
Improving DRAM Performance
by Parallelizing Refreshes

with Accesses

Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen,
Chris Wilkerson, Yoongu Kim, Onur Mutlu

Kevin Chang

Executive Summary
•  DRAM refresh interferes with memory accesses

–  Degrades system performance and energy efficiency
–  Becomes exacerbated as DRAM density increases

•  Goal: Serve memory accesses in parallel with refreshes to
reduce refresh interference on demand requests

•  Our mechanisms:
–  1. Enable more parallelization between refreshes and accesses across

different banks with new per-bank refresh scheduling algorithms
–  2. Enable serving accesses concurrently with refreshes in the same bank

by exploiting DRAM subarrays

•  Improve system performance and energy efficiency for a wide
variety of different workloads and DRAM densities
–  20.2% and 9.0% for 8-core systems using 32Gb DRAM
–  Very close to the ideal scheme without refreshes
 2

Outline

•  Motivation and Key Ideas
•  DRAM and Refresh Background
•  Our Mechanisms
•  Results

3

Refresh Penalty

Processor

M
em

or
y

Co
nt

ro
lle

r

4

DRAM Refresh Read
Data

Capacitor

Access
transistor

Refresh delays requests by 100s of ns
Refresh interferes with memory accesses

Time

Per-bank refresh in mobile DRAM (LPDDRx)

Existing Refresh Modes

5

Time

All-bank refresh in commodity DRAM (DDRx)

Bank 7

Bank 1
Bank 0

…

Bank 7

Bank 1
Bank 0

…

Refresh

Round-robin order

Per-bank refresh allows accesses to other
banks while a bank is refreshing

Shortcomings of Per-Bank Refresh
•  Problem 1: Refreshes to different banks are scheduled

in a strict round-robin order
–  The static ordering is hardwired into DRAM chips
–  Refreshes busy banks with many queued requests when

other banks are idle

•  Key idea: Schedule per-bank refreshes to idle banks
opportunistically in a dynamic order

6

Shortcomings of Per-Bank Refresh
•  Problem 2: Banks that are being refreshed cannot

concurrently serve memory requests

7

Time
Bank 0 RD

Delayed by refresh

Per-Bank Refresh

Shortcomings of Per-Bank Refresh
•  Problem 2: Refreshing banks cannot concurrently

serve memory requests
•  Key idea: Exploit subarrays within a bank to parallelize

refreshes and accesses across subarrays

8

Time Bank 0
Subarray 1

Subarray 0

RD

Subarray Refresh Time

Parallelize

Outline

•  Motivation and Key Ideas
•  DRAM and Refresh Background
•  Our Mechanisms
•  Results

9

DRAM System Organization

10

Rank 1
Bank 7

Bank 1
Bank 0

…

Rank 0
Rank 1

DRAM

•  Banks can serve multiple requests in parallel

DRAM Refresh Frequency
•  DRAM standard requires memory controllers to send

periodic refreshes to DRAM

11

tRefPeriod (tREFI): Remains constant

tRefLatency (tRFC): Varies based on DRAM chip density (e.g., 350ns)

Timeline

Read/Write: roughly 50ns

Increasing Performance Impact
•  DRAM is unavailable to serve requests for

 of time

•  6.7% for today’s 4Gb DRAM

•  Unavailability increases with higher density due to
higher tRefLatency
–  23% / 41% for future 32Gb / 64Gb DRAM

12

tRefLatency
tRefPeriod

•  Shorter tRefLatency than that of all-bank refresh
•  More frequent refreshes (shorter tRefPeriod)

All-Bank vs. Per-Bank Refresh

13

Timeline

Bank 0

Bank 1 Refresh

Per-Bank Refresh: In mobile DRAM (LPDDRx)

Refresh

Timeline

Bank 0

Bank 1

All-Bank Refresh: Employed in commodity DRAM (DDRx, LPDDRx)

Refresh

Refresh
Refresh Staggered across

banks to limit power

Read

Read

Read

Read

Can serve memory accesses in parallel with
refreshes across banks

Shortcomings of Per-Bank Refresh
•  1) Per-bank refreshes are strictly scheduled in

round-robin order (as fixed by DRAM’s internal logic)

•  2) A refreshing bank cannot serve memory accesses

 14

Goal: Enable more parallelization between refreshes
and accesses using practical mechanisms

Outline

•  Motivation and Key Ideas
•  DRAM and Refresh Background
•  Our Mechanisms
– 1. Dynamic Access-Refresh Parallelization (DARP)
– 2. Subarray Access-Refresh Parallelization (SARP)

•  Results

15

Our First Approach: DARP
•  Dynamic Access-Refresh Parallelization (DARP)
–  An improved scheduling policy for per-bank refreshes
–  Exploits refresh scheduling flexibility in DDR DRAM

•  Component 1: Out-of-order per-bank refresh
–  Avoids poor static scheduling decisions
–  Dynamically issues per-bank refreshes to idle banks

•  Component 2: Write-Refresh Parallelization
–  Avoids refresh interference on latency-critical reads
–  Parallelizes refreshes with a batch of writes

16

1) Out-of-Order Per-Bank Refresh
•  Dynamic scheduling policy that prioritizes refreshes

to idle banks
•  Memory controllers decide which bank to refresh

17

Bank 1

Bank 0

Our mechanism: DARP

1) Out-of-Order Per-Bank Refresh

18

Refresh

Read

Timeline Bank 1

Bank 0 Refresh Read

Refresh Read

Baseline: Round robin

Refresh

Read

Saved cycles

Delayed by refresh

Saved cycles

Re
ad

Request queue (Bank 0) Request queue (Bank 1)

