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ABSTRACT
The ability to tolerate, remediate, and recover from network in-

cidents (caused by device failures and fiber cuts, for example) is

critical for building and operating highly-available web services.

Achieving fault tolerance and failure preparedness requires sys-

tem architects, software developers, and site operators to have a

deep understanding of network reliability at scale, along with its

implications on the software systems that run in data centers. Un-

fortunately, little has been reported on the reliability characteristics

of large scale data center network infrastructure, let alone its impact

on the availability of services powered by software running on that

network infrastructure.

This paper fills the gap by presenting a large scale, longitudinal

study of data center network reliability based on operational data

collected from the production network infrastructure at Facebook,

one of the largest web service providers in the world. Our study

covers reliability characteristics of both intra and inter data center

networks. For intra data center networks, we study seven years of

operation data comprising thousands of network incidents across

two different data center network designs, a cluster network de-

sign and a state-of-the-art fabric network design. For inter data

center networks, we study eighteen months of recent repair tick-

ets from the field to understand reliability of Wide Area Network

(WAN) backbones. In contrast to prior work, we study the effects of

network reliability on software systems, and how these reliability

characteristics evolve over time. We discuss the implications of

network reliability on the design, implementation, and operation of

large scale data center systems and how it affects highly-available

web services. We hope our study forms a foundation for under-

standing the reliability of large scale network infrastructure, and

inspires new reliability solutions to network incidents.
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1 INTRODUCTION
Data center network infrastructure, consisting of both intra and

inter data center networks, forms the cornerstone of large scale,

geographically-distributed web services. In the last two decades,

data center network infrastructure has evolved rapidly, driven by

the scalability challenges of ever-increasing traffic demand and the

resulting desire for ever-bigger and more plentiful data centers

across the planet. New data center network technologies [2–4, 24,

35, 37, 38, 45, 50, 57, 62, 76] and WAN backbones [39, 43, 44, 47, 64]

have been designed, deployed, and operated in the field. At the same

time, both data center and backbone networks are transitioning

from older cluster network designs with proprietary switches [24] to-
ward newer fabric network designs [4] built from simple commodity

hardware with automated repair mechanisms.

Despite the significance of network infrastructure for data center

operation, we find that three aspects of data center network infras-

tructure are not well understood in the literature. First, little has

been reported on the overall reliability characteristics of data center
network infrastructure – from the networks within data centers, to

the networks that connect different data centers. Second, no previ-

ous study that we are aware of has examined the reliability trends

that appear with the transition away from cluster network designs

toward fabric network designs [76]. Third, there is little discussion

about how network design decisions affect software systems that

run on the networks.

In the past, a lack of understanding hindered researchers and

practitioners while combating network incidents [8]. Today, net-

work incidents have become a major root cause of data center

outages, as shown in recent studies [9, 28, 36, 65] and news re-

ports [20, 23, 32, 33, 79]. For example, Gunawi et al. [36] studied

597 unplanned web and cloud service outages from headline news

and public postmortem reports in a seven-year span from 2009 to

2015. Their study showed that network incidents contributed to 15%

of these outages, forming the second largest root cause category.

Therefore, understanding network reliability and its implications

on software systems is of critical importance to the design, imple-

mentation, and operation of large scale data centers.

Prior studies examined data center networks and device relia-

bility [30, 31, 34, 67, 68]. However, most of these studies focus on

the failure characteristics of network devices and links, without
connecting their impact to software systems. Network incidents

often manifest as failures and anomalies in production software

systems running on data center network infrastructure. In fact, all

device- and link-level failures are not created equal – many fail-

ures are masked by hardware redundancy, path diversity, and other
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fault-tolerance logic [51]. Compared to network device failures,
1

network incidents, i.e., misbehavior of the network as a whole that

impairs the availability or quality of large scale web services, are

among the least understood types of failures in the literature.

This paper fills the gap by presenting a large scale, longitudinal

study of the reliability of data center network infrastructure. Our

study is based on seven years of intra data center operation data and
eighteen months of inter data center operation data collected from

the production systems of Facebook, one of the largest web service

providers in the world. Facebook serves 2.23 billion monthly users

and operates twelve geographically distributed data centers [1]

with multiple generations of data center network design. These

data centers are interconnected via a Wide Area Network (WAN)
backbone designed for serving different traffic types (§3 provides

more detail on these traffic types).

We study the reliability characteristics of intra and inter data

center networks from the perspective of software system incidents in
large scale systems, and how these reliability characteristics evolve

over time. Specifically, we discuss in depth how data center network

reliability influences the design, implementation, and operation of

large scale software systems that run highly-available web services.

We make the following major observations:

• We observe that most failures that software cannot repair involve

maintenance, faulty hardware, and misconfiguration. We also

find 2× more human errors than hardware errors as devices and

routing configurations become more complex and challenging to

maintain (§5.1).

• Network devices with higher bandwidth have a higher likeli-

hood of affecting software systems. Network devices built from

commodity chips have much lower incident rates compared to

devices from third-party vendors due to the devices’ integration

with automated failover and repair software. Rack switch inci-

dents are increasing over time and are currently around 28% of

all network incidents (§5.2).

• Although high bandwidth core network devices have the most

incidents, the incidents they have are low severity. Fabric network

devices cause incidents of lower severity than cluster network

devices (§5.3).

• Cluster network incidents increased steadily over time until the

adoption of fabric networks, with cluster networks currently

having 2.8× the incidents compared to fabric networks (§5.4).

• While high reliability is essential for widely-deployed devices,

such as rack switches, incident rates vary by three orders of

magnitude across device types. Larger networks tend to have

longer incident resolution times (§5.5).

• We develop models for the reliability of Facebook’s WAN, which

consists of a diverse set of edges and links that form a backbone.

We find that time to failure and time to repair closely follow

exponential functions. We provide models for these phenomena

so that future studies can build on our models and use them to

understand the nature of backbone failures (§6.1–§6.2).

• Backbone edge nodes that convey traffic between data centers

fail on the order of months and recover on the order of hours.

However, there is high variance in edge node failure rate and

recovery rate. Path diversity in the backbone topology ensures

1
We use “failures” to refer to any network device misbehavior. The root cause of a

failure includes not only hardware faults, but also misconfigurations, maintenance

mistakes, firmware bugs, and other issues.

that large scale networks can tolerate failures with long repair

times (§6.1).

• Links supplied by backbone vendors typically fail on the order

of months, with links in big cities failing less frequently. Both

failure rate and recovery rate for links span multiple orders of

magnitude among vendors (§6.2).

• Edge failure rate varies by months across continents in the world.

Edges recover within 1 day on average on all continents (§6.3).

2 MOTIVATION
The reliability of data center network infrastructure is critically

important for building and operating highly available and scalable

web services [8, 16]. Despite an abundance of device- and link-

level monitoring, the effects of network infrastructure reliability

on the software systems that run on them is not well understood.

