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Executive Summary

* DRAM (memory) power is significant in today’s systems
— Existing low-voltage DRAM reduces voltage conservatively

* Goal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

* Key experimental observations:

— Errors occur and increase with lower voltage
— Errors exhibit spatial locality
— Higher operation latency mitigates voltage-induced errors

* Voltron:A new DRAM energy reduction mechanism

— Reduce DRAM voltage without introducing errors

— Use a regression model to select voltage that does not degrade
performance beyond a chosen target = 7.3% system energy reduction
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High DRAM Power Consumption

* Problem: High DRAM (memory) power in today’s
systems

>40% in POWERY (Ware+,HPCA'10)  >40% in GPU (Paul+ ISCA'I5)
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Low-Voltage Memory

* Existing DRAM designs to help reduce DRAM power
by lowering supply voltage conservatively
— Power « Voltage?

 DDRJ3L (low-voltage) reduces voltage from 1.5V to
.35V (-10%)

* LPDDR4 (low-power) employs low-power /O
interface with 1.2V (lower bandwidth)

Can we reduce DRAM power and energy by
further reducing supply voltage?
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Goals

1 Understand and characterize the various
characteristics of DRAM under reduced voltage

2 Develop a mechanism that reduces DRAM energy by

lowering voltage while keeping performance loss
within a target
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Key Questions

* How does reducing voltage affect
reliability (errors)?

* How does reducing voltage affect
DRAM latency!

* How do we design a new DRAM energy
reduction mechanism?
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High-Level DRAM Organization
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DRAM Chip Internals
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DRAM Operations

ACTIVATE: Store the row
into the row buffer

READ: Select the target
cache line and drive to CPU

3 PRECHARGE: Prepare the
array for a new ACTIVATE

to I/O
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DRAM Access Latency
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Supply VYoltage Control on DRAM

DRAM Moddfé

Supply Voltage

Adjust the supply voltage to every chip on the same module
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Custom Testing Platform

SOftMC [Hassan+, HPCA'17]: FPGA testing platform to

|) Adjust supply voltage to DRAM modules
2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users

DRAM Rty g=o=r == L0l — ol Voltage

https://github.com/CMU-SAFARI/DRAM-Voltage-Study
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Tested DRAM Modules

* 124 DDR3L (low-voltage) DRAM chips
— 31 SO-DIMMs
— 1.35V (DDR3 uses 1.5V)
— Density: 4Gb per chip
— Three major vendors/manufacturers
— Manufacturing dates: 2014-2016

* |teratively read every bit in each 4Gb chip under a wide
range of supply voltage levels: .35V to |.0V (-26%)
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Reliability Worsens with Lower Voltage
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Source of Errors

Detailed circuit simulations (SPICE) of a DRAM cell array to

model the behavior of DRAM operations
https://github.com/CMU-SAFARI/DRAM-Voltage-Study
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DIMMs Operating at Higher Latency

Measured minimum latency that does not cause errors in DRAM modules
40% of modules
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DRAM requires longer latency to access data

without errors at lower voltage
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Spatial Locality of Errors

A module under 1.175V (12% voltage reduction)
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Other Results in the Paper

* Error-Correcting Codes (ECC)
— ECC (SECDED) is not sufficient to mitigate the errors

* Effect of temperature

— Higher temperature requires higher latency under some
voltage levels

e Data retention time

— Lower voltage does not require more frequent refreshes

Effect of stored data pattern on error rate

— Difference is not statistically significant to draw conclusion
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Summary of Key Experimental Observations

* Voltage-induced errors increase as
voltage reduces further below V_.

* Errors exhibit spatial locality

* Increasing the latency of DRAM operations
mitigates voltage-induced errors
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DRAM Voltage Adjustment to Reduce Energy

* Goal: Exploit the trade-off between voltage and latency
to reduce energy consumption

* Approach: Reduce DRAM voltage reliably

— Performance loss due to increased latency at lower voltage
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Voltron Overview

Voltron

User specifies the Select the minimum DRAM voltage
performance loss target without violating the target

How do we predict performance loss due to
increased latency under low DRAM voltage?
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Linear Model to Predict Performance

Voltron
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Linear Model to Predict Performance

* Application’s characteristics for the model:
— Memory intensity: Frequency of last-level cache misses

— Memory stall time: Amount of time memory requests stall
commit inside CPU

* Handling multiple applications:
— Predict a performance loss for each application

