
Sequence analysis

Apollo: a sequencing-technology-independent, scalable

and accurate assembly polishing algorithm

Can Firtina 1, Jeremie S. Kim1,2, Mohammed Alser1, Damla Senol Cali2,

A. Ercument Cicek 3, Can Alkan3,* and Onur Mutlu1,2,3,*

1Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland, 2Department of Electrical and Computer Engineering,

Carnegie Mellon University, Pittsburgh, PA 15213, USA and 3Department of Computer Engineering, Bilkent University, Ankara 06800,

Turkey

*To whom correspondence should be addressed.

Associate Editor: Lenore Cowen

Received on February 13, 2019; revised on December 16, 2019; editorial decision on February 14, 2020; accepted on March 11, 2020

Abstract

Motivation: Third-generation sequencing technologies can sequence long reads that contain as many as 2 million
base pairs. These long reads are used to construct an assembly (i.e. the subject’s genome), which is further used in
downstream genome analysis. Unfortunately, third-generation sequencing technologies have high sequencing error
rates and a large proportion of base pairs in these long reads is incorrectly identified. These errors propagate to the
assembly and affect the accuracy of genome analysis. Assembly polishing algorithms minimize such error propaga-
tion by polishing or fixing errors in the assembly by using information from alignments between reads and the as-
sembly (i.e. read-to-assembly alignment information). However, current assembly polishing algorithms can only
polish an assembly using reads from either a certain sequencing technology or a small assembly. Such technology-
dependency and assembly-size dependency require researchers to (i) run multiple polishing algorithms and (ii) use
small chunks of a large genome to use all available readsets and polish large genomes, respectively.

Results: We introduce Apollo, a universal assembly polishing algorithm that scales well to polish an assembly of
any size (i.e. both large and small genomes) using reads from all sequencing technologies (i.e. second- and third-
generation). Our goal is to provide a single algorithm that uses read sets from all available sequencing technologies
to improve the accuracy of assembly polishing and that can polish large genomes. Apollo (i) models an assembly as
a profile hidden Markov model (pHMM), (ii) uses read-to-assembly alignment to train the pHMM with the Forward–
Backward algorithm and (iii) decodes the trained model with the Viterbi algorithm to produce a polished assembly.
Our experiments with real readsets demonstrate that Apollo is the only algorithm that (i) uses reads from any
sequencing technology within a single run and (ii) scales well to polish large assemblies without splitting the assem-
bly into multiple parts.

Availability and implementation: Source code is available at https://github.com/CMU-SAFARI/Apollo.

Contact: calkan@cs.bilkent.edu.tr or onur.mutlu@inf.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput sequencing (HTS) technologies are being widely used
in genomics due to their ability to produce a large amount of sequenc-
ing data at a relatively low cost compared to first-generation sequenc-
ing methods (Sanger et al., 1977). Despite these advantages, HTS
technologies have two significant limitations. The first limitation is that
HTS technologies can only sequence fragments of the genome (i.e.
reads). This results in the need to reconstruct the original full sequence
by either using (i) read alignment, the process of aligning the reads to a
reference genome, a genome representative of all individuals within a

species or (ii) de novo genome assembly, the process of aligning all
reads against each other to construct larger fragments called contigs, by
identifying reads that overlap and combining them. The second limita-
tion of HTS technologies is that they introduce non-negligible insertion,
deletion and substitution errors (i.e. �10–15% error rate) into reads.
Depending on the method for reconstructing the original sequence,
HTS errors often cause either (i) reads aligned to an incorrect location
in the reference genome or (ii) erroneously constructed assemblies.
These two limitations of HTS technologies are partially mitigated with
computationally expensive algorithms such as alignment and assembly
construction. Despite the wide availability of these algorithms,

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3669

Bioinformatics, 36(12), 2020, 3669–3679

doi: 10.1093/bioinformatics/btaa179

Advance Access Publication Date: 13 March 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

http://orcid.org/0000-0002-6548-7863
http://orcid.org/0000-0001-8613-6619
https://github.com/CMU-SAFARI/Apollo
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/

imperfect sequencing technologies still affect the reliability of down-
stream analysis in the genome analysis pipeline (e.g. variant calling).

Based on the average read length and the error profile of their
reads, HTS technologies are roughly categorized into two types: (i)
second- and (ii) third-generation sequencing technologies. Second-
generation sequencing technologies (e.g. Illumina) generate the most
accurate reads (�99.9% accuracy). However, the length of their
reads is short (�100–300 bp) (Glenn, 2011). This introduces chal-
lenges in both read alignment and de novo genome assembly. In
read alignment, a short read can align to multiple candidate loca-
tions in a reference equally well (Alser et al., 2017, 2019a, b; Kim
et al., 2018; Xin et al., 2013). Aligners must either deterministically
select a matching location, which requires additional computation,
or randomly select one of the candidate locations, which results in
non-reproducible read alignments (Firtina and Alkan, 2016). In de
novo genome assembly, high computational complexity is required
to identify overlaps between reads. Even after completing de novo
genome assembly, there are often multiple gaps in an assembly
(Meltz Steinberg et al., 2017). This means an assembly is composed
of many smaller contigs rather than a few long contigs, or in the
ideal case, a single genome-sized contig.

Third-generation sequencing technologies [i.e. PacBio’s Single
Molecule Real-Time and Oxford Nanopore Technologies (ONT)]
are capable of producing long reads (�10 kb on average and up
to 2 Mb) at the cost of high error rates (�10% to 15% error
rate) (Huddleston et al., 2014; Jain et al., 2018; Payne et al.,
2018). Different third-generation sequencing technologies result in
different error profiles. For example, PacBio reads tend to have
more insertion errors than other error types whereas insertion
errors are the least common errors for ONT reads (Weirather
et al., 2017). Long reads make it more likely to find longer over-
laps between the reads in de novo genome assembly. As a result,
there are usually fewer long contigs (Alkan et al., 2011; Chaisson
et al., 2015; Meltz Steinberg et al., 2017). Despite this, error-
prone reads often result in a highly erroneous assembly, which
may not be representative of the subject’s actual genome. As a
consequence, any analysis using the erroneous assembly (e.g. iden-
tifying variations/mutations in a subject’s genome to determine
proclivity for diseases) is often unreliable.

Existing solutions that try to overcome the problem of error-
prone assemblies when using de novo genome assembly can be cate-
gorized into two types. First, a typical solution is to correct the errors
of long reads. Errors are corrected by using high coverage reads (e.g.
�100� coverage) from the same sequencing technology (i.e. self-
correction) or additional reads from more reliable second-generation
sequencing technologies (i.e. hybrid correction). There are several
available error correction algorithms that use additional reads to lo-
cate and correct errors in long reads [e.g. Hercules (Firtina et al.,
2018), LoRDEC (Salmela and Rivals, 2014), LSC (Au et al., 2012)
and LoRMA (Salmela et al., 2016)]. The main disadvantage of error
correction algorithms is that they require more sequenced reads from
either the same or different sequencing technologies. For example,
LoRMA, a self-correction tool, uses reads to build a de Bruijn graph
for error correction. The reads corrected using a de Bruijn graph
method cannot span even half of the entire genome, if the coverage is
lower than 100� (Salmela et al., 2016). When the coverage is low,
the connections in a de Bruijn graph can be weak. These weak
regions can be treated as bulges and tips, and can be removed from
the graph (Chaisson et al., 2004), which may fail to create a reliable
consensus of the entire genome for error correction. Although hybrid
correction tools [e.g. PBcR (Koren et al., 2012)] can use low coverage
short reads (e.g. 25�) to correct the long reads that can span 95% of
the genome after correction, these hybrid correction tools require
additional short reads. Therefore, in both cases (i.e. hybrid and self-
correction), generating additional reads (i.e. additional either short
reads or high coverage long reads) requires additional cost and time.
While a higher-coverage dataset may lead to higher read accuracy
(Berlin et al., 2015), the cost of producing a high-coverage dataset
for long reads is often prohibitively high (Rhoads and Au, 2015). For
example, sequencing the human genome with ONT at only 30�
coverage costs around $36 000 (Jain et al., 2018). Unless there exist

sufficient resources for multiple sequencing technologies or high
coverage, error correction algorithms may not be a viable option to
generate accurate assemblies.

The second method for removing errors in an assembly is called
assembly polishing. An assembly polishing process attempts to cor-
rect the errors of the assembly using the alignments of either long or
short reads to the assembly. The read-to-assembly alignment, which
is the alignment of the reads to the assembly, allows an assembly
polishing algorithm to decide whether the assembly should be pol-
ished based on the similarity of the base pairs between the align-
ments of the reads and their corresponding locations in the
assembly. If the assembly polishing algorithm finds a dissimilarity,
the algorithm modifies the assembly to make it more similar to the
aligned reads as it assumes that the alignment information is a more
reliable source. In other words, the dissimilarity is attributed to
errors in the assembly. Assembly polishing algorithms assume that
such modifications correct, or polish, the errors of an assembly.

There are various assembly polishing algorithms that use various
methods for discovering dissimilarities and modifying the assembly
[e.g. Nanopolish (Loman et al., 2015), Racon (Vaser et al., 2017),
Quiver (Chin et al., 2013) and Pilon (Walker et al., 2014)].
However, the primary limitation of many of these assembly polish-
ing algorithms is that they work only with reads from a limited set
of sequencing technologies. For example, Nanopolish can use only
ONT long reads (Senol Cali et al., 2019), while Quiver supports
only PacBio long reads. Thus, these assembly polishing algorithms
are sequencing-technology-dependent. Even though Pilon can use
long reads as it does not impose a hard restriction not to use them,
Pilon does not suggest using long reads and it is well tuned for using
short reads. Therefore, we consider Pilon as only a partially
sequencing-technology-independent algorithm as it neither prevents
nor truly supports using long reads. Even though Racon can use ei-
ther short or long reads to polish an assembly, it can use only a sin-
gle set of reads within a single run (e.g. only a set of PacBio reads).
This requires an assembly to be polished in multiple runs with
Racon to use all the available set of reads from multiple sequencing
technologies (i.e. a hybrid set of reads). There is currently no single
assembly polishing algorithm that can polish an assembly with an
arbitrary set of reads from various sequencing technologies (e.g.
both ONT and PacBio reads) within a single run.

While the technology-dependency problem of such assembly pol-
ishing algorithms could be mitigated by consecutively using either
different algorithms (e.g. Quiver and Pilon) or the same algorithm
multiple times (e.g. running Racon twice to use both PacBio and
Illumina reads), there are scalability problems associated with using
polishing algorithms to polish a large genome and, therefore, run-
ning assembly polishing algorithms multiple times for two reasons.
First, none of the polishing algorithms can scale well to polish large
genomes within a single run as they require large computational
resources (e.g. polishing a human genome requires more than 192
GB of available memory) unless the coverage of a set of reads is low
(e.g. <10�). Therefore, these assembly polishing algorithms cannot
polish large genomes in a single run if the available computational
resources are not tremendous, and they are restricted to polish
smaller parts (e.g. contigs) of a large genome. Second, dividing a
large genome into smaller contigs and running polishing algorithms
multiple times requires extra effort to collect and merge the multiple
results to produce the polished large genome assembly as a whole.

A universal technology-independent assembly polishing algorithm
that can use reads regardless of both (i) the sequencing technology
used to produce them and (ii) the size of the genome, enables the
usage of all available reads for a more accurate assembly compared to
using reads from a single sequencing technology. Such a universal as-
sembly polishing algorithm would also not require running assembly
polishing multiple times to take advantage of all available reads.
Unfortunately, such an assembly polishing algorithm does not exist.

Our goal in this paper is to propose a technology-independent
assembly polishing algorithm that enables all available reads to con-
tribute to assembly polishing and that scales well to polish an assem-
bly of any size (e.g. both small and large genome assemblies) within
a single run. To this end, we propose a machine learning-based

3670 C.Firtina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

universal technology-independent assembly polishing algorithm,
Apollo, that corrects errors in an assembly by using read-to-
assembly alignment regardless of the sequencing technology used to
generate reads. Apollo is the first universal technology-independent
assembly polishing algorithm. Apollo’s machine learning algorithm
is based on two key steps: (i) training and (ii) decoding the profile
hidden Markov model (pHMM) of an assembly. First, Apollo uses
the Forward–Backward and Baum–Welch algorithms (Baum, 1972)
to train the pHMM by calculating the probability of the errors based
on aligned reads. Error probabilities in the pHMM reveal how reads
and the assembly that the reads align to are similar to each other
without making any assumptions on the sequencing technology used
to produce the reads. This is the key feature that makes Apollo
sequencing-technology-independent. Second, Apollo uses the Viterbi
algorithm (Viterbi, 1967) to decode the trained pHMM to correct
the errors of an assembly. Apollo employs a recent pHMM design
(Firtina et al., 2018), as this design addresses the computational
problems that make pHMMs otherwise impractical to use for train-
ing in machine learning. The design of the pHMM enables flexibility
in adapting the pHMM based on the error profile of the underlying
sequencing technology of an assembly. Therefore, Apollo can add-
itionally apply the known error profile of a sequencing technology
to improve upon its error probability calculations.

We compare Apollo with Nanopolish, Racon, Quiver and Pilon
using datasets that are sequenced with different technologies:
Escherichia coli K-12 MG1655 (MinION and Illumina), E.coli
O157 (PacBio and Illumina), E.coli O157:H7 (PacBio and
Illumina), Yeast S288C (PacBio and Illumina) and the human
Ashkenazim trio sample (HG002, PacBio and Illumina). We com-
pare our polished assemblies against highly accurate and finished
genome assemblies of the corresponding samples to determine the
accuracy of the various assembly polishing algorithms.

Using the datasets from different sequencing technologies, we
first show that Apollo scales better than other polishing algorithms
in polishing assemblies of large genomes using moderate and high
coverage reads. Second, Apollo is the only algorithm that can use
reads from multiple sequencing technologies in a hybrid manner
(e.g. using both ONT and Illumina reads in a single run). Because of
this, Apollo scales well to polish an assembly of any size within a
single run using any set of reads, which makes Apollo a universal,
sequencing-technology-independent assembly polishing algorithm.
Third, we show that when Apollo uses a hybrid set of reads (i.e.
both PacBio and Illumina reads), it polishes assemblies generated by
Canu (Koren et al., 2017) (i.e. Canu-generated assemblies) more ac-
curately than any other polishing algorithm. Fourth, for all other
remaining cases, when we compare Apollo to other competing algo-
rithms, our experiments show that Apollo usually produces assem-
blies of similar accuracy to competing algorithms: Nanopolish,
Pilon, Racon and Quiver. However, when using long readsets to pol-
ish Miniasm-generated E.coli O157:H7, E.coli K-12 and Yeast
S288C assemblies, Apollo produces assemblies with less accuracy
than that of Racon and Quiver. These experiments are based on (i) a
ground truth (i.e. reference-dependent comparison), (ii) k-mer simi-
larity calculation [i.e. Jaccard similarity (Niwattanakul et al., 2013)]
between an Illumina set of reads and a polished assembly and (iii)
the quality assessment of the assembly from mapped short reads (i.e.
reference-independent comparison). These comparisons show that
Apollo can polish an assembly using reads from any sequencing
technology while still generating an assembly with accuracy usually
comparable to the competing algorithms. Fifth, we use moderate
long read coverage datasets (e.g. 30�) and show that Apollo can
produce accurate assemblies even with a moderate read coverage.
We conclude that Apollo is the first universal assembly polishing al-
gorithm that (i) scales well to polish assemblies of both large and
small genomes and (ii) can use both long and short reads as well as a
hybrid set of reads from various sequencing technologies.

This paper makes the following contributions:

• We introduce Apollo, a new assembly polishing algorithm that

can make use of reads sequenced by any sequencing technology

(e.g. PacBio, ONT, Illumina reads). Apollo is the first assembly

polishing algorithm that (i) is scalable such that it can polish

assemblies of both large and small genomes and (ii) can polish an

assembly with a hybrid set of reads within a single run.
• We show that using both long and short reads in a hybrid man-

ner to polish a Canu-generated assembly enables the construction

of assemblies more accurate than those constructed by running

other polishing tools multiple times.
• We show that four competing polishing algorithms cannot scale

well to polish assemblies of large genomes within a single run

due to large computational resources that they require.
• We provide an open source implementation of Apollo
• (https://github.com/CMU-SAFARI/Apollo).

2 Materials and methods

Apollo builds, trains and decodes a profile hidden Markov model
graph (pHMM-graph) to polish an assembly (i.e. to correct the
errors of an assembly). Apollo performs assembly polishing using
two input preparation steps that are external to Apollo (pre-process-
ing) and three internal steps, as shown in Figure 1. The first two pre-
processing steps involve the use of external tools such as an assem-
bler and an aligner to generate inputs for Apollo. First, an assembler
uses reads (e.g. long reads) to generate assembly contigs (i.e. larger
sequence fragments of the assembly). Second, an aligner aligns the
reads used in the first step and any additional reads (e.g. short reads)
of the same sample to the contigs to generate read-to-assembly align-
ment. Third, Apollo uses the assembly generated in the first step to
construct a pHMM-graph per contig. A pHMM-graph comprised
states, transitions between states and probabilities that are associ-
ated with both states and transitions to account for all possible error
types. Examples of errors that a sequencing technology can intro-
duce into a read are insertion, deletion and substitution errors
(which we handle in this work) and chimeric errors (which we do
not handle). Therefore, correction of these errors can be accom-
plished by deleting, inserting or substituting the corresponding base
pair, respectively. Apollo identifies a path in the pHMM-graph such
that the states that make the contig erroneous are excluded. Fourth,
Apollo uses the read-to-assembly alignment to update, or train, the
initial (prior) probabilities of the pHMM-graph with the Forward–
Backward and Baum–Welch algorithms. During training, the
Forward–Backward algorithm uses each read alignment to change
the prior probabilities of the graph based on the similarity between a
read and the aligned region in the assembly. Fifth, Apollo imple-
ments the Viterbi algorithm to find the path in the pHMM-graph
with the minimum error probability (i.e. decoding), which corre-
sponds to the polished version of the corresponding contig.

2.1 Assembly construction
An assembler takes a set of reads as input and identifies the overlaps
between the reads to merge the overlapped regions into larger frag-
ments called contigs. An assembler usually reports contigs in FASTA
format (Pearson and Lipman, 1988) where each element comprised
an ID and the full sequence of the contig. The entire collection of
contigs represents the whole assembly. Apollo requires the assembly
to be constructed to correct the errors in each contig of the assem-
bly. Thus, assembly generation is an external step to the assembly
polishing pipeline of Apollo Fig 1 Step 1). Apollo supports the use of
any assembler that can produce the assembly in FASTA format
(Pearson and Lipman, 1988), such as Canu (Koren et al., 2017) and
Miniasm (Li, 2016).

2.2 Read-to-assembly alignment
After assembly construction, the second external step is to generate
the read-to-assembly alignment using (i) the reads that the assembler
used to construct the assembly and (ii) any additional reads
sequenced from the same sample (Fig. 1 Step 2). It is possible to use
any aligner that can produce the read-to-assembly alignment in
SAM/BAM format (Li et al., 2009) such as Minimap2 (Li, 2018) or

Apollo 3671

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

https://github.com/CMU-SAFARI/Apollo

BWA-MEM (Li and Durbin, 2009). In the case where reads from
multiple sequencing technologies are available for a given sample,
an aligner aligns all reads to the assembly. Apollo assumes that the
alignment file is coordinate sorted and indexed.