The fundamental problem lies in the difficulty of correlating device-
and link-level failures with software system impact. First, many net-

work failures do not cause software system issues due to network

infrastructure redundancy (including device, path, and protocol

redundancy). Second, large scale network infrastructure is typically

equipped with automated repair mechanisms that take action to

resolve failures when they occur.

To understand the behavior of network failures, we must be able

to answer questions such as: “How long do network failures affect
software when they occur?”, “What are the root causes of the network
failures that affect software?”, and “How do network failures mani-
fest themselves in software systems?”. Unfortunately, past efforts to
understand network incidents in large scale network infrastructure

are limited to informal surveys and a small number of public post-

mortem reports [8, 36], which could be biased toward certain types

of failures and not comprehensive. As noted in [8], due to scant

evidence and even less data, it is hard to discuss the reliability of

software systems in the face of network incidents because “much
of what we believe about the failure modes is founded on guesswork
and rumor.”

Even for large web and cloud service providers, understanding

the reliability of network infrastructure is challenging, given the

complex, dynamic, and heterogeneous nature of large scale net-

works. With complex and constantly evolving network designs

built from a wide variety of devices, it is hard to reason about the

end-to-end reliability of network infrastructure under different fail-

ure modes, let alone how the network affects the software that

uses it. As far as we know, from what limited information has been

publicly discussed, this is a common challenge across the industry.

Facebook has attempted to address this challenge by seeking to

understand the reliability of its data center network infrastructure.

At Facebook, software system events that affect reliability (known

as SEVs) are rigorously documented and reviewed to uncover their

root causes, duration, software system impact, as well as mitigation

and recovery procedures [55]. These postmortem reports form an

invaluable source of information for analyzing and understanding

network reliability from the perspective of large scale web services.

Our goal is to shed light on the network reliability incidents,

both within and between data centers, which affect the software

systems that power large scale web services. We hope that our

work helps researchers and practitioners anticipate and prepare for

network incidents, and inspires new network reliability solutions.
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3 FACEBOOK’S NETWORK ARCHITECTURE
Figure 1 shows Facebook’s network architecture [4, 24, 44, 71].

Facebook’s network consists of interconnected data center regions.
Each region contains buildings called data centers. Facebook oper-

ates both data center and backbone networks. We call the network

within data centers the intra data center network and the backbone

network between data centers the inter data center network.
The diversity of Facebook’s network provides an opportunity

to compare reliability across different network designs. Though

diverse, Facebook’s network is by no means unique. Published

network architectures fromGoogle andMicrosoft use similar design

principles and building blocks [31, 34, 43, 67, 68, 76]. We expect

that our findings and implications would apply to other large scale

data center networks.

3.1 Intra Data Center Networks
Facebook uses two intra data center network designs: an older

cluster-based design [19, 24] and a newer data center fabric de-

sign [4]. We call these the cluster network and the fabric network.
Unlike the cluster network, the fabric network uses a five-stage

Folded Clos [2] design, built from simple commodity hardware,

with software-controlled automated repairs.

Cluster network design. In Facebook’s older network (Figure 1,

Region A), a cluster is the basic unit of network deployment. Each

cluster comprises four cluster switches (CSWs, ➀), each of which ag-

gregates physically contiguous rack switches (RSW, ➁) via 10Gb/s
Ethernet links. In turn, a cluster switch aggregator (CSA, ➂) aggre-
gates CSWs and keeps inter cluster traffic within the data center.

Inter data center traffic flows through core network devices (core
devices, ➃), which aggregate CSAs.

A cluster network has two main limitations:

(1) Vendor devices limit data center scalability. Connecting more

devices requires waiting for vendors to produce larger switches.

This is a fundamental limiting factor for data center size in

cluster networks.

(2) Proprietary software is challenging tomaintain and customize.

Proprietary software on switches makes customization difficult

or impossible. Once deployed, proprietary switches must be re-

paired in-place. When a device becomes unresponsive, a human

must power cycle the device. Compared to software, humans

perform slow repairs. Slow repairs mean fewer switches to

route requests, more traffic on the remaining switches, and

more congestion in the network.

Despite its limitations, the cluster networks remain in use in a

dwindling fraction of Facebook’s data centers. Ultimately, these

data centers will join new data centers in using the fabric network

design.

Fabric network design. Facebook’s newer network (Figure 1,

Region B) addresses the cluster network’s limitations. A pod is the

basic unit of network deployment in a fabric network. Unlike the

physically contiguous RSWs in a cluster, RSWs in a pod have no

physical constraints within a data center. Each RSW (➅) connects

to four fabric switches (FSWs, ➆). The 1:4 ratio of RSWs to FSWs

maintains the connectivity benefits of the cluster network. Spine
switches (SSWs, ➇) aggregate a dynamic number of FSWs, defined

by software. Each SSW connects to a set of edge switches (ESWs, ➈).
Core devices (➉) connect ESWs between data centers.

Facebook’s fabric networks are managed largely by software and

differ from its cluster networks in four ways:

(1) Simple, custom switches. Fabric devices contain simple, com-

modity chips and eschew proprietary firmware and software.

(2) Fungible resources. Fabric devices are not connected in a strict

hierarchy. Control software manages FSWs, SSWs, and ESWs

as a fungible pool of resources. Resources dynamically expand

or contract based on network bandwidth and reliability needs.

(3) Automated repair mechanisms. Failures on data center fab-

ric devices can be repaired automatically by software [70]. Cen-

tralized management software continuously checks for device

misbehavior. A skipped heartbeat or an inconsistent network

setting raises alarms for management software to handle. Man-

agement software triages the problem and attempts to perform

automated repairs. Repairs include restarting device interfaces,

restarting the device itself, and deleting and restoring a device’s

persistent storage. If the repair fails, management software

opens a support ticket for investigation by a human.

(4) Stacked devices. The same type of fabric device can be stacked

in the same rack to create a higher bandwidth virtual device [26].

Stacking enables port density in fabric networks to scale faster

than in proprietary network devices [5–7, 75].

Both cluster networks and fabric networks use backbone routers
(BBRs) located in edge nodes (➄) to communicate across the WAN

backbone and Internet.

3.2 Inter Data Center Networks
Facebook’s WAN backbone consists of edge nodes connected by

fiber links ( 11 in Figure 1). Edge nodes are locations where Facebook

deploys hardware to route backbone traffic. Fiber links are optical

fibers that connect edge nodes, formed by optical circuits made of

optical segments. An optical segment corresponds to a fiber optic ca-

ble and carries multiple channels, where each channel corresponds

to a wavelength mapped to a router port.

Fiber link reliability is important to software systems that run

in multiple data centers, especially those requiring consistency and

high-availability [8, 16]. Without careful planning, fiber cuts (e.g.,

due to natural disasters) can partition entire data centers or regions

from the rest of the network. At Facebook, we have not witnessed

disastrous network partitions of data centers or regions. This is

in part due to network planning decisions made from simulations

using models like those presented in this paper. Common results

of fiber cuts include lost capacity from edge nodes to regions or

lost capacity between regions. In these cases, we reroute backbone

traffic using other links, possibly with increased latency.

