Virtuoso

Enabling Fast and Accurate Virtual Memory
Research with an Imitation-based
Operating System Simulation Methodology

Konstantinos Kanellopoulos Konstantinos Sgouras F. Nisa Bostanci
Andreas Kosmas Kakolyris Berkin Kerim Konar Rahul Bera
Mohammad Sadrosadati Rakesh Kumar Nandita Vijaykumar Onur Mutlu

https://aithub.com/CMU-SAFARI/Virtuoso

SAFARI Researc

aaaaaaaaaa

SAFARI ETHzirich & 5xs%io ® NTNU

GPUs

B

CPUs

Virtual
Memory

Virtual Memory
Is a cornerstone of
modern computing systems

Does Virtual Memory
come for free?

Virtual memory causes high
performance overheads

Memory Address
Allocation Translation

2,

Memory Allocation Overheads

e Emerging Workloads

D® P i@ M

Function-as-a-Service Short-input Short-output
Large Language Model Inference

Short Running (<1s) High spawning throughput

Time spentin OS cannot be amortized due to short execution

Allocation Routines

Time

Physical Memory Allocation Overheads

—_
o
o

B Physical Memory Allocation

o0
o

)]
o

N
o

o

Fraction of total execution time (%)
5

JSON
AES
IMG-RES
WCNT
DB
Llama
Bagel
Mistral
3D Transp
Hadamard
2D-Sum
GMEAN

On average 32% of execution time (measured
in a real system) spent on physical memory allocation

7

Address Translation Overheads

9 Emerging Workloads

43

et
Sparse Machine Bioinformatics Graph Analytics Databases
Learning

Long Running (>100s) Irregular Memory Accesses

High Latency Address Translation

TLB Miss] Page Table Walk Data Fetching

Time

Address Translation Overheads

(©))
o

OAddress Translation

H
o

N
o

o

Fraction of total execution time (%)

BC

BFS
CC
KCORE
GC

PR
SSSP
TC

XS
RND
GMEAN

On average 26% of execution time (measured
In a real system) is spent on address translation

9

High VM Overheads

40
20

Fraction of execution time (%)

B Minor Page Faults 0OAddress Translation
NEFMNMOPT T OO Q0 Z w L o Aoz
MWzAESEEESeZ: |IRROEGREBRRSZ
<rQ0 ®©88uvaec £ gu IS) o W
G 0= eg=20= $) 72 =
S S ® o O X O
-— |—I %
o
Short Running Long Running

VM causes high overheads
In diverse emerging workloads

10

Virtual Memory overheads are
expected to increase as we transition
to larger physical address spaces

11

Going into the Future

0 Unified Virtual Memory

GPU Memory D CPU Memory

High Bandwidth High Capacity
Limited Capacity Low cost/bit

Going into the Future

0 Unified Virtual Memory

GPU Memory D CPU Memory

High Bandwidth High Capacity
Limited Capacity Low cost/bit

@ Direct Storage Access

1nnnnn
l) INTEL" OPTANE” §

:

3121, v L

High-end SSD

Byte-addressable
interface

Going into the Future
0 Unified Virtual Memory

GPU Memory D CPU Memory

High Bandwidth High Capacity
Limited Capacity Low cost/bit

g Direct Storage Access Memory Disaggregation e

1nnnnn
)) INTEL OPTANE™ §

|

High-end SSD

Access to both local and remote

Byte-addressable memory modules

interface

14

@e=en
Researchers try to
save the day

15

Co-design the hardware and the OS
to reduce VM overheads

Software-managed TLB Subsystem

Nagle+ ISCA 1993

Design Tradeoffs for Software-Managed TLBs Ryoo+ ISCA 2017

Rethinking TLB Designs in Virtualized Environments:
A Very Large Part-of-Memory TLB

Marathe+ MICRO 2017

CSALT: Context Switch Aware Large TLB
- T Jaleel+ TACO 2019

DUCATI: High-performance Address Translation
by Extending TLB Reach of GPU-accelerated Systems

16

Co-design the hardware and the OS
to reduce VM overheads

Leveraging VA-to-PA Contiguity
Pham+ MICRO 2012

CoLT: Coalesced Large-Reach TLB
oL+ Coalesced Large-Reach 1LDBs Karakostas*,Ghandhi*+ISCA 2015

