
High-throughput Pairwise Alignment with the
Wavefront Algorithm using Processing-in-Memory

Safaa Diab1, Amir Nassereldine1, Mohammed Alser2, Juan Gómez Luna2, Onur Mutlu2, Izzat El Hajj1
1American University of Beirut, Lebanon 2ETH Zürich, Switzerland

Abstract—We show that the wavefront algorithm can achieve
higher pairwise read alignment throughput on a UPMEM PIM
system than on a server-grade multi-threaded CPU system.

I. INTRODUCTION AND METHODS

Pairwise sequence alignment is a fundamental computation
in genome analysis. The wavefront algorithm (WFA) [1] is
currently the state-of-the-art gap-affine pairwise alignment
algorithm. Aligning a massive number of genomic sequence
pairs simultaneously on traditional CPU systems is inhibited
by the memory bandwidth bottleneck. Hence, sequence align-
ment is a memory-bound computation [2].

Processing-in-Memory (PIM) architectures [3], [4] promise
to alleviate the memory bandwidth bottleneck. The UPMEM
PIM architecture [5] is the first PIM system to be commer-
cialized in real hardware. The hardware has been shown to
be effective at accelerating memory-bound workloads [6], [7],
including variant calling [2]. In this work, we introduce the
first efficient PIM implementation of WFA for the UPMEM
architecture.

A UPMEM DIMM is a standard DDR4-2400 DIMM con-
sisting of multiple PIM chips. Each PIM chip has multiple
DRAM Processing Units (DPUs). A DPU is a multi-threaded
in-order 32-bit RISC core that can support up to 24 hardware
threads. Each DPU has exclusive access to a 64MB DRAM
bank called Main RAM (MRAM) and a 64KB SRAM-based
scratchpad memory called Working RAM (WRAM) which has
lower latency than MRAM. Programmers explicitly transfer
data between MRAM and WRAM using DMA calls which
must be 8-byte aligned, and perform load and store operations
on WRAM. Different DPUs cannot communicate with each
other. The CPU can communicate with the DPUs by transfer-
ring data to/from their MRAM banks.

In our PIM implementation, one CPU thread distributes
read pairs evenly across DPU MRAMs using parallel data
transfers. Next, each DPU thread aligns multiple read pairs
independently from other DPU threads to avoid the overhead
of inter-thread synchronization. A thread fetches the read pair
from MRAM to WRAM, aligns the reads using WFA, and
writes the result to MRAM. When the DPUs complete, the
CPU thread transfers the results back from the DPU MRAMs.

For fairness, we apply no optimizations to the WFA PIM
implementation compared to the original WFA CPU imple-
mentation. In fact, we remove vectorization from the PIM
version because it is not supported on UPMEM. The main
challenge with implementing the PIM version is managing

This work is supported by the University Research Board of the American
University of Beirut (URB-AUB-104107-26306).

memory on the UPMEM architecture. We replace WFA’s orig-
inal memory allocator with a custom allocator that manages
the WRAM-MRAM hierarchy and overcomes its alignment
restrictions. Moreover, since a DPU’s 64KB WRAM is shared
among all threads, we cannot fit the WFA metadata for all
threads in WRAM without sacrificing the number of threads.
Hence, to unleash the maximum threads, we store the metadata
in MRAM and transfer it to/from WRAM on demand.

II. RESULTS

Fig. 1 compares the execution time of the original WFA
implementation executed on a server-grade CPU with our
proposed PIM implementation executed on a UPMEM system
at full scale, when aligning 5 million pairs of 100bp-long reads
with edit distance thresholds (E) of 2% and 4%. The CPU sys-
tem is dual socket with two Intel Xeon Gold 5120 processors
(56 total threads) and 64 GB of memory. The UPMEM system
has 20 UPMEM DIMMs (2560 DPUs) clocked at 425MHz.

0.01

0.1

1

10

100

1 16 32 48 56 Total Kernel 1 16 32 48 56 Total Kernel

CPU (#threads) PIM CPU (#threads) PIM

Edit distance threshold = 2% Edit distance threshold = 4%

T
im
e

(s
)

Fig. 1. Time for aligning 5 million read pairs using WFA

We make two key observations: (1) Performance does not
scale well with the number of threads on the CPU system,
which is expected since its performance is limited by memory
bandwidth. (2) Our implementation (Total) has 4.87× and
4.05× higher throughput than the 56-thread CPU implemen-
tation for E = 2% and 4%, respectively. The throughput is
even higher (37.4× and 12.3×, respectively) when the CPU-
DPU data transfer time is not accounted for (Kernel). Our
future work includes scaling our implementation to longer read
lengths and higher edit distance thresholds, and comparing to
PIM implementations of other alignment algorithms.

REFERENCES

[1] S. Marco-Sola et al., “Fast Gap-affine Pairwise Alignment using the
Wavefront Algorithm,” Bioinformatics, 2021.

[2] D. Lavenier et al., “Variant Calling Parallelization on Processor-in-
Memory Architecture,” in BIBM, 2020.

[3] O. Mutlu et al., “Processing Data where it Makes Sense: Enabling In-
memory Computation,” MicPro, 2019.

[4] ——, “A Modern Primer on Processing in Memory,” arXiv:2012.03112,
2020.

[5] F. Devaux, “The True Processing in Memory Accelerator,” in HCS, 2019.
[6] J. Gómez-Luna et al., “Benchmarking Memory-Centric Computing Sys-

tems: Analysis of Real Processing-in-Memory Hardware,” in IGSC, 2021.
[7] ——, “Benchmarking a New Paradigm: An Experimental Analysis of a

Real Processing-in-Memory Architecture,” arXiv:2105.03814, 2021.