On top of the physical fiber-based backbone, multiple WAN

backbone networks satisfy the distinct requirements of two types

of traffic labeled in Figure 1:

(1) User-facing traffic ( 12 in Figure 1) connects a person using

Facebook applications like those hosted at facebook.com, to
software systems running in Facebook data centers. To reach a

Facebook data center, user-facing traffic goes through the Inter-

net via a peering [82] process. There, Internet Service Providers
(ISPs) exchange traffic among Internet domains. User-facing

traffic uses the Domain Name System (DNS) to connect users to

geographically local servers operated by Facebook called edge
nodes (also known as points of presence) [72, 82]. From edge

3
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Figure 1: Facebook’s network architecture, explained in §3. Data centers use either an older cluster network or a newer fabric
network. Cluster networks and fabric networks communicate through the WAN backbone and Internet.

nodes, user traffic arrives at Facebook’s data center regions

through the backbone network.

(2) Cross data center traffic ( 13 in Figure 1) connects a software

service in one Facebook data center to a software service in

another Facebook data center. The backbone network inter-

connects both cluster networks and fabric networks. By vol-

ume, cross data center traffic consists primarily of bulk data
transfer streams for replication and consistency. Bulk transfer

streams are generated by backend services that perform batch

processing [21, 53], distributed storage [10, 60], and real-time

processing [18, 40].

To serve user-facing traffic, backbone networks support a range

of protocols and standards to connect a variety of external networks

from different ISPs. Facebook uses a traditional WAN backbone

design consisting of backbone routers placed in every edge node

(e.g., the BBRs in Edge 1 through 4 in the WAN backbone, ➄ in

Figure 1). In contrast, cross data center traffic is partitioned at the

optical layer into four planes where each plane has one backbone

router per data center [44]. Cross data center traffic is managed

by software systems that route traffic between backbone routers

built from commodity chips. The design is, in principle, similar to

Google’s B2 and B4 that are described in [34, 43].

4 BASE RESULTS AND METHODOLOGY
We describe howwemeasure and analyze the reliability of intra and

inter data center networks, including the scope of our study (§4.1),

our network incident dataset (§4.2), our analytical methodology

(§4.3), and limitations and conflating factors in our study (§4.4).

4.1 Network Incidents and Automated Repairs
We call network failures that disrupt software systems network
incidents. Network incidents affect software systems, causing data

corruption, connection time outs, and excessive latency, for example.

Software systems at Facebook include frontend web servers [22],

cache systems [17, 63], storage systems [10, 60], data processing

systems [18, 40], and real-time monitoring systems [46, 66].

Facebook shields software systems from common network fail-

ures with automated repair software [70]. Automated repair software

prevents common network failures from causing network incidents.
It runs on RSWs, FSWs, and core devices. We list automated repair

software data from April 1 to May 1, 2018 in Table 1. During this

time, automated repair software fixed 99.7% of RSW failures, 99.5%

of FSW failures, and 75% of core device failures.
2

Device Repair Ratio Avg Priority / Wait / Repair Time

Core 75% 0 (highest priority) / 4 m / 30.1 s

FSW 99.5% 2.25 / 3 d / 4.45 s

RSW 99.7% 2.22 / 1 d / 2.91 s

Table 1: The repair ratio (fraction of issues repaired with au-
tomated repair versus all issues), average priority (0 = high-
est, 3 = lowest), average wait time, and average repair time
for the network device types that automated repair software
supports.

Automated repair software schedules a repair based on its pri-
ority: low priority repairs wait longer than high priority repairs.

Engineers assign repairs a priority from 3 (the lowest priority) to 0

(the highest priority). Core device repairs have the highest priority,

and wait only minutes on average, because core devices connect

data centers. FSW and RSW repairs have lower priorities on av-

erage, 2.25 and 2.22, respectively, and wait days. Repairs happen
relatively fast once they run, taking less than a minute on average.

Core device repairs take around 30.1 s on average; FSW and RSW

repairs take around 4.45 s and 2.91 s on average, respectively.

If automated repair software cannot fix a device’s failure, the

software alerts a human technician to investigate the device. Four

2
Automated repair software is less effective for core devices because many core devices

run vendor software that is incompatible with automated repairs.
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root causes constitute the top 90.9% of failures handled by auto-

mated repairs. (1) 50% of repairs fix device port ping failures by

turning the port off and on again. (2) 32.4% of repairs fix configura-

tion file backup failures by restarting the configuration service and

reestablishing a secure shell connection. (3) 4.5% of repairs handle

fan failures by extracting failure details and alerting a technician

to examine the faulty fan. (4) 4.0% of repairs handle entire device

ping failures by collecting device details and assigning a task to a

technician.

We analyze the failures automated repair software neither detects
nor fixes. By doing so, we hope to portray the non-trivial network

failures that cause network incidents. We describe next our method-

ology for analyzing network incidents.

4.2 Site Events (SEVs)
Facebook engineers document incidents that affect software sys-

tems in reports called Site Events (SEVs).3 SEVs fall into three sever-

ity categories ranging from SEV3 (the lowest severity, no external

outage) to SEV1 (the highest severity, widespread external outage).

Engineers who responded to a SEV, or whose service the SEV af-

fected, write the SEV’s report. The report contains the incident’s
root cause, the root cause’s effect on software systems, and steps

to prevent the incident from happening again [55]. Each SEV goes

through a review process to verify the accuracy and completeness of

the report. SEV reports help engineers at Facebook prevent similar

incidents from happening again.

We analyze a SEV dataset collected over seven years, from 2011

to 2018. The dataset comprises thousands of SEVs and resides in

a MySQL database. Network SEV reports contain details on the

network incident: the network device implicated in the incident,

the duration of the incident (measured from when the root cause

manifested until when engineers fixed the root cause), and the in-

cident’s effect on software systems (for example, increased load

from lost capacity, message retries from corrupted packets, down-

time from partitioned connectivity, and increased latency from

congested links). We use SQL queries to analyze the SEV report

dataset for our study.

SEVs come in many shapes and sizes. We summarize three rep-

resentative example SEVs in increasing site event severity:

SEV3 Switch crash from software bug. A bug in the switching

software triggered an RSW to crash whenever the software

disabled a port. The incident occurred on August 17, 2017

at 11:52 am PDT after an engineer updated the software on

a RSW and noticed the behavior. The engineer identified

the root cause by reproducing the crash and debugging the

software: an attempt to allocate a new hardware counter

failed, triggering a hardware fault. On August 22, 2017 at

11:51 am PDT the engineer fixed the bug and confirmed the

fix in production.

