The Blacklisting Memory Scheduler

Achieving High Performance and Fairness
at Low Cost

Lavanya Subramanian, Donghyuk Lee,
Vivek Seshadri, Harsha Rastogi, Onur Mutlu

SAFARI Carnegie Mellon

Main Memory Interference Problem

— —) | T
(Y (A Memory

Causes interference between applications’ requests

SAFARI

Inter-Application Interference
Results in Performance Degradation

Slowdown
O - NN W B U O
|

a

leslie3d (core 0) mcf (core 1)

High application slowdowns due to interference

SAFARI

3

Tackling Inter-Application

Interference:
Application-aware Memory Schedulin
I\/B/Fv)itor Rank yEnf%rce g

A Ranks

Highest

R t Buff
e e | Ranked AID

Request

Full ranking increases
critical path latency and area
significantly to improve

performance and fairness CAFAR]

4

Performance vs. Fairness vs. Simplicity

Fairness

Is it essential to give up simplicity to
optimize for performance and/or fairness?
Our solution achieves all three goals

d----------

\

’-\

4oy Very Simple

\N_f

Simplicity SAFARI 5

Outline

Introduction

Problems with Application-aware Schedulers

Key Observations

The Blacklisting Memory Scheduler Design

Evaluation
Conclusion

SAFARI

6

Outline

" |ntroduction
" Problems with Application-aware Schedulers

SAFARI 7

Problems with Previous
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity

2. Full ranking causes unfair slowdowns

SAFARI 3

Problems with Previous
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity

2. Full ranking causes unfair slowdowns

SAFARI 9

Ranking Increases Hardware Complexity

Enforce
Ranks
Next Highest
R Buff
Rank \ equest Buffer Ranked AID
Request

Hardware complexity increases with
application/core count

SAFARI 10

Ranking Increases Hardware Complexity

Critical Path Latency (in ns)
O N o0 L

R N W B~ U

From synthesis of RTL implementations using a 32nm library

80000

"E 70000
=

(V]
= 60000

=)

& 50000

c
N

s 40000
o

W App-unaware

8X

< 30000
Q

3 20000
Q

<
& 10000

W App-unaware

Ranking-based application-aware schedulers

incur high hardware cost

SAFARI

11

Problems with Previous
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity
2. Full ranking causes unfair slowdowns

SAFARI 12

Number of Requests

w
o

N
o

[y
o o
E I
<_——’

Ranking Causes Unfair Slowdowns

GemsFDTD (high memory intensity)

—App-unaware
e==Ranking

30 40 50 60 70 80 90 100
Execution Time (in 1000s of Cycles)

o
[
o
N
o

sieng (low memory intensity)

_ﬂ30 |
Full ordered ranking of applications
GemsFDTD denied request service
éo[\'/vu VT VUl WV ""A LA\ U AR W4 LI A A W

0 10 20 30 40 50 60 70 80 90 100
E tion Ti in 1000s of Cycl
xecution Time (in s of Cycles) SAFARI 13

Ranking Causes Unfair Slowdowns

GemsFDTD sjeng
(high memory intensity) (low memory intensity)
8 8
A
7 7
6 6
S5 S5
() ¥ App-unaware () = App-unaware
T4 - T4
c;> M Ranking g M Ranking
73 3 3
7} 7}
2 - 2
. : i
n - n -

Ranking-based application-aware schedulers
cause unfair slowdowns

SAFARI 14

Problems with Previous
Application-aware Memory Schedulers

Our Goal: Design a memory scheduler with
Low Complexity, High Performance, and Fairness

SAFARI 15

Outline

= |ntroduction
" Problems with application-aware schedulers
= Key Observations

SAFARI 16

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

Monitor Rank Group
Interference
Vulnerable Causing
//’) \\\
[/ 2 \‘
[
\ !
\ /
\ /
N N