Redundant Memory Mappings for Fast Access to Large Memories

Ausavarungnirun+ MICRO 2017

Mosaic: An Application-Transparent

Hardware-Software Cooperative Memory Manager for GPUs
Zhao+ ISCA 2022

Contiguitas: The Pursuit of Physical Memory Contiguity in
Datacenters

17

Co-design the hardware and the OS
to reduce VM overheads

Accelerating Memory Allocation

Lee+ ISCA 2020
A Case for Hardware-Based Demand Paging

Tirumalasetty+ TACO 2022

Reducing Minor Page Fault Overheads through Enhanced
Page Walker

Wang+ MICRO 2023

Memento: Architectural Support for Ephemeral Memory
Management in Serverless Environments

18

Co-design the hardware and the OS
to reduce VM overheads

Alternative Address Mappings

Picorel+ PACT 2016

Near-Memory Address Translation
Gosakan+ ASPLOS 2023
Mosaic Pages: Big TLB Reach with Small Pages

Kanellopoulos+ MICRO 2023

Utopia: Fast and Efficient Address Translation via Hybrid |
Restrictive & Flexible Virtual-to-Physical Address Mappings

19

Co-design the hardware and the OS
to reduce VM overheads

Rethinking the Page Table Design

Employing Multiple Page Sizes

and more...

20

Co-design the hardware and the OS

toreduce VM overheads

Rethinking the Page
Table Design

xR

Software-managed
TLB Subsystem

Employing multiple page sizes

Leverage VA-to- AI(\:/ICeenlwec:?;e
PA Contiguity Allocation

Alternative Address Mappings

Wide range of hardware-OS co-design
techniques that aim to improve virtual memory

21

Effectively evaluating VM techniques
Is crucial for progress in the domain

22

Challenges in Evaluation

Interplay between system components

Software-level
Memory Management

<\

Hardware System
MMU Components

23

Example: Page Table and Large Pages

Page Table OS Allocation
Size Policy

=4

Size of the page table depends on the
number of large pages provided by the OS

24

Example: Page Table and Large Pages

OS Kernel

”I can provide plenty Page Table
of large pages” A

Entries

> <

Free

2MB Pages '

25

Example: Page Table and Large Pages

OS Kernel
“Fragmentation is rising so

| cannot allocate 2MB pages”

4KB Pages

Entries

Page Table

A

26

Page Table and Memory Interference

DRAM Bank

Page Table
Entries

Program
Data

Program
Data

27

Page Table and Memory Interference

DRAM Bank

Conflict

Row |
Buffer

28

Page Table and Memory Interference

DRAM Bank

Row |
Buffer

45

Page Table and Memory Interference

DRAM Bank

Conflict

G

30

Page Table and Memory Interference

Frequent accesses
to page table entries cause
high interference in main memory

31

Challenges in Evaluation

Software-level
Memory Management

<\

Hardware System
MMU Components

32

Challenges in Evaluation

Evaluating the interplay between
components is critical when assessing
current and new VM techniques

33

Researchers have
architectural simulators
at their disposal

34

Existing Architectural Simulators

Two main classes of simulators

? Emulation-based

2,

Full-system

35

Emulation-based Simulators

Ramulator 78im

Sniper ChampSim

High simulation speed with a focus on
modeling microarchitectural features

Limited support for Analytically estimate
OS primitives VM Overheads

36

Analytical Estimation of VM Overheads

First-order Models

Simple mathematical or algorithmic approximation

Example

Page Table Walk Latency =100 cycles (fixed)
Minor Page Fault Latency = 2000 cycles (fixed)

Is this good enough?

