Boyi: A Systematic Framework for
Automatically Deciding the Right Execution
Model of OpenCL Applications on FPGAs

Jiantong Jiang (Northeastern University, China),
Zeke Wang (Zhejiang University, China),
Xue Liu (Northeastern University, China),

Juan Gomez-Luna (ETH Ziirich, Switzerland),
Nan Guan (Hong Kong Polytechnic University),
Qingxu Deng (Northeastern University, China),
Wei Zhang (Hong Kong University of Science and Technology),
Onur Mutlu (ETH Zurich, Switzerland)

Outline

* Background and Motivations
* Our Solution

* Experiment

* Conclusion

What is OpenCL?

* OpenCL stands for Open Computing Language.

* OpenCL has been developed for heterogeneous
computing environments with a host-accelerator

execution model.

»The CPU runs the control task.
»The GPU/ FPGA runs the computing kernel.

OpenCL on FPGA

)

Memory blocks

HEEEEEEEEE
HEAEEEEEEEE
[Ae<S|[ne<s] [ad<S |
HEEAEEEEEEHE
HEEEEAEEEE

HEEEEEEEEAE
HEEEEEEEEE
(<] [ae<s]| [ne<=]
BEECEEEEEEE

ock

°

Memory

DSPéock

y 4 \
(]
SN\ £
£ |V g g
) : y
y S 4. a
» mm <
g |e Bl g /
2 =
3 “B S/
Q ()] (e}
< E 1
O : el 5 =
P N o —
L y 4 AN m .m
e 2) = ©
m o) © (
Q Q ..m
(a8 =
2 o
S
le) Q
| = E)
i
= 3|
-]
(@) 0 wn
N7 =4
N g
L N g =
Q 4 5 £
0 o
27 = g
® . E
A =
FEEEEEEEEE]LR
(R | [AE<=] [Ae<E]|
AEAEEEEAEEEE
-4
!!!!!!!!!!ﬁ/m
B
S

External DDR

Logic blocks

 Software-centric 2 FPGA as a parallel

)
—
=
O
O
=
=
©
—
<
=
O
=
<
Q0
D)
-
=
.~
=
S
<
-
—
S =
AWub
T
[]

e Users can program with OpenClL..

* Users need to program with HDL..

Conventional OpenCL: NDRange Kernel
<< <& D

Core0 Corel Core2

Explicit multi-threaded = executing the same
operation on multiple data concurrently

* How conventional OpenCL performs on an FPGA?

Issue of Conventional OpenCL

* Conventional OpenCL cannot always represent
FPGA architecture in an efficient manner.

80 73.8
]
= 70 td Conventional NDRange kernel
Q
ﬁ 60 B Optimal optimization
2 50 46.7
o)
50 32.4
3 30
c 21.0
£ 20 - 15.8 15.8 17.1
£ 10 -
50 71830 27 ;,%8 1.5I 1.0

O 'i 1 I ._-. 1 1 1 I

BFS HSTO PAD PS RSCD SC TQH

1.ox 12.1x 4.1x 3.0x 4.7x 11.3x 21.0x

The optimal performance is enabled by two OpenCL features!

OpenCL Feature 1: SWI Kernel

* The SWI model executes the kernel in only one
CU that contains only one work-item.

OOOOOOOC

8 Data Points

Compute

Pipelined parallelism=> No conflict among work items.

OpenCL Feature 2: OpenCL Channel

* OpenCL channel can be used to pass data

between two OpenCL kernels (typically SWI).

» Synchronizing the kernels
» Reducing the number of global memory accesses

FPGA

Producer OpenCL Consumer
kernel kernel

channel

Global memory

Challenges

* Two OpenCL features exponentially increase design space.
—e Enabled by two features, we have four OpenCL execution models:

NDRange+Channel f§ SWI+Channel

* For each execution model, we have at least six optimization

methods:

—* For each optimization method, we have different pragmas.

* The compilation time 1s extremely long!

Effect of Four Execution Models

* Different execution models can significantly affect
the performance.

NDRange+Channel §§ SWI+Channel

1000 - @ Most suitable execution model 837.1

B Most unsuitable execution model 147 7
73.8

100 A
21.0 324 171

46 I I 7 Mis 27 H
. Execution model should be decided ﬁrst

RSCD TQH HSTO SC CEH-b KM MM

=
o

o
=

Speedup over the GPU baseline

0.01 - 0.025

Can we explicitly determine
(i.e.,
) to optimize OpenCL
programs on FPGAs?

We provide a systematic framework Boyi to
automatically determine the most suitable
execution model.

Outline

* Background and Motivations

e Our Solution

» OpenCL Pattern Recognition
> Execution Model Prediction

* Experiment
* Conclusion

Architecture of Boyi

* Boy1 explicitly determines the most suitable execution
model to optimize OpenCL programs on FPGAs.