Benefit 1: Low complexity compared to ranking

SAFARI 17

Key Observation 1: Group Rather Than Rank

GemsFDTD (high memory intensity)

. 30
i
S
g 20 , S “ A . A | 9
x | ——App-unaware
5., IR pl\ ML A VMU Y I e TR |
o v " | | —Ranking
:, AU [N oL L D
2 0 - T T O — — VA L —

0 10 20 30 40 50 60 70 80 90 100

Execution Time (in 1000s of Cycles)

No denial of request service

—App-unaware

o] T T I T
WCWMWMN @g%Jy‘&ﬂyuwa oking

Number of Re

0

Execution Time (in 1000s of Cycles) SAFARI 18

Key Observation 1: Group Rather Than Rank

GemsFDTD sjeng

(high memory intensity) (low memory intensity)

8 8

7 7

6 6
§ 5 M App-unaware § 5 M App-unaware
'§ 4 M Ranking '§ 4 W Ranking
% 3 Grouping % 3 Grouping

2 2

1 B

0 Q -

Benefit 2: Lower slowdowns than ranking

SAFARI 19

Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking
Monitor Rank Group

Interference
KN
1

Vulnerable Causing

”—-\ ——~\
~

How to classify applications into groups?

SAFARI 20

Key Observation 2

Observation 2: Serving a large number of consecutive
requests from an application causes interference

Basic Idea:

* Group applications with a large number of consecutive
requests as interference-causing =2 Blacklisting

* Deprioritize blacklisted applications
* Clear blacklist periodically (1000s of cycles)

Benefits:

* Lower complexity
* Finer grained grouping decisions =2 Lower unfairness
SAFARI 2

Outline

Introduction

Problems with application-aware schedulers
Key Observations

The Blacklisting Memory Scheduler Design

SAFARI 22

The Blacklisting Memory Scheduler (BLISS)

1. Monitor 2. Mociitist 2. Pioritize
4. Clear Request Buffer
Periodically Req Blacklist

Simple and scalable design

AID _ Blackl}ft Rep3t [H—FE=()
Last Req AID 2 y) 0

= | Rep42l 10 P

Last Req AID || 3 # (Il'qe'iec"‘;u%ﬁl Regs2| 1o 103
etLIesTS

Consecutive || 2 0] Req6 | 0 =0

Requests 3 o/ Req7 | 1 >0

~ Req8 | 0 >0

SAFARI 23

Outline

Introduction

Problems with application-aware schedulers

Key Observations

The Blacklisting Memory Scheduler Design

Evaluation

SAFARI 24

Methodology

* Configuration of our simulated baseline system
— 24 cores
— 4 channels, 8 banks/channel
— DDR3 1066 DRAM
— 512 KB private cache/core

e Workloads
— SPEC CPU2006, TPC-C, Matlab , NAS

— 80 multiprogrammed workloads

SAFARI 25

Metrics

e System Performance:

shared
Weighted Speedup = >]]I;%alone

e Fairness:

]Pc?lone
[Pcfhared

Maximum Slowdown = max

 Complexity:

Critical path latency and area from synthesis with 32 nm library

SAFARI 26

Previous Memory Schedulers

Application-unaware
+ Low complexity
- Low performance.and fairness

Application-aware
+ High performance and fairness
- High complexity

- ' o SAFARI 27

Performance and Fairness

¢ FRFCFS ¢ FRFCFS-Cap A PARBS

X ATLAS TCM ® Blacklisting
15 A
D
" 13 -
€ 11 -
£ 9 - 5%
> * o &
- |21A %
z ¥
5 T T T T g
7.5 8 8.5 9 9.5 10

1. Blacklisting achieves the highest performance
2. Blacklisting balances performance and fairness

SAFARI 23

Complexity

¢ FRFCFS ¢ FRFCFS-Cap A PARBS
X ATLAS TCM ® Blacklisting
€ 120000 7
g 100000 - A
o 80000 -
X
S 60000 - 143%
S i PN
E 40000 0@ 70%
S 20000 \60
O | | | | | >
0 2 4 6 8 10 12