Apollo uses the assembly and the read-to-assembly alignment
generated in the first two pre-processing steps in its assembly polish-
ing steps. The next three steps (Steps 3–5) are the assembly polishing
steps and implemented within Apollo.

2.3 Creating a pHMM-graph per contig
The pHMM-graph that Apollo employs includes states that emit
certain characters, directed transitions that connect a state to other
states, and probabilities associated with character emissions and
state transitions. The state transition probability represents the like-
lihood of following a path from a state to another state using the
transitions connecting the states, and the character emission prob-
ability represents the likelihood for a state to emit a certain base pair
when the state is visited. These pHMM-graph elements enable a
pHMM-graph to provide the probability of generating a certain se-
quence when a certain path of states is followed using the directed
transitions between the states.

This probabilistic behaviour of pHMM-graphs makes them a
good candidate to resolve errors of an assembly. Apollo represents
each contig of an assembly as a pHMM-graph. The complete struc-
ture of a pHMM-graph allows Apollo to handle three major types
of errors: substitution, deletion and insertion errors. First, Apollo
represents each base pair of a contig as a state, called the match
state. The pHMM-graph preserves the sequence order of the contig
by inserting a directed match transition from the previous match
state of a base pair to the next one. The match state of a certain base
pair has a predefined (prior) match emission probability for the cor-
responding base pair, and mismatch emission probability for the
three remaining possible base pairs (i.e. a substitution error). A
match state handles the cases when there is no error in the corre-
sponding base pair (i.e. emitting the base pair that already exists in
the certain position), or when there is a substitution error (i.e.

emitting a different base pair for the certain position). Second, there
are l many insertion states for each base pair in the contig, where l is
a parameter to Apollo, which defines the maximum number of add-
itional base pairs that can be inserted between two base pairs (i.e.
two match states). An insertion state inserts a single base pair in the
location it corresponds to (e.g. visiting two subsequent insertion
states after a match state inserts two base pairs between the two
match states) to handle a deletion error. Last, each match and inser-
tion state has k many deletion transitions, where k is also a param-
eter to Apollo, which defines the maximum number of contiguous
base pairs that can be deleted with a single transition. If there is an
insertion error, a deletion transition skips the match states between
a state (e.g. an insertion or a match state) and a match state to delete
the corresponding base pairs of the skipped match states. Further
details of the pHMM-graph can be found in Supplementary
Material, Section S1.

The pHMM-graph structure that Apollo uses is identical to the
one proposed in Hercules (Firtina et al., 2018), a recently proposed
error correction algorithm that uses pHMM-graphs. The key differ-
ence is that Apollo creates a graph for each contig whereas Hercules
creates a graph for each read. As such, the pHMM-graph size in
Apollo is usually larger than that in Hercules since contigs are typical-
ly longer than reads. Therefore, Apollo uses additional techniques to
handle large pHMM-graphs (e.g. dividing pHMM-graphs into smaller
graphs without compromising correction accuracy) during both train-
ing and decoding steps, which has certain trade-offs with respect to
implementation, as we explain in Sections 2.4, 2.5 and 3.1.

2.4 Training with the Forward–Backward algorithm
The training step of Apollo uses each read-to-assembly alignment to
update transition and emission probabilities of a contig’s pHMM-
graph. The purpose of the training step is to make specific transi-
tions and emissions more probable in a sub-graph of the pHMM-
graph such that it will be more likely to emit the entire read se-
quence for the region that the read aligns to. A sub-graph contains a
subset of the states of a pHMM-graph and the transitions

Fig. 1. Input preparation and the pipeline of Apollo algorithm in five steps. The first two steps refer to the use of external tools to generate the input for Apollo and are called

input preparation steps (left side). (Step 1) An assembler generates the assembly (dark grey, large rectangles) using erroneous reads (light blue rectangles). Here, the errors are

labelled with the red bars inside the rectangles. (Step 2) An aligner aligns the reads used in the first step as well as additional reads to the assembly. Here, we show the reads

sequenced using different sequencing technologies in different colours and sizes (e.g. a short rectangle indicates a short read) since it is possible to use any available read within

a single run with Apollo. The rest of the three steps constitute the new Apollo algorithm and are called Internal to Apollo (right side). (Step 3) Apollo creates a pHMM-graph

per assembly contig. Here, we show an example for the pHMM-graph generated for the contig that starts with ‘AGCACC’ and ends with ‘GCCT’ as we show the original se-

quence below the states labelled with a base pair. Each base pair in a contig is represented by a state labelled with the corresponding base pair (i.e. match state). A pHMM-

graph also consists of insertion states for each base pair labelled with green colour as well as start and end states that do not correspond to any base pair in a contig. In this ex-

ample, the maximum insertion that can be made between each base pair is two as we have two insertion states per match state. Each transition or emission of a base pair from

a state has a probability associated with it. For simplicity, we omit deletion transitions from this graph. (Step 4) The Forward–Backward algorithm trains the pHMM-graph

and updates the transition and emission probabilities based on read-to-assembly alignments. (Step 5) Using the updated probabilities, the Viterbi algorithm decodes the most

likely path in the pHMM-graph and takes the path marked with the red transitions and states, which corresponds to the polished assembly. We also show the corresponding

corrections in red text colour below the states. For each contig, the output of Apollo is the sequence of base pairs associated with the states in the most likely path. (Color ver-

sion of this figure is available at Bioinformatics online.)

3672 C.Firtina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data

connecting these states. Each difference between a contig and the
aligned read updates the probabilities so that it will be more likely
to reflect the difference observed in the read. The calculations during
training do not make assumptions about the sequencing technology
of the read but only reflect the differences and similarities in the
pHMM-graph. Thus, Apollo can update the sub-graph with any
read aligned to the contig. This makes Apollo a sequencing-
technology-independent algorithm.

For each alignment to a contig, Apollo identifies the sub-graph
that the read aligns to in the pHMM-graph to update (train) the
emission and transition probabilities in the sub-graph. Apollo
locates the start and end states of the sub-graph to define its bounda-
ries in the pHMM-graph. First, Apollo identifies the start location
of a read’s alignment in the contig and marks the match state of the
previous base pair as the start state. Second, Apollo estimates the lo-
cation of the end state such that the number of match states between
the start state and the end state is longer than the length of the
aligned read (i.e. up to 33.3% longer). This is to account for the
case where there are more insertion errors than deletion errors. The
Backward calculation uses the end state as the initial point to calcu-
late the probabilities from backward as we explain later in this sec-
tion. An accurate estimation of the end state is crucial as an
inaccurate initial point for the Backward calculation may lead to in-
accurate training. The insertion and the match states between the
start and the end states as well as the transitions connecting these
states constitute the sub-graph of the aligned region.

The sub-graphs that Apollo trains usually vary in size since the
length of long reads (i.e. reads sequenced by the third-generation
sequencing technologies) can fluctuate dramatically (e.g. from 15 bp
to 2 Mb) whereas the length of short reads is usually fixed (e.g. 100
bp). As Apollo polishes the assembly using both short and long reads,
the broad range of read lengths requires Apollo to be flexible in terms
of defining the length of the sub-graph (i.e. the number of match states
that the sub-graph includes) to train. This is a key difference in
requirements between Apollo and Hercules (Firtina et al., 2018).
Hercules defines the number of match states to include in a sub-graph
with a fixed ratio as the aligned reads are always short reads.
However, Apollo is more flexible in the selection of the region that a
sub-graph covers since Apollo can use reads of any length. Apollo
decides whether the aligned read is short or long based on the read
length, of which we set the threshold at 500 bp (i.e. if a read is longer
than 500 bp, it is considered as a long read). If the aligned read length
is short (i.e. shorter than 500 bp), the sub-graph is 33.3% longer than
the length of the short read. Otherwise, the sub-graph is 5% longer
than the length of the aligned long read (empirically chosen).

Apollo uses the Forward–Backward and the Baum–Welch algo-
rithms (Baum, 1972) to train the sub-graph that a read aligns to.
The Forward–Backward algorithm takes the aligned read as an ob-
servation and updates the emission and transition probabilities of
the states in the sub-graph. There are three steps in the Forward–
Backward algorithm: (i) Forward calculation, (ii) Backward calcula-
tion and (iii) training by updating the probabilities (i.e. the expect-
ation–maximization step using the Baum–Welch algorithm). First,
Forward calculation visits each possible path from the start state up
to but not including the end state until each visited state emits a sin-
gle base pair from the read starting from the first (i.e. leftmost) base
pair. Therefore, the number of visited states is equal to the length of
the aligned read. Second, similar to Forward calculation, Backward
calculation visits each possible path in a backward fashion (i.e. from
the last base pair to the first base pair) starting with the state that
the Forward calculation determines to be the most likely until the
start state. Third, the Forward–Backward algorithm updates the
transitions and emission probabilities based on how likely it is to
take a certain transition or a state to emit a certain character. We
refer to the updated probabilities as posterior probabilities. In the-
ory, the training step known as the Baum–Welch algorithm (Baum,
1972) is separated from the Forward–Backward calculations, as
described in Supplementary Material, Section S3. However, for the
sake of simplicity, we assume that the Forward–Backward step
includes both the Forward–Backward calculations and the training
step when we refer to it in the remaining part of this paper. Apollo

trains each sub-graph (i.e. each read alignment) independently even
though the states and the transitions may overlap between the
aligned reads. For overlaps, Apollo takes the average of the posterior
transition and emission probabilities of the overlapping regions.
Once Apollo trains each pHMM sub-graph using all the alignments
to a contig, it completes the training phase for that contig. The
trained pHMM-graph represents the polished version of the contig.
Supplementary Material, Sections S2 and S3 describe in detail how
Apollo locates a sub-graph per read alignment and the training
phase of the Forward–Backward algorithm.

2.5 Decoding with the Viterbi algorithm
The last step in Apollo’s assembly polishing mechanism is the decod-
ing of the trained pHMM-graph to extract the path with the highest
probability from the start of the graph to the end of the graph.
Finding the path with the highest probability reveals the consensus of
the aligned reads to correct the contig. To identify this path, Apollo
uses the Viterbi algorithm (Viterbi, 1967) on the trained pHMM-
graph (Fig. 1, Step 5). The Viterbi algorithm is a dynamic program-
ming algorithm that finds the most likely backtrace from a certain
state to the start state in a given graph. Each Viterbi value represents
how likely it is to be in a certain state at a time t (i.e. position in the
contig) and is stored in the corresponding cell in a table called a dy-
namic programming table (DP table). Thus, a complete DP table
reveals the most likely path of the entire pHMM-graph by backtrack-
ing the most likely path from the end state to the start state.

The Viterbi algorithm computes each entry of the DP table using
the Viterbi values of the previously visited states. This data depend-
ency makes the Viterbi algorithm less suitable for multi-threading
support, as it prevents calculating the Viterbi values of the entire
graph in parallel. Apollo overcomes this issue by dividing the
pHMM-graph into sub-graphs (i.e. chunks), each of which includes
a certain number of states. The Viterbi algorithm decodes each sub-
graph (i.e. finds the optimal path in a graph) and merges the decod-
ing results into one piece again. Since the Viterbi algorithm can de-
code each sub-graph independently, this allows Apollo to parallelize
the Viterbi algorithm. We find that our parallelization greatly speeds
up the Viterbi algorithm, by �20�.

Apollo follows a slightly different approach than the actual
Viterbi algorithm when decoding a graph. The actual Viterbi algo-
rithm uses an observation provided as input (i.e. a sequence of base
pairs) to calculate the Viterbi values of states in the graph. For
Apollo, there is no observation provided as input. Apollo uses the
base pair with the highest emission probability of a state as observa-
tion when calculating the Viterbi value of that state. For each state
in the decoded path, Apollo outputs the base pair with the highest
probability, which corresponds to the polished contig. Apollo
reports each polished contig as a read in FASTA format. Details of
the Viterbi algorithm are in Supplementary Material, Section S4.

Note that Apollo can only polish contigs to which at least a sin-
gle read aligns. Thus, Apollo reports an unpolished version of a con-
tig, if there is no read aligned to it. In such cases, Apollo also reports
the issue as output by informing that a certain contig cannot be pol-
ished because there is no read aligned to the contig. After raising the
issue, Apollo continues polishing the remaining contigs, if any. We
expect that such a case happens rarely. For example, a low coverage
set of short reads may not be able to align to a too small and errone-
ous contig constructed using long reads, which would leave the con-
tig with no read aligned to it. Another example would be having
very similar regions (i.e. repetitive regions) in multiple contigs such
that reads can be assigned to only one of the contigs sharing a simi-
lar region. Such a case may leave a contig without any read aligned
to it since these reads may already be aligned to the similar regions
in other contigs.

3 Results

3.1 Experimental setup
We implemented Apollo in Cþþ using the SeqAn library (Döring
et al., 2008). The source code is available at https://github.com/
CMU-SAFARI/Apollo. Apollo supports multi-threading.

Apollo 3673

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://github.com/CMU-SAFARI/Apollo
https://github.com/CMU-SAFARI/Apollo

Our evaluation criteria include three different methods to assess
the quality of the assemblies. First, we use the dnadiff tool provided
under MUMmer package (Kurtz et al., 2004) to calculate the accur-
acy of polished assemblies by comparing them with the highly accur-
ate reference genomes (i.e. ground truth genomes). We report the
percentage of bases of an assembly that align to its reference (i.e.
Aligned Bases), the fraction of identical portions between the
aligned bases of an assembly and the reference (i.e. Accuracy), a
score value that is the product of accuracy and number of Aligned
Bases (as a fraction), which we call the Polishing Score. Accuracy
value provides the accuracy of only the aligned portions of the pol-
ished assembly, not the entire assembly. However, polishing score is
a more comprehensive measure compared to accuracy, as it normal-
izes the accuracy of the aligned portions of the polished assembly to
the entire length of the assembly. Second, we use sourmash (Brown
and Irber, 2016) to calculate the k-mer similarity between filtered
Illumina reads and an assembly. Third, we use QUAST (Gurevich
et al., 2013) to report a further quality assessment of assemblies
based on the mapping of filtered Illumina reads to assemblies. Both
k-mer similarity and QUAST provide a reference-independent evalu-
ation of assemblies.

Based on our evaluation criteria, we compare Apollo to four
state-of-the-art assembly polishing algorithms: Nanopolish (Loman
et al., 2015), Racon (Vaser et al., 2017), Quiver (Chin et al., 2013)
and Pilon (Walker et al., 2014). If an assembly polishing algorithm
does not support a certain dataset, we do not run the algorithm on
that dataset. For example, we use Nanopolish only for the ONT
dataset and Quiver only for PacBio datasets, and Pilon only for the
Illumina dataset. We use Pilon with a PacBio dataset only once to
show its capability to polish an assembly using long reads, albeit
very inefficiently. We include Apollo and Racon in every compari-
son as they support a set of reads from any sequencing technology.
For each dataset, we compare the algorithms that polish an assembly
using the same set of reads. We run each assembly polishing algo-
rithm with its default parameters.

We run all the tools (i.e. assemblers, read mappers and assem-
bly polishing algorithms) on a server with 24 cores (2 threads per
core, IntelV

R

XeonVR Gold 5118 CPU @ 2.30 GHz), and 192 GB of
main memory. We assign 45 threads to all the tools we use and
collect their runtime and memory usage using the time command
in Linux with the �vp options. We report runtime and peak
memory usage of the assembly polishing algorithms based on
these configurations.

We use state-of-the-art tools to construct an assembly and to
generate a read-to-assembly alignment before running Apollo, which
correspond to the input preparation steps. We use Canu (Koren
et al., 2017) and Miniasm (Li, 2016) tools to construct assemblies of

each set of long reads. For read-to-assembly alignment, we use
Minimap2 and BWA-MEM to align long and short reads to an as-
sembly. Quiver cannot work with alignment results that Minimap2
and BWA-MEM produce, but requires a certain type of aligner to
align PacBio reads to an assembly. Thus, we use the pbalign tool
(https://github.com/PacificBiosciences/pbalign) that uses BLASR
(Chaisson and Tesler, 2012) to align PacBio reads to an assembly to
generate a read-to-assembly alignment in the format that Quiver
requires. We sort and index the resulting SAM/BAM read-to-
assembly alignments using the SAMtools’ sort and index commands
(Li et al., 2009), respectively.

After assembly generation, we divide the long reads into smaller
chunks of size 1000 bp (i.e. we perform chunking). We do this be-
cause long reads cause high memory demand during the assembly
polishing step, especially for large genomes (e.g. a human genome).
This bottleneck exists not only for Apollo but also for other assem-
bly polishing algorithms (e.g. Racon). For Apollo, dividing long
reads into chunks prevents possible memory overflows due to the
memory-demanding calculation of the Forward–Backward algo-
rithm. Even though it is still possible to use long reads without
chunking, we suggest using the resulting reads after chunking if the
available memory is not sufficient to run Apollo. We show that
chunking results in producing more accurate assemblies
(Supplementary Table S18).

Default parameters of Apollo are as follows: minimum mapping
quality (q¼0), maximum number of states that Forward–Backward
(f¼100) and the Viterbi algorithms (v¼5) evaluate for the next
time step, the number of insertion states per base pair (i¼3), the
number of base pairs decoded per sub-graph by Viterbi (b¼5000),
maximum deletions per transition (d¼10), transition probability to
a match state (tm ¼ 0.85), transition probability to an insertion state
(ti ¼ 0.1), factor for the polynomial distribution to calculate each
deletion transition (df ¼ 2.5) and match emission probability (em ¼
0.97).

3.2 Datasets
In our experiments, we use DNA-seq datasets from five different
samples sequenced by multiple sequencing technologies, as we show
in Table 1.

We use a dataset from a large genome (i.e. a human genome) to
demonstrate the scalability of polishing algorithms. For this pur-
pose, we use the human genome sample from the Ashkenazim trio
(HG002, Son) to compare the computational resources (i.e. time
and maximum memory usage) that each polishing algorithm
requires. We filter out the PacBio reads that have a length of <200
before calculating coverage and average read length.