* OpenCL Pattern Recognition

 Execution Model Prediction

OpenCL Kernel

OpenCL Pattern Recognition

Source Code \

Clang
Frontend

Host C/C++ /

Source Code

LLVM

Execution Model Prediction

AO Recognition

Four Execution Models

<«— SWI

| NDR | [NDR+C |

OpenCL

MPS Recognition

[SWI] [SWI+C] “~ Channel

A
»

'

' KKC Recognition

Direct Potential Most Suitable
/ Prediction Evolution Execution Model

AQO: Atomic Operation
MPS: Mult-Pass Scheme

KKC: Kernel-to-Kernel Communication

Outline

* Background and Motivations

e Qur Solution

» OpenCL Pattern Recognition
» Execution Model Prediction

* Experiment
* Conclusion

OpenCL Pattern: Atomic Operation

Input data Hash index istogram
A a 0

1
/

/@
- E

Conﬂlct
8 work-1tems

N o o W NN -, O

* |ssues on FPGAs:
Noticeable resource overhead

Long latency and low bandwidth
Low trequency = AO 1s not a good fit on FPGAs.

OpenCL Pattern: Atomic Operation

* Potential on FPGAs:

Input data Hash index Histogram

N o o W NN -, O

OpenCL Pattern: Multi-Pass Scheme

Step 3: 4 work-groups

 HEEIE B0 BRRE GO
[N 01l]sfols 6

local_sum

13

pre_sum

out 18 20 28 37 g 37 38 42 45 g 50 56 56 58

OpenCL Pattern: Multi-Pass Scheme

* |ssues on FPGAs:
More memory trattic

- MPS is not a good fit on FPGAs.

e Potential on FPGAs:

\\\\\\\\\\\\\\

out i1 18 20 28 37 37 38 12 45 S5C 56 56 58

OpenCL Pattern:
Kernel-to-Kernel Communication

FPGA

Producer Consumer
kernel kernel

Global memory

* |ssues on FPGAs:

The communication via global memory 1s expensive.

OpenCL Pattern:
Kernel-to-Kernel Communication

e Potential on FPGAs

Reducing the number of memory accesses

Inter-kernel parallelism (1.e., concurrent kernel execution)

FPGA

Producer OpenCL Consumer
kernel channel kernel

Global memory

OpenCL Pattern Recognition

- We develop nine LLVM passes ..
to recognize three OpenCL

patterns.
* AO recognition
* KKC recognition
* MPS recognition

R1: NumOfKernels
#Kernels

#MPSTrue = 0
(a) AO recognition

Y
R2: IsSameBuff

Buffs
Args, ArgVals
R5: VarinKernel

R5: BuffinKernel

#KKCTrue
(b) KKC recognition

—
N
3
s
3
N
&

3 O Pass for OpenCL kernel analysis |
| #MPSTrue

i [Pass for host C/C++ analysis .
(¢) MPS recognition

The implementation details can be found 1n our paper!

Outline

* Background and Motivations

e Qur Solution

» OpenCL Pattern Recognition
» Execution Model Prediction

* Experiment
* Conclusion

Execution Model Prediction

* Direct prediction

A0 | MPS_| KKC | Direct prediction_
NDR

N N N

Y N N SWI
N Y N SWI
Y Y N SWI
N N Y NDR+C
Y N Y SWI+C
N Y Y SWI+C
Y Y Y SWI+C

Kernels with AO and MPS benefit from the SWI kernel.
Kernels with KKC benefit from the OpenCL channel.

Execution Model Prediction

e Potential evolution of SWI

__AO__| MPS_| KKC | Direct prediction | Potential evolution_
NDR NDR

N N N

Y N N (SWI) (SWIC)
N Y N SWI |= = =>| SWI+C
Y Y N SWI SWI+C
N N Y NDR+C NDR+C
Y N Y SWI+C SWI+C
N Y Y SWI+C SWI+C
Y Y Y SWI+C SWI+C

» Conditions: Sufficient FPGA resource.
The SWI kernel 1s compute-bound.

Outline

* Background and Motivations
* Our Solution

* Experiment

» Experimental Setup
» Effect of Execution Model
» Prediction of Execution Model

* Conclusion

Experimental Setup

* Platform: Terasic DE5a-Net board: Altera Arria 10 GX FPGA and
8GB 2-bank DDR3, with Altera OpenCL SDK version 16.1.

 Workloads:
I I I T

RSCD
TQH
HSTO
SC
PAD
CEDD
KM
MM
MS
PS

Chai Breadth-First Search
RANSAC
Task Queue System
Histogram

Stream Compaction

Padding
Canny Edge Detection
Rodinia K-Means
Intel demo Matrix Multiplication
Mandelbrot Set
CUDA demo Prefix Sum

Z 2 2 Z2 2 < < < < < <

< 2 2 2 2 2 2 2 2 2 Z2

2 2 2 2 < Z2 2 2 2 < Z2

NY, NE, UT
2000 iterations
Basket
256bins
50%
1000*999
Peppa, Maradona, Paw
25600 points, 8 features
A: 2k*1k, B: 1k*1k
640*800, 2000 iterations
262144 points

Comparison Methodology

* Hypothesis 1: Different execution models lead to
significant performance differences.

