
Boyi: A Systematic Framework for 
Automatically Deciding the Right Execution 

Model of OpenCL Applications on FPGAs

Jiantong Jiang (Northeastern University, China),
Zeke Wang (Zhejiang University, China),
Xue Liu (Northeastern University, China),

Juan Gómez-Luna (ETH Zürich, Switzerland),
Nan Guan (Hong Kong Polytechnic University),
Qingxu Deng (Northeastern University, China),

Wei Zhang (Hong Kong University of Science and Technology),
Onur Mutlu (ETH Zürich , Switzerland)



Outline

• Background and Motivations

• Our Solution

• Experiment

• Conclusion



What is OpenCL?

• OpenCL stands for Open Computing Language.

• OpenCL has been developed for heterogeneous 

computing environments with a host-accelerator 

execution model.

ØThe CPU runs the control task.
ØThe GPU/ FPGA runs the computing kernel.



Global Memory Interconnect

Global Memory

...

...

CU-1
Local Memory

Pipeline

...

Private 
Memory

...

CU-N
Local Memory

Pipeline

...

Private 
Memory

OpenCL on FPGA

External DDR

FPGA
Memory blocks

• Software-centric à FPGA as a parallel
architecture.

• Users can program with OpenCL.

DSP blocks

Memory blocks

Logic blocks

• Hardware-centric à fine-gained
parallelism

• Users need to program with HDL.

OpenCL
SDK



• How conventional OpenCL performs on an FPGA?

Core2Core1Core0

Conventional OpenCL: NDRange Kernel

Explicit multi-threaded à executing the same 
operation on multiple data concurrently

Load

Compute 

store

Load

Compute 

store

Load

Compute 

store

Data 0 Data 1 Data 2



• Conventional OpenCL cannot always represent

FPGA architecture in an efficient manner.

Issue of Conventional OpenCL

1.6x 12.1x 4.1x 3.0x 4.7x 11.3x 21.0x



The optimal performance is enabled by two OpenCL features!



• The SWI model executes the kernel in only one 

CU that contains only one work-item.

Load

Compute 

store

OpenCL Feature 1: SWI Kernel

Pipelined parallelismà No conflict among work items.

D0 D1 D2 D3 D7D6D5D4

8 Data Points



OpenCL 

channel

OpenCL Feature 2: OpenCL Channel

• OpenCL channel can be used to pass data 

between two OpenCL kernels (typically SWI).

ØSynchronizing the kernels
ØReducing the number of global memory accesses

Global memory

FPGA

Producer 
kernel

Consumer 
kernel



• Two OpenCL features exponentially increase design space.
• Enabled by two features, we have four OpenCL execution models:

• For each execution model, we have at least six optimization
methods:

• For each optimization method, we have different pragmas.

Challenges

NDRange SWI NDRange+Channel SWI+Channel

SM MC PM UL SIMD CU

• The compilation time is extremely long!



73.8 

21.0 32.4 
17.1 

2.7 

147.7 

837.1 

34.7 

4.6 

1.0 
2.7 1.5 

0.3 

31.4 

6.6 

0.025 0.01

0.1

1

10

100

1000

RSCD TQH HSTO SC CEDD KM MM MS

Sp
ee

du
p 

ov
er

 t
he

 G
PU

 b
as

el
in

e

Most suitable execution model

Most unsuitable execution model

Effect of Four Execution Models

• Different execution models can significantly affect

the performance.

NDRange SWI NDRange+Channel SWI+Channel

Execution model should be decided first.



Can we explicitly determine the most suitable

execution model (i.e., whether or not to use

two OpenCL features) to optimize OpenCL

programs on FPGAs?

We provide a systematic framework Boyi to

automatically determine the most suitable 

execution model.



Outline

• Background and Motivations

• Our Solution

Ø OpenCL Pattern Recognition
Ø Execution Model Prediction

• Experiment

• Conclusion



Architecture of Boyi
• Boyi explicitly determines the most suitable execution

model to optimize OpenCL programs on FPGAs.
• OpenCL Pattern Recognition
• Execution Model Prediction

Clang

Frontend

LLVM

IR

Direct

Prediction

Potential

Evolution

Four Execution Models

NDR

SWI

NDR + C

SWI + C

SWI

OpenCL

Channel

OpenCL Pattern Recognition Execution Model Prediction

OpenCL Kernel

Source Code

Host C/C++

Source Code

Most Suitable

Execution Model
KKC Recognition

MPS Recognition

AO Recognition

AO: Atomic Operation

MPS: Multi-Pass Scheme

KKC: Kernel-to-Kernel Communication



Outline

• Background and Motivations

• Our Solution

Ø OpenCL Pattern Recognition
Ø Execution Model Prediction

• Experiment

• Conclusion



5

• Issues on FPGAs:

OpenCL Pattern: Atomic Operation
Input data

Hash 
function

Histogram

0

1

2

3

10

61

42

73

24

55

96

07

Hash index

12032110

8 work-items
Conflict

Noticeable resource overhead
Long latency and low bandwidth
Low frequency à AO is not a good fit on FPGAs.