SEV2 Trafficdrop from faulty hardwaremodule.A faulty hard-

ware module in a CSA caused traffic to drop on October

25, 2013 between 7:39 am PDT and 7:44 am PDT. After the

drop, traffic shifted rapidly to alternate network devices.Web

servers and cache servers, unable to handle the influx of load,

exhausted their CPU and failed 2.4% of requests. Service re-

sumed normally after five minutes when web servers and

cache servers recovered. An on-site technician diagnosed

3
Pronounced [sEv] in the International Phonetic Alphabet [42], rhyming with “rev.”

the problem, replaced the faulty hardware module, verified

the fix, and closed the SEV on October 26, 2013 at 8:22 am

PDT.

SEV1 Data center outage from incorrect load balancing. A
core device with an incorrectly configured load balancing

policy caused a data center network outage on January 25,

2012 at 3:46 am PST. Following a software upgrade, a core

device began routing traffic on a single path, overloading

the ports associated with the path. The overload at the core

device level caused a data center outage. Site reliability engi-

neers detected the incident with alarms. Engineers working

on the core device immediately attempted to downgrade the

software. Despite the downgrade, core device load remained

imbalanced. An engineer resolved the incident by manually

resetting the load balancer and configuring a particular load

balancer setting. The engineer closed the SEV on January 25,

2012 at 7:47 am PST.

4.3 Analytical Methodology
We use two sets of data for our study. For intra data center reliabil-
ity, we examine seven years of service-level event data collected

from the SEV database we discussed in §4.2. For inter data center
reliability we use eighteen months of data collected from vendors

on fiber repairs the vendors performed between October 2016 and

April 2018. We describe the analysis for each data source below.

Intra data center networks. For intra data center reliability, we
study the network incidents in three aspects:

(1) Root cause. We use the root causes chosen by the engineers

who authored the corresponding SEV reports. The root cause

category (listed in Table 2) is a mandatory field in our SEV

authoring workflow, although the root cause may be undeter-
mined.

(2) Device type. To classify a network incident by the implicated

device’s type, we rely on the naming convention enforced by

Facebook where each network device is named with a unique,

machine-understandable string prefixed with the device type.

For example, every rack switch has a name prefixed with “rsw”.
By parsing the prefix of the name of the offending device, we

are able to classify SEVs based on device type.

(3) Network design. We also classify network incidents based on

network architecture. Recall from Figure 1 that CSA and CSW

devices belong to cluster networks, while ESW, SSW, and FSW

devices are a part of fabric networks.

Inter data center networks. For inter data center reliability, we
study the reliability of edge nodes and fiber links based on repair

tickets from fiber vendors whose links form Facebook’s backbone

networks that connect the data centers. Facebook has monitoring

systems that check the health of every fiber link, as unavailability

of the links could significantly affect the traffic or partition a data

center from the rest of Facebook’s infrastructure.

When a vendor starts repairing a link (when the link is severed)

or performing maintenance on a fiber link, Facebook is notified

via email. The email is in a structured form, including the logical

IDs of the fiber link, the physical location of the affected fiber

circuits, the starting time of the repair or maintenance, and the

estimated duration. Similarly, when the vendor completes the repair

or maintenance of a fiber link, the vendor sends a confirmation

email. The emails are automatically parsed and stored in a database

5
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for later analysis. We examine eighteen months of repair data in

this database from October 2016 to April 2018. From this data, we

measure fiber link mean time between failures (MTBF) and mean

time to repair (MTTR).

4.4 Limitations and Conflating Factors
We found it challenging to control for all variables in a longitudinal

study of failures at a company of Facebook’s scale. So, our study

has limitations and conflating factors, some of which we briefly

discuss below. Throughout our analysis, we state when a factor

that is not under our control may affect our conclusions.

• Absolute versus relative number of failures. We cannot re-

port the absolute number of failures. Instead, we report failure

rates using a fixed baseline when the trend of the absolute failures

aids our discussion.

• Logged versus unlogged failures. Our intra data center net-

work study relies on SEVs reported by employees. While Face-

book fosters a culture of opening SEVs for all incidents affecting

production, we cannot guarantee our incident dataset is exhaus-

tive.

• Technology changes over time. Switch hardware consists of

a variety of devices sourced and assembled from different ven-

dors. We do not account for these factors in our study. Instead,

we analyze trends by switch type when a switch’s architecture

significantly deviates from others.

• Switch maturity. Switch architectures vary in their lifecycle,

from newly-introduced switches to switches ready for retirement.

We do not differentiate the effect a switch’s maturity has in

Facebook’s fleet in our analyses.

• More engineers making changes. As Facebook has grown, so

has the number of engineers performing network operations.

While all network software and configuration changes go through

code review to reduce the chances of network incidents, more

engineers can potentially lead to more opportunities for failure.

5 INTRA DATA CENTER RELIABILITY
In this section, we study the reliability of data center networks. We

analyze network incidents within Facebook data centers over the

course of seven years, from 2011 to 2018, comprising thousands

of real world events. A network incident occurs when the root

cause of a SEV relates to a network device. We analyze root causes

(§5.1), incident rate and distribution (§5.2), incident severity (§5.3),

network design (§5.4), and device reliability (§5.5).

5.1 Root Causes
Key Takeaways
• Maintenance failures contribute the most documented incidents
• 2× higher rate of human errors than hardware errors

Table 2 lists network incident root causes.
4
If a SEV has multiple

root causes, we count the SEV toward multiple categories. Human

classification of root causes implies SEVs can be misclassified [56,

69]. While the rest of our analysis does not depend on the accuracy

of root cause classification, we find it instructive to examine the

types of root causes that occur in Facebook’s networks.

We find the root cause of 29% of network incidents is undeter-
mined. We observe these SEVs correspond typically to transient and

isolated incidents where engineers only reported on the incident’s

symptoms. Wu et al. note a similar fraction of unknown issues (23%,

[81], Table 1), while Turner et al. report a smaller fraction (5%, [80],

Table 5).

Maintenance failures contribute the most documented root causes
(17%). This suggests that in the network infrastructure of a large web
service provider like Facebook, despite the best efforts to automate

and standardize the maintenance procedures, maintenance failures

still occur and lead to disruptions. Therefore, it is important to build

mechanisms for quickly and reliably routing around faulty devices

or devices under maintenance.

Hardware failures represent 13% of the root causes, while human-
induced misconfiguration and software bugs occur at nearly double
the rate (25%) of those caused by hardware failures. Turner et al. and
Wu et al. observe hardware incident rates similar to the incident

rates we observe (18% in Table 1 in [81] and 20% in Table 5 in

[80]), suggesting that hardware incidents remain a fundamental

root cause. Misconfiguration causes as many incidents as faulty

hardware. This corroborates the findings of prior works that re-

port misconfiguration as a large source of network failures in data

centers [14, 15, 34, 49, 52, 67, 81], and shows the importance of

emulation, verification, and automated repair techniques to reduce

the number of incidents [11–13, 25, 27, 29, 48, 49].