37

Variable PTW Latency

N
-
o

Low Memory
Intensity

- -
N O
o O

Average PTW
Latency (cycles)
(00}
o

High Memory
Intensity

H
o

o

53 Benchmarks with Varying Memory Intensity Levels

Average PTW Latency (measured in a real
system) ranges from 33 up to 184 cycles

38

Variable Memory Allocation Latency

THP
Enabled

THP
Disabled

39

Variable Memory Allocation Latency

Contribution of outliers to total memory allocation latency: 67%

THP |
Enabled

Physical Memory Allocation Latency (ps) in Log Scale

The latency of handling memory allocation
(measured in a real system)

exhibits high variability
40

Variable Memory Allocation Latency

Contri;bution of outliel:'s to total minoripage fault laten@:y: 25%

THP ——

Disabled | 1

1 10 100 1000 10000
Physical Memory Allocation Latency (ps) in Log Scale

The latency of handling memory allocation
(measured in a real system)

exhibits high variability
41

Analytical Estimation of VM Overheads

Use of First-order Models

First-order models do not accurately
capture the dynamic nature of VM overheads

42

Full-System Simulators

gem>S-FS

QFlex PTLsim

Enable the execution of a full-blown OS
on top of a hardware simulator

Low simulation

speed Hard to develop

43

Existing Architectural Simulators

Two main classes of simulators

? Emulation-based

2,

Full-System

44

Existing Architectural Simulators

Simulation Speed

Emulation- AO/
based o<°

Accuracy in Estimating VM overheads

45

Existing Architectural Simulators

Simulation Speed

Emulation-
based

Our goal

6

Full-

Accuracy in Estimating VM overheads

46

Enabling Fast and Accurate VM Research

New simulation framework that enables
fast and accurate prototyping and evaluation of
the software and hardware components of VM

47

Imitation-based Simulation Methodology

Lightweight Userspace Kernel
written in a high-level programming language

“I will try to imitate
the full-blown OS”

Choose OS modules only related
to the desired research

48

Imitation-based Simulation Methodology

Monitoring Full-blown Kernel Interrupts

Thread Scheduler Managing NUMA

Data Sharing Transparent
Support Huge Pages
Swapping Virtual Memory
Area Handling
Cgroups

Boot process Protection

Block device
driver SLAB Allocator hugetlbfs

Imitation-based Simulation Methodology

Lightweight Userspace Kernel

Swapping

Virtual Memory
Area Handling

Transparent
Huge Pages

50

Imitation-based Simulation Methodology

0 Rapid development and prototyping

9 High simulation speed by executing
only the desired OS kernel functionality

e Accurate evaluation by integrating
Virtuoso with an architectural simulator

51

Imitation-based Simulation Methodology

Lightweight Userspace Kernel

Desired Memory Management
modules written in a high-level language

"
Y

Binary Instrumentation

+ Imitates the OS-level add R1, R1,R2
Overhead load R1, [OXA]
Simulator Core Model

Userspace Kernel
Instruction Stream

52

Imitation-based Simulation Methodology

Lightweight Userspace Kernel

Desired Memory Management
modules written in a high-level language

Functional

Outcome
+ Enables emulation

of kernel modules

Simulator Core Model

53

Workflow: Page Fault Handling Example

Example Userspace Kernel

Transparent Buddy
Huge Pages Allocator
Page Fault Handler

54

Workflow: Page Fault Handling Example

Example Userspace Kernel @

Page Fault Handler
l : @ 9 Workload
Binary o Page Fault Memory
Instrumentation e Acass
MMU «Translation Core
Model Reaest Model

Example: Sniper Simulator [Carlson+ TA005152]

Workflow: Page Fault Handling Example

Example Userspace Kernel

Page Fault Handler
Workload
Page Fault Memory
Outcome Access
MMU ._Translation Core
Model Request Model

Example: Sniper Simulator [Carlson+ TACO 12]
56

MimicOS: Imitating the Linux Kernel

MimicOS modules written in C++

Buddy Radix-based hugetlbfs
Allocator page table g
Transparent

P h
T Swap Space age Cache

More details in the paper

https://arxiv.org/pdf/2403.04635

57

VirTool: State-of-the-art VM technigues

Toolset encompassing the HW/SW components
of multiple state-of-the-art VM techniques

-

_

\

4 page table Software- Page-Size Prediction
designs Managed TLB 2 Memory
Nested MMU 2 Hash-based Tagging Schemes
Support address mapping 2 Contiguity-

5 THP schemes aware Schemes
Policies 2 Intermediate Address Space Schemes
Speculative Translation TLB Prefetching

58

VirTool: State-of-the-art VM techniques

Enables researchers to evaluate
and prototype current and
brand new VM techniques