1

6

4

7

2

9

0



5

OpenCL Pattern: Atomic Operation

• Potential on FPGAs:
Input data

Hash 
function

Histogram

0

1

2

3

10

61

42

73

24

55

96

07

Hash index

12032110

1

6

4

7

2

9

0



OpenCL Pattern: Multi-Pass Scheme

in 6 0 2 31 4 3 52 8 9 01 6 4 7

0 6 6 80 1 5 80 2 10 190 1 7 11out

11131918local_sum

Step 1: 4 work-groups

5037180pre_sum

50 56 56 5837 38 42 4518 20 28 370 1 7 11out

Step 2: 1 work-group

in 6 0 2 31 4 3 52 8 9 01 6 4 7

0 6 6 80 1 5 80 2 10 190 1 7 11out

Step 3: 4 work-groups

11131918local_sum



• Issues on FPGAs:

• Potential on FPGAs:

OpenCL Pattern: Multi-Pass Scheme

6 0 2 31 4 3 52 8 9 01 6 4 7

50 56 56 5837 38 42 4518 20 28 370 1 7 11out

in

More memory traffic

à MPS is not a good fit on FPGAs.



OpenCL Pattern:

Kernel-to-Kernel Communication

• Issues on FPGAs:

The communication via global memory is expensive.

Global memory

FPGA

Producer 
kernel

Consumer 
kernel



• Potential on FPGAs
Reducing the number of memory accesses
Inter-kernel parallelism (i.e., concurrent kernel execution)

OpenCL 

channel

Global memory

FPGA

Producer 
kernel

Consumer 
kernel

OpenCL Pattern:

Kernel-to-Kernel Communication



#Kernels >1?

#Kernels >1? #KKCTrue = 0 

R1: NumKernels

R2: IsSameBuff

#R2Triplets > 0?

#Kernels

Y

N

#R2Triplets

#KKCTrue

Pass for host C/C++ analysis

Pass for OpenCL kernel analysis

Y

#MPSTrue = 0 

#Kernels

Y

N

#R4Triplets

#MPSTrue = 0 
N

Y

Buffs

#MPSTrue

R2BuffTriplets 

#KKCTrue = 0 
N

#R2Triplets

Y

R2BuffTriplets 

#MPSTrue = 0 
N

R4SeqTriplets

R1: NumOfKernels

R2: IsSameBuff

R2: IsRdWr

R2: IsRdWr

R3: IsSameMAP

R4: IsSequential

R5: VarBuffInHost

R5: BuffInKernel

#AOTrue

(c) MPS recognition

(b) KKC recognition

(a) AO recognition

#R2Triplets > 0?

#R4Triplets > 0?

HasAO

R5: VarInKernel

Vars, VarVals

Args, ArgVals

•We develop nine LLVM passes 

to recognize three OpenCL

patterns.

• AO recognition
• KKC recognition
• MPS recognition

OpenCL Pattern Recognition

The implementation details can be found in our paper!



Outline

• Background and Motivations

• Our Solution

Ø OpenCL Pattern Recognition
Ø Execution Model Prediction

• Experiment

• Conclusion



Execution Model Prediction

• Direct prediction

Kernels with AO and MPS benefit from the SWI kernel.
Kernels with KKC benefit from the OpenCL channel.

AO MPS KKC
N N N
Y N N
N Y N
Y Y N
N N Y
Y N Y
N Y Y
Y Y Y

Direct prediction
NDR

SWI

SWI

SWI

NDR+C

SWI+C

SWI+C

SWI+C



Execution Model Prediction

• Potential evolution of SWI

ØConditions:

AO MPS KKC Direct prediction
N N N NDR

Y N N SWI

N Y N SWI

Y Y N SWI

N N Y NDR+C

Y N Y SWI+C

N Y Y SWI+C

Y Y Y SWI+C

Potential evolution
NDR

SWI+C

SWI+C

SWI+C

NDR+C

SWI+C

SWI+C

SWI+C

Sufficient FPGA resource.
The SWI kernel is compute-bound.