Table 1. Details of our datasets

Dataset Accession number Details

E.coli K-12—ONT Loman Laba 164 472 reads (avg. 9010 bp, 319� coverage)

E.coli K-12—Illumina SRA SRR1030394 2 720 956 paired-end reads (avg. 243 bp each, 285� coverage)

E.coli K-12—Ground Truth GenBank NC_000913 Strain MG1655 (4641 kb)

E.coli O157—PacBio SRA SRR5413248 177 458 reads (avg. 4724 bp, 151� coverage)

E.coli O157—Illumina SRA SRR5413247 11 856 506 paired-end reads (150 bp each, 643� coverage)

E.coli O157—Ground Truth GenBank NJEX02000001 Strain FDAARGOS_292 (5566 kb)

E.coli O157:H7—PacBio SRA SRR1509640 76 279 reads (avg. 8270 bp, 112� coverage)

E.coli O157:H7—Illumina SRA SRR1509643 2 978 835 paired-end reads (250 bp each, 265� coverage)

E.coli O157:H7—Ground Truth GCA_000732965 Strain EDL933 (5639 kb)

Yeast S288C—PacBio SRA ERR165511(8-9), ERR1655125 296 485 reads (avg. 5735 bp, 140� coverage)

Yeast S288C—Illumina SRA ERR1938683 3 318 467 paired-end reads (150 bp each, 82� coverage)

Yeast S288C—Ground Truth GCA_000146055.2 Strain S288C (12 157 kb)

Human HG002—PacBio SRA SRR2036(394-471), SRR203665(4-9) 15 892 517 reads (avg. 6550 bp, 35� coverage)

Human HG002—Illumina SRA SRR17664(42-59) 222 925 733 paired-end reads (148 bp each, 22� coverage)

Human HG002—Ground Truth GCA_001542345.1 Ashkenazim trio—Son (2.99 GB)

Note: The datasets we use in our experiments. These data can be accessed through NCBI using the accession number.
aThe ONT datasets are available at http://lab.loman.net/2016/07/30/nanopore-r9-data-release/

3674 C.Firtina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

https://github.com/PacificBiosciences/pbalign
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
http://lab.loman.net/2016/07/30/nanopore-r9-data-release/

We use the E.coli O157 (Strain FDAARGOS_292), E.coli
O157:H7, E.coli K-12 MG1655 and Yeast S288C datasets to evalu-
ate the polishing accuracy of Apollo and other state-of-the-art pol-
ishing algorithms in four ways. First, we evaluate whether using a
hybrid set of reads with Apollo results in more accurate assemblies
compared to polishing an assembly twice using a combination of
other polishing tools (e.g. Racon þ Pilon). Second, we measure the
performance of the polishing algorithms when they polish the
assemblies only once. Third, we subsample the E.coli O157 and
E.coli K-12 datasets into 30� coverage to compare the performance
of algorithms when long read coverage is moderate. Fourth, we add-
itionally use the Human HG002 dataset to measure the k-mer dis-
tance and quality assessment of the assemblies using sourmash and
QUAST, respectively.

3.3 Applicability of polishing algorithms to large

genomes
We use the polishing algorithms to polish a large genome assembly
(e.g. a human genome) to observe (i) whether the polishing algo-
rithms can polish these large assemblies without exceeding the limi-
tations of the computational resources we use to conduct our
experiments and (ii) the overall computational resources required to
polish a large genome assembly (i.e. alignment and polishing). For
this purpose, we use the PacBio and Illumina reads from the human
genome sample of the Ashkenazim trio (HG002, Son) to polish a fin-
ished assembly of the same Ashkenazim trio sample. The finished as-
sembly was released by the Genome in a Bottle (GIAB) consortium
(genomeinabottle.org). GIAB used (i) Celera Assembler with PBcR
(v. 8.3rc2) (Koren et al., 2012) to assemble the PacBio reads from
the HG002 sample and (ii) Quiver to polish the assembly (Wenger
et al., 2019). Based on our experiments that we report in Table 2,
we make four key observations. First, Pilon, Quiver and Racon can-
not polish the assembly using the whole sets of PacBio (�35� cover-
age) and Illumina (�22� coverage) reads due to high computational

resources that they require. Racon and Pilon exceed the memory
limitations while using either the PacBio or Illumina reads to polish
the human genome assembly. Quiver cannot start polishing the as-
sembly as the required aligner (i.e. BLASR from the pbalign tool)
cannot produce the alignment result due to memory limitations.
Apollo can polish an assembly using both PacBio and Illumina reads
using at most nearly half of the available memory. Second, we re-
duce the coverage of the PacBio reads to 8.9� (SRA SRR2036394–
SRR2036422) to observe whether Racon and Quiver can polish the
large genome using a low coverage set of PacBio reads. We find that
Racon is able to polish a human genome assembly using low cover-
age set of reads whereas BLASR cannot produce the alignment
results that Quiver requires due to memory limitations even when
using a low coverage set of reads. Third, we split read-to-assembly
alignment into multiple alignment files such that all reads mapped
to each contig are represented in a separate alignment file (i.e. read-
to-contig alignment) to evaluate whether Pilon, Quiver and Racon
can polish the entire human genome using read-to-contig align-
ments. We observe that Pilon, Quiver and Racon can polish contigs
of a large genome, as Table 2 shows. We note that when using pba-
lign, we align small batches of PacBio datasets (e.g. 1� coverage
each) and later merge the alignments of these small batches. We also
note that both the size of the longest contig (i.e. 35.2 Mb) and the
number of short read alignments to the longest contig (i.e.
5 313 903) are �85� smaller than that of the entire assembly.
When contigs longer than 35 Mb are available, we expect Pilon and
Racon to require more memory for polishing longer contigs since
these tools cannot scale well with contig size. Fourth, Apollo
requires less memory than any polishing algorithm when polishing
the human genome assembly contig by contig. We conclude that
Apollo is the only algorithm that scales well (i.e. memory require-
ments do not increase dramatically as the genome size increases) in
polishing large genomes using a set of both PacBio and Illumina
reads without reducing the coverage of the readset or splitting the
readset or the alignment file into smaller batches. Pilon, Quiver and

Table 2. Applicability, runtime and memory requirements of four assembly polishing tools on a complete human genome assembly

Aligner Sequencing tech. of the reads Polishing algorithm Runtime Memory (GB)

Minimap2 PacBio (35�) Apollo 228 h 43 m 13 s 62.91

BWA-MEM PacBio (35�) Apollo 200 h 13 m 06 s 58.60

Minimap2 PacBio (35�) Racon N/A N/A

BWA-MEM PacBio (35�) Racon N/A N/A

pbalign PacBio (35�) Quiver N/A N/A

Minimap2 PacBio (8.9�) Apollo 56 h 21 m 56 s 44.99

BWA-MEM PacBio (8.9�) Apollo 42 h 19 m 09 s 45.00

Minimap2 PacBio (8.9�) Racon 3 h 31 m 37 s 54.13

BWA-MEM PacBio (8.9�) Racon 2 h 17 m 21 s 51.55

pbalign PacBio (8.9�) Quiver N/A N/A

Minimap2 Illumina (22�) Apollo 98 h 07 m 05 s 101.12

BWA-MEM Illumina (22�) Apollo 105 h 15 m 05 s 107.06

Minimap2 Illumina (22�) Racon N/A N/A

BWA-MEM Illumina (22�) Racon N/A N/A

Minimap2 Illumina (22�) Pilon N/A N/A

Minimap2 Illumina (22�) Pilon N/A N/A

Minimap2 PacBio (35�) Apolloa 230 h 37 m 58 s 25.23

pbalign PacBio (35�) Quivera 104 h 42 m 35 s 29.92

Minimap2 PacBio (35�) Racona 6 h 48 m 17 s 132.51

Minimap2 Illumina (22�) Apolloa 103 h 27 m 45 s 39.35

BWA-MEM Illumina (22�) Apolloa 111 h 35 m 15 s 39.35

Minimap2 Illumina (22�) Pilona 13 h 59m 32 s 66.67

BWA-MEM Illumina (22�) Pilona 21h 15 m 57 s 49.93

Note: We polished the assembly of the Ashkenazim trio sample (HG002, Son) for different combinations of sequencing technology, aligner and polishing algo-

rithm. We report the runtime and the memory requirements of the assembly polishing tools (i.e. Aligner þ Polishing). We report Runtime and Memory as N/A, if

a polishing algorithm fails to polish the assembly.
aWe polish the assembly contig by contig in these runs and collect the results once all of the contigs are polished separately.

Apollo 3675

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

Racon can polish a large genome assembly without reducing the
coverage of a readset only if they polish the entire assembly contig-
by-contig or split the readset into smaller batches before alignment.

3.4 Polishing accuracy
We first examine whether the use of a hybrid set of reads (e.g. long
and short reads) within a single polishing run provides benefit over
polishing an assembly twice using a set of reads from only a single
sequencing technology (e.g. only PacBio reads) in each run. Second,
we evaluate assembly polishing algorithms and compare them to
each other given different options with respect to (i) the sequencing
technology that produces long reads, (ii) the assembler that con-
structs an assembly using long reads, (iii) the aligner that generates
read-to-assembly alignment and (iv) the set of reads that align to an
assembly. We report the accuracy of unpolished assemblies as well
as the performance of assembly polishing algorithms based on the
evaluation criteria we explained in Section 3. We also compare the
tools based on their performance given moderate (e.g. �30�) and
low (e.g. 2:6�) long read coverage.

Apollo is either more accurate than or as accurate as running
Pilon twice using a hybrid set of reads. Apollo also polishes Canu-
generated assemblies more accurately for a species with PacBio reads
than running other polishing tools multiple times. In Table 3 (com-
plete results in Supplementary Table S1) and Supplementary Table
S2, we highlight the benefits of using a hybrid set of reads (e.g.
PacBio þ Illumina) within a single polishing run compared to polish-
ing an assembly in multiple runs by using a set of reads from only a
single sequencing technology (e.g. only PacBio or only Illumina) in
each run. To this end, we compare the accuracy of polished assem-
blies using Apollo with that of the polished assemblies using other
polishing tools (Nanopolish, Pilon, Quiver and Racon) that we run
multiple times. We use long (PacBio or ONT) and short (Illumina)
reads from E.coli O157, E.coli O157:H7, E.coli K-12 MG1655 and
Yeast S288C datasets to polish Canu- and Miniasm-generated
assemblies. For the first run, we use the polishing algorithms to

polish Canu- and Miniasm-generated assemblies. For the second
run, we provide Nanopolish, Pilon, Quiver and Racon with the pol-
ished assembly from the first run and run these tools for the second
time (i.e. Second Run). Based on Supplementary Tables S1 and S2,
we make three key observations. First, Apollo and Pilon are the only
algorithms that always polish a Canu-generated assembly with a
polishing score either equal to or better than that of the original
Canu-generated assembly. Second, running other polishing tools
multiple times to polish a Miniasm-generated assembly usually
results in assemblies with higher polishing scores (e.g. by at most
3.79% for PacBio and 7.57% for ONT readsets) than using Apollo
with a hybrid set of reads. Third, Apollo performs better when it
uses PacBio reads in the hybrid set than using ONT reads. We con-
clude that the use of Apollo once with a hybrid set of reads that
includes PacBio reads and a Canu-generated assembly is the best
pipeline (i.e. one can construct the most accurate assemblies for a
species versus running other polishing tools multiple times).

Apollo performs better than Pilon and comparable to Racon and
Quiver when polishing a Canu-generated assembly using only a high
coverage set of PacBio or Illumina reads. In Supplementary Tables
S3, S6 and S12, we use PacBio and Illumina datasets to compare the
performance of Apollo with Racon (Vaser et al., 2017), Quiver
(Chin et al., 2013) and Pilon (Walker et al., 2014). Based on these
datasets, we make five observations. First, Apollo usually outper-
forms Pilon (i.e. 4 out of 7, see the Polishing Score column) using a
set of short reads. Second, Apollo, Racon and Quiver show signifi-
cant improvements over the original Miniasm assembly in terms of
accuracy. Third, Quiver and Racon polish the Miniasm-generated
assembly more accurately than Apollo (see the Accuracy and the
Polishing Score columns). Fourth, Apollo produces more accurate
assemblies than the assemblies polished by Racon when we use mod-
erate (�30�) and high coverage (151�) PacBio readsets to polish
Canu-generated assemblies. However, both algorithms generate
assemblies with lower accuracy than the accuracy of the original
Canu-generated assembly (0.9998 with the polishing score of
0.9992) when we use high coverage readsets. Based on this

Table 3. Comparison between using a hybrid set of reads with Apollo and running other polishing tools twice to polish a Canu-generated

assembly

Dataset First run Second run Aligned bases (%) Accuracy Polishing score Runtime Memory (GB)

E.coli O157 — — 99.94 0.9998 0.9992 43 m 53 s 3.79

E.coli O157 Apollo (Hybrid) — 99.94 0.9999 0.9993 8 h 16 m 08 s 13.85

E.coli O157 Racon (PacBio) Racon (Illumina) 99.94 0.9994 0.9988 21 m 44 s 22.65

E.coli O157 Pilon (Illumina) Racon (PacBio) 99.94 0.9986 0.9980 4 m 58 s 11.40

E.coli O157 Quiver (PacBio) Pilon (Illumina) 99.94 0.9998 0.9992 5 m 01 s 7.50

E.coli O157:H7 — — 100.00 0.9998 0.9998 43 m 19 s 3.39

E.coli O157:H7 Apollo (Hybrid) — 100.00 0.9999 0.9999 5 h 58 m 05 s 8.86

E.coli O157:H7 Racon (PacBio) Racon (Illumina) 100.00 0.9995 0.9995 9 m 43 s 6.56

E.coli O157:H7 Pilon (Illumina) Racon (PacBio) 100.00 0.9996 0.9996 6 m 04 s 10.75

E.coli K-12 — — 99.98 0.9794 0.9792 34 h 21 m 46 s 5.06

E.coli K-12 Apollo (Hybrid) — 99.99 0.9953 0.9952 9 h 09 m 50 s 9.35

E.coli K-12 Racon (ONT) Racon (Illumina) 100.00 0.9996 0.9996 11 m 05 s 5.10

E.coli K-12 Pilon (Illumina) Racon (ONT) 99.99 0.9997 0.9996 15 m 51 s 8.84

E.coli K-12 Nanopolish (ONT) Pilon (Illumina) 99.99 0.9992 0.9991 9 h 45 m 01 s 18.10

Yeast S288C — — 99.89 0.9998 0.9987 1 h 20 m 39 s 6.24

Yeast S288C Apollo (Hybrid) — 99.89 0.9998 0.9987 11 h 08 m 41 s 6.38

Yeast S288C Racon (PacBio) Racon (Illumina) 99.89 0.9994 0.9983 38 m 21 s 6.93

Yeast S288C Pilon (Illumina) Racon (PacBio) 99.89 0.9960 0.9949 21 m 42 s 11.85

Yeast S288C Quiver (PacBio) Pilon (Illumina) 98.95 0.9998 0.9893 12 m 47 s 13.28

Note: We use the long reads of E.coli O157, E.coli O157:H7, E.coli K-12 and Yeast S288C datasets that are sequenced from PacBio and ONT (151�, 112�,

319� and 140� coverage, respectively) to generate their assemblies with Canu. Here, the polishing tools specified under First Run and Second Run polish the as-

sembly using the set of reads specified in parentheses. The set of reads used in the second run is aligned to the assembly polished in the first run using Minimap2.

PacBio and Illumina set of reads together constitute the hybrid set of reads (i.e. Hybrid). We report the performance of the polishing tools in terms of the percent-

age of bases of an assembly that aligns to its reference (i.e. Aligned Bases), the fraction of identical portions between the aligned bases of an assembly and the ref-

erence (i.e. Accuracy) as calculated by dnadiff, and Polishing Score value that is the product of Accuracy and Aligned Bases (as a fraction). We report the runtime

and the memory requirements of the assembly polishing tools. We show the best result among assembly polishing algorithms for each performance metric in bold

text.

3676 C.Firtina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data

observation, we suspect that the use of the original set of long reads
(i.e. the set of reads that we use to construct an assembly) is not
helpful as Canu corrects long reads before constructing an assembly.
Thus, we also tried using the Canu-corrected long reads to polish a
Canu-generated assembly. However, the use of corrected long reads
did not consistently result in generating more accurate assemblies
than the assemblies polished using the original set of long reads as
we report in Supplementary Tables S3 and S9. We find that the
alignment of Canu-corrected long reads to an erroneous assembly
generates a smaller number of alignments than the alignment of the
original long reads to the same erroneous assembly, as we show in
Supplementary Table S17. We believe that the decrease in the num-
ber of alignments results in loss of information that assembly polish-
ing algorithms use to polish an assembly, which subsequently leads
to either similar or worse assembly polishing accuracy than using
original set of long reads. Fifth, even though Pilon is not optimized
to use long reads, we use Pilon to polish an assembly using long
reads to observe if it polishes the assembly with comparable accur-
acy to the other polishing algorithms. We observe that Pilon signifi-
cantly falls behind the other polishing algorithms in terms of our
evaluation criteria. Thus, we do not use Pilon with long reads. We
conclude that (i) Apollo usually performs better than Pilon when
using short reads and (ii) Apollo’s performance is comparable to
Racon and Quiver when using long PacBio reads to polish an
assembly.

Apollo performs better than Pilon and Nanopolish when polish-
ing a Miniasm-generated assembly using only a set of Illumina and
ONT reads, respectively. We also investigate the performance of
Apollo given the ONT dataset (E.coli K-12 MG1655), compared to
Nanopolish and Racon. We make two key observations based on
the results we show in Supplementary Table S9. First, Racon pro-
vides the best performance in terms of the accuracy of contigs when
the coverage is high (319�) and the accuracy of the original assem-
bly is low (e.g. a Miniasm-generated assembly). In the same setup,
Apollo produces a more accurate assembly than Nanopolish.
Second, even though Nanopolish produces the most accurate results
with Canu using either high coverage (319�) or moderate coverage
(�30�) data, Apollo’s polishing score differs only by at most
�1:21%. We conclude that Racon performs better than the compet-
ing state-of-the-art polishing algorithms if the coverage of a set of
reads is high (e.g. 319�). Apollo outperforms Nanopolish when pol-
ishing a Miniasm-generated assembly but Nanopolish outperforms
Racon and Apollo when polishing a Canu-generated assembly.
Thus, we also conclude that the accuracy of the original assembly
dramatically affects the overall performance of Nanopolish as there
is a significant performance difference between polishing Miniasm
and polishing Canu assemblies. We suspect that the default param-
eter settings of Apollo may be a better fit for PacBio reads rather
than ONT reads, which explains why Apollo performs worse with
ONT datasets compared to PacBio datasets.

Apollo is robust to different parameter choices. In
Supplementary Tables S19–S21, we use the E.coli O157 dataset to
examine if Apollo is robust to using different parameter settings. To
study the change in the performance of Apollo, we change the fol-
lowing parameters: maximum number of states that the Forward–
Backward and the Viterbi algorithms evaluate for the next time step
(f), number of insertion states per base pair (i), maximum deletion
length per transition (d), transition probability to a match state (tm),
transition probability to an insertion state (ti). We conclude that
Apollo’s performance is robust to different parameter choices as the
accuracies of the Apollo-polished assemblies differ by at most 2%.

3.5 Reference-independent quality assessment
We report both (i) the k-mer distance [i.e. Jaccard similarity
(Niwattanakul et al., 2013) or k-mer similarity] between filtered
Illumina reads and assemblies and (ii) quality assessment based on
mapping these filtered Illumina reads to assemblies to provide a
reference-independent comparison between the polishing tools. We
filter Illumina reads in three steps to get rid of erroneous short reads
before using them. First, we remove the adapter sequences (i.e.
adapter trimming). Second, we apply contaminant filtering for

synthetic molecules. Third, we map the reads generated after the
first three steps to the reference and filter out the reads that do not
map to the reference. We use BBTools (sourceforge.net/projects/
bbmap/) in these steps of filtering. To calculate k-mer similarity, we
also use trim-low-abund (Zhang et al., 2015), which applies k-mer
abundance trimming to remove k-mers with abundance lower than
10 for E.coli and Yeast datasets, and 3 for the human genome.