Re
ad

Reduces refresh penalty on demand requests
by refreshing idle banks first in a flexible order

Outline

•  Motivation and Key Ideas
•  DRAM and Refresh Background
•  Our Mechanisms
– 1. Dynamic Access-Refresh Parallelization (DARP)

•  1) Out-of-Order Per-Bank Refresh
•  2) Write-Refresh Parallelization

– 2. Subarray Access-Refresh Parallelization (SARP)

•  Results

19

Refresh Interference on Upcoming Requests

•  Problem: A refresh may collide with an upcoming
request in the near future

20

Bank 1

Bank 0 Refresh

Read

Read Delayed by refresh

Time

DRAM Write Draining
•  Observations:
•  1) Bus-turnaround latency when transitioning from

writes to reads or vice versa
–  To mitigate bus-turnaround latency, writes are typically

drained to DRAM in a batch during a period of time

•  2) Writes are not latency-critical

21

Timeline Bank 1

Bank 0

Write Read Write

Turnaround

Write

2) Write-Refresh Parallelization
•  Proactively schedules refreshes when banks are

serving write batches

22

Timeline Bank 1

Bank 0

Turnaround

Refresh

Read

Read

Baseline

Delayed by refresh

Write Write Write

Write-refresh parallelization

Timeline Bank 1

Bank 0

Read

Turnaround

Read

Write Write Write

Refresh

1. Postpone refresh
Refresh

2. Refresh during writes Saved cycles

Avoids stalling latency-critical read requests
by refreshing with non-latency-critical writes

Outline

•  Motivation and Key Ideas
•  DRAM and Refresh Background
•  Our Mechanisms
– 1. Dynamic Access-Refresh Parallelization (DARP)
– 2. Subarray Access-Refresh Parallelization (SARP)

•  Results

23

Our Second Approach: SARP
Observations:
1. A bank is further divided into subarrays
–  Each has its own row buffer to perform refresh operations

2. Some subarrays and bank I/O remain completely idle
during refresh
 24

Bank 7

Bank 1
Bank 0

…

Subarray
Bank I/O Row Buffer

Idle

Our Second Approach: SARP
•  Subarray Access-Refresh Parallelization (SARP):
–  Parallelizes refreshes and accesses within a bank

25

Our Second Approach: SARP
•  Subarray Access-Refresh Parallelization (SARP):
–  Parallelizes refreshes and accesses within a bank

26

Very modest DRAM modifications: 0.71%
die area overhead

Bank 7

Bank 1
Bank 0

…

Subarray
Bank I/O

Timeline Subarray 1

Subarray 0

Bank 1

Data Refresh

Refresh

Read

Read

Outline

•  Motivation and Key Ideas
•  DRAM and Refresh Background
•  Our Mechanisms
•  Results

27

Methodology

•  100 workloads: SPEC CPU2006, STREAM, TPC-C/H, random access

•  System performance metric: Weighted speedup

28

DDR3 Rank

Simulator configurations

M
em

or
y

Co
nt

ro
lle

r
8-core

processor

M
em

or
y

Co
nt

ro
lle

r

Bank 7

Bank 1

Bank 0

…

L1 $: 32KB
L2 $: 512KB/core

Comparison Points
•  All-bank refresh [DDR3, LPDDR3, …]

•  Per-bank refresh [LPDDR3]

•  Elastic refresh [Stuecheli et al., MICRO ‘10]:
–  Postpones refreshes by a time delay based on the predicted

rank idle time to avoid interference on memory requests
–  Proposed to schedule all-bank refreshes without exploiting

per-bank refreshes
–  Cannot parallelize refreshes and accesses within a rank

•  Ideal (no refresh)
29

0

1

2

3

4

5

6

8Gb 16Gb 32Gb

W
ei

gh
te

d
Sp

ee
du

p
(G

eo
M

ea
n)

DRAM Chip Density

All-Bank

Per-Bank

Elastic

DARP

SARP

DSARP

Ideal

System Performance

30

7.9% 12.3% 20.2%

1. Both DARP & SARP provide performance gains
and combining them (DSARP) improves even more
2. Consistent system performance improvement across
DRAM densities (within 0.9%, 1.2%, and 3.8% of ideal)

Energy Efficiency

31

3.0% 5.2% 9.0%

Consistent reduction on energy consumption

0
5

10
15
20
25
30
35
40
45

8Gb 16Gb 32Gb

En
er

gy
 p

er
 A

cc
es

s
(n

J)

DRAM Chip Density

All-Bank

Per-Bank

Elastic

DARP

SARP

DSARP

Ideal

Other Results and Discussion in the Paper

•  Detailed multi-core results and analysis

•  Result breakdown based on memory intensity

•  Sensitivity results on number of cores, subarray
counts, refresh interval length, and DRAM parameters

•  Comparisons to DDR4 fine granularity refresh

32

Executive Summary
•  DRAM refresh interferes with memory accesses

–  Degrades system performance and energy efficiency
–  Becomes exacerbated as DRAM density increases

•  Goal: Serve memory accesses in parallel with refreshes to
reduce refresh interference on demand requests

•  Our mechanisms:
–  1. Enable more parallelization between refreshes and accesses across

different banks with new per-bank refresh scheduling algorithms
–  2. Enable serving accesses concurrently with refreshes in the same bank

by exploiting DRAM subarrays

•  Improve system performance and energy efficiency for a wide
variety of different workloads and DRAM densities
–  20.2% and 9.0% for 8-core systems using 32Gb DRAM
–  Very close to the ideal scheme without refreshes
 33

Improving DRAM Performance
by Parallelizing Refreshes

with Accesses

Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen,
Chris Wilkerson, Yoongu Kim, Onur Mutlu

Kevin Chang

