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What is OpenCL?

* OpenCL stands for Open Computing Language.

* OpenCL has been developed for heterogeneous
computing environments with a host-accelerator

execution model.

»The CPU runs the control task.
»The GPU/ FPGA runs the computing kernel.



OpenCL on FPGA

)

Memory blocks

HEEEEEEEEE
HEAEEEEEEEE
[Ae<S|[ne<s] [ad<S |
HEEAEEEEEEHE
HEEEEAEEEE

HEEEEEEEEAE
HEEEEEEEEE
(<] [ae<s]| [ne<=]
BEECEEEEEEE

ock

°

Memory

DSPéock

y 4 \
(]
SN\ £
£ |V g g
) : y
y S 4. a
» mm <
g |e Bl g /
2 =
3 “B S/
Q ()] (e}
< E 1
O : el 5 =
P N o —
L y 4 AN m .m
e 2 ) = ©
m o) © (
Q Q ..m
(a8 =
2 o
S
le) Q
| = E)
i
= 3|
-]
(@) 0 wn
N7 =4
N g
L N g =
Q 4 5 £
0 o
27 = g
® . E
A =
FEEEEEEEEE]LR
(R | [AE<=] [Ae<E ]|
AEAEEEEAEEEE
-4
!!!!!!!!!!ﬁ/m
B
S

External DDR

Logic blocks

 Software-centric 2 FPGA as a parallel

)
—
=
O
O
=
=
©
—
<
=
O
=
<
Q0
D)
-
=
.~
=
S
<
-
—
S =
AWub
T
[ ]

e Users can program with OpenClL..

* Users need to program with HDL..



Conventional OpenCL: NDRange Kernel
<< <& D

Core0 Corel Core2

Explicit multi-threaded = executing the same
operation on multiple data concurrently

* How conventional OpenCL performs on an FPGA?



Issue of Conventional OpenCL

* Conventional OpenCL cannot always represent
FPGA architecture in an efficient manner.
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The optimal performance is enabled by two OpenCL features!



OpenCL Feature 1: SWI Kernel

* The SWI model executes the kernel in only one
CU that contains only one work-item.
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8 Data Points

Compute

Pipelined parallelism=> No conflict among work items.



OpenCL Feature 2: OpenCL Channel

* OpenCL channel can be used to pass data

between two OpenCL kernels (typically SWI).

» Synchronizing the kernels
» Reducing the number of global memory accesses

FPGA

Producer OpenCL Consumer
kernel kernel

channel

Global memory



Challenges

* Two OpenCL features exponentially increase design space.
—e Enabled by two features, we have four OpenCL execution models:

NDRange+Channel f§ SWI+Channel

* For each execution model, we have at least six optimization

methods:

—* For each optimization method, we have different pragmas.

* The compilation time 1s extremely long!



Effect of Four Execution Models

* Different execution models can significantly affect
the performance.

NDRange+Channel §§ SWI+Channel
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Can we explicitly determine
(i.e.,
) to optimize OpenCL
programs on FPGAs?

We provide a systematic framework Boyi to
automatically determine the most suitable
execution model.
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Architecture of Boyi

* Boy1 explicitly determines the most suitable execution
model to optimize OpenCL programs on FPGAs.

* OpenCL Pattern Recognition

 Execution Model Prediction

OpenCL Kernel

OpenCL Pattern Recognition

Source Code \

Clang
Frontend

Host C/C++ /

Source Code

LLVM

Execution Model Prediction

AO Recognition

Four Execution Models

<«— SWI

| NDR | [ NDR+C |

OpenCL

MPS Recognition

[ SWI ] [ SWI+C ] “~ Channel

A
»

'

' KKC Recognition

Direct Potential Most Suitable
/ Prediction Evolution Execution Model

AQO: Atomic Operation
MPS: Mult-Pass Scheme

KKC: Kernel-to-Kernel Communication
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OpenCL Pattern: Atomic Operation
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* |ssues on FPGAs:
Noticeable resource overhead

Long latency and low bandwidth
Low trequency = AO 1s not a good fit on FPGAs.



OpenCL Pattern: Atomic Operation

* Potential on FPGAs:

Input data Hash index Histogram
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OpenCL Pattern: Multi-Pass Scheme

Step 3: 4 work-groups
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OpenCL Pattern: Multi-Pass Scheme

* |ssues on FPGAs:
More memory trattic

- MPS is not a good fit on FPGAs.

e Potential on FPGAs:
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OpenCL Pattern:
Kernel-to-Kernel Communication

FPGA

Producer Consumer
kernel kernel

Global memory

* |ssues on FPGAs:

The communication via global memory 1s expensive.