Outline

• Background and Motivations

• Our Solution

• Experiment

ØExperimental Setup
ØEffect of Execution Model
ØPrediction of Execution Model

• Conclusion



• Platform:  Terasic DE5a-Net board: Altera Arria 10 GX FPGA and 
8GB 2-bank DDR3, with Altera OpenCL SDK version 16.1.
• Workloads:

Experimental Setup

Benchmark Source Description AO MPS KKC Datasets
BFS Chai Breadth-First Search Y N N NY, NE, UT

RSCD RANSAC Y N Y 2000 iterations

TQH Task Queue System Y N N Basket

HSTO Histogram Y N N 256bins

SC Stream Compaction Y N N 50%

PAD Padding Y N N 1000*999

CEDD Canny Edge Detection N N Y Peppa, Maradona, Paw

KM Rodinia K-Means N N N 25600 points, 8 features

MM Intel demo Matrix Multiplication N N N A: 2k*1k, B: 1k*1k 

MS Mandelbrot Set N N N 640*800, 2000 iterations

PS CUDA demo Prefix Sum N Y N 262144 points



Comparison Methodology

• Hypothesis 1: Different execution models lead to

significant performance differences.

ØQuantitative comparison among execution models
ØExploring optimization combinations

• Hypothesis 2: Boyi can predict the most suitable

execution model for each OpenCL application.



App Number of combinations Maximum speedup
NDR SWI NDR+C SWI+C NDR SWI NDR+C SWI+C

BFS 17 7 7 9 1.9 3.1 1.2 3.1
RSCD 25 10 24 46 15.8 4.6 73.8 39.7

TQH 9 15 23 1.1 1.3 21.0
HSTO 13 37 11 29 2.7 5.1 16.9 32.4

SC 15 34 10 1.5 4.5 17.1
PAD 10 10 14 1.2 1.6 4.8

CEDD 57 15 22 7 2.7 0.3 2.7 0.4

KM 33 11 10 18 147.7 32.8 136.4 31.4

MM 25 9 6 837.1 13.3 6.6

MS 7 6 7 34.7 0.02 3.2

PS 26 20 12 15.8 44.4 46.2

Hypothesis 1: Different execution
model --> different performance

• Quantitative comparison among execution models

Different execution models result in 
significant performance differences.

Different applications require different execution 
models to achieve the best performance.

It is critical to decide the most suitable execution model when 
optimizing OpenCL applications on FPGAs.



2.3 
9.0 

2.0 3.9 5.1 

51.2 

73.5 

7.7 

28.8 

51.3 

114.9 

89.3 

147.7 

122.0 

2.3 2.5 2.7 0.1 0.1 4.9 8.8 
16.6 

32.8 

1.2 
14.7 

124.9 
136.4 

2.2 
14.4 

90.3 

119.0 
112.6 

31.4 

1.9 
9.9 

17.5 
29.0 

0

20

40

60

80

100

120

140

160

Sp
ee

du
p 

ov
er

 th
e 

GP
U

 b
as

el
in

e NDR SWI+CNDR+CSWI

•We manually implement sufficient number of 

optimization combinations (subset) for KM, such 

that we reach the near-to-optimal optimization 

combination for each execution model. 

Most suitable execution model Most unsuitable execution model

Hypothesis 1: Exploring optimization 
combinations for Each Execution Model



Application AO MPS KKC Actual Predicted
BFS Y N N SWI SWI

RSCD Y N Y NDR+C SWI+C

TQH Y N N SWI+C SWI+C ※

HSTI Y N N SWI+C SWI+C ※

SC Y N N SWI+C SWI+C ※

PAD Y N N SWI+C SWI+C ※

CEDD N N Y NDR+C NDR+C

KM N N N NDR NDR

MM N N N NDR NDR

MS N N N NDR NDR

PS N Y N SWI SWI

SWI+C ※ indicates the potential evolution of SWI

N NDR+C

The actual and predicted execution models roughly match.

Hypothesis 2: Boyi Predicts the 
Right Execution Model



End-to-end Performance Comparison

• Performance comparison to existing works

Application Ours (ms) Existing work (ms) Our/Existing Speedup
RSCD [1] 0.8 28.9 38.3
TQH [1] 66.9 150.6 2.3
HSTO [1] 38.8 487.9 12.6
CEDD [1] 161.9 237.8 1.5
MM [2] 9.1 34.3 3.8
MS [2] 27.2 944.1 34.7

[1] S. Huang et al., “Analysis and modeling of collaborative execution strategies for heterogeneous
cpu-fpga architectures”, ICPE, 2019.
[2] Intel. Intel SDK for OpenCL Design Examples. 2018



Outline

• Background and Motivations

• Our Solution

• Experiment

• Conclusion