In k-mer similarity calculations, Jaccard similarity provides how
a set of k-mers of both Illumina reads and an assembly are similar to
each other. We compare the filtered Illumina reads with both pol-
ished and original (i.e. unpolished) assemblies of the small genomes
(i.e. Yeast and E.coli) and the large genomes (i.e. human); the results
are in Supplementary Tables S4, S7, S10, S13 and S15. We show the
percentage of both the k-mers of Illumina reads present in the assem-
bly and the k-mers of the assembly present in Illumina reads. The
latter helps us to identify how accurate the assembly is whereas the
former shows the completeness of the assembly.

Based on our experiments on small genomes, we make three key
observations. First, the tool with the highest assembly accuracy, esti-
mated with k-mer similarity (Supplementary Tables S4, S7, S10 and
S13), typically provides the highest polishing score in its category
(Supplementary Tables S3, S6, S9 and S12), respectively. Second,
Quiver usually produces more accurate assemblies than the assem-
blies generated by other polishing tools. Third, all polishing algo-
rithms we evaluate dramatically increase the accuracy of the
unpolished assembly generated by Miniasm. We conclude that the
k-mer similarity results correlate with our findings in Section 3.4
and support our claims regarding how polished assemblies compare
with the ground truth.

Based on the k-mer similarity results between the Illumina reads
and the human genome assemblies, we make five key observations.
First, we observe a reduction in the accuracy when polishing algo-
rithms use raw PacBio reads as the finished assembly was generated
using corrected PacBio reads and already polished by Quiver.
Second, the polishing algorithms produce more accurate assemblies
than the finished assembly only when they use short reads to polish
an assembly. This is because (i) Illumina reads are more accurate
than raw PacBio reads and (ii) Illumina reads have not been used
when polishing the HG002 assembly, which leaves room to improve
the accuracy. Third, Apollo performs better than Racon in terms of
both the completeness and the accuracy of the polished assemblies
and better than Quiver in terms of accuracy (based on 51-mer
results). Fourth, Apollo performs better than Pilon when it polishes
the assembly using short reads. Fifth, using a low coverage readset
to polish a human genome assembly dramatically reduces both the
completeness of the assembly and the accuracy of the assembly. We
conclude that (i) Apollo outperforms Pilon on Illumina data, and (ii)
it is not advisable to use raw PacBio reads to polish the large genome
assemblies that have already been polished using more accurate
reads than the raw PacBio reads (e.g. corrected PacBio reads).

We use QUAST (Gurevich et al., 2013), a quality assessment
tool for genome assemblies, to provide a different reference-
independent assessment of the assemblies. QUAST takes paired-end
filtered Illumina reads to generate several metrics such as percentage
of (i) mapped reads, (ii) properly paired reads, (iii) average depth of
coverage and (iv) bases with at least 10� coverage. It also calculates
the GC content (i.e. the ratio of bases that are either G or C) of the
assembly. Based on the quality assessment results that we show in
Supplementary Tables S5, S8, S11, S14 and S16, we make two key
observations. First, for human genome assemblies, Apollo performs
better than Racon and comparable to Pilon in terms of the percent-
age of the mapped reads, properly paired reads and the bases with at
least 10� read coverage. Second, for small genomes (i.e. Yeast and
E.coli), Quiver usually performs best in all of the metrics. We con-
clude that Apollo provides better performance when polishing large
genomes than Racon, and Quiver usually performs better than any
other polishing algorithm for small genomes.

3.6 Computational resources
We report the runtimes and the maximum memory requirements of
both assemblers and assembly polishing algorithms in

Apollo 3677

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data

Supplementary Tables S1–S3, S6, S9 and S12. Based on the runtimes
of only assembly polishing algorithms (i.e. Apollo, Nanopolish,
Pilon, Quiver and Racon), we make three observations. First, the
machine learning-based assembly polishing tools, Apollo and
Nanopolish, are the most time-consuming algorithms due to their
computationally expensive calculations. For example, Racon is
�75� and �15� faster than Apollo when polishing Miniasm-
generated assemblies using PacBio and ONT readsets, respectively.
Second, Racon becomes more memory-bound as the overall number
of long reads in a readset increases (shown in Table 2). This shows
that Racon’s memory requirements are directly proportional to the
size of the readset (i.e. the overall number of base pairs in a readset).
Third, Quiver always requires the least amount of memory for
E.coli and Yeast genomes compared to the competing algorithms.

In Supplementary Tables S1 and S2, we evaluate the overall run-
time and memory requirements of (i) polishing an assembly within a
single run by using a hybrid set of reads with Apollo and (ii) polish-
ing an assembly multiple times. We observe that the overall runtime
of running polishing tools multiple times is still lower at least by an
order of magnitude than running Apollo once with a hybrid set of
reads. However, Apollo can provide a more accurate assembly for a
species when a Canu-generated assembly is polished, as discussed in
Section 3.4.

We report the runtimes, maximum memory requirements and
the parameters of the aligners we evaluated in Supplementary
Tables S17 and S22, respectively, to observe how the aligner affects
the overall runtime of both the aligner the assembly polishing tool.
Based on the runtimes of aligners, we make two observations. First,
pbalign is the most time-consuming and memory-demanding align-
ment tool. Overall, this makes Quiver require more time and mem-
ory than Racon, since Quiver can only work with BLASR, a part of
pbalign tool. Second, all evaluated polishing tools except Quiver
allow using any aligner; therefore, we only compare the runtime of
the polishing tools, rather than comparing runtime of the full pipe-
line (i.e. aligner plus polishing tool) for the non-human genome
datasets. We conclude that Quiver is the only algorithm whose run-
time must be considered in conjunction with the aligner, as it can
only use one aligner, pbalign, which we show in Table 2.

4 Discussion

We show that there is a dramatic difference between non-machine
learning-based algorithms and the machine learning-based ones in
terms of runtime. Apollo and Nanopolish usually require several
hours to complete the polishing. Racon, Quiver and Pilon usually re-
quire less than an hour (Supplementary Tables S1–S3, S6, S9 and
S12), which may suggest that Racon and Pilon can use a hybrid set
of reads to polish an assembly in multiple runs instead of using
Apollo in a single run. Indeed, we confirm that running Racon,
Pilon or Quiver multiple times still takes a much shorter time than
running Apollo once using a hybrid set of reads within a single run.
However, assembly polishing is a one-time task performed for an as-
sembly that is usually used many times and even made publicly
available to the community. Therefore, we believe that long run-
times could still be acceptable given that genomic data produced by
Apollo will probably be used many times after it is generated.
Hence, Apollo’s runtime cost is paid only once but benefits are
reaped many times. Note that this observation is not restricted to
Apollo and applies to any polishing tool that has a long runtime. In
addition, it is possible to accelerate the calculation of the Forward–
Backward algorithm and the Viterbi algorithm using Tensor cores,
SIMD and GPUs (Eddy, 2011; Liu, 2009; Murakami, 2017; Yu
et al., 2014), which we leave to future work.

Despite these slower runtimes of Apollo compared to other pol-
ishing tools, Apollo is new, unique and useful because it provides
two major functionalities that are not possible with prior tools.
First, Apollo is the only algorithm that can scale itself well to polish
a large genome assembly using a readset with moderate coverage
(e.g. up to �35�) set of reads. Therefore, it is possible to polish a
large genome with a relatively small amount of memory (i.e. <110
GB) only with Apollo. Second, Apollo can construct more reliable

Canu-generated assemblies compared to running other polishing
tools multiple times when both PacBio and Illumina reads are used
(i.e. a hybrid set of reads). These two advantages are only possible if
Apollo is used for assembly polishing.

5 Conclusion

In this paper, we present a universal, sequencing-technology-
independent assembly polishing algorithm, Apollo. Apollo uses all
available reads to polish an assembly and removes the dependency
of the polishing tool on sequencing technology. Apollo is the first
polishing algorithm that scales well to use any arbitrary hybrid set
of reads within a single run to polish both large and small genomes.
Apollo also removes the requirement of using assembly polishing
algorithms multiple times to polish an assembly as it allows using a
hybrid set of reads.

We show three key results. First, three state-of-the-art polishing
algorithms, Quiver, Racon and Pilon, cannot scale well to polish
large genome assemblies without splitting the assembly into its con-
tigs or readsets into smaller batches whereas Apollo scales well to
polish large genomes. Second, using a hybrid set of reads with
Apollo usually results in constructing Canu-generated assemblies
more accurate than those generated when running other polishing
tools multiple times. Third, Apollo usually polishes assemblies with
comparable accuracy to state-of-the-art assembly polishing algo-
rithms with a few exceptions that occur when long reads are used to
polish Miniasm-generated assemblies. We conclude that Apollo is
the first universal, sequencing-technology-independent assembly
polishing algorithm that can use a hybrid set of reads within a single
run to polish both large and small assemblies, while achieving high
accuracy.

Funding

This work was supported by gifts from Intel [O.M.]; VMware [O.M.]; and

the funding from TÜB_ITAK [TÜB_ITAK-1001-215E172 to C.A.].

Conflict of Interest

None declared.

References

�Alkan,C. et al. (2011) Limitations of next-generation genome sequence assem-

bly. Nat. Methods, 8, 61–65.

Alser,M. et al. (2017) GateKeeper: a new hardware architecture for accelerat-

ing pre-alignment in DNA short read mapping. Bioinformatics, 33,

3355–3363.

Alser,M. et al. (2019a) Shouji: a fast and efficient pre-alignment filter for se-

quence alignment. Bioinformatics, 35, 4255–4263.

Alser,M. et al. (2019b) SneakySnake: A Fast and Accurate Universal Genome

Pre-alignment Filter for CPUs, GPUs, and FPGAs. arXiv e-prints, arXiv:

1910.09020.

Au,K.F. et al. (2012) Improving PacBio long read accuracy by short read align-

ment. PLoS One, 7, e46679.

Baum,L.E. (1972) An inequality and associated maximization technique in

statistical estimation of probabilistic functions of a Markov process.

Inequalities, 3, 1–8.

Berlin,K. et al. (2015) Assembling large genomes with single-molecule

sequencing and locality-sensitive hashing. Nat. Biotechnol., 33, 623–630.

Brown,CT. and Irber,L. (2016) sourmash: a library for MinHash sketching of

DNA. J. Open Source Softw., 1, 27.

Chaisson,M. et al. (2004) Fragment assembly with short reads.

Bioinformatics, 20, 2067–2074.

Chaisson,M.J. and Tesler,G. (2012) Mapping single molecule sequencing

reads using basic local alignment with successive refinement (BLASR): appli-

cation and theory. BMC Bioinformatics, 13, 238.

Chaisson,M.J.P. et al. (2015) Genetic variation and the de novo assembly of

human genomes. Nat. Rev. Genet., 16, 627–640.

3678 C.Firtina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa179#supplementary-data

Chin,C.-S. et al. (2013) Nonhybrid, finished microbial genome assemblies

from long-read SMRT sequencing data. Nat. Methods, 10, 563–569.

Döring,A. et al. (2008) SeqAn an efficient, generic Cþþ library for sequence

analysis. BMC Bioinformatics, 9, 11.

Eddy,S.R. (2011) Accelerated profile HMM searches. PLoS Comput. Biol., 7,

e1002195.

Firtina,C. and Alkan,C. (2016) On genomic repeats and reproducibility.

Bioinformatics, 32, 2243–2247.

Firtina,C. et al. (2018) Hercules: a profile HMM-based hybrid error correction

algorithm for long reads. Nucleic Acids Res., 46, e125.

Glenn,T.C. (2011) Field guide to next-generation DNA sequencers. Mol. Ecol.

Resour., 11, 759–769.

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assem-

blies. Bioinformatics, 29, 1072–1075.

Huddleston,J. et al. (2014) Reconstructing complex regions of genomes using

long-read sequencing technology. Genome Res., 24, 688–696.

Jain,M. et al. (2018) Nanopore sequencing and assembly of a human genome

with ultra-long reads. Nat. Biotechnol., 36, 338–345.

Kim,J.S. et al. (2018) GRIM-Filter: fast seed location filtering in DNA read

mapping using processing-in-memory technologies. BMC Genomics, 19, 89.

Koren,S. et al. (2012) Hybrid error correction and de novo assembly of

single-molecule sequencing reads. Nat. Biotechnol., 30, 693–700.

Koren,S. et al. (2017) Canu: scalable and accurate long-read assembly via adap-

tive k -mer weighting and repeat separation. Genome Res., 27, 722–736.

Kurtz,S. et al. (2004) Versatile and open software for comparing large

genomes. Genome Biol., 5, R12.

Li,H. (2016) Minimap and miniasm: fast mapping and de novo assembly for

noisy long sequences. Bioinformatics, 32, 2103–2110.

Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics, 34, 3094–3100.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows–Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,H. et al. (2009) The sequence alignment/map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Liu,C. (2009) cuHMM: a CUDA implementation of hidden Markov Model

training and classification. Chron. High. Educ., 1–13.

Loman,N.J. et al. (2015) A complete bacterial genome assembled de novo

using only nanopore sequencing data. Nat. Methods, 12, 733–735.

Meltz Steinberg,K. et al. (2017) Building and improving reference genome

assemblies. Proc. IEEE, 105, 1–14.

Murakami,T. (2017) Expectation–maximization tensor factorization for practical

location privacy attacks. Proc. Privacy Enhancing Technol., 2017, 138–155.

Niwattanakul,S. et al. (2013) Using of Jaccard coefficient for keywords similarity.

In: Proceedings of the International MultiConference of Engineers and Computer

Scientists. Newswood Limited, Hong Kong, Vol. 1, pp. 380–384.

Payne,A. et al. (2018) BulkVis: a graphical viewer for Oxford nanopore bulk

FAST5 files. Bioinformatics, 35, 2193–2198.

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological sequence

comparison. Proc. Natl. Acad. Sci., 85, 2444–2448.

Rhoads,A. and Au,K.F. (2015) PacBio sequencing and its applications.

Genomics Proteomics Bioinform., 13, 278–289.

Salmela,L. and Rivals,E. (2014) LoRDEC: accurate and efficient long read

error correction. Bioinformatics, 30, 3506–3514.

Salmela,L. et al. (2016) Accurate self-correction of errors in long reads using

de Bruijn graphs. Bioinformatics, 33, 799–806.

Sanger,F. et al. (1977) DNA sequencing with chain-terminating inhibitors.

Proc. Natl. Acad. Sci., 74, 5463–5467.

Senol Cali,D. et al. (2019) Nanopore sequencing technology and tools for gen-

ome assembly: computational analysis of the current state, bottlenecks and

future directions. Brief. Bioinform., 20, 1542–1559.

Vaser,R. et al. (2017) Fast and accurate de novo genome assembly from long

uncorrected reads. Genome Res., 27, 737–746.

Viterbi,A. (1967) Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm. IEEE Trans. Inf. Theory, 13, 260–269.

Walker,B.J. et al. (2014) Pilon: an integrated tool for comprehensive microbial

variant detection and genome assembly improvement. PLoS One, 9,

e112963.

Weirather,J.L. et al. (2017) Comprehensive comparison of Pacific Biosciences

and Oxford Nanopore Technologies and their applications to transcriptome

analysis. F1000Research, 6, 100.

Wenger,A.M. et al. (2019) Accurate circular consensus long-read sequencing

improves variant detection and assembly of a human genome. Nat.

Biotechnol., 37, 1155–1162.

Xin,H. et al. (2013) Accelerating read mapping with FastHASH. BMC

Genomics, 14, S13.

Yu,L. et al. (2014) GPU-accelerated HMM for speech recognition. In: 2014

43rd International Conference on Parallel Processing Workshops. IEEE,

Minneapolis, MN, USA, pp. 395–402.

Zhang,Q. et al. (2015) Crossing the streams: a framework for streaming ana-

lysis of short DNA sequencing reads. PeerJ PrePrints, 3, e890v1.

Apollo 3679

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/12/3669/5804978 by ETH
 Zürich user on 31 D

ecem
ber 2020

Supplementary Material for
Apollo: A Sequencing-Technology-Independent, Scalable, and

Accurate Assembly Polishing Algorithm

Can Firtina, Jeremie S. Kim, Mohammed Alser, Damla Senol Cali, A. Ercument Cicek,
Can Alkan, and Onur Mutlu

1 Constructing a profile hidden Markov model graph
Apollo constructs a profile hidden Markov model graph (pHMM-graph) to represent the sequences of
contig as well as the errors that a contig may have. A pHMM-graph includes states and directed transitions
from a state to another. There are two types of probabilities that the graph contains: (1) emission and (2)
transition probabilities. First, each state has emission probabilities for emitting certain characters where
each character is associated with a probability value with the range [0, 1]. Each emission probability
reveals how likely it is to emit (e.g., consume or output) a certain character when a certain state is
visited. Second, each transition is associated with a probability value with the range [0, 1]. A transition
probability shows the probability of visiting a state from a certain state. Thus, one can calculate the
likelihood of emitting all the characters in a given sequence by traversing a certain path in the graph.

The structure of the pHMM-graph allows us to handle insertion, deletion, and substitution errors by
following certain states and transitions. Now, we will explain the structure of the graph in detail. For
an assembly contig C, let us define the pHMM-graph that represents the contig C as G(V,E). Let us
also define the length of the contig C as n = |C|. A base C[t] has one of the letters in the alphabet set
Σ = {A,C,G, T}. Thus, a state emits one of the characters in Σ with a certain probability. For a state
i, We denote the emission probability of a base c ∈ Σ as ei(c) ∈ [0, 1] where

∑
c∈Σ

ei(c) = 1. We denote the

transition probability from a state, i, to another state, j, as αij ∈ [0, 1]. For the set of the states that the
state i has an outgoing transition to, Vi, we have

∑
j∈Vi

αij = 1. Now let us define in four steps how Apollo

constructs the states and the transitions of the graph G(V,E):
First, Apollo constructs a start state, vstart ∈ V , and an end state vend ∈ V . Second, for each base

C[t] where 1 ≤ t ≤ n, Apollo constructs a match state as follows (Figure S1):

• A match state that we denote as Mt for the base C[t] where M = C[t] s.t. C[t] ∈ Σ and Mt ∈ V
(i.e., if the tth base of the contig C is G, then the corresponding match state is Gt). For the following
steps, let us assume i = Mt

• A match emission with the probability β, for the base C[t] s.t. ei(C[t]) = β. β is a parameter to
Apollo.

• A substitution emission with the probability δ, for each base c ∈ Σ and c 6= C[t] s.t. ei(c) = δ (Note
that β + 3δ = 1). δ is a parameter to Apollo.

• A match transition with the probability αM , from the match state Mt = i to the next match state
Mt+1 = j s.t. αij = αM . αM is a parameter to Apollo.