59

VirTool: State-of-the-art VM techniques

Virtuoso is a highly versatile
simulation framework

60

Integrated Virtuoso with 5 Diverse
Architectural Simulators

System-call emulation

gem>5S-SE mode of gem5

[Lowe-Power+ arXiv 2020]
[Binkert+ SIGARCH News 2011]

http://gemb5.org/

61

http://gem5.org/

Integrated Virtuoso with 5 Diverse
Architectural Simulators

Ramulator

Focus on main
memory subsystem

[Luo+ CAL 2023]
https://github.com/CMU-SAFARI/ramulator2

62

https://github.com/CMU-SAFARI/ramulator2

Integrated Virtuoso with 5 Diverse
Architectural Simulators

Focus on
multicore systems

[Carlson+ TACO 2012]
https://github.com/snipersim/snipersim

Sniper

63

https://github.com/snipersim/snipersim

Integrated Virtuoso with 5 Diverse
Architectural Simulators

ChampSim

Focus on
microarchitecture
[Gober+ arXiv 2022]
https://github.com/ChampSim/ChampSim

64

https://github.com/ChampSim/ChampSim

Integrated Virtuoso with 5 Diverse
Architectural Simulators

Focus on

storage devices M QSI m
[Tavakkol+ FAST 2018]

https://github.com/CMU-SAFARI/MQSim

65

https://github.com/CMU-SAFARI/MQSim

Validation against a Real System

VIrtuoSO oo Sniper

Against

Linux Kernel

High-end
OGO Server-grade
CPU

66

Validation: Instructions Per Cycle (IPC)

OBaseline Sniper B Virtuoso + Sniper @Bgem5-FS

)
£ 100%
(&)
< 80%
@)}
cC
= 60%
S
= 40%
(@
 20%
O) O &£ O R KR O S =
© = >

Virtuoso integrated with Sniper improves
IPC modeling accuracy by 21%
compared to baseline Sniper
67

Validation: Instructions Per Cycle (IPC)

OBaseline Sniper B Virtuoso + Sniper @Bgem5-FS

o

£ 100%

(&)

< 80%

@)}

cC

= 60%

5

= 40%

(@

Q@ 20%
O O O L& L L K O ©
¥ K g o L Ky

© S 0@

Virtuoso integrated with Sniper achieves IPC
modeling accuracy within 9% of gem5-FS

68

Validation: Page Fault Handling Latency

B Virtuoso+Sniper Bgemb5-FS

>
_ 8 100%
3§ .
DS 80%
2 60%
A o
3 40%
=
20%
SR 2R) @ LR Q& & &
S NNC: &P
S P L

Virtuoso integrated with Sniper models the
page fault handling latency with 66% accuracy,

within 15% of gem>b5-FS
69

Simulation Speed Comparison

80%

&
i % . Owith MimicOS
235 60%
§.§
(dp) 0
£ 40% 35% .
H—] (o)
28 20% | 13% 207%
m 00 2%
/0 | e— |

ChampSim Sniper Ramulator gemb GMEAN

MimicOS leads to an average 20% simulation time
overhead over the baseline version of the simulator

70

Simulation Speed Comparison

80%

o
53 600
23S 60%
c £
2D 40%
g“:’
5 B 20%
o

O with MimicOS

35%

13%

O with Full-blown Linux Kernel

2%

28%

77%

20%

ChampSim Sniper

Ramulator

gemb

GMEAN

Enabling full-system execution mode in gemb5
leads to 77% simulation time overhead

71

Virtuoso’s Versatility

We showcase Virtuoso’s
versatility by evaluating multiple
different use cases

Demonstrate new insights on
state-of-the-art VM techniques

5 use cases in the paper
https://arxiv.org/pdf/2403.04635

72

Virtuoso Example Use Cases

Evaluating Different
Page Table Designs

Evaluating Physical Memory
Allocation Policies

73

Virtuoso Example Use Cases

Evaluating Different
Page Table Designs

74

Evaluation Methodology

Radix: Baseline radix-based page table
ECH?: Elastic Cuckoo Hash-based Page Table

Fragmentation: Number of available 2MB pages
compared to the total number of 2MB pages

