Application-to-Core Mapping Policies to Reduce Memory Interference in Multi-Core Systems

Reetuparna Das[§] Rachata Ausavarungnirun[†] Onur Mutlu[†] Akhilesh Kumar[‡] Mani Azimi[‡]

§University of Michigan †Carnegie Mellon University

‡Intel Labs

Background and Problems

Our Solution

Key insights

- Network and memory load are not balanced across the network
- Overall performance degrades when applications that interfere significantly with each other get mapped to closeby cores
- Some applications benefit significantly from being mapped close to a shared resource

Identifying Sensitive Applications

- Stall Time per Miss (STPM): average number of cycles a core is stalled because of a cache miss
- → Applications with high STPM are interference-sensitive
- L1 Misses per Thousand Instruction (MPKI)
- → Applications with high MPKI are network-intensive
- Sensitive applications are applications with high STPM and high MPKI

Application-to-Core Mapping Policy

- Clustering: A sub-network where applications mapped to a cluster predominantly access resources within that same cluster
- Mapping policy across clusters:
 - Equally divides the network load among clusters
 - Protects interference-sensitive applications from others by assigning them their own cluster
- Mapping policy within a cluster: Maps network-intensive and interferencesensitive applications close to the memory controller
- Dynamically migrate applications between cores

Balanced Mapping with Reduced Interference

Radial Inter-cluster Mapping

Key Results

Methodology

Three systems:

- Baseline with random mapping (BASE),
- Random mapping of applications to cores (CLUSTER+RND)
- Our final system with application-to-core (A2C)

Number of Cores	60
L1 Cache	32KB per core. 4 ways, 2-cycle latency
L2 Cache	256KB per core, 16 ways, 6-cycle latency
MSHR	32 entries
Main Memory	4GB. 160-cycle latency 4 channels at 16GB/s
Network Router	4 VCs per port, 4 flits per VC 2-stage wormhole
Network Topology	8x8 mesh, 128 bit bi-directional links
Memory Management	4KB physical and virtual page 512 entries TLB
	CLOCK page allocation and replacement

Results