We observe a similar rate of misconfiguration incidents (13%)

as Turner et al. (9% in Table 5 in [80]), and a lower rate of mis-

configuration incidents than Wu et al. (38% in Table 1 in [81]). We

suspect network operators play a large role in determining how

misconfiguration causes network incidents. At Facebook, for exam-

ple, all configuration changes require code review and typically get

tested on a small number of devices before being deployed to the

fleet. These practices may contribute to the lower misconfiguration

incident rate we observe compared to Wu et al..

4
We use Govindan et al. [34]’s definition of root cause: “A failure event’s root-cause is
one that, if it had not occurred, the failure event would not have manifested.”

Category Fraction Description

Maintenance 17% Routine maintenance (for example, upgrading the software and firmware of network devices).

Hardware 13% Failing devices (for example, faulty memory modules, processors, and ports).

Misconfiguration 13% Incorrect or unintended configurations (for example, routing rules blocking production traffic).

Bug 12% Logical errors in network device software or firmware.

Accidents 11% Unintended actions (for example, disconnecting or power cycling the wrong network device).

Capacity planning 5% High load due to insufficient capacity planning.

Undetermined 29% Inconclusive root cause.

Table 2: Common root causes of intra data center network incidents at Facebook from 2011 to 2018.
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A potpourri of accidents and capacity planning issues makes

up the last 16% of incidents (cf. Table 2). This is a testament to

the many sources of entropy in large scale production data center

networks. Designing network devices to tolerate all of these issues

is prohibitively difficult (if not impossible) in practice. Therefore,

one reliability engineering principle is to prepare for the unexpected
in large scale data center networks.

Figure 2 breaks down each root cause across the types of net-

work devices it affects. Note that the major root cause categories,

including undetermined, maintenance, hardware, misconfiguration,
bugs, accidents, and capacity planning affect most network device

types. Some root cause categories are represented unequally among

devices. For example, capacity planning issues tend to affect more

ESWs and maintenance issues tend to affect more FSWs. ESWs do

not have SEVs due to bugs or maintenance, not because ESWs are

immune to bugs and maintenance issues, but because the popula-

tion size is small and such incidents have not yet been observed.
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Maintenance

Hardware

Misconfiguration
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Fraction of incidents
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Cluster Fabric

Figure 2: Breakdown of each root cause across the device
types it affects.

We conclude that maintenance failures contribute the most doc-

umented network incidents (17%) and human-induced failures (mis-

configuration and bugs) occur twice as much as hardware-induced

failures.

5.2 Incident Rate and Distribution
Key Takeaways
• Higher incident rates occur on higher bandwidth devices
• Lower incident rates occur on fabric network devices
• RSW incidents are increasing over time
Incident rate. The overall reliability of data center networks is

determined by the reliability of each interconnected network device.

To measure the frequency of incidents related to each device type,

we define incident rate of a device type as r = i
n , where i denotes

the number of incidents caused by this type of network device

and n is the number of active devices in the network of that type

(the population). Note that the incident rate could be larger than

1.0, meaning that each device of that type caused more than one

network incident, on average.

Figure 3 shows the incident rate of each type of network device

in Facebook’s data centers over the seven-year span of our study.

From Figure 3, we make four observations:
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Figure 3: Yearly incident rate of each device type. Note that
the y axis is in logarithmic scale and some devices have an
incident rate of 0, which occurs if they did not exist in the
fleet in a year.

(1) Network devices with higher bisection bandwidth (e.g., core devices
and CSAs in Figure 1) generally have higher incident rates, in
comparison to the devices with lower bisection bandwidth (e.g.,
RSWs). Intuitively, devices with higher bisection bandwidth

tend to affect a larger number of connected devices and are thus

correlated with more widespread impact when they fail. The

annual incidence rate for ESWs, SSWs, FSWs, RSWs, and CSWs

in 2017 is less than 1%.

(2) Fabric network devices (ESWs, SSWs, and FSWs) have lower inci-
dent rates compared to cluster network devices (CSAs and CSWs).
There are two differences between fabric network devices and

cluster network devices: (a) fabric network devices are built

from commodity chips [5, 6], while cluster network devices are

purchased from third-party vendors and (b) fabric networks

employ automated repair software to handle common sources

of failures [70].

(3) The fact that fabric network devices are less frequently associ-

ated with failures verifies that a fabric network design, equipped
with automated failover and repair, is more resilient to device
failures. Specifically, we can see a large rate of CSA-related in-

cidents during 2013 and 2014, where the number of incidents

exceeds the number of CSAs (with the incident rate as high as

1.7 and 1.5, respectively). Such high incidence rates were part of

the motivation to transition from the cluster network to fabric

network.

(4) The CSA-related incident rate decreased in 2015, while the

core device-related incident rate has generally increased from

pre-2015 levels. This trend can be attributed to two causes: (1)

the decreasing size of the CSA population, and (2) new repair

practices that were adopted around the time. For example, prior

to 2014, network device repairs were often performed without
draining the traffic on their links. This meant that in the worst

case, when things went wrong, maintenance could affect a

large volume of traffic. Draining devices prior to maintenance

provided a simple but effective way to limit the likelihood of a

repair affecting production traffic.

(5) RSW incident rate is increasing over time. We analyze this trend

when we discuss Figure 4.
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These reliability characteristics influence Facebook’s fault toler-

ant data center network design. For example, Facebook provisions

eight core devices in each data center, which allows Facebook data

centers to tolerate one unavailable core device (e.g., if it must be

removed from operation for maintenance) without any impact on

the data center network. Note that nearly all of the core devices

and CSAs are third-party vendor devices. In principle, if we do not
have direct control of the proprietary software on these devices, the

network design and implementation must take this lack of control

into consideration.
5
For example, it may be more challenging to

diagnose, debug, and repair devices that rely on firmware whose

source code is unavailable. In these cases, it may make sense to

increase the redundancy of devices in case some must be removed

for repair by a vendor.

Incident distribution. Figure 4 shows the distribution of in-

cidents caused by each type of network device on a yearly basis.

From Figure 4, we make two observations:
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Figure 4: Fraction of network incidents per year broken
down by device type.

(1) RSW-related incidents have been steadily increasing over time

(a finding that corroborates that of Potharaju et al. [67, 68]).

This is partially driven by an increase in the size of the rack

population over time. In addition, this is also a result of Face-

book’s data center network design, where Facebook uses one

RSW as the Top-Of-Rack (TOR) switch. Other companies, such

as some cloud service providers and enterprises, use two TORs

with each server connected to both TORs for redundancy. At

Facebook, we find that replicating and distributing server re-

sources leads to low RSW incident rates and is more efficient

than using redundant RSWs in every rack.

(2) Devices in fabric networks have not demonstrated a large in-

crease in incidents over time. This again suggests that fabric-

based data center designs with automated failover provide good

fault tolerance. We analyze this trend further in Section 5.4.