Workloads: GraphBIG, XSBench, HPCC

[1] Skarlatos et al. “Elastic Cuckoo Page Tables: Rethinking
Virtual Memory Translation for Parallelism” ASPLOS 2020

/5

Reduction in PTW Latency

O Radix BECH

1

10% | gy

0% l
100% 98% 96% 94% 92% 90%

Memory Fragmentation Level

Reduction in total PTW
Latency over Radix
N
o
X

As memory fragmentation decreases, the PTW
latency reduction of ECH compared to Radix increases

76

Main Memory Interference

2.5x 2.7x

_g18
<E16 52%

@)
S0 14
()
g 212
Ex10 1
Zp

0.8
A

ECH leads to an average 52% increase
in DRAM row buffer conflicts over Radix

77

Virtuoso Example Use Cases

Evaluating Physical Memory
Allocation Policies

78

Evaluation Methodology

Buddy: Baseline allocator with the buddy system

Utopia:? Part of memoryis organized using a
hash-based mapping

Workloads: Short-input Short-output LLM inference

L_-'. 00 {r;} BAGEL

Mistral-7B Llama-2-7B Bagel-2.8B

[1] Kanellopoulos et al. “Utopia: Fast and Efficient Address Translation via Hybrid

Restrictive & Flexible Virtual-to-Physical Address Mappings” MICRO 2023 79

Accelerating Memory Allocation

B Utopia - 32MB Hash-based Segment
2.50

2.00
1.50
1.00
0.50
0.00

Physical Memory
Allocation Speedup

Llama-2-7B Mistral-7/B Bagel-2.8B

Restricting the virtual-to-physical mapping
speeds up memory allocation by up to 2.17x

80

More Detalls Iin the Paper

- Detailed description of communication primitives
- Detailed description of MimicOS modules

- Integration methodology with different simulators
- Integration with heterogeneous system simulation

- Evaluation of intermediate address space schemes

- Evaluation of swapping activity and translation latency
In hash-based address mapping schemes

- Evaluation of two additional hash-based page tables

and more to come. ... 81

More Detalls Iin the Paper

Virtuoso: Enabling Fast and Accurate
Virtual Memory Research via an Imitation-based
Operating System Simulation Methodology

Konstantinos Kanellopoulos!
Andreas Kosmas Kakolyris !
Mohammad Sadrosadati' Rakesh Kumar 2

Konstantinos Sgouras
Berkin Kerim Konar !

1 F. Nisa Bostanci!

Rahul Bera!
Nandita Vijaykumar > Onur Mutlu®

1ETH Ziirich 2Norwegian University of Science and Technology *University of Toronto

Abstract

The unprecedented growth in data demand from emerging
applications has turned virtual memory (VM) into a major
performance bottleneck. VM'’s overheads are expected to
persist as memory requirements continue to increase. Re-
searchers explore new hardware/OS co-designs to optimize
VM across diverse applications and systems. To evaluate
such designs, researchers rely on various simulation method-
ologies to model VM components. Unfortunately, current
simulation tools (i) either lack the desired accuracy in mod-
eling VM’s software components or (ii) are too slow and
complex to prototype and evaluate schemes that span across
the hardware/software boundary.

We introduce Virtuoso, a new simulation framework that
enables quick and accurate prototyping and evaluation of
the software and hardware components of the VM subsystem.
The key idea of Virtuoso is to employ a lightweight userspace
OS kernel, called MimicOS, that (i) accelerates simulation
time by imitating only the desired kernel functionalities, (ii)
facilitates the development of new OS routines that imitate

1 PURE TR TIPS T | 1

simulation time overhead of only 20%, on top of four baseline
architectural simulators. The source code of Virtuoso is freely
available at https://github.com/CMU-SAFARI/Virtuoso.