OpenCL Pattern:
Kernel-to-Kernel Communication

e Potential on FPGAs

Reducing the number of memory accesses

Inter-kernel parallelism (1.e., concurrent kernel execution)

FPGA

Producer OpenCL Consumer
kernel channel kernel

Global memory



OpenCL Pattern Recognition

- We develop nine LLVM passes ..
to recognize three OpenCL

patterns.
* AO recognition
* KKC recognition
* MPS recognition

R1: NumOfKernels
#Kernels

#MPSTrue = 0
(a) AO recognition

Y
R2: IsSameBuff

Buffs
Args, ArgVals
R5: VarinKernel

R5: BuffinKernel

#KKCTrue
(b) KKC recognition

—
N
3
s
3
N
&

3 O Pass for OpenCL kernel analysis |
| #MPSTrue

i [ Pass for host C/C++ analysis .
(¢) MPS recognition

The implementation details can be found 1n our paper!
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Execution Model Prediction

* Direct prediction

A0 | MPS_| KKC | Direct prediction_
NDR

N N N

Y N N SWI
N Y N SWI
Y Y N SWI
N N Y NDR+C
Y N Y SWI+C
N Y Y SWI+C
Y Y Y SWI+C

Kernels with AO and MPS benefit from the SWI kernel.
Kernels with KKC benefit from the OpenCL channel.



Execution Model Prediction

e Potential evolution of SWI

__AO__| MPS_| KKC | Direct prediction | Potential evolution_
NDR NDR

N N N

Y N N (SWI ) (SWIC)
N Y N SWI  |= = =>| SWI+C
Y Y N SWI SWI+C
N N Y NDR+C NDR+C
Y N Y SWI+C SWI+C
N Y Y SWI+C SWI+C
Y Y Y SWI+C SWI+C

» Conditions: Sufficient FPGA resource.
The SWI kernel 1s compute-bound.
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Experimental Setup

* Platform: Terasic DE5a-Net board: Altera Arria 10 GX FPGA and
8GB 2-bank DDR3, with Altera OpenCL SDK version 16.1.

 Workloads:
I I I T

RSCD
TQH
HSTO
SC
PAD
CEDD
KM
MM
MS
PS

Chai Breadth-First Search
RANSAC
Task Queue System
Histogram

Stream Compaction

Padding
Canny Edge Detection
Rodinia K-Means
Intel demo Matrix Multiplication
Mandelbrot Set
CUDA demo Prefix Sum
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NY, NE, UT
2000 iterations
Basket
256bins
50%
1000*999
Peppa, Maradona, Paw
25600 points, 8 features
A: 2k*1k, B: 1k*1k
640*800, 2000 iterations
262144 points



Comparison Methodology

* Hypothesis 1: Different execution models lead to
significant performance differences.

» Quantitative comparison among execution models
» Exploring optimization combinations

* Hypothesis 2: Boyi can predict the most suitable
execution model for each OpenCL application.



Hypothesis 1: Different execution
model --> different performance

* Quantitative comparison among execution models
“ Number of combinations
CNDR . SWI NDRC  SWHC  NDR  SWI NDReC  SWhC
17 7 7 9 1.9 3.1 1.2 3.1
RSCD 25 10 24 46 15.8 4.6 73.8 39.7

TQH 9 15 23 11 1.3 ‘ 21.0 '

It is critical to decide the most suitable execution model when
optimizing OpenCL applications on FPGAs.

BFS
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25 9 6 13.3 6.6
MS 7 6 7 34.7 0.02 3.2

PS 26 20 12 15.8 44.4 46.2



Hypothesis 1: Exploring optimization
combinations for Each Execution Model

* We manually implement sufficient number of

optimization combinations (subset) for KM, such
that we reach the near-to-optimal optimization
combination for each execution model.
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Hypothesis 2: Boyi Predicts the
Right Execution Model

BFS Y

N N SWI SWI
RSCD @ --N N Y NDR+C (swi+C)- -» NDR+C
TQH Y N N SWI+C SWI+C X
HSTI Y N N SWI+C SWI+C X
SC Y N N SWI+C SWI+C X

PAD \' NI

NI

SW/+C

QNI+ ¢

The actual and predicted execution models roughly match.

KM N N
MM N N
MS N N
PS N Y

N

N
N
N

NDR
NDR
NDR
SWi

NDR
NDR
NDR
SWI

SWI+C 2% indicates the potential evolution of SWI



End-to-end Performance Comparison

* Performance comparison to existing works

Application m Existing work (ms) | Our/Existing Speedup

RSCD [1] 28.9 38.3
TQH [1] 66.9 150.6 2.3
HSTO [1] 38.8 487.9 12.6
CEDD [1] 161.9 237.8 1.5
MM [2] 9.1 34.3 3.8

MS [2] 27.2 944.1 34.7

[1] S. Huang et al., “Analysis and modeling of collaborative execution strategies for heterogeneous
cpu-fpga architectures”, ICPE, 2019.
[2] Intel. Intel SDK for OpenCL Design Examples. 2018
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