We conclude that (1) higher bandwidth devices have a higher

likelihood of causing network incidents, (2) network devices built

from commodity chips have much lower incident rates compared

to devices from third-party vendors due to automated failover and

software repairs, (3) better repair practices lead to lower incident

5
Facebook has been manufacturing custom RSWs and modular switches since 2013.

Please refer to the details in [5–7, 75].

rates, and (4) RSW incidents are increasing over time, but they are

still relatively low.

5.3 Incident Severity
Key Takeaways
• Core devices have the most incidents, but they are low severity
• Fabric networks have less severe incidents than cluster networks
Not all incidents are created equal. Facebook classifies incidents

into three severity levels from SEV3 (lowest severity) to SEV1 (high-

est severity). A SEV level reflects the highwatermark for an incident.

A SEV’s level is never downgraded to reflect progress in resolving

the SEV. Table 3 provides examples of incidents for each SEV level.

Level Incident Examples

SEV3 Redundant or contained system failures, system im-

pairments that do not affect or only minimally affect

customer experience, internal tool failures.

SEV2 Service outages that affect a particular Facebook fea-

ture, regional network impairment, critical internal

tool outages that put the site at risk.

SEV1 Entire Facebook product or service outage, data cen-

ter outage, major portions of the site are unavailable,

outages that affect multiple products or services.

Table 3: SEV levels and incident examples.

Figure 5 shows how each type of network SEV in 2017 was

distributed among network devices. We make two observations

from Figure 5 that complement our raw incident rate findings from

§5.2:
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Figure 5: Breakdown of each SEV type across different net-
work devices in 2017.

(1) While core devices have the highest number of SEVs, the sever-

ity of core device SEVs is typically low, with around 81% of SEVs

at level 3, 15% at level 2, and 4% at level 1. RSWs have nearly

as many incidents as core devices, with severity distributed in

roughly the same proportion (85%, 10%, and 5% for SEV levels

3, 2, and 1, respectively).

(2) Compared to cluster network devices (CSAs and CSWs), fabric

network devices typically have lower severity, with 66% fewer

SEV1s, 33%more SEV2s (though the overall rate is still relatively
8
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low), and 52% fewer SEV3s. The lower severity is due to the

automatic failover and repair support in fabric network devices.

Figure 6 shows how the rate of each SEV level has changed over

the years, normalized to the total number of devices in the popula-

tion during that year. While we cannot disclose the absolute size

of the population, we note that it is multiple orders of magnitude

larger than similar studies, such as Turner et al. [80]. The main

conclusion we draw from Figure 6 is that the overall rate of SEVs

per device had an inflection point in 2015, corresponding to the

deployment of fabric networks. This was a significant turnaround,

as, prior to 2015, the rate of SEV3s grew at a nearly exponential

rate.

0E+0

1E-3

2E-3

3E-3

2011 2012 2013 2014 2015 2016 2017

In
ci

de
nt

s 
pe

r d
ev

ic
e

SEV3 SEV2 SEV1 Fabric deployed

SEV3

SEV2
SEV1

Figure 6: The number of network SEVs over time normalized
to the number of deployed network devices. Note that the y
axis is in logarithmic scale.

5.4 Network Design
Key Takeaways
• Cluster network incidents increased steadily over time
• Cluster networks have 2.8× the incidents versus fabric networks
We start by describing the composition of Facebook’s fleet of

network devices. We plot the population breakdown of devices

deployed in Facebook’s data centers from 2011 to 2017 in Figure 7.

Aside from showing the proliferation of RSWs in the fleet, Figure 7

shows that an inflection point occurred in 2015, when the popu-

lations of CSWs and CSAs begin to decrease and the populations

of FSWs, SSWs, and ESWs begin to increase. This is due to the

adoption of fabric networks across more Facebook data centers. In

2017, fabric network device deployment surpassed cluster network

device deployment, with 1.5 fabric network devices for every 1

cluster network device in Facebook data centers.
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Figure 7: Population breakdown by network device type
over the seven-year span of our study. Note that the y axis is
in logarithmic scale.

Data center network design plays an important role in network

reliability. Figure 8 shows how the fraction of network incidents

from the older cluster network design and the newer fabric network
design has changed over time. Cluster network devices are CSAs

and CSWs; fabric network devices are ESWs, SSWs, and FSWs. The

fraction is calculated by summing the network incidents across all
of the device types in each network design and dividing it by a

common baseline, the number of incidents in 2017. Focusing on

2015, for example, the year fabric networks started being deployed,

cluster networks caused nearly the same number of incidents as all
network incidents in 2017. From Figure 8, we make two observa-

tions:
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Figure 8: Number of incidents for each network design nor-
malized to a fixed baseline, the total number of SEVs in 2017.

(1) Cluster network incidents increased steadily over time until around

2015, when it became challenging to make additional reliability

improvements to the cluster network design.

(2) In 2017, the number of incidents for cluster network devices

was 1.87× that of fabric network devices, despite fabric net-

works having 50% more devices. Thus, normalized by number

of devices, cluster network devices have 1.87 × 1.5 = 2.8× as
many incidents as fabric network devices. This is because the
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software-managed fault tolerance and automated repair pro-

vided by fabric networks can mask some failures that would

cause incidents in cluster networks.

We conclude cluster networks have around 2× the number of net-

work incidents as fabric networks. We find that fabric networks are

more reliable due to their simpler, commodity-chip based switches

and automated repair software that dynamically adapts to tolerate

device failures.

5.5 Device Reliability
Key Takeaways
• Incident rates vary by 3 orders of magnitude across device types
• Larger networks have longer incident resolution times
We analyze the reliability of Facebook data center network de-

vices. We use the incident start time and incident resolution time

from SEVs to measure mean time between incidents (MTBI) and 75th
percentile (p75) incident resolution time (p75IRT). p75IRT deserves

additional explanation. Engineers at Facebook document resolution
time, not repair time, in a SEV. Resolution time exceeds repair time

and includes time engineers spend on developing and releasing

fixes. To prevent occasional months-long incident resolution times

from dominating the mean, we examine the 75th percentile incident

resolution time.

MTBI. We measure the average time between the start of two

consecutive incidents for MTBI. Figure 9 plots MTBI for each switch

type by year. We draw two conclusions from the data:
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Figure 9:Mean time between incidents in hours for different
network device types. Note that the y axis is in logarithmic
scale.

First, we find that, from 2011 to 2017, MTBI did not change by

more than 10× across each switch type, except CSAs. In 2015, in re-

sponse to frequent CSA maintenance incidents, engineers strength-

ened CSA operational procedure guidelines, adding checks to en-

sure that operators drained CSAs before performing maintenance,

for example. These operational improvements increased CSA MTBI

by two orders of magnitude between 2014 and 2016.

Second, we find that, in 2017, MTBI varied by three orders of
magnitude across switch types: from 39,495 device-hours for core
devices to 9,958,828 device-hours for RSWs. If we compare MTBI

to switch type population size in 2017 (shown in Figure 7), we find

that devices with larger population sizes tend to have larger MTBIs.