1 Introduction

Virtual memory (VM) [1-23] is a cornerstone of modern
computing systems, enabling application-transparent physi-
cal memory management, isolation and data sharing. Con-
temporary applications (e.g., [24-45]) exhibit different char-
acteristics that stress the VM subsystem. We classify these
workloads into two broad categories: (i) long-running work-
loads (i.e., execution time larger than 100s of seconds) [24, 28—
31, 33-35] with large data footprints and irregular memory
access patterns, that exhibit high address translation over-
heads, and (ii) short-running workloads (i.e., execution time
often lower than 1 second) [36-45] whose execution time
does not amortize the overheads of system software opera-
tions (e.g., physical memory allocation). Multiple prior works
and industrial studies [46—57] have shown that address trans-

https://arxiv.org/pdf/2403.04635

82

Virtuoso Is Open-Source

= o CMU-SAF AR Virtuoso

<> Code (5) waues 1 11 Pl requests ») Actiors [15 Projects (0 Security ~ wights @ Settings

Virtuoso

2 LanPes - ® Unwatch

P main - F 18anch © 0 Tags

e -

M konkanelle Update README md O 6 Commins
B scripts Virtuoes 1

B siemsator)sniper Fiand READM

Y gtignore Virtuess 1.0

Y READNE md

(I README

Research via an Imitation-based Operating System

Virtuoso: Enabling Fast and Accurate Virtual Memory
Simulation Methodology

This repository provides all the necessary fes and instructions 10 reproduce the results of ouwr ASPLOS 2025

https://github.com/CMU-SAFARI/Virtuoso

Virtuoso Website — Getting Started

Virtuoso

Fast and Accurate Virtual Memory Research

A new simulation framework for fast and accurate prototyping of virtual
memory designs through an imitation-based OS methodology

N ‘¢ @ N

Fast & Lightweight Accurate Modular & Versatile

https://github.com/CMU-SAFARI/Virtuoso/website

Virtuoso Website - Documentation

6‘ Virtuoso Tutorial

Virtuoso Quick Startup
MMU Designs
Baseline MMU
Page Table Walker
Memory Access Flow
Memory Tagging
Page Fault Handling
Page Table Designs
Physical Memory Allocators
Tutorial - Basics
Tutorial - Extras

TLB Subsystem

Blog

L]

Virtuoso Quick Startup

Let's try to setup Virtuoso in less than 5 minutes.

Getting Started

Get started by cloning the repo from Github
$ git clone https://github.com/CMUSAFARI/Virtuoso

This repo contains:

VvV VvV vV V V VvV V vV

« The baseline architectural simulator, Sniper in our case citation for Sniper + links to website and documentation

Packages & System Requirements

* Sniper Multicore Simulator
We strongly suggest you become familiar with Sniper before we jump into Virtuoso

« (Strongly Recommended) Docker runtime to avoid dependencies
* libxed

« .. all packages related to Virtuoso and Sniper

https://safari.ethz.ch/virtuoso
85

Virtuoso Website — Incoming Features

2025-04-02: Initial Release
« Virtuoso Integration:
[Sniper Multi-Core Simulator] (https://github.com/snipersim/)
+« MMU Models:

i. MMU Baseline:
* Page Walk Caches

« Configurable TLB hierarchy.
« Configurable Page Walk Cache (PWC) hierarchy
« Large page prediction based on Papadopoulou et al,
i, MMU Speculation: Speculative address translation as described in SpecTLB
iil, MMU Software-Managed TLB: Software-managed L3 TLB as described in POM-TLEB
Iv. MMU Utopia: Implements Utopla
v. MMU Midgard: Implements Midgard
vi. MMU RMM (and Direct Segments): Implements RMM
vil, MMU Virtualized: Nested Paging and Nested Page Tables (NPT) for modern hypervisors

« Page Table Designs:

|, Page Table Baseline: Radix page table with configurable page sizes
il, Range Table: B++ Tree-like translation table for virtual-to-physical address ranges
iil, Hash Don't Cache: Open-addressing hash-based page table
Iv. Conventional Hash-Based: Chain-based hash table design
v. ECH: Cuckoo hashing-based organization of the page table
vi. RobinHood: Open-addressing with element re-ordering

« Memory Allocation Policies:

I, Reservation-Based THP: Implements reservation-based Transparent Huge Pages

https://safari.ethz.ch/virtuoso

86

Conclusion

87

VM causes high overheads
in emerging workloads

88

VIrtuoso

New simulation framework that enables
fast and accurate prototyping and evaluation of
the software and hardware components of VM

https://github.com/CMU-SAFARI/Virtuoso

Imitation-based
Simulation Methodology

6 Rapid development and versatility
9 High simulation speed

9 Accurate simulation

90

VIIF10O0

Integration with
5 simulators

A\»
’ 1

Toolset encdmpassing
multiple state-of-the-art

Sniper MQSim VM techniques

gem>b5-SE Ramulator

ChampSim

Validation against high-end server-grade CPU

Implemented 5 diverse use cases to
showcase Virtuoso’s versatility

https://github.com/CMU-SAFARI/Virtuoso

91

We hope Virtuoso establishes a
common ground for VM research

92

Github

22l & Virtuoso

] EH y
Enabling Fast and Accurate Virtual I\/Iemory

Research with an Imitation-based
Operating System Simulation Methodology

Konstantinos Kanellopoulos Konstantinos Sgouras F. Nisa Bostanci
Andreas Kosmas Kakolyris Berkin Kerim Konar Rahul Bera
Mohammad Sadrosadati Rakesh Kumar Nandita Vijaykumar Onur Mutlu

https://aithub.com/CMU-SAFARI/Virtuoso

§Aﬁfﬂgl ETHzirich & T‘*‘Sﬁé‘;“ﬁ% ® NTNU

afari.ethz. h

Why do we need
Virtual Memory?

94

2,
©

Virtual Memory Benefits

Programmer-transpa rent
memory management

Process isolation

Data sharing between processes

95

How does Virtual
Memory work?

96

App 1 App 2

0] (]

Virtual Address Virtual Address
Space #1 Space #2

Physical Address Space (e.g., physical memory)

97

App 1 App 2

0] (]

Virtual Address Virtual Address
Space #1 Space #2
Page Page Page Page

(e.g., 4KB)

Page Page Page Page Page

Physical Address Space (e.g., physical memory)

App 1 App 2

0] (]

Virtual Address Virtual Address
Space #1 Space #2
Y Y 7 I

\ \ / I
\ \ / I
\ \ / I
\ \ /
\ \ / [
\ \ / [
\ \ / I
\ \ / I
Y Y | 4 \ 4

Physical Address Space

99

App 1 App 2

0] (]

Virtual Address Virtual Address
Space #1 Space #2
)) 7 I
\ \ / I
\ \ /

Virtual-to-Physical Address Mapping

Y Y | 4 \ 4

Physical Address Space

100

Who establishes
virtual-to-physical
address mappings?

101

App

<>

Virtual Address Space

Map virtual addresses
a to physical memory

|

Physical Memory

102

Fault

Virtual address
not mapped to
physical memory

103

App

<>

Virtual Address Space

| Operating
System

l

= !

Handles memory
allocation '

-~

Physical Memory

104

@ Application is stalled

Operating System

Minor Fault Major Fault
Finds free space in Fetches data
physical memory from the disk

105

| | Store/Update the
Operating virtual-to-physical address mapping

System |

Page Table

Physical Memory

106

How does the CPU
discover the virtual-
to-physical mapping?

107

Address Translation

—| \'wmd Page
— W Table
Virtual
Core Address Memory Memory
> Management Unit Hierarchy

