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Concurrent Data Structures

Are used everywhere: kernel, libraries, applications

Issues:

 Difficult to design and implement

« Data layout and memory/cache hierarchy
play crucial role in performance
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The Memory Wall

Data 2.2 GHz = 220K cycles during this time
movement
CPU

I< 10 ns
Tens of ns

Hundreds
of ns
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Near Memory Computing

« Also called Processing In Memory (PIM)

* Avoid data movement by doing computation in memory

* Old idea

 New advances in 3D integration and die-stacked memory

* Viable in the near future
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Near Memory Computing: Architecture

Vault

- Vaults: memory partitions
- PIM cores: lightweight

- Fast access to its own vault

- Communication
- Between a CPU and a PIM
- Between PIMs

- Via messages sent to
buffers

Crossbar Network
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Data Structures + Hardware

« Tight integration between algorithmic design
and hardware characteristics

 Memory becomes an active component in managing data

 Managing data structures in PIM

« Old work: pointer chasing for sequential data structures

 Qur work: concurrent data structures
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Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW CONTENTION HIGH

Pointer-chasing Cacheable

vmware M



Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW CONTENTION HIGH

Pointer-chasing Cacheable

e.g., uniform distribution
skiplist & linkedlist

J— ol



Pointer Chasing Data Structures
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Naive PIM Skiplist

add(30) delete(80)

PIM Memory Vault




Concurrent Data Structures

DRAM

add(30) [ adds)

delete(80)

High Latency
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Flat Combining

Combiner

‘; lock

add(30)  add(5) delete(80)

High Latency

Sequential access
DRAM
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Skiplist Throughput
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PIM Performance

N Size of the skiplist
p Number of processes
.ZCPU Latency of a memory access from the CPU
JLLC Latency of a LLC access
.ZATOMIC Latency of an atomic instruction (by the CPU)
,ZPIM Latency of a memory access from the PIM core
.ZMSG Latency of a message from the CPU to the PIM core
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PIM Performance
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PIM Performance

Algorithm Throughput

Lock-free p/(&* Leru)
Flat Combining (FC) 1/ (&% Lepu)
PIM 1/(&8* Lo + Luisa )
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% = average number of nodes accessed

during a skiplist operation
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Skiplist Throughput
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New PIM algorithm: Exploit Partitioning
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PIM Skiplist w/ Partitioning
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PIM Performance

Algorithm Throughput
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Skiplist Throughput
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Ops/s

Skiplist Throughput
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Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW CONTENTION HIGH

Pointer-chasing Cacheable
e.g., FIFO queue
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FIFO Queue

HEAD TAIL
enqueue dequeue
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PIM FIFO Queue

sends back
the node
Deq() Deq()

PIM Memory Vault

@ retrieves
request

@ retrieves

PIM core request

(2)dequeues a node




Pipelining

Can overlap the execution of the next request

beq(
Deq()
1 2

Deq()

—

Timeline
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Parallelize Enqs and Deqs

PIM core
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Conclusion

PIM is becoming feasible in the near future

We investigate Concurrent Data Structures (CDS) for PIM
Results:

« Naive PIM data structures are less efficient than CDS

* New PIM algorithms can leverage PIM features

They outperform efficient CDS

They are simpler to design and implement
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Thank you!

icalciu@vmware.com

https://research.vmware.com/
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