Third, for each base C[t] where 1 ≤ t ≤ n, Apollo constructs the insertion states as follows (Figure S2):

• There are l many insertion states, I1
t , I2

t , . . . , I lt , where Iit ∈ V , 1 ≤ i ≤ l and l is a parameter to
Apollo

• The match state,Mt = i, has an insertion transition to I1
t = j, with the probability αI s.t. αij = αI

• For each i where 1 ≤ i < l, the insertion state Iit = k has an insertion transition to the next
insertion state Ii+1

t = j with the probability αI s.t. αkj = αI

1

Figure S1: Two match states. Here, the contig includes the bases G and A at the locations t and t + 1,
respectively. The corresponding match states are labeled with the bases that they correspond to (i.e.,
the match state Gt represents the base G at the location t). Each match state has a match transition to
the next match state with the initial probability αM . A match state has a match emission probability,
β, for the base it is labeled with. The remaining three bases have equal substitution emission probability
δ. The figure is taken from Hercules [1].

• For each i where 1 ≤ i < l, the insertion state Iit = k has a match transition to the match state of
the next base Mt+1 = j with the probability αM s.t. αkj = αM

• The last insertion state, I lt, has no further insertion transitions. Instead, it has a transition to the
match state of the next base Mt+1 = j with the probability αM + αI s.t. αkj = αM + αI

• For each i where 1 ≤ i ≤ l, each base c ∈ Σ and c 6= C[t+ 1] has an insertion emission probability
1/3 ≈ 0.33 for the insertion state Iit = k s.t. ek(c) = 0.33 and ek(C[t + 1]) = 0. Note that∑
c∈Σ

ek(c) = 1. (i.e., if the base at the location t+1 is T, then ek(A) = 0.33, ek(T) = 0, ek(G) = 0.33,

and ek(C) = 0.33).

Fourth step for finalizing the complete structure of the pHMM graph, for each state i ∈ V , Apollo
constructs the deletion transitions as follows (Figure S3):

• Let us define αdel = 1− (αM − αI), which is the overall deletion transition probability.

• There are k many deletion transitions from the state i, to the further match states. k is a parameter
to Apollo.

• We assume that a transition deletes the bases if it skips the corresponding match states of the bases.
We denote the transition probability of a deletion transition as αx

D s.t. 1 ≤ x ≤ k, if it deletes
x many bases in a row in one transition. Apollo calculates the deletion transition probability αx

D

using the normalized version of a polynomial distribution where f ∈ [0,∞) is a factor value for the
equation:

αx
D =

fk−xαdel

k−1∑
j=0

f j
1 ≤ x ≤ k (S1)

• If the f value is set to 1, then the each deletion transition is equally likely (i.e., α1
D = α10

D , if
k ≥ 10). As the f value increases, the probability of deleting more bases in one transition decreases
accordingly (i.e., α1

D � α10
D , if k ≥ 10). f is a parameter to Apollo.

We note that the start state vstart also has a match transition to M1 and deletion transitions as
defined previously. There are al l many insertion states, I1

0 , I2
0 , . . . , I l0, between the start state and the

first match state M1. The transitions of these insertion states are also identical to what we described
before. We would also like to note that the end state vend has no outgoing transition. The prior states
consider vend as a match state and connect to it accordingly. The start and end states have no emission
probabilities.

Note that the design of pHMM-graph described here and proposed in Hercules [1] is different from the
conventional pHMM-graphs [2]. One significant difference is that the conventional pHMM-graphs have
deletion states for each match state whereas the pHMM-graph model of Apollo uses deletion transitions
instead of states. In the conventional model, visiting deletion states does not consume (i.e., emit) a

2

Figure S2: l many insertion states for the base at location t. Here, the contig includes the bases C and T
at the locations t and t+ 1, respectively. The corresponding match states are labeled with the bases that
they correspond to. Each insertion state has an insertion transition to the next insertion state with the
initial probability αI and a match transition to the next match state at the location t+ 1 with the initial
probability αM . However, the last insertion state, I lt, does not have a transition to the next insertion
state as it is the last one. Instead, it has a match transition to the next match state Tt+1 with the
probability αM +αI . The emission probability of the base T is 0 as it appears in the next position (t+ 1)
of the contig. The figure is taken from Hercules [1].

Figure S3: Deletion transitions of the match and each insertion states at location t. For the match and
insertion states at location t, we show only the deletion transitions (red). Note that a deletion transition
from the position t to the match state of the position t+x+1 removes x many bases with the probability
αx
D as it skips x many match states where 1 ≤ x ≤ k. The figure is taken from Hercules [1].

3

character from a given sequence (i.e., observation). Therefore, this requires storing extra "position"
information that tells which character should be consumed given a state at iteration i (i.e., in each
transition from a state to another). We want to make sure that each state consumes only one character
(and no more) when visited to prevent storing the extra position information. In Apollo’s design, iteration
number i equals the position of a character that is being consumed Apollo’s states consume exactly one
character. This allows us to remove an entire dimension, the iteration number i, which greatly helps us
to reduce both memory requirements and runtime while calculating the Forward-Backward values.

2 The Forward-Backward and Baum-Welch Algorithms
Apollo uses the region of a pHMM-graph (i.e., sub-graph) that a read (i.e., observation or a sequence) is
aligned to in order to calculate the likelihood of each state emitting a certain base at position t in the
aligned read. However, this does not mean that position t is known since we need to consider the fact that
an unknown number of insertion and deletion errors may have occurred when k number of transitions is
followed from the start state to a certain state. Therefore, states should be measuring the likelihood of
emitting a character at position t where t is a number in range [1...k] where k is the number of transitions
that was taken so far. In the no error case, we have k = t. Apollo uses reads as observations for the
Forward-Backward algorithm [3] in order to calculate the likelihoods per state. These likelihoods are
calculated based on initial transition and emission probabilities of a pHMM-graph and the read itself.
Apollo uses these likelihoods to make the contig similar to the aligned read. Apollo, then, trains the
pHMM-graph of a contig per each read that aligns to the contig using the Baum-Welch algorithm [3].
We describe the details of both the Forward-Backward and the Baum-Welch algorithms in the following
paragraphs.

For each read aligning to a contig, Apollo uses the alignment location and the sequence of the read in
order to train the pHMM-graph. First, per each aligned read sequence r, Apollo extracts the sub-graph
Gs(Vs, Es) that corresponds to the aligned region of the contig where we have vstart, vend, match and
insertion states, and the transitions as described in the Supplementary Section 1. Each transition from
state i ∈ Vs to state j ∈ Vs, Eij ∈ Es, is associated with a transition probability αij . For every pair of
states, i ∈ Vs and j ∈ Vs, the transition probability αij = 0 if Eij 6∈ Es. Let us define the length of the
aligned read, r, as m = |r|. Second, it calculates the forward and backward probabilities of each state
based on the aligned read, r.

Let us assume that the forward probability of a state j that observes the tth base of the aligned read,
r[t], is Ft(j). For the forward probability, observing the tth base at the state j means that all the previous
bases (r[1] . . . r[t−1] and 1 < t ≤ m) have been observed by following a path starting from the start state
to the state j and j observes the next base, r[t]. All possible transitions that lead to state j to observe
the base r[t] contribute to the probability with (1) the forward probability of the origin state i calculated
with the (t− 1)th base of r, Ft−1(i), (2) multiplied by the probability of the transition from i to j, αij ,
(3) multiplied by the probability of emitting the base r[t] at state j, ej(r[t]).

Let us denote the start state vstart with the index value of 0 (i.e., vstart = 0). For each state j ∈ Vs,
we calculate the forward probability, Ft(j), as follows where F1(j) is the initialization step:

F1(j) = α0jej(r[1]) s.t. j ∈ Vs, E0j ∈ Es (S2.1)

Ft(j) =
∑
i∈Vs

Ft−1(i)αijej(r[t]) j ∈ Vs, 1 < t ≤ m (S2.2)

Let us assume that the backward probability of a state i that observes tth base of the aligned read,
r[t], is Bt(i). For the backward probability, observing the tth base at the state i means that all the further
bases (r[t+1] . . . r[m] and 1 ≤ t < m) have been observed by following a path starting from the end state
to the state i (backwards) and i observes the previous base, r[t]. All possible transitions that lead to
state i to observe the base r[t] contribute to the probability with (1) the backward probability of the next
state j calculated with the (t+ 1)th base of r, Bt+1(j), (2) multiplied by the probability of the transition
from i to j, αij , (3) multiplied by the probability of emitting the base r[t+ 1] at state j, ej(r[t+ 1]).

Let us denote the end state vend with the index value of m + 1 (i.e., vend = m + 1). For each state
j ∈ Vs, we calculate the backward probability, Bt(i), as follows where Bm(i) is the initialization step:

Bm(i) = αi(m+1) i ∈ Vs, Ei(m+1) ∈ Es (S3.1)

4

Bt(i) =
∑
j∈Vs

αijej(r[t+ 1])Bt+1(j) j ∈ Vs, 1 ≤ t < m (S3.2)

The calculations of forward and backward probabilities are referred as the Forward-Backward al-
gorithm. After calculation of the forward and backward probabilities, Apollo uses the Baum-Welch
algorithm to train the pHMM-graph by calculating the posterior transition and the emission probabil-
ities of the sub-graph, Gs, as shown in equations S4 and S5, respectively. In equation S4, we use the
Iversonian brackets [4] to denote that [r[t] = X] is 1 if the tth character of r is the same character as X.
Otherwise, [r[t] = X] is 0. This structure helps us to perform the summation in the numerator only when
the character at a position equals to the character given in function e∗i (X) (i.e., X). We, then, normalize
this summation to make sure the sum of the emission probabilities that state i can have is equal to 1.

e∗i (X) =

m∑
t=1

Ft(i)Bt(i)[r[t] = X]

m∑
t=1

Ft(i)Bt(i)
∀X ∈ {A,C,G, T},∀i ∈ Vs (S4)

α∗ij =

m−1∑
t=1

αijej(r[t+ 1])Ft(i)Bt+1(j)

m−1∑
t=1

∑
x∈Vs

αixex(r[t+ 1])Ft(i)Bt+1(x)

∀Eij ∈ Es (S5)

3 Joining Posterior Probabilities
As we explain in the Supplementary Section 2, for each read that aligns to the contig, Apollo extracts a
sub-graph Gs and uses the Forward-Backward algorithm to train the sub-graph. It is highly possible that
there can be overlaps between two or many sub-graphs such that the sub-graphs can include the same
states and the transitions when using high coverage reads. However, the updates on the overlapping
states and the transitions are exclusive between the sub-graphs such that no two update in separate
graphs affect each other while calculating the Forward or the Backward probabilities. Each sub-graph
uses the initial probabilities to calculate the posterior probabilities. In order to handle training of the
overlapping states and the transitions, Apollo takes the average of the posterior probabilities and reports
the average probability as the final posterior probability for the entire pHMM-graph.

Let us assume that the set of sub-graphs S includes the same state i ∈ V . For each Gs in S, we
obtain a e∗i (X), where ∀X ∈ Σ, which denotes the posterior emission probability as we explain in the
Supplementary Section 2. We denote e∗i (X) that belongs to Gs as e∗,Gs

i (X). Then, Apollo finds the final
emission value êi(X) as follows:

êi(X) =

∑
Gs∈S

e∗,Gs

i (X)

| S |
∀X ∈ Σ (S6)

Similarly, let us assume that the set of sub-graphs S includes the same transition edge Eij ∈ E. For
each Gs in S, we obtain an α∗ij that denotes the posterior transition value. We define α∗ij that belongs
to Gs as α∗,Gs

ij . Apollo finds the final transition value α̂ij as follows:

α̂ij =

∑
Gs∈S

α∗,Gs

ij

| S |
(S7)

If a state in V or an edge in E is not covered by a read then Apollo retains the initial emission and
transition probabilities and uses as posterior probabilities, respectively.

We would like to note that the Baum-Welch algorithm is also used to train conventional hidden
Markov models (HMMs). In each observation, the Baum-Welch algorithm updates the transition and
emission probabilities of an HMM accordingly. The initial probabilities of such HMMs may even be
assigned randomly. This means that the order of the observations (i.e., training data), and the initial
probabilities used to train an HMM also affect the overall accuracy as the following observations usually
use the HMM that is trained based on earlier observations. Therefore, after using all the training data,
an HMM may still have room to converge to a local optimal point due to the biases caused by the initial

5

probabilities and the order of the training data. The usual approach to mitigate such biases is to train
HMMs multiple times until the overall accuracy of an HMM converges to a certain point. We do not
follow this strategy because of three reasons. First, Apollo does not set the initial transition and emission
probabilities randomly. Instead, the probabilities are usually set according to the error profile of an
assembly. Second, we use the initial probabilities each time a read is used to train the pHMM-graph so
the order of the training data does not matter. Third, Apollo is a very time consuming tool and taking
multiple iterations until convergence would significantly increase the overall runtime, which we want to
avoid.

4 Decoding with the Viterbi Algorithm
Apollo uses the Viterbi algorithm [5] to reveal the polished assembly by finding the most likely path
starting from the start state, vstart, of the trained graph G to the end state, vend. For each state j,
the Viterbi algorithm calculates vt(j), which is the maximum marginal forward probability j obtained
from following a path starting from the start state when decoding the tth base of the polished contig.
Let Xj ∈ Σ be the base that has the greatest emission probability for the state j, i.e., êj(Xj) ≥ êj(x),
∀x ∈ Σ. Then, the value of vt(j) depends on 1) the transition probability from state i to the state j, α̂ij ,
2) the Viterbi value of the state i when decoding the (t− 1)th base of the polished contig, vt−1(i), and 3)
the emission probability of the base Xj , êj(Xj). The Viterbi algorithm also keeps a back pointer, bt(j),
which keeps track of the predecessor state i that yields the vt(j) value.

Let T be the length of the decoded sequence, which is initially unknown. The algorithm recursively
calculates v values for each position t of a decoded sequence as described in the equations S8.1 and S8.3.
The algorithm stops at iteration T ∗ such that for the last iter iterations, the maximum value we have
observed for v(end) cannot be improved and iter is set to 50 by default (empirically chosen). T is then
set to t∗ such that vt∗(end) is the maximum among all iterations 1 ≤ t ≤ T ∗.

1. Initialization
v1(j) = α̂start−j êj(Xj) ∀j ∈ V (S8.1)

b1(j) = start ∀j ∈ V (S8.2)

2. Recursion
vt(j) = max

i∈V
vt−1(i)α̂ij êj(Xj) ∀j ∈ V, 1 < t ≤ T (S8.3)

bt(j) = argmax
i∈V

vt−1(i)α̂ij êj(Xj) ∀j ∈ V, 1 < t ≤ T (S8.4)

3. Termination
vT (end) = max

i∈V
vT (i)α̂i−end (S8.5)

bT (end) = argmax
i∈V

vT (i)α̂i−end (S8.6)

The polished contig is generated by recursively following states from the end state, vend, at time T
until the back pointer points back to the start state, vstart, at time t = 1 for the state j as follows:

Algorithm 1 Calculate contig
t← T − 1
j ← end
while t 6= 0 do
j ← bt+1(j)
contig[t]← Xj

t← t− 1
end while
print contig

6

5 Performance of the Assembly Polishing Algorithms
In Tables S1, S2, S3, S6 S9, and S12, we compare the assembly polishing performance of Apollo to the
competing algorithms based on the difference between the assemblies and their reference genomes (i.e.,
ground truth). In Tables S4, S7, S10, S13, and S15, we show the k-mer similarities between Illumina reads
and the assemblies to provide an alignment-free comparison between the tools. We also use QUAST [6]
to make a more detailed quality assessment of the assemblies in Tables S5, S8, S11, S14, and S16.

Table S1: Comparison between using a hybrid set of reads with Apollo and running other polishing tools
multiple times to polish a Canu-generated assembly

Dataset First Run Second Run Aligned Accuracy Polishing Runtime Memory
Bases (%) Score (GB)

E. coli O157 — — 99.94 0.9998 0.9992 43m 53s 3.79
E. coli O157 Apollo (Hybrid) — 99.94 0.9999 0.9993 8h 16m 08s 13.85
E. coli O157 Racon (PacBio) Racon (Illumina) 99.94 0.9994 0.9988 21m 44s 22.65
E. coli O157 Racon (PacBio) Racon (PacBio) 99.94 0.9984 0.9978 4m 58s 2.43
E. coli O157 Pilon (Illumina) Pilon (Illumina) 99.94 0.9999 0.9993 4m 10s 11.40
E. coli O157 Pilon (Illumina) Racon (PacBio) 99.94 0.9986 0.9980 4m 58s 11.40
E. coli O157 Quiver (PacBio) Quiver (Pacbio) 99.94 0.9998 0.9992 13m 06s 1.98
E. coli O157 Quiver (PacBio) Pilon (Illumina) 99.94 0.9998 0.9992 5m 01s 7.50
E. coli O157 Quiver (PacBio) Racon (PacBio) 99.94 0.9986 0.9980 5m 13s 2.48
E. coli O157:H7 — — 100 0.9998 0.9998 43m 19s 3.39
E. coli O157:H7 Apollo (Hybrid) — 100 0.9999 0.9999 5h 58m 05s 8.86
E. coli O157:H7 Racon (PacBio) Racon (Illumina) 100 0.9995 0.9995 9m 43s 6.56
E. coli O157:H7 Racon (PacBio) Racon (PacBio) 100 0.9970 0.9970 5m 36s 2.24
E. coli O157:H7 Pilon (Illumina) Pilon (Illumina) 100 0.9998 0.9998 35m 12s 10.79
E. coli O157:H7 Pilon (Illumina) Racon (PacBio) 100 0.9996 0.9996 6m 04s 10.75
E. coli K-12 — — 99.98 0.9794 0.9792 34h 21m 46s 5.06
E. coli K-12 Apollo (Hybrid) — 99.99 0.9953 0.9952 9h 09m 50s 9.35
E. coli K-12 Racon (ONT) Racon (Illumina) 100 0.9996 0.9996 11m 05s 5.10
E. coli K-12 Racon (ONT) Racon (ONT) 100 0.9851 0.9851 14m 45s 4.20
E. coli K-12 Pilon (Illumina) Pilon (Illumina) 99.99 0.9993 0.9992 18m 55s 8.84
E. coli K-12 Pilon (Illumina) Racon (ONT) 99.99 0.9997 0.9996 15m 51s 8.84
E. coli K-12 Nanopolish (ONT) Nanopolish (ONT) 99.98 0.9929 0.9927 25h 39m 17s 4.84
E. coli K-12 Nanopolish (ONT) Pilon (Illumina) 99.99 0.9992 0.9991 9h 45m 01s 18.10
E. coli K-12 Nanopolish (ONT) Racon (ONT) 100 0.9866 0.9866 9h 42m 24s 4.54
Yeast S288C — — 99.89 0.9998 0.9987 1h 20m 39s 6.24
Yeast S288C Apollo (Hybrid) — 99.89 0.9998 0.9987 11h 08m 41s 6.38
Yeast S288C Racon (PacBio) Racon (Illumina) 99.89 0.9994 0.9983 38m 21s 6.93
Yeast S288C Racon (PacBio) Racon (PacBio) 99.89 0.9949 0.9938 49m 52s 6.93
Yeast S288C Pilon (Illumina) Pilon (Illumina) 99.89 0.9998 0.9987 1m 10s 11.85
Yeast S288C Pilon (Illumina) Racon (PacBio) 99.89 0.9960 0.9949 21m 42s 11.85
Yeast S288C Quiver (PacBio) Quiver (Pacbio) 98.95 0.9998 0.9893 23m 23s 2.96
Yeast S288C Quiver (PacBio) Pilon (Illumina) 98.95 0.9998 0.9893 12m 47s 13.28
Yeast S288C Quiver (PacBio) Racon (PacBio) 98.93 0.9968 0.9861 40m 04s 6.69

We use the long reads of E. coli O157, E. coli O157:H7, E. coli K-12, and Yeast S288C datasets to generate their assemblies
with Canu. Here, the polishing tools specified under First Run and Second Run polish the assembly using the set of
reads specified in parentheses. The set of reads used in the second run is aligned to the assembly polished in the first run
using Minimap2. PacBio and Illumina set of reads together constitute the hybrid set of reads (i.e., Hybrid). We report
the performance of the polishing tools in terms of the percentage of bases of an assembly that aligns to its reference (i.e.,
Aligned Bases), the fraction of identical portions between the aligned bases of an assembly and the reference (i.e., Accuracy)
as calculated by dnadiff, and Polishing Score value that is the product of Accuracy and Aligned Bases (as a fraction). We
report the runtime and the memory requirements of the assembly polishing tools. We show the best result among assembly
polishing algorithms for each performance metric in bold text.