Blacklisting reduces complexity significantly

SAFARI

29

Performance vs. Fairness vs. Simplicity

Fairness Clo'se to — FRFCFS
fairest FRFCFSCap
— PARBS

— ATLAS

Highest TCM

erformance L
P f = Blacklisting

—P Performance

~
-,
N,
LN
~
-,
N
S
S
e
S

~
~
«,
-,
~
S
\,
N
«,
~
N
e,
«,

‘l
"
td

"
4
"
4
@

NS simplest
Simplicity SAFARI 0

Summary

Applications’ requests interfere at main memory
Prevalent solution approach
— Application-aware memory request scheduling
Key shortcoming of previous schedulers: Full ranking
— High hardware complexity
— Unfair application slowdowns

Our Solution: Blacklisting memory scheduler
— Sufficient to group applications rather than rank
— Group by tracking number of consecutive requests

Much simpler than application-aware schedulers at
higher performance and fairness
SAFARI 31

The Blacklisting Memory Scheduler

Achieving High Performance and Fairness
at Low Cost

Lavanya Subramanian, Donghyuk Lee,
Vivek Seshadri, Harsha Rastogi, Onur Mutlu

SAFARI Carnegie Mellon

32

Backup Slides

SAFARI 33

DRAM Memory Organization

Columns
Row hitss
(2-3x latency of row hit) g
g Bank O Bank 1 Bank 2 Bank 3
Memory
Controller
Row Row Row Row

Buffer Buffer Buffer Buffer

. F R_ FC FS M e m O ry SC h e d U Ie r [Zuravleff and Robinson, US Patent ‘97; Rixner et al.,

ISCA ‘00]

— Row-buffer hit first
— Older request first

 Unaware of inter-application interference

SAFARI

34

Tackling Inter-Application
Interference:

Application-aware Memory Scheduling
* Monitor application memory access

characteristics (e.g., memory intensity)

* Rank applications based on memory access
characteristics

* Prioritize requests at the memory controller,
based on ranking

SAFARI 35

Performance and Fairness

Weighted Speedup

10 15
o
g - / BERFCFS c;> M FRFCFS
| - O] -
B FRFCFS-Cap g 10 FRFCFS-Cap
6 ® PARBS = ® PARBS
4 - _ HATLAS g . W ATLAS
= TCM E " TCM
2 - &
Blacklisting S Blacklisting
(0 (0

5% higher system performance and 21%
lower maximum slowdown than TCM

SAFARI 3¢

Latency (in ns)

[
N

[EEY
o

(00e]

(@)

H
|

N
|

o
|

Complexity Results

120000
M App-unaware z 100000
=
M PARBS S
S 60000 -
H ATLAS pe
™ App-aware @ 40000 -
Blacklisting < 20000 -

O_

M FRFCFS

™ FRFCFS-Cap

M PARBS

W ATLAS

TTCM
Blacklisting

Blacklisting achieves
43% lower area than TCM

SAFARI 37

Understanding Why Blacklisting Works

n 0.4 » 0.5

S 3 $ 0.4

o o

2 —FRFCFS 203 —FRFCFS

%5 0.2 s

c —PARBS c 0.2 —PARBS

o o

g 01 w TCM ‘gg 0.1 W TCM

“ 0 —Blacklisting “ 0 —Blacklisting

0 10 20 0 10 20
Streak Length Streak Length
libguantum calculix
(High memory-intensity (Low memory-intensity

application) application)

Blacklisting shifts the request distribution
towards the right

SAFARI 38

Harmonic Speedup

0.35

o
w

—
N
U

—
o

o
=
U

O
=

O
o
a1

o

Harmonic Speedup

™ FRFCFS

® FRFCFS-Cap
“ PARBS

W ATLAS
HTCM

“ Blacklisting

SAFARI

39

Weighted Speedup

(Normalized)