Hardware unit responsible
for address translation

108

Address Translation

Memory Management Unit

TLB Hierarchy

\

Miss

Page Table
Walker

Page
Table

(((

Memory
Hierarchy

109

Validation against a Real System

Validation Metrics

MMU Instructions Page Fault
Performance Per Cycle Latency

110

Validation: L2 TLB MPKI

_.100%
_® 82%
g 80%
=<
0 o 60%

T
332 40%
=
20%
F L L FELLC P
Q O S %
© = >

Virtuoso integrated with Sniper models
the L2 TLB misses per kilo instructions

of a real high-end CPU with 82% accuracy
111

Validation: Page Table Walk Latency

86%

PTW Latency
Modelling Accuracy

2 L K& L X &K L 9L

S A A A
~l~c’o 2 OQQ/
Virtuoso integrated with Sniper models the

Page Table Walk latency of a real high-end CPU

with 86% accuracy
112

Instructions vs Simulation Time

Normalized

Simulation Time
= NN

ONRONRO

10 20 30 40 50
Fraction of Instructions Executed by MimicOS

o

Linear relationship between instructions
executed by MimicOS and simulation time

113

	Slide 1: Virtuoso
	Slide 2
	Slide 3
	Slide 4: Does Virtual Memory come for free?
	Slide 5: Memory Allocation
	Slide 6: Memory Allocation Overheads
	Slide 7: Physical Memory Allocation Overheads
	Slide 8: Address Translation Overheads
	Slide 9: Address Translation Overheads
	Slide 10: High VM Overheads
	Slide 11
	Slide 12: Going into the Future
	Slide 13: Going into the Future
	Slide 14: Going into the Future
	Slide 15: Researchers try to save the day
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Challenges in Evaluation
	Slide 24: Example: Page Table and Large Pages
	Slide 25: Example: Page Table and Large Pages
	Slide 26: Example: Page Table and Large Pages
	Slide 27: Page Table and Memory Interference
	Slide 28: Page Table and Memory Interference
	Slide 29: Page Table and Memory Interference
	Slide 30: Page Table and Memory Interference
	Slide 31: Page Table and Memory Interference
	Slide 32: Challenges in Evaluation
	Slide 33: Challenges in Evaluation
	Slide 34: Researchers have architectural simulators at their disposal
	Slide 35: Existing Architectural Simulators
	Slide 36: Emulation-based Simulators
	Slide 37: Analytical Estimation of VM Overheads
	Slide 38: Variable PTW Latency
	Slide 39: Variable Memory Allocation Latency
	Slide 40: Variable Memory Allocation Latency
	Slide 41: Variable Memory Allocation Latency
	Slide 42: Analytical Estimation of VM Overheads
	Slide 43: Full-System Simulators
	Slide 44: Existing Architectural Simulators
	Slide 45: Existing Architectural Simulators
	Slide 46: Existing Architectural Simulators
	Slide 47: Enabling Fast and Accurate VM Research
	Slide 48: Imitation-based Simulation Methodology
	Slide 49: Imitation-based Simulation Methodology
	Slide 50: Imitation-based Simulation Methodology
	Slide 51: Imitation-based Simulation Methodology
	Slide 52: Imitation-based Simulation Methodology
	Slide 53: Imitation-based Simulation Methodology
	Slide 54: Workflow: Page Fault Handling Example
	Slide 55: Workflow: Page Fault Handling Example
	Slide 56: Workflow: Page Fault Handling Example
	Slide 57: MimicOS: Imitating the Linux Kernel
	Slide 58: VirTool: State-of-the-art VM techniques
	Slide 59: VirTool: State-of-the-art VM techniques
	Slide 60: VirTool: State-of-the-art VM techniques
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Validation against a Real System
	Slide 67: Validation: Instructions Per Cycle (IPC)
	Slide 68: Validation: Instructions Per Cycle (IPC)
	Slide 69: Validation: Page Fault Handling Latency
	Slide 70: Simulation Speed Comparison
	Slide 71: Simulation Speed Comparison
	Slide 72: Virtuoso’s Versatility
	Slide 73: Virtuoso Example Use Cases
	Slide 74: Virtuoso Example Use Cases
	Slide 75: Evaluation Methodology
	Slide 76: Reduction in PTW Latency
	Slide 77: Main Memory Interference
	Slide 78: Virtuoso Example Use Cases
	Slide 79: Evaluation Methodology
	Slide 80: Accelerating Memory Allocation
	Slide 81: More Details in the Paper
	Slide 82: More Details in the Paper
	Slide 83: Virtuoso is Open-Source
	Slide 84: Virtuoso Website – Getting Started
	Slide 85: Virtuoso Website - Documentation
	Slide 86: Virtuoso Website – Incoming Features
	Slide 87: Conclusion
	Slide 88
	Slide 89
	Slide 90: Imitation-based Simulation Methodology
	Slide 91
	Slide 92
	Slide 93: Virtuoso
	Slide 94: Why do we need Virtual Memory?
	Slide 95
	Slide 96: How does Virtual Memory work?
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Who establishes virtual-to-physical address mappings?
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107: How does the CPU discover the virtual-to-physical mapping?
	Slide 108
	Slide 109
	Slide 110: Validation against a Real System
	Slide 111: Validation: L2 TLB MPKI
	Slide 112: Validation: Page Table Walk Latency
	Slide 113: Instructions vs Simulation Time