This is because engineers at Facebook have focused on deploying

techniques like automated repair mechanisms to devices with large

population sizes.

p75IRT.We measure the average time between the start and the

resolution of incidents for p75IRT. Figure 10 plots p75IRT for each

device type by year.
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Figure 10: 75th percentile incident resolution time in hours
for different network device types. Note that the y axis is in
logarithmic scale.

We find that, from 2011 to 2017, p75IRT increased similarly across
device types. The increase happened without significant changes to

individual device design, operation, and management. To explain

the overall increase in p75IRT, we plot p75IRT versus the normalized

number of devices at Facebook in Figure 11.
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Figure 11: Average p75IRT per year compared to the popula-
tion size of network devices in Facebook’s data centers dur-
ing that year.

We observe a positive correlation between p75IRT and number

of devices. At Facebook, we find that larger networks increase the
time humans take to resolve network incidents. We attribute part of

the increased resolution time to more standardized processes for

releasing fixes to production infrastructure. Today, device config-

uration and software changes go through more thorough review

processes, testing, and deployment than in the past.
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We conclude that in terms of device reliability, incident rates

vary by 3 orders of magnitude across device types in Facebook’s

data centers and incidents that happen in larger networks tend to

have longer incident resolution times.

6 INTER DATA CENTER RELIABILITY
In this section, we study the reliability of backbone networks. We

analyze network failures between Facebook’s data centers over

the course of eighteen months, from October 2016 to April 2018,

comprising tens of thousands of real world events, comparable in

size to Turner et al. [80] and over three times as long of a timescale as

Wu et al. [81]. We analyze two types of backbone network failures:

• Link failures,where an individual bundle of optical fiber linking
two edge nodes (Figure 1, ➄) fails.

• Edge node failures, where multiple link failures cause an edge

node to fail. An edge node connects to the backbone and Internet

using at least three links. When all of an edge node’s links fail,

the edge node fails.

Our backbone network dataset does not contain root causes.

We measure mean time between failures (MTBF) and mean time to
recovery (MTTR) for edge nodes and links. We analyze edge node

reliability (§6.1), link reliability by fiber vendor (§6.2), and edge

node reliability by geography (§6.3).

6.1 Edge Node Reliability
Key Takeaways
• Typical edge node failure rate is on the order of months
• Typical edge node recovery time is on the order of hours
• There is high variance in both edge node MTBF and MTTR
We first analyze the MTBF and MTTR of the edge nodes in Face-

book’s backbone network. An edge node fails when a combination

of planned fiber maintenance or unplanned fiber cuts sever its

backbone and Internet connectivity. An edge node recovers when

repairs restore its backbone and Internet connectivity.

MTBF. The solid line in Figure 12 plots edge node MTBF in

hours as a function of the percentage of edge nodes with that MTBF

or lower. Most edge nodes fail infrequently because fiber vendors

strive to maintain reliable links. 50% of edge nodes fail less than

once every 1710 h, or 2.3months. And 90% of edge nodes fail less

than once every 3521 h, or 4.8months.
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Figure 12: MTBF as a function of percentage of edge nodes
connecting Facebook data centers with that MTBF or lower.

Edge nodes exhibit high variance in MTBF due to their diverse

fiber vendor makeup and geographic locations (observations we

explore in §6.2 and §6.3). The standard deviation of edge nodeMTBF

is 1320 h, with the least reliable edge node failing, on average, once

every 253 h and the most reliable edge node failing, on average,

once every 8025 h.

We model MTBFedge(p) as an exponential function of the per-

centage of edge nodes, 0 ≤ p ≤ 1, with that MTBF or lower. We

built the models in this section by fitting an exponential function

using the least squares method. At Facebook, we use these models

in capacity planning to calculate conditional risk, the probability
of an edge node or link being unavailable or overloaded. We plan

edge node and link capacity to ensure conditional risk is below

0.0001. We find that MTBFedge(p) = 462.88e2.3408p (the dotted line

in Figure 12) with R2 ≈ 0.94.
MTTR. The solid line in Figure 13 plots edge node MTTR in

hours as a function of the percentage of edge nodes with that

MTTR or lower. Edge node recovery occurs much faster than the

time between failures because edge nodes contain multiple links

(at least three) and fiber vendors work to repair link failures rapidly.

50% of edge nodes recover within 10 h of a failure; 90% within 71 h.
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Figure 13: MTTR as a function of percentage of edge nodes
connecting Facebook data centers with that MTTR or lower.

Edge nodes exhibit high variance in MTTR because some edge

nodes are easier to repair than others. Imagine the differences

between an edge node on a remote island compared to an edge

node in a big city. Weather conditions, physical terrain, and travel

time affect the time it takes a fiber vendor to repair an edge node’s

links. The standard deviation of edge node MTTR is 112 h, with

the slowest edge node to recover taking 608 h and the fastest edge

node to recover taking 1 h.

We model MTTRedge(p) as an exponential function of the per-

centage of edge nodes, 0 ≤ p ≤ 1 with that MTTR or lower. We

find that MTTRedge(p) = 1.513e4.256p (the dotted line in Figure 13)

with R2 ≈ 0.87.
The high variances in edge node MTBF and MTTR motivate us

to study the reliability characteristics of the links connecting edge

nodes in §6.2 and the geographic location of edge nodes in §6.3.
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6.2 Link Reliability by Fiber Vendor
Key Takeaways
• Typical vendor link failure rate is on the order of months
• We observe higher MTBF for edge nodes in big cities
• Vendor MTBF and MTTR each span multiple orders of magnitude
We analyze the MTBF and MTTR for fiber vendors based on

when the links they operate fail or recover. For brevity, we shorten

“the MTBF/MTTR of the links operated by a fiber vendor” to “fiber
vendor MTBF/MTTR.”

MTBF. The solid line in Figure 14 plots the fiber vendor MTBF

in hours as a function of the percentage of fiber vendors with that

MTBF or lower. For most vendors, link failure happens only occa-

sionally due to regular maintenance andmonitoring. 50% of vendors

have links that fail less than once every 2326 h, or 3.2months. And

90% of vendors have links that fail less than once every 5709 h, or

7.8months.

y = 336.51e3.4371p

R² = 0.8354
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Figure 14: MTBF as a function of percentage of fiber vendors
with that MTBF or lower.

Fiber vendor MTBF varies by orders of magnitude. The standard

deviation of fiber vendor MTBF is 2207 h, with the least reliable ven-

dor’s links failing, on average, once every 2 h and the most reliable

vendor’s links failing, on average, once every 11,721 h. Anecdotally,
we observe that fiber markets with high competition lead to more

incentive for fiber vendors to increase reliability. For example, the

most reliable vendor operates in a big city in the USA.