7

Table S2: Comparison between using a hybrid set of reads with Apollo and running other polishing tools
multiple times to polish a Miniasm-generated assembly

Dataset First Run Second Run Aligned Accuracy Polishing Runtime Memory
Bases (%) Score (GB)

E. coli O157 — — 94.93 0.9000 0.8544 1m 48s 10.03
E. coli O157 Apollo (Hybrid) — 98.70 0.9866 0.9738 3h 51m 51s 12.08
E. coli O157 Racon (PacBio) Racon (Illumina) 99.37 0.9992 0.9929 21m 19s 22.66
E. coli O157 Racon (PacBio) Racon (PacBio) 99.51 0.9980 0.9931 5m 00s 2.46
E. coli O157 Pilon (Illumina) Pilon (Illumina) 96.88 0.9872 0.9564 34m 53s 18.60
E. coli O157 Pilon (Illumina) Racon (PacBio) 98.87 0.9970 0.9857 35m 26s 18.60
E. coli O157 Quiver (PacBio) Quiver (PacBio) 99.85 0.9994 0.9979 13m 45s 5.05
E. coli O157 Quiver (PacBio) Pilon (Illumina) 99.80 0.9994 0.9974 9m 42s 4.76
E. coli O157 Quiver (PacBio) Racon (PacBio) 99.81 0.9984 0.9965 10m 29s 2.49
E. coli O157:H7 — — 88.56 0.8798 0.7792 2m 57s 6.27
E. coli O157:H7 Apollo (Hybrid) — 97.53 0.9804 0.9562 2h 54m 55s 8.34
E. coli O157:H7 Racon (PacBio) Racon (Illumina) 99.02 0.9991 0.9893 9m 24s 6.56
E. coli O157:H7 Racon (PacBio) Racon (PacBio) 99.22 0.9954 0.9876 5m 31s 2.24
E. coli O157:H7 Racon (PacBio) Pilon (Illumina) 99.12 0.9981 0.9893 20m 37s 12.57
E. coli O157:H7 Pilon (Illumina) Pilon (Illumina) 96.32 0.9896 0.9532 35m 12s 15.84
E. coli K-12 — — 86.68 0.8503 0.7370 4m 04s 16.47
E. coli K-12 Apollo (Hybrid) — 97.53 0.9419 0.9186 2h 18m 33s 9.12
E. coli K-12 Racon (ONT) Racon (Illumina) 99.51 0.9992 0.9943 8m 38s 5.17
E. coli K-12 Racon (ONT) Racon (ONT) 99.78 0.9840 0.9818 11m 43s 4.06
E. coli K-12 Pilon (Illumina) Pilon (Illumina) 89.61 0.9622 0.8622 32m 03s 17.78
E. coli K-12 Pilon (Illumina) Racon (ONT) 99.43 0.9979 0.9922 25m 15s 32.15
E. coli K-12 Nanopolish (ONT) Nanopolish (ONT) 97.35 0.9488 0.9236 241h 56m 10s 8.49
E. coli K-12 Nanopolish (ONT) Pilon (Illumina) 96.48 0.9769 0.9425 117h 29m 47s 32.15
E. coli K-12 Nanopolish (ONT) Racon (ONT) 99.62 0.9814 0.9776 117h 08m 16s 8.49
Yeast S288C — — 95.05 0.8923 0.8481 2m 20s 16.59
Yeast S288C Apollo (Hybrid) — 98.49 0.9709 0.9562 6h 37m 46s 5.96
Yeast S288C Racon (PacBio) Racon (Illumina) 99.26 0.9986 0.9912 23m 51s 6.75
Yeast S288C Racon (PacBio) Racon (PacBio) 99.33 0.9937 0.9879 43m 00s 6.75
Yeast S288C Racon (PacBio) Pilon (Illumina) 99.23 0.9977 0.9900 22m 07s 14.86
Yeast S288C Pilon (Illumina) Pilon (Illumina) 95.80 0.9595 0.9192 2m 35s 15.31
Yeast S288C Quiver (PacBio) Quiver (PacBio) 99.42 0.9997 0.9939 24m 49s 4.14
Yeast S288C Quiver (PacBio) Pilon (Illumina) 99.45 0.9996 0.9941 12m 23s 13.40
Yeast S288C Quiver (PacBio) Racon (PacBio) 99.50 0.9965 0.9915 29m 31s 6.39

We use the long reads of E. coli O157, E. coli O157:H7, E. coli K-12, and Yeast S288C datasets to generate their assemblies
with Miniasm. The polishing tools specified under First Run and Second Run polish the assembly using the set of reads
specified in parentheses. The set of reads used in the second run is aligned to the assembly polished in the first run
using Minimap2. PacBio and Illumina set of reads together constitute the hybrid set of reads (i.e., Hybrid). We report
the performance of the polishing tools in terms of the percentage of bases of an assembly that aligns to its reference (i.e.,
Aligned Bases), the fraction of identical portions between the aligned bases of an assembly and the reference (i.e., Accuracy)
as calculated by dnadiff, and Polishing Score value that is the product of Accuracy and Aligned Bases (as a fraction). We
report the runtime and the memory requirements of the assembly polishing tools. We show the best result among assembly
polishing algorithms for each performance metric in bold text.

8

Table S3: Assembly polishing performance of the tools for the E. coli O157 dataset

Dataset Assembler Aligner Sequencing Tech. Polishing Aligned Accuracy Polishing Runtime Memory
of the Reads Algorithm Bases (%) Score (GB)

PacBio Miniasm — — — 94.93 0.9000 0.8544 1m 48s 10.03
PacBio Miniasm Minimap2 PacBio Apollo 98.49 0.9798 0.9650 2h 27m 49s 7.07
PacBio Miniasm Minimap2 PacBio Pilon 96.43 0.9528 0.9188 1h 31m 32s 17.68
PacBio Miniasm Minimap2 PacBio Racon 99.35 0.9951 0.9886 2m 13s 2.44
PacBio Miniasm pbalign PacBio Quiver 99.80 0.9993 0.9973 7m 31s 0.51
PacBio Miniasm Minimap2 Illumina Apollo 97.61 0.9816 0.9581 4h 25m 17s 9.22
PacBio Miniasm Minimap2 Illumina Pilon 96.52 0.9775 0.9435 32m 48s 18.60
PacBio Miniasm Minimap2 Illumina Racon 96.45 0.9876 0.9525 14m 09s 21.57
PacBio Miniasm BWA-MEM Illumina Apollo 96.62 0.9738 0.9409 3h 32m 45s 9.21
PacBio Miniasm BWA-MEM Illumina Pilon 96.13 0.9693 0.9318 31m 21s 18.45
PacBio Miniasm BWA-MEM Illumina Racon 96.90 0.9813 0.9509 12m 05s 20.85
PacBio Canu — — — 99.94 0.9998 0.9992 43m 53s 3.79
PacBio Canu Minimap2 PacBio Apollo 99.94 0.9997 0.9991 3h 42m 03s 8.82
PacBio Canu Minimap2 PacBio Racon 99.94 0.9986 0.9980 2m 17s 2.34
PacBio Canu pbalign PacBio Quiver 99.94 0.9998 0.9992 7m 06s 0.20
PacBio Canu BWA-MEM Illumina Apollo 99.94 0.9999 0.9993 4h 49m 15s 11.05
PacBio Canu BWA-MEM Illumina Pilon 99.94 0.9998 0.9992 2m 05s 11.40
PacBio Canu BWA-MEM Illumina Racon 99.94 0.9999 0.9993 14m 58s 21.04
PacBio (30×) Miniasm∗ — — — — — — — —
PacBio (30×) Canu — — — 99.98 0.9981 0.9979 21m 03s 3.70
PacBio (30×) Canu Minimap2 PacBio (30×) Apollo 99.98 0.9982 0.9980 43m 32s 8.00
PacBio (30×) Canu Minimap2 PacBio (30×) Racon 99.98 0.9980 0.9978 15s 0.59
PacBio (30×) Canu Minimap2 PacBio (30×, Corr.) Apollo 99.97 0.9976 0.9973 46m 10s 7.99
PacBio (30×) Canu Minimap2 PacBio (30×, Corr.) Racon 99.98 0.9983 0.9981 7s 0.37
PacBio (30×) Canu BWA-MEM Illumina Apollo 99.98 0.9997 0.9995 4h 48m 31s 10.35
PacBio (30×) Canu BWA-MEM Illumina Pilon 99.98 0.9998 0.9996 3m 03s 8.52
PacBio (30×) Canu BWA-MEM Illumina Racon 99.98 0.9997 0.9995 14m 42s 21.04

We polish the PacBio assemblies of E. coli O157 for different combinations of sequencing technology, assembler, aligner, and
polishing algorithm. Canu-corrected long reads are labeled as "Corr.". We report the performance of the tools in terms of
percentage of bases of an assembly that aligns to its reference (i.e., Aligned Bases), the fraction of identical portions between
the aligned bases of an assembly and the reference (i.e., Accuracy) as calculated by dnadiff, and a Polishing Score value that
is the product of Accuracy and Aligned Bases (as a fraction). We report the runtime and the memory requirements of the
assembly polishing tools. For the rows that do not specify assembly polishing algorithms, we only report the runtime and
the memory requirements of the assemblers as well as accuracy of the unpolished assembly that they construct. We show
the best result among assembly polishing algorithms for each performance metric in bold text. ∗ denotes that Miniasm
cannot produce an assembly given the specified set of reads.

9

Table S4: K-mer similarity between Illumina reads and the E. coli O157 assemblies
Dataset Assembler Aligner Sequencing Tech. Polishing 11-mer 21-mer 31-mer 51-mer

of the Reads Algorithm Sim. (%) Sim. (%) Sim. (%) Sim. (%)
PacBio Reference — — — 100 / 100 99.89 / 99.98 99.92 / 99.96 99.66 / 99.96
PacBio Miniasm — — — 90.67 / 83.48 14.31 / 13.53 5.61 / 5.21 1.12 / 1.04
PacBio Miniasm Minimap2 PacBio Apollo 96.19 / 94.94 76.20 / 74.70 66.76 / 64.01 54.77 / 52.38
PacBio Miniasm Minimap2 PacBio Pilon 93.63 / 89.91 46.18 / 44.24 31.07 / 28.92 14.57 / 13.70
PacBio Miniasm Minimap2 PacBio Racon 99.47 / 98.70 94.89 / 94.11 91.11 / 89.05 85.22 / 84.67
PacBio Miniasm pbalign PacBio Quiver 100 / 99.61 99.81 / 99.06 99.65 / 98.41 99.16 / 98.31
PacBio Miniasm Minimap2 Illumina Apollo 97.11 / 95.42 83.33 / 82.33 78.23 / 76.56 71.05 / 69.02
PacBio Miniasm Minimap2 Illumina Pilon 96.52 / 93.93 83.74 / 80.15 82.25 / 77.44 79.02 / 74.49
PacBio Miniasm Minimap2 Illumina Racon 97.31 / 96.42 90.35 / 90.02 88.61 / 87.88 87.98 / 87.34
PacBio Miniasm BWA-MEM Illumina Apollo 96.98 / 94.19 80.06 / 77.20 75.18 / 72.08 67.71 / 64.42
PacBio Miniasm BWA-MEM Illumina Pilon 96.32 / 93.20 79.65 / 75.30 76.75 / 72.32 72.92 / 67.16
PacBio Miniasm BWA-MEM Illumina Racon 96.91 / 95.10 85.89 / 85.27 84.00 / 83.88 82.36 / 81.06
PacBio Canu — — — 100 / 99.93 99.63 / 99.78 99.46 / 99.42 98.93 / 99.00
PacBio Canu Minimap2 PacBio Apollo 100 / 99.93 99.50 / 99.74 99.17 / 99.50 98.50 / 99.11
PacBio Canu Minimap2 PacBio Racon 99.87 / 99.74 98.44 / 98.52 97.37 / 97.39 95.63 / 95.78
PacBio Canu pbalign PacBio Quiver 100 / 100 99.80 / 99.72 99.67 / 99.44 99.40 / 99.25
PacBio Canu BWA-MEM Illumina Apollo 100 / 100 99.83 / 99.91 99.73 / 99.77 99.59 / 99.61
PacBio Canu BWA-MEM Illumina Pilon 100 / 100 99.83 / 99.93 99.73 / 99.77 99.59 / 99.62
PacBio Canu BWA-MEM Illumina Racon 100 / 100 99.81 / 99.91 99.71 / 99.75 99.57 / 99.53
PacBio (30×) Canu — — — 99.47 / 99.41 96.74 / 96.88 95.20 / 94.92 92.31 / 91.39
PacBio (30×) Canu Minimap2 PacBio (30×) Apollo 99.61 / 99.41 97.04 / 97.40 95.41 / 95.63 92.67 / 92.48
PacBio (30×) Canu Minimap2 PacBio (30×) Racon 99.80 / 99.61 97.00 / 97.34 95.12 / 95.16 92.63 / 92.98
PacBio (30×) Canu Minimap2 PacBio (30×, Corr.) Apollo 99.41 / 99.41 97.00 / 97.47 95.31 / 95.72 92.44 / 92.93
PacBio (30×) Canu Minimap2 PacBio (30×, Corr.) Racon 99.67 / 99.48 97.48 / 98.19 96.00 / 96.56 93.12 / 94.07
PacBio (30×) Canu BWA-MEM Illumina Apollo 100 / 99.93 99.83 / 99.54 99.69 / 99.52 99.55 / 99.23
PacBio (30×) Canu BWA-MEM Illumina Pilon 100 / 99.93 99.83 / 99.70 99.69 / 99.58 99.51 / 99.31
PacBio (30×) Canu BWA-MEM Illumina Racon 100 / 99.93 99.89 / 99.63 99.73 / 99.62 99.55 / 99.29

We report the pairs of the percentage of 1) k-mers of Illumina reads present in the assembly and 2) k-mers of the assembly
present in the Illumina reads (separated by “/") in k-mer Sim. using a fixed k-mer size (i.e., k ∈ {11, 21, 31, 51}). We
generate the assemblies for the Datasets using the reads sequenced from PacBio. We use Canu and Miniasm assemblers as
specified in Assembler. The reads specified under Sequencing Tech. of the Reads are sequenced by the specified sequencing
technology and are aligned to the assembly using the Aligner. For the rows that do not specify assembly polishing algorithms,
we only report the k-mer similarity between Illumina set of reads and either the unpolished assembly or the reference.

Table S5: Quality assessment of the E. coli O157 assemblies
Dataset Assembler Aligner Sequencing Tech. Polishing GC Mapped Properly Avg. Coverage

of the Reads Algorithm (%) Reads (%) Paired (%) Coverage ≥ 10× (%)
PacBio Reference — — — 50.48 99.92 99.49 564 99.94
PacBio Miniasm — — — 49.88 92.08 87.50 434 87.90
PacBio Miniasm Minimap2 PacBio Apollo 50.28 98.74 97.43 531 96.19
PacBio Miniasm Minimap2 PacBio Pilon 50.14 99.17 97.20 526 93.78
PacBio Miniasm Minimap2 PacBio Racon 50.52 99.63 99.03 542 98.35
PacBio Miniasm pbalign PacBio Quiver 50.56 99.83 99.40 545 98.56
PacBio Miniasm Minimap2 Illumina Apollo 50.37 96.49 94.60 513 93.74
PacBio Miniasm Minimap2 Illumina Pilon 50.36 95.58 92.04 499 89.57
PacBio Miniasm Minimap2 Illumina Racon 50.45 96.48 94.73 514 94.11
PacBio Miniasm BWA-MEM Illumina Apollo 50.30 95.55 92.22 498 89.58
PacBio Miniasm BWA-MEM Illumina Pilon 50.30 94.48 89.64 478 86.54
PacBio Miniasm BWA-MEM Illumina Racon 50.37 94.63 90.69 508 90.76
PacBio Canu — — — 50.36 99.90 99.46 547 99.73
PacBio Canu Minimap2 PacBio Apollo 50.36 99.90 99.46 547 99.92
PacBio Canu Minimap2 PacBio Racon 50.35 99.89 99.44 547 99.89
PacBio Canu pbalign PacBio Quiver 50.36 99.90 99.46 547 99.38
PacBio Canu BWA-MEM Illumina Apollo 50.36 99.90 99.46 547 99.73
PacBio Canu BWA-MEM Illumina Pilon 50.36 99.90 99.46 547 99.73
PacBio Canu BWA-MEM Illumina Racon 50.36 99.90 99.46 547 99.73
PacBio (30×) Canu — — — 50.44 99.89 99.42 560 99.61
PacBio (30×) Canu Minimap2 PacBio (30×) Apollo 50.46 99.89 99.44 560 99.91
PacBio (30×) Canu Minimap2 PacBio (30×) Racon 50.44 99.89 99.43 560 99.94
PacBio (30×) Canu Minimap2 PacBio (30×, Corr.) Apollo 50.46 99.89 99.42 560 99.92
PacBio (30×) Canu Minimap2 PacBio (30×, Corr.) Racon 50.46 99.89 99.42 560 99.97
PacBio (30×) Canu BWA-MEM Illumina Apollo 50.47 99.89 99.44 560 99.70
PacBio (30×) Canu BWA-MEM Illumina Pilon 50.47 99.89 99.44 560 99.71
PacBio (30×) Canu BWA-MEM Illumina Racon 50.47 99.89 99.43 560 99.69

We report the quality assessment of the assemblies as reported by QUAST [6]. QUAST reports the GC content and uses
the filtered Illumina reads to measure 1) percentage of the short reads that mapped to the assembly (Mapped Reads), 2)
percentage of Properly Paired reads that mapped within the expected range of each other to the assembly, 3) average
depth of coverage (Avg. Coverage), and 4) percentage of the bases with at least 10× coverage (Coverage ≥ 10×). We
generate the assemblies for the Datasets using the reads sequenced from PacBio. We use Canu and Miniasm assemblers as
specified in Assembler. The reads specified under Sequencing Tech. of the Reads are sequenced by the specified sequencing
technology and are aligned to the assembly using the Aligner to polish the assembly. For the rows that do not specify
assembly polishing algorithms, we only report the quality assessment of either the unpolished assembly or the reference.

