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Main Memory Interference Problem
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Causes interference between applications’ requests
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Inter-Application Interference
Results in Performance Degradation

Slowdown
O - NN W B U O
|

a

leslie3d (core 0) mcf (core 1)

High application slowdowns due to interference
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Tackling Inter-Application

Interference:
Application-aware Memory Schedulin
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Performance vs. Fairness vs. Simplicity

Fairness

Is it essential to give up simplicity to
optimize for performance and/or fairness?
Our solution achieves all three goals

d----------

\

’-\

4oy Very Simple

\N_f

Simplicity SAFARI 5



Outline

Introduction

Problems with Application-aware Schedulers

Key Observations

The Blacklisting Memory Scheduler Design

Evaluation
Conclusion

SAFARI

6



Outline

" |ntroduction
" Problems with Application-aware Schedulers

SAFARI 7



Problems with Previous
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity

2. Full ranking causes unfair slowdowns
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Ranking Increases Hardware Complexity
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Hardware complexity increases with
application/core count
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Ranking Increases Hardware Complexity

Critical Path Latency (in ns)
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From synthesis of RTL implementations using a 32nm library
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Ranking-based application-aware schedulers

incur high hardware cost
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Problems with Previous
Application-aware Memory Schedulers

1. Full ranking increases hardware complexity
2. Full ranking causes unfair slowdowns
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Ranking Causes Unfair Slowdowns
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Ranking Causes Unfair Slowdowns
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Ranking-based application-aware schedulers
cause unfair slowdowns
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Problems with Previous
Application-aware Memory Schedulers

Our Goal: Design a memory scheduler with
Low Complexity, High Performance, and Fairness
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Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking

Monitor Rank Group
Interference
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Benefit 1: Low complexity compared to ranking
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Key Observation 1: Group Rather Than Rank

GemsFDTD (high memory intensity)

. 30
i
S
g 20 , S “ A . A | 9
x | ——App-unaware
5., IR pl\ ML A VMU Y I e TR |
o v " | | —Ranking
:, AU [N oL L D
2 0 - T T O — — VA L —

0 10 20 30 40 50 60 70 80 90 100

Execution Time (in 1000s of Cycles)

No denial of request service

—App-unaware

o] T T I T
WCWMWMN @g%Jy‘&ﬂyuwa oking

Number of Re

0

Execution Time (in 1000s of Cycles) SAFARI 18



Key Observation 1: Group Rather Than Rank
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Benefit 2: Lower slowdowns than ranking
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Key Observation 1: Group Rather Than Rank

Observation 1: Sufficient to separate applications
into two groups, rather than do full ranking
Monitor Rank Group

Interference
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How to classify applications into groups?
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Key Observation 2

Observation 2: Serving a large number of consecutive
requests from an application causes interference

Basic Idea:

* Group applications with a large number of consecutive
requests as interference-causing =2 Blacklisting

* Deprioritize blacklisted applications
* Clear blacklist periodically (1000s of cycles)

Benefits:

* Lower complexity
* Finer grained grouping decisions =2 Lower unfairness
SAFARI 2
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The Blacklisting Memory Scheduler (BLISS)

1. Monitor 2. Mociitist 2. Pioritize
4. Clear Request Buffer
Periodically Req  Blacklist

Simple and scalable design
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Methodology

* Configuration of our simulated baseline system
— 24 cores
— 4 channels, 8 banks/channel
— DDR3 1066 DRAM
— 512 KB private cache/core

e Workloads
— SPEC CPU2006, TPC-C, Matlab , NAS

— 80 multiprogrammed workloads
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Metrics

e System Performance:

shared
Weighted Speedup = > ]]I;%alone

e Fairness:

]Pc?lone
[Pcfhared

Maximum Slowdown = max

 Complexity:

Critical path latency and area from synthesis with 32 nm library
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Previous Memory Schedulers

Application-unaware
+ Low complexity
- Low performance.and fairness

Application-aware
+ High performance and fairness
- High complexity
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Performance and Fairness
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1. Blacklisting achieves the highest performance
2. Blacklisting balances performance and fairness
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Complexity
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Blacklisting reduces complexity significantly
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Performance vs. Fairness vs. Simplicity
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Summary

Applications’ requests interfere at main memory
Prevalent solution approach
— Application-aware memory request scheduling
Key shortcoming of previous schedulers: Full ranking
— High hardware complexity
— Unfair application slowdowns

Our Solution: Blacklisting memory scheduler
— Sufficient to group applications rather than rank
— Group by tracking number of consecutive requests

Much simpler than application-aware schedulers at
higher performance and fairness
SAFARI 31
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Backup Slides

SAFARI 33



DRAM Memory Organization

Columns
Row hitss
(2-3x latency of row hit) g
g Bank O Bank 1 Bank 2 Bank 3
Memory
Controller
Row Row Row Row

Buffer Buffer Buffer Buffer

. F R_ FC FS M e m O ry SC h e d U Ie r [Zuravleff and Robinson, US Patent ‘97; Rixner et al.,

ISCA ‘00]

— Row-buffer hit first
— Older request first

 Unaware of inter-application interference
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Tackling Inter-Application
Interference:

Application-aware Memory Scheduling
* Monitor application memory access

characteristics (e.g., memory intensity)

* Rank applications based on memory access
characteristics

* Prioritize requests at the memory controller,
based on ranking
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Performance and Fairness

Weighted Speedup
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5% higher system performance and 21%
lower maximum slowdown than TCM
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Latency (in ns)

[
N

[EEY
o

(00e]

(@)

H
|

N
|

o
|

Complexity Results
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Understanding Why Blacklisting Works
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Blacklisting shifts the request distribution
towards the right
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Harmonic Speedup
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Weighted Speedup

(Normalized)
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Combining FRFCFS-Cap and
Blacklisting
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Weighted Speedup
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Weighted Speedup
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Weighted Speedup
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Weighted Speedup
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Weighted Speedup
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Weighted Speedup
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Weighted Speedup
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BLISS vs. Criticality-aware Scheduling
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Weighted Speedup
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Meeting DDR Timing Requirements
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