We model MTBFvendor (p) as an exponential function of the per-

centage of vendors, 0 ≤ p ≤ 1 with that MTBF or lower. We find

that MTBFvendor (p) = 336.51e3.4371p (the dotted line in Figure 14)

with R2 ≈ 0.84.
MTTR. The solid line in Figure 15 plots fiber vendor MTTR as

a function of the percentage of fiber vendors with that MTTR or

lower. Most vendors repair links promptly. 50% of vendors repair

links within 13 h of a failure; 90% within 60 h.

y = 1.1345e4.7709p

R² = 0.9781
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Figure 15:MTTRas a function of percentage of fiber vendors
with that MTTR or lower.

Fiber vendors exhibit high variance in MTTR because some fiber

vendors operate in areas where they can more easily repair links

(an observation we analyze in §6.3). The standard deviation of fiber

vendor MTTR is 56 h, with the slowest vendor taking on average

744 h to repair their links and the fastest vendor taking on average

1 h to repair their links.

We model MTTRvendor (p) as an exponential function of the per-

centage of vendors, 0 ≤ p ≤ 1 with that MTTR or lower. We find

that MTTRvendor (p) = 1.1345e4.7709p (the dotted line in Figure 15)

with R2 ≈ 0.98.
We conclude that not all fiber vendors operate equally. We sum-

marize the reliability models we developed in Table 4. We next

explore how the geographic location of edge nodes affects their

reliability.

Reliability Model Exponential Function R2

Edge node MTBF 462.88e2.3408p 0.94

Edge node MTTR 1.513e4.256p 0.87

Vendor MTBF 336.51e3.4371p 0.84

Vendor MTTR 1.1345e4.7709p 0.98

Table 4: Each reliability model is an exponential function
expressing the MTBF or MTTR for a given percentile, 0 ≤

p ≤ 1, of edge nodes (or vendors).

6.3 Edge Node Reliability by Geography
Key Takeaways
• Edge node failure rate is similar across most continents
• Edge nodes recover within 1 day on average on all continents
We analyze the reliability of edge nodes by their geographic lo-

cation (the continent they reside in). Table 5 shows the distribution

of edge nodes in Facebook’s network across continents. Most edge

nodes reside in North America, followed closely by Europe. The

continents with the fewest edge nodes are Africa and Australia.
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Continent Distribution MTBF (h) MTTR (h)

North America 37% 1848 17

Europe 33% 2029 19

Asia 14% 2352 11

South America 10% 1579 9

Africa 4% 5400 22

Australia 2% 1642 2

Table 5: The distribution and reliability of edge nodes in
Facebook’s network across continents.

MTBF.We show the average MTBF for the edge nodes in each

continent in Table 5. Edge nodes in Africa are outliers, with an aver-

age MTBF of 5400 h, or 7.4months. Edge node reliability in Africa

is important because edge nodes in Africa are few and connect

Europe to Asia. Edge nodes in North America, South America, Eu-

rope, Asia, and Australia have average MTBFs ranging from 1579 h

(2.2months, for South America) to 2352 h (3.2months, for Asia).

The standard deviation of edge node MTBF across continents is

1333 h, or 1.8months.

MTTR. We show the average MTTR for the edge nodes in each

continent in Table 5. Across continents, edge nodes recover within

1 day on average. Edge nodes in Africa, despite their long uptime,

take the longest time, on average, to recover (22 h), in part due to

their submarine links. Edge nodes in Australia take the shortest

time, on average, to recover (2 h), due to their locations in big cities.

We observe a 7 h standard deviation in edge node MTTR across

continents.

We conclude that edge node failure rate varies by months de-
pending on the continent that edge nodes reside in, and edge nodes

typically recover in 1 day across continents.

7 RELATEDWORK
To our knowledge, this paper provides the first comprehensive

study of network incidents from the perspective of large scale web

services. Prior large scale data center failure studies [9, 16, 36, 65]

report that network incidents are among the major causes of web

service outages. However, none of these studies systematically ana-

lyze network incidents at a large scale, focusing on the availability

of an entire web service, across both inter and intra data center

networks, in a long term, longitudinal study.

Prior studies examine the failure characteristics of network links

and devices in different types of networks studied in this paper,

including data center networks [31, 67, 68, 83] and optical back-

bones [30, 54, 68]. Specifically, Potharaju and Jain [68] and Turner

et al. [80] study data center network infrastructure by characteriz-

ing device and link failures in intra and inter data center networks.

Their studies characterize the failure impact, including connectivity

losses, high latency, packet drops, and so on. These studies signifi-

cantly boost the understanding of network failure characteristics,

and provide insights for network engineers and operators for im-

proving the fault tolerance of existing networks and for designing

more robust networks.

While our work is closely related to these prior studies, it is also

fundamentally different and complementary in the following three

aspects. First, our work has a different goal. Unlike these prior stud-

ies that focus on understanding fine-grained per-device, per-link

failures and their impact on the system-level services above the net-

work stack, our work focuses on how network incidents affect the
availability of an Internet service. Our goal is to reveal and quantify

the incidents that cannot be tolerated despite industry best prac-

tices, and shed light on how large scale systems can operate reliably

in the presence of these incidents. Second, prior studies only cover

the data center and backbone networks with traditional cluster net-

work designs, whereas our work presents a comparative study of

the reliability characteristics of data center network infrastructure

with both a traditional cluster network design and a contempo-

rary fabric network design with smaller, commodity switches. As

introduced in §3, we achieve this due to the heterogeneity of the

data center network infrastructure of Facebook where networks

with different designs co-exist and co-operate. Third, we present a

long-term (seven years for intra data center networks and eighteen

months for inter data center networks) longitudinal analysis to re-

veal the evolution of network reliability characteristics, while prior

studies typically provide only aggregated results, often over a much

shorter period or with orders of magnitude fewer devices [80].

Govindan et al. [34] study over 100 failure events in GoogleWAN

and data center networks, offering insights into why maintaining

high levels of availability is challenging for content providers. Their

study, similar to [9, 16, 36, 65], focuses on network management

and the design principles for building robust networks. Many of

the high-level design principles mentioned in [34], such as using

multiple layers of fallback (defense in depth), continuous prevention,

and fast recovery, are applicable to large scale software systems to

protect against network incidents.

Other large scale studies examined failures of DRAM devices [41,

59, 74, 77, 78] and SSDs [58, 61, 73] in clusters and data centers. Our

paper complements these studies.

8 CONCLUSIONS
At large scale Internet companies like Facebook, it is important to

maintain a reliable network infrastructure both within and between

data centers. In this study, we presented a large scale, longitudinal

study of data center network reliability based on operational data

collected from the production network infrastructure at Facebook.

Our study spans thousands of intra data center network incidents

across seven years, and eighteen months of inter data center net-

work incidents. We show how the reliability characteristics of dif-

ferent network designs and different network device types manifest

as network incidents and affect the software systems that use the

network.

As software systems grow in complexity, interconnectedness,

and geographic distribution, unwanted behavior from network

infrastructure has the potential to become a key limiting factor

in the ability to reliably operate distributed software systems at a

large scale. It is our hope that the research community can build

upon our comprehensive study to better characterize, understand,

and improve the reliability of large scale data center networks and

systems.
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