10

Table S6: Assembly polishing performance of the tools for the E. coli O157:H7 dataset

Dataset Assembler Aligner Sequencing Tech. Polishing Aligned Accuracy Polishing Runtime Memory
of the Reads Algorithm Bases (%) Score (GB)

PacBio Miniasm — — — 88.56 0.8798 0.7792 2m 57s 6.27
PacBio Miniasm Minimap2 PacBio Apollo 96.99 0.9636 0.9346 1h 10m 23s 7.07
PacBio Miniasm Minimap2 PacBio Racon 98.94 0.9899 0.9794 2m 24s 2.14
PacBio Miniasm Minimap2 Illumina Apollo 96.06 0.9781 0.9396 2h 17m 28s 5.66
PacBio Miniasm Minimap2 Illumina Pilon 95.09 0.9791 0.9310 28m 54s 15.84
PacBio Miniasm Minimap2 Illumina Racon 96.17 0.9883 0.9504 4m 39s 6.29
PacBio Canu — — — 100 0.9998 0.9998 43m 19s 3.39
PacBio Canu Minimap2 PacBio Apollo 100 0.9997 0.9997 2h 57m 18s 7.58
PacBio Canu Minimap2 PacBio Racon 100 0.9975 0.9975 2m 50s 2.23
PacBio Canu Minimap2 Illumina Apollo 100 0.9997 0.9997 3h 10m 16s 6.18
PacBio Canu Minimap2 Illumina Pilon 100 0.9999 0.9999 1m 27s 10.75
PacBio Canu Minimap2 Illumina Racon 100 0.9996 0.9996 7m 14s 6.53

We polish the PacBio assemblies of E. coli O157:H7 for different combinations of sequencing technology, assembler, aligner,
and polishing algorithm. Canu-corrected long reads are labeled as "Corr.". We report the performance of the tools in terms
of percentage of bases of an assembly that aligns to its reference (i.e., Aligned Bases), the fraction of identical portions
between the aligned bases of an assembly and the reference (i.e., Accuracy) as calculated by dnadiff, and a Polishing
Score value that is the product of Accuracy and Aligned Bases (as a fraction). We report the runtime and the memory
requirements of the assembly polishing tools. For the rows that do not specify assembly polishing algorithms, we only
report the runtime and the memory requirements of the assemblers as well as accuracy of the unpolished assembly that
they construct. We show the best result among assembly polishing algorithms for each performance metric in bold text. ∗

denotes that Miniasm cannot produce an assembly given the specified set of reads.

Table S7: K-mer similarity between Illumina reads and the E. coli O157:H7 assemblies
Dataset Assembler Aligner Sequencing Tech. Polishing 11-mer 21-mer 31-mer 51-mer

of the Reads Algorithm Sim. (%) Sim. (%) Sim. (%) Sim. (%)
E. coli O157:H7 Reference — — — 99.93 / 100 99.78 / 99.94 99.73 / 99.96 99.70 / 99.92
E. coli O157:H7 Miniasm — — — 91.14 / 81.04 9.01 / 7.94 3.25 / 2.74 0.37 / 0.33
E. coli O157:H7 Miniasm Minimap2 PacBio Apollo 96.46 / 91.36 61.52 / 57.92 52.73 / 48.27 35.22 / 32.38
E. coli O157:H7 Miniasm Minimap2 PacBio Racon 98.10 / 96.95 88.45 / 85.70 84.37 / 80.22 74.61 / 70.87
E. coli O157:H7 Miniasm Minimap2 Illumina Apollo 97.97 / 93.43 81.92 / 78.79 77.05 / 72.69 66.69 / 63.21
E. coli O157:H7 Miniasm Minimap2 Illumina Pilon 97.64 / 92.25 85.57 / 79.87 84.74 / 78.02 80.92 / 75.85
E. coli O157:H7 Miniasm Minimap2 Illumina Racon 98.36 / 94.57 91.28 / 89.04 90.77 / 87.49 88.78 / 87.23
E. coli O157:H7 Canu — — — 99.80 / 99.93 99.41 / 99.57 99.13 / 99.46 99.06 / 98.99
E. coli O157:H7 Canu Minimap2 PacBio Apollo 99.80 / 99.93 99.35 / 99.57 99.08 / 99.44 98.82 / 98.88
E. coli O157:H7 Canu Minimap2 PacBio Racon 99.54 / 99.61 96.81 / 96.67 95.27 / 95.22 91.84 / 91.72
E. coli O157:H7 Canu Minimap2 Illumina Apollo 99.93 / 99.93 99.48 / 99.85 99.17 / 99.71 98.95 / 99.70
E. coli O157:H7 Canu Minimap2 Illumina Pilon 99.87 / 100 99.78 / 99.91 99.73 / 99.88 99.70 / 99.79
E. coli O157:H7 Canu Minimap2 Illumina Racon 99.80 / 100 99.31 / 99.83 99.00 / 99.88 98.63 / 99.47

We report the pairs of the percentage of 1) k-mers of Illumina reads present in the assembly and 2) k-mers of the assembly
present in the Illumina reads (separated by “/") in k-mer Sim. using a fixed k-mer size (i.e., k ∈ {11, 21, 31, 51}). We
generate the assemblies for the Datasets using the reads sequenced from PacBio. We use Canu and Miniasm assemblers as
specified in Assembler. The reads specified under Sequencing Tech. of the Reads are sequenced by the specified sequencing
technology and are aligned to the assembly using the Aligner. For the rows that do not specify assembly polishing algorithms,
we only report the k-mer similarity between Illumina set of reads and either the unpolished assembly or the reference.

11

Table S8: Quality assessment of the E. coli O157:H7 assemblies
Dataset Assembler Aligner Sequencing Tech. Polishing GC Mapped Properly Avg. Coverage

of the Reads Algorithm (%) Reads (%) Paired (%) Coverage ≥ 10× (%)
E. coli O157:H7 Reference — — — 50.43 97.42 94.3 183 99.93
E. coli O157:H7 Miniasm — — — 49.61 80.51 68.24 108 76.01
E. coli O157:H7 Miniasm Minimap2 PacBio Apollo 50.09 95.0 88.69 163 91.74
E. coli O157:H7 Miniasm Minimap2 PacBio Racon 50.55 97.03 93.06 173 96.59
E. coli O157:H7 Miniasm Minimap2 Illumina Apollo 50.39 93.6 87.69 162 90.65
E. coli O157:H7 Miniasm Minimap2 Illumina Pilon 50.36 93.01 85.66 159 86.75
E. coli O157:H7 Miniasm Minimap2 Illumina Racon 50.48 93.84 88.52 163 91.67
E. coli O157:H7 Canu — — — 50.43 97.42 94.32 182 99.71
E. coli O157:H7 Canu Minimap2 PacBio Apollo 50.44 97.42 94.32 182 99.87
E. coli O157:H7 Canu Minimap2 PacBio Racon 50.41 97.4 94.22 182 99.73
E. coli O157:H7 Canu Minimap2 Illumina Apollo 50.45 97.42 94.31 182 99.95
E. coli O157:H7 Canu Minimap2 Illumina Pilon 50.44 97.42 94.33 182 99.71
E. coli O157:H7 Canu Minimap2 Illumina Racon 50.45 97.42 94.29 182 99.98

We report the quality assessment of the assemblies as reported by QUAST [6]. QUAST reports the GC content and uses
the filtered Illumina reads to measure 1) percentage of the short reads that mapped to the assembly (Mapped Reads), 2)
percentage of Properly Paired reads that mapped within the expected range of each other to the assembly, 3) average
depth of coverage (Avg. Coverage), and 4) percentage of the bases with at least 10× coverage (Coverage ≥ 10×). We
generate the assemblies for the Datasets using the reads sequenced from PacBio. We use Canu and Miniasm assemblers as
specified in Assembler. The reads specified under Sequencing Tech. of the Reads are sequenced by the specified sequencing
technology and are aligned to the assembly using the Aligner to polish the assembly. For the rows that do not specify
assembly polishing algorithms, we only report the quality assessment of either the unpolished assembly or the reference.

Table S9: Assembly polishing performance of the tools for E. coli K-12 MG1655 dataset
Dataset Assembler Aligner Sequencing Tech. Polishing Aligned Accuracy Polishing Runtime Memory

of the Reads Algorithm Bases (%) Score (GB)
ONT Miniasm — — — 86.68 0.8503 0.7370 4m 04s 16.47
ONT Miniasm Minimap2 ONT Apollo 97.50 0.9209 0.8979 1h 40m 08s 7.96
ONT Miniasm Minimap2 ONT Nanopolish 96.01 0.9182 0.8816 117h 02m 10s 8.49
ONT Miniasm Minimap2 ONT Racon 99.41 0.9769 0.9711 4m 55s 3.70
ONT Miniasm Minimap2 Illumina Apollo 89.41 0.9291 0.8307 54m 46s 6.20
ONT Miniasm Minimap2 Illumina Pilon 89.22 0.9310 0.8306 17m 28s 10.58
ONT Canu — — — 99.98 0.9794 0.9792 34h 21m 46s 5.06
ONT Canu Minimap2 ONT Apollo 99.99 0.9803 0.9802 6h 08m 05s 8.09
ONT Canu Minimap2 ONT Nanopolish 99.98 0.9925 0.9923 9h 35m 26s 4.54
ONT Canu Minimap2 ONT Racon 100 0.9840 0.9840 7m 22s 4.20
ONT Canu Minimap2 Illumina Apollo 99.96 0.9982 0.9978 2h 09m 47s 6.43
ONT Canu Minimap2 Illumina Pilon 99.99 0.9987 0.9986 11m 59s 8.84
ONT (30×) Miniasm∗ — — — — — — — —
ONT (30×) Canu — — — 99.98 0.9744 0.9742 3h 17m 47s 4.54
ONT (30×) Canu Minimap2 ONT (30×) Apollo 99.98 0.9752 0.9750 40m 37s 7.74
ONT (30×) Canu Minimap2 ONT (30×) Nanopolish 99.99 0.9857 0.9856 4h 07m 06s 2.15
ONT (30×) Canu Minimap2 ONT (30×) Racon 100 0.9825 0.9825 20s 0.59
ONT (30×) Canu Minimap2 ONT (30×, Corr) Apollo 99.96 0.9755 0.9751 46m 40s 7.75
ONT (30×) Canu Minimap2 ONT (30×, Corr) Racon 100 0.9799 0.9799 9s 0.42

We polish the ONT assemblies of E. coli K-12 MG1655 for different combinations of assembler and polishing algorithm.
Canu-corrected long reads are labeled as "Corr.". We report the performance of the tools in terms of percentage of bases
of an assembly that aligns to its reference (i.e., Aligned Bases), the fraction of identical portions between the aligned bases
of an assembly and the reference (i.e., Accuracy) as calculated by dnadiff, and a Polishing Score value that is the product
of Accuracy and Aligned Bases (as a fraction). We report the runtime and the memory requirements of the assembly
polishing tools. For the rows that do not specify assembly polishing algorithms, we only report the runtime and the
memory requirements of the assemblers as well as accuracy of the unpolished assembly that they construct. We show the
best result among assembly polishing algorithms for each performance metric in bold text. ∗ denotes that Miniasm cannot
produce an assembly given the specified set of reads.

12

Table S10: K-mer similarity between Illumina reads and the E. coli K-12 assemblies
Dataset Assembler Aligner Sequencing Tech. Polishing 11-mer 21-mer 31-mer 51-mer

of the Reads Algorithm Sim. (%) Sim. (%) Sim. (%) Sim. (%)
ONT Reference — — — 99.79 / 100 99.37 / 99.70 99.35 / 99.51 99.22 / 99.65
ONT Miniasm — — — 82.92 / 80.97 13.49 / 14.57 5.40 / 5.59 1.22 / 1.29
ONT Miniasm Minimap2 ONT Apollo 88.09 / 87.01 39.46 / 41.06 26.10 / 27.06 12.11 / 12.20
ONT Miniasm Minimap2 ONT Nanopolish 89.67 / 87.09 47.47 / 48.79 38.19 / 37.81 25.04 / 25.30
ONT Miniasm Minimap2 ONT Racon 93.25 / 95.02 75.24 / 74.16 63.69 / 63.36 48.72 / 47.87
ONT Miniasm Minimap2 Illumina Apollo 91.25 / 87.17 50.96 / 53.20 44.37 / 44.28 32.54 / 32.75
ONT Miniasm Minimap2 Illumina Pilon 89.60 / 86.45 56.27 / 58.38 51.30 / 52.20 44.28 / 45.29
ONT Canu — — — 92.08 / 95.91 76.08 / 76.15 66.05 / 66.09 49.94 / 49.87
ONT Canu Minimap2 ONT Apollo 92.15 / 95.91 76.93 / 77.04 67.52 / 67.37 51.35 / 50.94
ONT Canu Minimap2 ONT Nanopolish 97.04 / 98.60 90.74 / 91.32 86.95 / 86.20 79.33 / 78.49
ONT Canu Minimap2 ONT Racon 94.49 / 96.89 80.33 / 80.42 72.03 / 71.58 57.39 / 56.79
ONT Canu Minimap2 Illumina Apollo 99.24 / 99.65 97.72 / 97.88 97.35 / 96.94 96.26 / 95.82
ONT Canu Minimap2 Illumina Pilon 99.59 / 99.59 98.10 / 98.39 98.37 / 97.70 97.06 / 96.46
ONT (30×) Canu — — — 90.36 / 94.87 71.60 / 72.15 59.89 / 59.83 41.94 / 42.42
ONT (30×) Canu Minimap2 ONT (30×) Apollo 91.05 / 94.84 72.62 / 73.06 60.96 / 61.17 43.50 / 43.84
ONT (30×) Canu Minimap2 ONT (30×) Nanopolish 95.94 / 96.80 83.00 / 82.30 75.37 / 73.76 61.85 / 60.96
ONT (30×) Canu Minimap2 ONT (30×) Racon 93.73 / 96.46 79.13 / 78.91 68.55 / 68.62 53.17 / 53.00
ONT (30×) Canu Minimap2 ONT (30×, Corr) Apollo 91.05 / 94.97 72.64 / 73.56 61.21 / 62.11 42.89 / 43.54
ONT (30×) Canu Minimap2 ONT (30×, Corr) Racon 92.08 / 95.91 74.79 / 76.08 64.47 / 65.09 47.06 / 47.38

We report the pairs of the percentage of 1) k-mers of Illumina reads present in the assembly and 2) k-mers of the assembly
present in the Illumina reads (separated by “/") in k-mer Sim. using a fixed k-mer size (i.e., k ∈ {11, 21, 31, 51}). We
generate the assemblies for the Datasets using the reads sequenced from PacBio. We use Canu and Miniasm assemblers as
specified in Assembler. The reads specified under Sequencing Tech. of the Reads are sequenced by the specified sequencing
technology and are aligned to the assembly using the Aligner. For the rows that do not specify assembly polishing algorithms,
we only report the k-mer similarity between Illumina set of reads and either the unpolished assembly or the reference.

Table S11: Quality assessment of the E. coli K-12 assemblies
Dataset Assembler Aligner Sequencing Tech. Polishing GC Mapped Properly Avg. Coverage

of the Reads Algorithm (%) Reads (%) Paired (%) Coverage ≥ 10× (%)
ONT Reference — — — 50.79 99.70 98.96 237 99.55
ONT Miniasm — — — 52.62 90.85 82.50 147 75.72
ONT Miniasm Minimap2 ONT Apollo 52.23 97.44 94.28 216 94.84
ONT Miniasm Minimap2 ONT Nanopolish 52.10 96.97 90.32 200 90.35
ONT Miniasm Minimap2 ONT Racon 51.12 99.09 97.71 234 98.51
ONT Miniasm Minimap2 Illumina Apollo 51.89 92.90 86.52 181 80.33
ONT Miniasm Minimap2 Illumina Pilon 52.11 92.59 85.77 175 78.64
ONT Canu — — — 51.05 99.61 98.71 233 98.75
ONT Canu Minimap2 ONT Apollo 50.90 99.67 98.57 234 98.31
ONT Canu Minimap2 ONT Nanopolish 51.04 99.66 98.83 234 98.77
ONT Canu Minimap2 ONT Racon 51.01 99.65 98.75 234 99.24
ONT Canu Minimap2 Illumina Apollo 50.81 99.68 98.80 235 98.58
ONT Canu Minimap2 Illumina Pilon 50.80 99.68 98.77 235 98.76
ONT (30×) Canu — — — 51.11 99.60 98.57 234 99.04
ONT (30×) Canu Minimap2 ONT (30×) Apollo 51.14 99.60 98.59 234 99.19
ONT (30×) Canu Minimap2 ONT (30×) Nanopolish 51.12 99.65 98.72 235 98.92
ONT (30×) Canu Minimap2 ONT (30×) Racon 51.05 99.64 98.78 234 99.35
ONT (30×) Canu Minimap2 ONT (30×, Corr) Apollo 51.14 99.60 98.65 234 99.28
ONT (30×) Canu Minimap2 ONT (30×, Corr) Racon 51.08 99.63 98.80 234 99.40

We report the quality assessment of the assemblies as reported by QUAST [6]. QUAST reports the GC content and uses
the filtered Illumina reads to measure 1) percentage of the short reads that mapped to the assembly (Mapped Reads), 2)
percentage of Properly Paired reads that mapped within the expected range of each other to the assembly, 3) average
depth of coverage (Avg. Coverage), and 4) percentage of the bases with at least 10× coverage (Coverage ≥ 10×). We
generate the assemblies for the Datasets using the reads sequenced from PacBio. We use Canu and Miniasm assemblers as
specified in Assembler. The reads specified under Sequencing Tech. of the Reads are sequenced by the specified sequencing
technology and are aligned to the assembly using the Aligner to polish the assembly. For the rows that do not specify
assembly polishing algorithms, we only report the quality assessment of either the unpolished assembly or the reference.