» Quantitative comparison among execution models
» Exploring optimization combinations

* Hypothesis 2: Boyi can predict the most suitable
execution model for each OpenCL application.

Hypothesis 1: Different execution
model --> different performance

* Quantitative comparison among execution models
“ Number of combinations
CNDR . SWI NDRC SWHC NDR SWI NDReC SWhC
17 7 7 9 1.9 3.1 1.2 3.1
RSCD 25 10 24 46 15.8 4.6 73.8 39.7

TQH 9 15 23 11 1.3 ‘ 21.0 '

It is critical to decide the most suitable execution model when
optimizing OpenCL applications on FPGAs.

BFS

moadels 1o acnieve e pest perrormance. FULLO LUoUIL 1
N - -~ - sigmncant pertormance differences.
KM 33 11 10 a weo | see | Lame | 9ee

25 9 6 13.3 6.6
MS 7 6 7 34.7 0.02 3.2

PS 26 20 12 15.8 44.4 46.2

Hypothesis 1: Exploring optimization
combinations for Each Execution Model

* We manually implement sufficient number of

optimization combinations (subset) for KM, such
that we reach the near-to-optimal optimization
combination for each execution model.

Most suitable execution model Most unsuitable execution model
* A%
7’ ~ 1 N
/7 ~ | N
160 , e : : N
e 140 NDR e : SWI : NDR+C ! (swi+c)
£] | = = 1
3 122.0 124.9
8 170 - 1149 - - 136.4 1190, - i1
-} mRL
& 100 - 89.3 903 A
@ g 73.5 |
= |
o 60 - 51.2 513
3
o 40 - 28.8 32.8 31.4 29,
=]
© 16.6 14.7 14.4 17.5
o 20 A 9.0 77 8.8 9.9
@ 23 20 39 51 : 23 25 27 49 = 2.2 9
% 0 = T |:I T = T - T I:I T T T |:I T T T T T = T = T = T 01 T 01 T I:I T |:I T D T T 12 T D T T = T D T T — = T D T D T
v v ™
\)\3’:\/ \5\3’% (/0,\/ (/0 (/Sb 0\3739 & \3’1\/ ¥ \3’% (/S) @Qq/ 09’ @Q q,,'\/'\/ q,/'\’:\/ %N\, ‘b’b‘:\, ‘b’(o” q,:\’ﬁ’ q,f"’»‘ cb’\’fb '\,"& '\’:\, \‘3"» ‘b’q? ‘U%’\’ '\’ﬁ/ \:b:\/ \%’fb %:O, \sbfo "/\(9 \’ﬁ’ %”\; \/ ‘b’»\, ‘b’\:
NPT T N Y SO SN RN AN VAR AR R RN A SO MR M Ve SR M M VO M A TN AR AN
Qs K7 & &7 G a) O @ NEENEENERENEEEN RN EERENEIEN R N/ A W N QY NN
Qs R] AR\ % (_}Q & Qs Q«/ Q/\/ Q/\/ R/ R7 R/ Q7 N4 ,»,\// \;'\// NN ,\;’V NN N/ D7 N0
K7) ¥ NORT A KRNI KT NN ,\\’ ,\') N
AP % 2N A/ A 7
] SV]
A7

Hypothesis 2: Boyi Predicts the
Right Execution Model

BFS Y

N N SWI SWI
RSCD @ --N N Y NDR+C (swi+C)- -» NDR+C
TQH Y N N SWI+C SWI+C X
HSTI Y N N SWI+C SWI+C X
SC Y N N SWI+C SWI+C X

PAD \' NI

NI

SW/+C

QNI+ ¢

The actual and predicted execution models roughly match.

KM N N
MM N N
MS N N
PS N Y

N

N
N
N

NDR
NDR
NDR
SWi

NDR
NDR
NDR
SWI

SWI+C 2% indicates the potential evolution of SWI

End-to-end Performance Comparison

* Performance comparison to existing works

Application m Existing work (ms) | Our/Existing Speedup

RSCD [1] 28.9 38.3
TQH [1] 66.9 150.6 2.3
HSTO [1] 38.8 487.9 12.6
CEDD [1] 161.9 237.8 1.5
MM [2] 9.1 34.3 3.8

MS [2] 27.2 944.1 34.7

[1] S. Huang et al., “Analysis and modeling of collaborative execution strategies for heterogeneous
cpu-fpga architectures”, ICPE, 2019.
[2] Intel. Intel SDK for OpenCL Design Examples. 2018

Outline

* Background and Motivations
* Our Solution

* Experiment

* Conclusion