— Select the minimum voltage that satisfies the performance
target for all applications

SAFARI 28



Comparison to Prior Work

* Prior work: Dynamically scale frequency and voltage of the entire
DRAM based on bandwidth demand [David+, ICAC’I I]

— Problem: Lowering voltage on the peripheral circuitry
decreases channel frequency (memory data throughput)

* Voltron: Reduce voltage to only DRAM array without changing
the voltage to peripheral circuitry

Peripheral DRAM Peripheral DRAM

Circuitry Array Circuitry ) Array

Control
Logic

Voltage
2

Prior Work

ﬂ Off-chip channel f Off-chip channel
Low frequency High frequency
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Exploiting Spatial Locality of Errors

Key idea: Increase the latency only for DRAM banks that

observe errors under low voltage

— Benefit: Higher performance
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Voltron Evaluation Methodology

* Cycle-level simulator: Ramulator [cALI5]
— McPAT and DRAMPower for energy measurement
https://github.com/CMU-SAFARI/ramulator

* 4-core system with DDR3L memory

* Benchmarks: SPEC2006,YCSB

* Comparison to prior work: MemDVFS [paid+ icac'ii]
— Dynamic DRAM frequency and voltage scaling

— Scaling based on the memory bandwidth consumption

SAFARI
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Energy Savings with Bounded Performance

MemDVFS ® Voltron

[David+, ICAC’| 1] Meets performance target
8 0
5 7.3% <
o More savings for A < -l
N 6 wn
> high bandwidth 0 9 .
< w0 5 applications — -1.6% -1.8%
55 4 S -3
T S 3.2% S
2 % 3 = 4

1. Voltron improves energy for both low and high
intensity workloads

2. Voliron satisfies the performance loss target via a

regression model
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Conclusion

* DRAM (memory) power is significant in today’s systems

— Existing low-voltage DRAM reduces voltage conservatively

* Goal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

* Key experimental observations:

— Errors occur and increase with lower voltage
— Errors exhibit spatial locality

— Higher operation latency mitigates voltage-induced errors

* Voltron:A new DRAM energy reduction mechanism

— Reduce DRAM voltage without introducing errors

— Use a regression model to select voltage that does not degrade
performance beyond a chosen target = 7.3% system energy reduction
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Errors Rates Across Modules
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Error Density
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Temperature Impact
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Impact on Retention Time
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Derivation of More Precise Latency
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DRAM circuit model validates our experimental

results and provides more precise latency
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Performance Loss Correlation

* Observation: Application’s performance loss due to
higher latency has a strong linear relationship with its
memory intensity

® Memory Non-Intensive ® Memory Intensive

—

ON PO

Voltage = 1.2V (-13%)
DRAM Latency +5%

Performance
Degradation (%)
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Memory Intensity (MPKI)

MPKI| = Last-level cache Misses Per Thousand Instruction 3
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Performance-Aware VYoltage Adjustment

* Build a performance (linear-regression) model to
predict performance loss based on the selected voltage

PredictedLoss = 0y + 0,Latency + 0,App. [tensity + 0;App. StallTime

Latency due to The running application’s
voltage adjustment characteristics

* Os are trained through |51 application samples

* Use the model to select a minimum voltage that
satisfies a performance loss target specified by the user
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Linear Model Accuracy

« RZ2 =0.75/ 0.9 for low and high intensity workloads
* RMSE = 2.8/ 2.5 for low and high intensity workloads
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Dynamic Voltron

Algorithm 1 Array Voltage Selection

1 SELECTARRAYVOLTAGE(target_loss)
2  for each interval > Enter at the end of an interval
3 profile = GetMemoryProfile()
4 NextVarray = 1.35
5 for Varray < 0.9to 1.3 > Search for the smallest Vi, rqy that satisfies the performance loss target
6 predicted_loss = Predict(Latency(Vyrray), profile. MPKI, profile.StallTime) > Predict performance loss
7 if predicted_loss < target_loss then > Compare the predicted loss to the target
8 NextVarray = Varray > Use the current Vg, rqy for the next interval
9 break

10 ApplyVoltage(NextVarray) > Apply the new Vgrrqy for the next interval

46
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Effect of Exploiting Error Locality
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Energy Breakdown
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Heterogeneous Workloads
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Performance Target Sweep
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Sensitivity to Profile Interval Length
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