© o oo
oON B O O -

Effect of Workload Memory Intensity

==
N B

25 50 75 100 Avg

Maximum Slowdown

(Normalized)

=
Ul

O
U
|

N

[EEY
|

o
|

25 50 75 100 Avg

M FRFCFS

B FRFCFS-Cap
™ PARBS

B ATLAS
HTCM

™ Blacklisting

SAFARI 40

Combining FRFCFS-Cap and
Blacklisting

e

Weighted Speedup

o o 0 0 .
O N B OO O L N B

1.2

S 1 - ® FRFCFS
3
308 - ® FRFCFS-Cap
"E’o.s : .
S ™ Blacklisting
€04
% ® FRFCFS-Cap-
S 0.2 - Blacklisting

O _

SAFARI 4

Weighted Speedup
© o o o

o N B~ OO 0 -

= =
N B

Sensitivity to Blacklisting Threshold

=
N

[N

O
(0¢
|

Maximum Slowdown
o o
N O
|

o
N
|

o
|

M FRFCFS

M Blacklisting-1
¥ Blaclisting-2

M Blacklisting-4
M Blacklisting-8
™ Blacklisting-16

SAFARI 22

Weighted Speedup
o O O O
O N B O 0 B

=

NB

Sensitivity to Clearing Interval

=
N

G 00

Maximum Slowdown
D

© o o o

o N

® FRFCFS

M Blacklisting-1
000

“ Blacklisting-1
0000

W Blacklisting-1
00000

SAFARI 13

Weighted Speedup

N

[EEY

[N

Sensitivity to Core Count

0 § 35
3 30
> 225
0 % 20 W FRFCFS
g 15 ™ PARBS
5 - £ 10 TCM
s 5 M Blacklisting
0 - 2 0 -
16 24 32 64 16 24 32 64
Core Count Core Count

SAFARI 44

Weighted Speedup

[ERY
9

[ERY
o

0p

o

Sensitivity to Channel Count

c 40
3
S30
= ® FRFCFS
o 20

i £ M PARBS
e 10 - TCM

- fg 0 - ™ Blacklisting

1 2 4 8 1 2 4 8
Channel Count Channel Count

SAFARI 15

Weighted Speedup

16

14 |
12 |
10 |

Sensitivity to Channel Count

FRFCFS C—— TCM
PARBS ——= BLISS s

14%

9% |

Maximum Slowdown

35

30
25
20
15 1
10

FRFCFS —— TCM mmm
PARBS ——— BLISS s

11%

] 15%

-20%
-16%-

SAFARI

46

Weighted Speedup

© o o ©
O N B O OO B

=

NB

Breakdown of Benefits

=
N

G 00

Maximum Slowdown
D

© o o o

o N

™ FRFCFS
HTCM

“ Grouping
™ Blacklisting

SAFARI 47

Weighted Speedup

© o O O

BLISS vs. Criticality-aware Scheduling

= =
N B

1.4
cl1.2
3 ® FRFCFS
1 T;’ 1 ® PARBS
. o
8 D03 = Tem
6 - §O.6 i M Crit-MaxStall
e M Crit-TotalStall
4 £04
© ™ Blacklisting
2 - 202 -
(0 0 -

SAFARI 18

Weighted Speedup

=
o N

o N b O o

Sub-row Interleaving

Maximum Slowdown

[EEY
o

[ERY
N

o N b O O

B FRFCFS-Row
M FRFCFS

™ FRFCFS-Cap
M PARBS

M ATLAS
BTCM

“ Blacklisting

SAFARI 19

Meeting DDR Timing Requirements

FRFCFS ——— ATLAS
FRFCFS-Cap TCM
PARBS BLISS mmm
12
? 10 DDR3-800
9
S _ 8
£¢ | DDR3-1333
© =
Q=
Iy 4 t
= DDR4-3200
S 2
0

SAFARI 5o

