconds) [24, 28—
31, 33-35] with large data footprints and irregular memory
access patterns, that exhibit high address translation over-
heads, and (ii) short-running workloads (i.e., execution time
often lower than 1 second) [36-45] whose execution time
does not amortize the overheads of system software opera-
tions (e.g., physical memory allocation). Multiple prior works
and industrial studies [46—57] have shown that address trans-

https://arxiv.org/pdf/2403.04635
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Virtuoso Is Open-Source

= o CMU-SAF AR Virtuoso

<> Code (5) waues 1 11 Pl requests ») Actiors  [15 Projects (0 Security ~ wights @ Settings

Virtuoso

2 LanPes - ® Unwatch

P main - F 18anch © 0 Tags

e -

M konkanelle Update README md O 6 Commins
B scripts Virtuoes 1

B siemsator)sniper Fiand READM

Y gtignore Virtuess 1.0

Y READNE md

(I README

# Research via an Imitation-based Operating System

Virtuoso: Enabling Fast and Accurate Virtual Memory
Simulation Methodology

This repository provides all the necessary fes and instructions 10 reproduce the results of ouwr ASPLOS 2025

https://github.com/CMU-SAFARI/Virtuoso




Virtuoso Website — Getting Started

Virtuoso

Fast and Accurate Virtual Memory Research

A new simulation framework for fast and accurate prototyping of virtual
memory designs through an imitation-based OS methodology

N ‘¢ @ N

Fast & Lightweight Accurate Modular & Versatile

https://github.com/CMU-SAFARI/Virtuoso/website




Virtuoso Website - Documentation

6‘ Virtuoso Tutorial

Virtuoso Quick Startup
MMU Designs
Baseline MMU
Page Table Walker
Memory Access Flow
Memory Tagging
Page Fault Handling
Page Table Designs
Physical Memory Allocators
Tutorial - Basics
Tutorial - Extras

TLB Subsystem

Blog

L]

Virtuoso Quick Startup

Let's try to setup Virtuoso in less than 5 minutes.

Getting Started

Get started by cloning the repo from Github
$ git clone https://github.com/CMUSAFARI/Virtuoso

This repo contains:

VvV VvV vV V V VvV V vV

« The baseline architectural simulator, Sniper in our case citation for Sniper + links to website and documentation

Packages & System Requirements

* Sniper Multicore Simulator
We strongly suggest you become familiar with Sniper before we jump into Virtuoso

« (Strongly Recommended) Docker runtime to avoid dependencies
* libxed

« .. all packages related to Virtuoso and Sniper

https://safari.ethz.ch/virtuoso
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Virtuoso Website — Incoming Features

2025-04-02: Initial Release
« Virtuoso Integration:
[Sniper Multi-Core Simulator] (https://github.com/snipersim/)
+« MMU Models:

i. MMU Baseline:
* Page Walk Caches

« Configurable TLB hierarchy.
« Configurable Page Walk Cache (PWC) hierarchy
« Large page prediction based on Papadopoulou et al,
i, MMU Speculation: Speculative address translation as described in SpecTLB
iil, MMU Software-Managed TLB: Software-managed L3 TLB as described in POM-TLEB
Iv. MMU Utopia: Implements Utopla
v. MMU Midgard: Implements Midgard
vi. MMU RMM (and Direct Segments): Implements RMM
vil, MMU Virtualized: Nested Paging and Nested Page Tables (NPT) for modern hypervisors

« Page Table Designs:

|, Page Table Baseline: Radix page table with configurable page sizes
il, Range Table: B++ Tree-like translation table for virtual-to-physical address ranges
iil, Hash Don't Cache: Open-addressing hash-based page table
Iv. Conventional Hash-Based: Chain-based hash table design
v. ECH: Cuckoo hashing-based organization of the page table
vi. RobinHood: Open-addressing with element re-ordering

« Memory Allocation Policies:

I, Reservation-Based THP: Implements reservation-based Transparent Huge Pages

https://safari.ethz.ch/virtuoso
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Conclusion
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VM causes high overheads
in emerging workloads
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VIrtuoso

New simulation framework that enables
fast and accurate prototyping and evaluation of
the software and hardware components of VM

https://github.com/CMU-SAFARI/Virtuoso



Imitation-based
Simulation Methodology

6 Rapid development and versatility
9 High simulation speed

9 Accurate simulation

90



VIIF10O0

Integration with
5 simulators

A\»
’ 1

Toolset encdmpassing
multiple state-of-the-art

Sniper MQSim VM techniques

gem>b5-SE Ramulator

ChampSim

Validation against high-end server-grade CPU

Implemented 5 diverse use cases to
showcase Virtuoso’s versatility

https://github.com/CMU-SAFARI/Virtuoso
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We hope Virtuoso establishes a
common ground for VM research
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Github

22l & Virtuoso
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Why do we need
Virtual Memory?

94



2,
©

Virtual Memory Benefits

Programmer-transpa rent
memory management

Process isolation

Data sharing between processes
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How does Virtual
Memory work?
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App 1 App 2

0] (]

Virtual Address Virtual Address
Space #1 Space #2

Physical Address Space (e.g., physical memory)
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App 1 App 2

0] (]

Virtual Address Virtual Address
Space #1 Space #2
Page Page Page Page

(e.g., 4KB)

Page Page Page Page Page

Physical Address Space (e.g., physical memory)



App 1 App 2

0] (]

Virtual Address Virtual Address
Space #1 Space #2
Y Y 7 I

\ \ / I
\ \ / I
\ \ / I
\ \ /
\ \ / [
\ \ / [
\ \ / I
\ \ / I
Y Y | 4 \ 4

Physical Address Space
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App 1 App 2

0] (]

Virtual Address Virtual Address
Space #1 Space #2
) ) 7 I
\ \ / I
\ \ /

Virtual-to-Physical Address Mapping

Y Y | 4 \ 4

Physical Address Space
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Who establishes
virtual-to-physical
address mappings?
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App

<>

Virtual Address Space

Map virtual addresses
a to physical memory

|

Physical Memory
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Fault

Virtual address
not mapped to
physical memory
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App

<>

Virtual Address Space

| Operating
System

l

= !

Handles memory
allocation '

-~

Physical Memory
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@ Application is stalled

Operating System

Minor Fault Major Fault
Finds free space in Fetches data
physical memory from the disk
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| | Store/Update the
Operating virtual-to-physical address mapping

System |

Page Table

Physical Memory
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How does the CPU
discover the virtual-
to-physical mapping?
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Address Translation

—| \'wmd Page
— W Table
Virtual
Core Address Memory Memory
> Management Unit Hierarchy

Hardware unit responsible
for address translation
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Address Translation

Memory Management Unit

TLB Hierarchy

\

Miss

Page Table
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Validation against a Real System

Validation Metrics

MMU Instructions Page Fault
Performance  Per Cycle Latency
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Validation: L2 TLB MPKI
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Virtuoso integrated with Sniper models
the L2 TLB misses per kilo instructions

of a real high-end CPU with 82% accuracy
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Validation: Page Table Walk Latency

86%

PTW Latency
Modelling Accuracy
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Virtuoso integrated with Sniper models the

Page Table Walk latency of a real high-end CPU

with 86% accuracy
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Instructions vs Simulation Time

Normalized

Simulation Time
= NN

ONRONRO

10 20 30 40 50
Fraction of Instructions Executed by MimicOS

o

Linear relationship between instructions
executed by MimicOS and simulation time
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