Concurrent Data Structures for
Near-Memory Computing

Zhiyu Liu (Brown)

Irina Calciu (VMware Research)

Maurice Herlihy (Brown)

Onur Mutlu (ETH)

Concurrent Data Structures

Are used everywhere: kernel, libraries, applications

Issues:

 Difficult to design and implement

« Data layout and memory/cache hierarchy
play crucial role in performance

vmware

The Memory Wall

Data 2.2 GHz = 220K cycles during this time
movement
CPU

I< 10 ns
Tens of ns

Hundreds
of ns

s ol

Near Memory Computing

« Also called Processing In Memory (PIM)

* Avoid data movement by doing computation in memory

* Old idea

 New advances in 3D integration and die-stacked memory

* Viable in the near future

vmware M

Near Memory Computing: Architecture

Vault

- Vaults: memory partitions
- PIM cores: lightweight

- Fast access to its own vault

- Communication
- Between a CPU and a PIM
- Between PIMs

- Via messages sent to
buffers

Crossbar Network

vmware

Data Structures + Hardware

« Tight integration between algorithmic design
and hardware characteristics

 Memory becomes an active component in managing data

 Managing data structures in PIM

« Old work: pointer chasing for sequential data structures

 Qur work: concurrent data structures

vmware “

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW CONTENTION HIGH

Pointer-chasing Cacheable

vmware M

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW CONTENTION HIGH

Pointer-chasing Cacheable

e.g., uniform distribution
skiplist & linkedlist

J— ol

Pointer Chasing Data Structures

vmware

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW CONTENTION HIGH

Pointer-chasing Cacheable

e.g., uniform distribution
skiplist & linkedlist

J— ol

Naive PIM Skiplist

add(30) delete(80)

PIM Memory Vault

Concurrent Data Structures

DRAM

add(30) [adds)

delete(80)

High Latency

vmware

Flat Combining

Combiner

‘; lock

add(30) add(5) delete(80)

High Latency

Sequential access
DRAM

vmware

Skiplist Throughput

10000000
Lock-free

9000000 Intel Xeon E7-4850v3

28 hardware threads,
8000000 2 2 GHz

/7000000

6000000

Ops/s

5000000
4000000
3000000
2000000

FC
1000000

0
0 5 10 15 20

Threads
vmware

PIM Performance

N Size of the skiplist
p Number of processes
.ZCPU Latency of a memory access from the CPU
JLLC Latency of a LLC access
.ZATOMIC Latency of an atomic instruction (by the CPU)
,ZPIM Latency of a memory access from the PIM core
.ZMSG Latency of a message from the CPU to the PIM core

vmware

PIM Performance

/

Lcru = r1 .Lrmv = r2 L11.C

Lisa =.Lcru

rl=r2=3

~

/

vmware

PIM Performance

Algorithm Throughput

Lock-free p/(&* Leru)
Flat Combining (FC) 1/ (&% Lepu)
PIM 1/(&8* Lo + Luisa)

vmware

% = average number of nodes accessed

during a skiplist operation

ad

Skiplist Throughput

10000000

Lock-free
9000000
8000000
o /000000
2
O 6000000
5000000
4000000
3000000 PIM
(expected)
2000000 | ®====- *cun- o----" mm=-- ---o-—e--o-- (LTS P— o———ee -
1000000 FC
o — — —— ° ® o— —0— —— -9
0
0 5 10 15 20

Threads

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW CONTENTION HIGH

Pointer-chasing Cacheable

e.g., uniform distribution
skiplist & linkedlist

J— ol

New PIM algorithm: Exploit Partitioning

CPU

N
5 PIM core
H.
CPU O
Z
CPU S
n
n
9 |
CPU O

vmware

PIM Skiplist w/ Partitioning

|
TRl
|

CPU cache I

PIM Memory |
]| |
Vault 1 " Vault 2 N Vault3

vmware

PIM Performance

Algorithm Throughput

Lock-free p/(&* Leru)
Flat Combining (FC) 1/ (&% Lepu)
PIM 1/(&8* Lo + Luisa)
FC + k partitions k/(&* Lcpu)
PIM + k partitions K/ (& Lemu + Luisa)

vmware

% = average number of nodes accessed

during a skiplist operation |

Skiplist Throughput

10000000
Lock-free
9000000
8000000
7000000
6000000 "
FC w/ 16 partitions
{g 5000000
= FC w/ 8 partitions
O 4000000
B — S —)
3000000 "
FC w/ 4 partitions
—0 —0 ° C=———u0
2000000
1000000 . . -
=0
FC
0
0 5 10 15 20 25 30

Threads

Ops/s

Skiplist Throughput

18000000

16000000

14000000

12000000

10000000

8000000

6000000

4000000

2000000

-
-
-
-

-
-

"

-
o=
-

PIM w/ 16 partitions (expected)

'—‘——-.

-
-
-
——

Lock-free

FC w/ 16 partitions

)
e e

FCﬂw/ 8 partitions

——

FC yv/ 4 partitions

G —0 OFC

15
Threads

20 25 30

Goals: PIM Concurrent Data Structures

1. How do PIM data structures compare to state-of-
the-art concurrent data structures?

2. How to design efficient PIM data structures?

LOW CONTENTION HIGH

Pointer-chasing Cacheable
e.g., FIFO queue

J— ol

FIFO Queue

HEAD TAIL
enqueue dequeue

e ad

PIM FIFO Queue

sends back
the node
Deq() Deq()

PIM Memory Vault

@ retrieves
request

@ retrieves

PIM core request

(2)dequeues a node

Pipelining

Can overlap the execution of the next request

beq(
Deq()
1 2

Deq()

—

Timeline

vmware

Parallelize Enqs and Deqs

PIM core

I |
I |
I I

|
: Vault 2 Tail Vault 1 :
: :
| |
I |

vmware

Conclusion

PIM is becoming feasible in the near future

We investigate Concurrent Data Structures (CDS) for PIM
Results:

« Naive PIM data structures are less efficient than CDS

* New PIM algorithms can leverage PIM features

They outperform efficient CDS

They are simpler to design and implement

vmware M

Thank you!

icalciu@vmware.com

https://research.vmware.com/

Concurrent Data Structures for
Near-Memory Computing

Zhiyu Liu (Brown)

Irina Calciu (VMware Research)

Maurice Herlihy (Brown)

Onur Mutlu (ETH)

vmware