13

Table S12: Assembly polishing performance of the tools for the Yeast S288C dataset

Dataset Assembler Aligner Sequencing Tech. Polishing Aligned Accuracy Polishing Runtime Memory
of the Reads Algorithm Bases (%) Score (GB)

PacBio Miniasm — — — 95.05 0.8923 0.8481 2m 23s 16.59
PacBio Miniasm Minimap2 PacBio Apollo 98.44 0.9706 0.9555 6h 53m 51s 4.62
PacBio Miniasm Minimap2 PacBio Racon 99.15 0.9895 0.9811 18m 55s 6.63
PacBio Miniasm Minimap2 PacBio Quiver 99.44 0.9995 0.9939 16m 11s 0.26
PacBio Miniasm Minimap2 Illumina Apollo 97.26 0.9733 0.9466 2h 05m 58s 2.83
PacBio Miniasm Minimap2 Illumina Pilon 97.06 0.9761 0.9474 4m 00s 26.64
PacBio Miniasm Minimap2 Illumina Racon 97.27 0.9835 0.9567 5m 00s 7.34
PacBio Canu — — — 99.89 0.9998 0.9987 1h 20m 39s 6.24
PacBio Canu Minimap2 PacBio Apollo 98.95 0.9997 0.9892 10h 59m 10s 5.05
PacBio Canu Minimap2 PacBio Racon 98.93 0.9964 0.9857 19m 16s 6.82
PacBio Canu Minimap2 PacBio Quiver 98.95 0.9998 0.9893 12m 02s 0.29
PacBio Canu Minimap2 Illumina Apollo 98.95 0.9998 0.9893 1h 22m 24s 3.25
PacBio Canu Minimap2 Illumina Pilon 98.95 0.9998 0.9893 43s 13.83
PacBio Canu Minimap2 Illumina Racon 98.95 0.9998 0.9893 2m 55s 5.15

We polish the PacBio assemblies of Yeast S288C for different combinations of sequencing technology, assembler, aligner, and
polishing algorithm. Canu-corrected long reads are labeled as "Corr.". We report the performance of the tools in terms of
percentage of bases of an assembly that aligns to its reference (i.e., Aligned Bases), the fraction of identical portions between
the aligned bases of an assembly and the reference (i.e., Accuracy) as calculated by dnadiff, and a Polishing Score value that
is the product of Accuracy and Aligned Bases (as a fraction). We report the runtime and the memory requirements of the
assembly polishing tools. For the rows that do not specify assembly polishing algorithms, we only report the runtime and
the memory requirements of the assemblers as well as accuracy of the unpolished assembly that they construct. We show
the best result among assembly polishing algorithms for each performance metric in bold text. ∗ denotes that Miniasm
cannot produce an assembly given the specified set of reads.

Table S13: K-mer similarity between Illumina reads and the Yeast S288C assemblies
Dataset Assembler Aligner Sequencing Tech. Polishing 11-mer 21-mer 31-mer 51-mer

of the Reads Algorithm Sim. (%) Sim. (%) Sim. (%) Sim. (%)
Yeast S288C Reference — — — 100 / 100 99.96 / 99.87 99.87 / 99.71 99.73 / 99.59
Yeast S288C Miniasm — — — 95.49 / 91.36 12.06 / 10.85 4.38 / 3.84 0.62 / 0.55
Yeast S288C Miniasm Minimap2 PacBio Apollo 98.79 / 96.71 65.93 / 62.88 53.80 / 50.13 35.83 / 33.02
Yeast S288C Miniasm Minimap2 PacBio Racon 99.39 / 98.63 88.15 / 86.21 82.35 / 79.89 72.60 / 69.48
Yeast S288C Miniasm Minimap2 PacBio Quiver 99.89 / 99.34 99.38 / 98.42 99.07 / 98.19 98.98 / 97.63
Yeast S288C Miniasm Minimap2 Illumina Apollo 98.35 / 96.65 77.96 / 74.13 69.85 / 66.35 59.06 / 55.89
Yeast S288C Miniasm Minimap2 Illumina Pilon 98.84 / 96.25 84.87 / 79.60 82.25 / 77.24 80.12 / 74.60
Yeast S288C Miniasm Minimap2 Illumina Racon 98.51 / 97.18 89.53 / 87.02 87.49 / 84.96 87.02 / 83.89
Yeast S288C Canu — — — 100 / 99.45 99.91 / 99.09 99.86 / 98.97 99.60 / 98.56
Yeast S288C Canu Minimap2 PacBio Apollo 99.94 / 99.45 99.87 / 99.11 99.74 / 98.95 99.46 / 98.58
Yeast S288C Canu Minimap2 PacBio Racon 99.94 / 99.40 96.37 / 94.96 94.20 / 92.48 89.17 / 87.70
Yeast S288C Canu Minimap2 PacBio Quiver 100 / 99.62 99.93 / 99.19 99.89 / 98.95 99.76 / 98.69
Yeast S288C Canu Minimap2 Illumina Apollo 100 / 99.45 99.92 / 99.10 99.88 / 98.93 99.68 / 98.58
Yeast S288C Canu Minimap2 Illumina Pilon 100 / 99.45 99.94 / 99.13 99.89 / 98.95 99.74 / 98.69
Yeast S288C Canu Minimap2 Illumina Racon 100 / 99.45 99.94 / 99.15 99.89 / 98.95 99.75 / 98.67

We report the pairs of the percentage of 1) k-mers of Illumina reads present in the assembly and 2) k-mers of the assembly
present in the Illumina reads (separated by “/") in k-mer Sim. using a fixed k-mer size (i.e., k ∈ {11, 21, 31, 51}). We
generate the assemblies for the Datasets using the reads sequenced from PacBio. We use Canu and Miniasm assemblers as
specified in Assembler. The reads specified under Sequencing Tech. of the Reads are sequenced by the specified sequencing
technology and are aligned to the assembly using the Aligner. For the rows that do not specify assembly polishing algorithms,
we only report the k-mer similarity between Illumina set of reads and either the unpolished assembly or the reference.

14

Table S14: Quality assessment of the Yeast S288C assemblies
Dataset Assembler Aligner Sequencing Tech. Polishing GC Mapped Properly Avg. Coverage

of the Reads Algorithm (%) Reads (%) Paired (%) Coverage ≥ 10× (%)
Yeast S288C Reference — — — 38.30 99.94 99.71 73 99.95
Yeast S288C Miniasm — — — 38.42 93.88 83.94 57 82.63
Yeast S288C Miniasm Minimap2 PacBio Apollo 38.00 99.11 97.45 69 94.38
Yeast S288C Miniasm Minimap2 PacBio Racon 38.26 99.51 98.64 70 96.34
Yeast S288C Miniasm Minimap2 PacBio Quiver 38.39 99.61 99.29 71 98.04
Yeast S288C Miniasm Minimap2 Illumina Apollo 38.22 97.10 94.98 66 90.53
Yeast S288C Miniasm Minimap2 Illumina Pilon 38.41 96.86 88.65 66 87.78
Yeast S288C Miniasm Minimap2 Illumina Racon 38.42 97.03 95.33 66 91.35
Yeast S288C Canu — — — 38.17 99.94 99.73 71 98.81
Yeast S288C Canu Minimap2 PacBio Apollo 38.17 99.94 99.73 71 98.83
Yeast S288C Canu Minimap2 PacBio Racon 38.09 99.94 99.23 71 98.21
Yeast S288C Canu Minimap2 PacBio Quiver 38.17 99.94 99.74 71 98.74
Yeast S288C Canu Minimap2 Illumina Apollo 38.17 99.94 99.73 71 98.81
Yeast S288C Canu Minimap2 Illumina Pilon 38.17 99.94 99.74 71 98.81
Yeast S288C Canu Minimap2 Illumina Racon 38.17 99.94 99.73 71 98.81

We report the quality assessment of the assemblies as reported by QUAST [6]. QUAST reports the GC content and uses
the filtered Illumina reads to measure 1) percentage of the short reads that mapped to the assembly (Mapped Reads), 2)
percentage of Properly Paired reads that mapped within the expected range of each other to the assembly, 3) average
depth of coverage (Avg. Coverage), and 4) percentage of the bases with at least 10× coverage (Coverage ≥ 10×). We
generate the assemblies for the Datasets using the reads sequenced from PacBio. We use Canu and Miniasm assemblers as
specified in Assembler. The reads specified under Sequencing Tech. of the Reads are sequenced by the specified sequencing
technology and are aligned to the assembly using the Aligner to polish the assembly. For the rows that do not specify
assembly polishing algorithms, we only report the quality assessment of either the unpolished assembly or the reference.

Table S15: K-mer similarity between Illumina reads and the human genome assemblies
Dataset Assembler Aligner Polishing 21-mer 31-mer 51-mer

Algorithm Sim. (%) Sim. (%) Sim. (%)
Human HG002 Reference — — 98.05 / 87.02 96.98 / 84.73 93.56 / 80.14
Human HG002 Minimap2 PacBio Apollo 93.74 / 82.62 91.05 / 79.18 85.26 / 73.11
Human HG002 Minimap2 PacBio Quiver∗ 94.55 / 83.49 91.50 / 79.47 84.95 / 72.36
Human HG002 Minimap2 PacBio Racon∗ 85.96 / 74.53 79.07 / 67.58 67.19 / 56.73
Human HG002 Minimap2 Illumina Apollo 98.33 / 87.22 97.41 / 85.05 94.26 / 80.64
Human HG002 BWA-MEM Illumina Apollo 98.32 / 87.17 97.39 / 84.98 94.23 / 80.57
Human HG002 BWA-MEM Illumina Pilon∗ 98.19 / 87.14 97.23 / 84.95 93.99 / 80.49
Human HG002 Minimap2 PacBio (9×) Apollo 54.00 / 43.72 45.59 / 36.91 36.82 / 30.24
Human HG002 BWA-MEM PacBio (9×) Apollo 53.97 / 42.76 45.61 / 36.10 36.95 / 29.66
Human HG002 Minimap2 PacBio (9×) Racon 48.93 / 37.77 39.97 / 31.08 31.04 / 24.62
Human HG002 BWA-MEM PacBio (9×) Racon 46.83 / 34.91 37.69 / 28.35 28.67 / 22.07

We report the pairs of the percentage of 1) k-mers of Illumina reads present in the assembly and 2) k-mers of the assembly
present in the Illumina reads (separated by “/") in k-mer Sim. using a fixed k-mer size (i.e., k ∈ {21, 31, 51}). We polish
the human genome assembly in Dataset using PacBio or Illumina reads. The reads specified under Sequencing Tech. of the
Reads are sequenced by the specified sequencing technology and are aligned to the assembly using the Aligner. For the row
that does not specify any assembly polishing algorithm, we only report the k-mer similarity between Illumina set of reads
and the unpolished assembly that is already constructed and we use as reference. ∗ denotes that we polish the assembly
contig by contig in these runs and collect the results once all of the contigs are polished separately.

15

Table S16: Quality assessment of the human genome assemblies
Dataset Aligner Sequencing Tech. Polishing GC Mapped Properly Avg. Coverage

of the Reads Algorithm (%) Reads (%) Paired (%) Coverage ≥ 10× (%)
Human HG002 — — — 40.86 99.92 98.35 10 44.82
Human HG002 Minimap2 PacBio Apollo 40.81 99.91 97.75 10 44.81
Human HG002 Minimap2 PacBio Quiver 40.84 99.92 98.21 10 44.55
Human HG002 Minimap2 PacBio Racon∗ 40.74 99.89 97.34 10 44.30
Human HG002 Minimap2 Illumina Apollo 40.86 99.92 98.21 10 44.93
Human HG002 BWA-MEM Illumina Apollo 40.86 99.92 98.19 10 44.90
Human HG002 BWA-MEM Illumina Pilon∗ 40.86 99.92 98.22 10 44.86
Human HG002 Minimap2 PacBio (9×) Apollo 40.62 99.36 83.34 10 37.17
Human HG002 BWA-MEM PacBio (9×) Apollo 40.62 99.29 82.54 10 36.04
Human HG002 Minimap2 PacBio (9×) Racon 40.95 98.00 78.70 9 33.82
Human HG002 BWA-MEM PacBio (9×) Racon 40.94 97.27 76.30 9 32.07

We report the quality assessment of the assemblies as reported by QUAST [6]. QUAST reports the GC content and uses
the filtered Illumina reads to measure 1) percentage of the short reads that mapped to the assembly (Mapped Reads), 2)
percentage of Properly Paired reads that mapped within the expected range of each other to the assembly, 3) average depth
of coverage (Avg. Coverage), and 4) percentage of the bases with at least 10× coverage (Coverage ≥ 10×). We polish the
human genome assembly in Dataset using PacBio or Illumina reads. The reads specified under Sequencing Tech. of the
Reads are sequenced by the specified sequencing technology and are aligned to the assembly using the Aligner. For the rows
that do not specify assembly polishing algorithms, we only report the quality assessment of the reference. ∗ denotes that
we polish the assembly contig by contig in these runs and collect the results once all of the contigs are polished separately.

16

6 Performance of the Aligners
Here in Table S17, we show the performances of the aligners in terms of number of alignments that
the aligners generate given the assembly and the reads to align, runtime (wall clock), and the memory
requirement.

Table S17: Performance of the aligners

Dataset for Assembler Aligner Platform of the Number of Runtime Memory
the Assembly Aligned Reads Alignments (GB)
E. coli K-12 - ONT Miniasm Minimap2 ONT 8,095,856 3m 30s 4.88
E. coli K-12 - ONT Canu Minimap2 ONT 1,662,306 39s 2.10
E. coli K-12 - ONT (30×) Canu Minimap2 ONT (30×) 170,910 6s 0.60
E. coli O157 - PacBio Miniasm Minimap2 PacBio 732,397 25s 1.79
E. coli O157 - PacBio Miniasm Minimap2 Illumina 21,933,051 1m 35s 3.16
E. coli O157 - PacBio Canu Minimap2 PacBio 741,343 22s 1.80
E. coli O157 - PacBio (30×) Canu Minimap2 PacBio (30×) 148,241 5s 0.67
E. coli O157 - PacBio (30×) Canu Minimap2 PacBio (30×, Corr) 137,620 3s 0.47
E. coli O157 - PacBio Miniasm BWA-MEM Illumina 19,799,002 2m 34s 3.17
E. coli O157 - PacBio Canu BWA-MEM Illumina 23,328,379 1m 16s 2.89
E. coli O157 - PacBio (30×) Canu BWA-MEM Illumina 23,326,202 1m 20s 2.96
E. coli O157 - PacBio Miniasm pbalign PacBio 49,561 12m 55s 6.36
E. coli O157 - PacBio Canu pbalign PacBio 51,994 11m 29s 6.28

We generate the assembly using the reads specified under Dataset for the Assembly. We use Canu [7] and Miniasm [8]
assemblers as specified in Assembler. The reads specified under Platform of the Aligned Reads are aligned to the assembly
using the Aligner. We use Minimap2 [9] aligner for aligning both long and short reads to the assembly and BWA-MEM [10]
aligner to align the short reads to the assembly. We report the performance of the aligners in terms of the number of the
aligners (Number of Alignments), the runtime (Runtime), and the maximum memory requirement Memory.

17

7 Robustness of Apollo
Here in Tables S18, S19, S20, S21, we show the robustness of Apollo based on the parameters that has a
direct affect on the machine learning algorithm. In each of the tables we show that Apollo is robust to
different set of parameters.

Table S18: Apollo’s robustness based on the chunk size of the long read and the contig
Long Read Contig Chunk Aligned Aligned Accuracy
Chunk Size Size Bases Bases (%)
1000 Original 5,708,747 98.49 0.9798
1000 25000 5,487,736 94.46 0.9733
1000 50000 5,689,120 97.95 0.9728
1000 100000 5,493,663 94.52 0.9727
5000 25000 5,430,700 93.06 0.8974
5000 50000 5,411,163 92.68 0.8971
5000 100000 5,516,599 94.49 0.8970
10000 25000 5,415,333 92.65 0.8918
10000 50000 5,423,340 92.75 0.8914
10000 100000 5,474,159 93.61 0.8914

Here we divide the long reads and the assembly into smaller chunks. We use E. coli O157 dataset, assembled with Miniasm.
We divide long reads into smaller reads with lengths 1000, 5000, and 10000. Similarly, we divide the assembly contigs into
smaller contigs with lengths 25000, 50000, and 100000. We align each chunked read to each chunked contig. We report the
performance of Apollo given the chunked assembly and chunked reads.

Table S19: Apollo’s robustness based on the maximum deletion and filter size parameters
Max Filter Aligned Aligned Accuracy
Deletion (-d) Size (-f) Bases Bases (%)
3 100 5,699,182 97.91 0.9739
5 100 5,696,138 97.93 0.9735
15 100 5,678,838 97.90 0.9731
3 200 5,705,130 98.12 0.9751
5 200 5,704,582 98.12 0.9750
15 200 5,702,478 98.14 0.9751

Performance of Apollo with respect to the parameter that defines the maximum number of deletion in one transition (d = 3,
d = 5, d = 15). We also adjust the filter size (f = 100, f = 200)

18

Table S20: Apollo’s robustness based on the maximum insertion and filter size parameters
Max Filter Aligned Aligned Accuracy
Insertion (-i) Size (-f) Bases Bases (%)
1 100 5,685,635 97.89 0.9660
5 100 5,638,585 97.62 0.9696
10 100 5,365,978 95.54 0.9531
1 200 5,685,040 98.02 0.9668
5 200 5,692,813 98.07 0.9740
10 200 5,623,736 97.62 0.9701

Performance of Apollo with respect to the parameter that defines the maximum number of insertion states for each base
(i = 1, i = 5, i = 10). We also adjust the filter size (f = 100, f = 200)

Table S21: Apollo’s robustness based on the match transition, insertion transition probabilities, and the
filter size parameters

Match Transition Insertion Transition Filter Aligned Aligned Accuracy
Probability (-tm) Probability (-ti) Size (-f) Bases Bases (%)
0.60 0.25 100 5,670,852 97.95 0.9625
0.60 0.30 100 5,660,957 97.90 0.9596
0.80 0.10 100 5,699,660 98.02 0.9788
0.90 0.05 100 5,685,770 97.89 0.9774
0.60 0.25 200 5,682,512 98.10 0.9644
0.60 0.30 200 5,681,993 98.13 0.9618
0.80 0.10 200 5,707,293 98.16 0.9803
0.90 0.05 200 5,695,902 98.05 0.9789

Performance of Apollo with respect to the parameters that define the match and insertion transition probabilities (tm = 0.60

& ti = 0.25, tm = 0.60 & ti = 0.30, tm = 0.80 & ti = 0.10, tm = 0.90 & ti = 0.05). We also adjust the filter size (f = 100,
f = 200)

19

8 Parameters
We show the parameter settings of the aligners that we used to align the reads to the assembly in
Table S22.

Table S22: List of the parameters that are used to align the reads to the assemblies
Aligner Parameters
BWA-MEM -t 45
Minimap2 (for PacBio) -x map-pb -a -t 45
Minimap2 (for ONT) -x map-ont -a -t 45
Minimap2 (for Illumina) -a -x sr -t 45
pbalign –nproc 45

20

References
[1] Can Firtina, Ziv Bar-Joseph, Can Alkan, and A Ercument Cicek. Hercules: a profile HMM-based

hybrid error correction algorithm for long reads. Nucleic Acids Research, 46(21):e125–e125, August
2018.

[2] Sean R. Eddy. Profile hidden Markov models. Bioinformatics, 14(9):755–763, October 1998.

[3] L. E. Baum. An inequality and associated maximization technique in statistical estimation of prob-
abilistic functions of a Markov process. Inequalities, 3:1–8, 1972.

[4] Donald E. Knuth. Two Notes on Notation. The American Mathematical Monthly, 99(5):403, May
1992.

[5] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.
IEEE Transactions on Information Theory, 13(2):260–269, April 1967.

[6] Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. QUAST: quality assessment
tool for genome assemblies. Bioinformatics, 29(8):1072–1075, April 2013.

[7] Sergey Koren, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H. Bergman, and
Adam M. Phillippy. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting
and repeat separation. Genome Research, 27(5):722–736, May 2017.

[8] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103–2110, July 2016.

[9] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100,
September 2018.

[10] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler trans-
form. Bioinformatics, 25(14):1754–1760, July 2009.

21

	btaa179-TF1
	btaa179-TF2
	btaa179-TF3
	btaa179-TF4
	btaa179-TF5

