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Executive Summary 
•  DRAM refresh interferes with memory accesses  

–  Degrades system performance and energy efficiency 
–  Becomes exacerbated as DRAM density increases 

•  Goal: Serve memory accesses in parallel with refreshes to 
reduce refresh interference on demand requests 

•  Our mechanisms: 
–  1. Enable more parallelization between refreshes and accesses across 

different banks with new per-bank refresh scheduling algorithms 
–  2. Enable serving accesses concurrently with refreshes in the same bank 

by exploiting DRAM subarrays 

•  Improve system performance and energy efficiency for a wide 
variety of different workloads and DRAM densities 
–  20.2% and 9.0% for 8-core systems using 32Gb DRAM 
–  Very close to the ideal scheme without refreshes 
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Outline 

•  Motivation and Key Ideas 
•  DRAM and Refresh Background 
•  Our Mechanisms 
•  Results 
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Per-bank refresh in mobile DRAM (LPDDRx) 

Existing Refresh Modes 
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Shortcomings of Per-Bank Refresh 
•  Problem 1: Refreshes to different banks are scheduled 

in a strict round-robin order  
–  The static ordering is hardwired into DRAM chips 
–  Refreshes busy banks with many queued requests when 

other banks are idle 

•  Key idea: Schedule per-bank refreshes to idle banks 
opportunistically in a dynamic order  

6 



Shortcomings of Per-Bank Refresh 
•  Problem 2: Banks that are being refreshed cannot 

concurrently serve memory requests 
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Shortcomings of Per-Bank Refresh 
•  Problem 2: Refreshing banks cannot concurrently 

serve memory requests 
•  Key idea: Exploit subarrays within a bank to parallelize 

refreshes and accesses across subarrays 
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DRAM System Organization 
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DRAM Refresh Frequency 
•  DRAM standard requires memory controllers to send 

periodic refreshes to DRAM 
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tRefPeriod (tREFI): Remains constant  

tRefLatency (tRFC): Varies based on DRAM chip density (e.g., 350ns) 
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Increasing Performance Impact 
•  DRAM is unavailable to serve requests for 

          of time  

•  6.7% for today’s 4Gb DRAM 

•  Unavailability increases with higher density due to 
higher tRefLatency 
–  23% / 41% for future 32Gb / 64Gb DRAM 
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•  Shorter tRefLatency than that of all-bank refresh 
•  More frequent refreshes (shorter tRefPeriod) 

All-Bank vs. Per-Bank Refresh 
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Shortcomings of Per-Bank Refresh 
•  1) Per-bank refreshes are strictly scheduled in  

round-robin order (as fixed by DRAM’s internal logic) 

•  2) A refreshing bank cannot serve memory accesses 
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Goal: Enable more parallelization between refreshes 
and accesses using practical mechanisms 



Outline 

•  Motivation and Key Ideas 
•  DRAM and Refresh Background 
•  Our Mechanisms 
– 1. Dynamic Access-Refresh Parallelization (DARP) 
– 2. Subarray Access-Refresh Parallelization (SARP) 

•  Results 
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Our First Approach: DARP 
•  Dynamic Access-Refresh Parallelization (DARP) 
–  An improved scheduling policy for per-bank refreshes 
–  Exploits refresh scheduling flexibility in DDR DRAM 

•  Component 1: Out-of-order per-bank refresh 
–  Avoids poor static scheduling decisions 
–  Dynamically issues per-bank refreshes to idle banks 

•  Component 2: Write-Refresh Parallelization 
–  Avoids refresh interference on latency-critical reads 
–  Parallelizes refreshes with a batch of writes 
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1) Out-of-Order Per-Bank Refresh  
•  Dynamic scheduling policy that prioritizes refreshes 

to idle banks 
•  Memory controllers decide which bank to refresh 
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Refresh Interference on Upcoming Requests 

•  Problem: A refresh may collide with an upcoming 
request in the near future 
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DRAM Write Draining  
•  Observations:  
•  1) Bus-turnaround latency when transitioning from 

writes to reads or vice versa 
–   To mitigate bus-turnaround latency, writes are typically 

drained to DRAM in a batch during a period of time 

•  2) Writes are not latency-critical 
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2) Write-Refresh Parallelization 
•  Proactively schedules refreshes when banks are 

serving write batches 
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Our Second Approach: SARP 
Observations: 
1. A bank is further divided into subarrays 
–  Each has its own row buffer to perform refresh operations  

 
 
2. Some subarrays and bank I/O remain completely idle 
during refresh 
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Our Second Approach: SARP 
•  Subarray Access-Refresh Parallelization (SARP): 
–  Parallelizes refreshes and accesses within a bank 
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Our Second Approach: SARP 
•  Subarray Access-Refresh Parallelization (SARP): 
–  Parallelizes refreshes and accesses within a bank 
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Methodology 

 

•  100 workloads: SPEC CPU2006, STREAM, TPC-C/H, random access 

•  System performance metric: Weighted speedup 
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Comparison Points 
•  All-bank refresh [DDR3, LPDDR3, …] 

•  Per-bank refresh [LPDDR3] 

•  Elastic refresh [Stuecheli et al., MICRO ‘10]: 
–  Postpones refreshes by a time delay based on the predicted 

rank idle time to avoid interference on memory requests 
–  Proposed to schedule all-bank refreshes without exploiting 

per-bank refreshes 
–  Cannot parallelize refreshes and accesses within a rank 
 

•  Ideal (no refresh) 
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7.9% 12.3% 20.2% 

1. Both DARP & SARP provide performance gains 
and combining them (DSARP) improves even more 
2. Consistent system performance improvement across 
DRAM densities (within 0.9%, 1.2%, and 3.8% of ideal) 



Energy Efficiency 
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Other Results and Discussion in the Paper 

•  Detailed multi-core results and analysis 

•  Result breakdown based on memory intensity 

•  Sensitivity results on number of cores, subarray 
counts, refresh interval length, and DRAM parameters 

•  Comparisons to DDR4 fine granularity refresh  
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Executive Summary 
•  DRAM refresh interferes with memory accesses  

–  Degrades system performance and energy efficiency 
–  Becomes exacerbated as DRAM density increases 

•  Goal: Serve memory accesses in parallel with refreshes to 
reduce refresh interference on demand requests 

•  Our mechanisms: 
–  1. Enable more parallelization between refreshes and accesses across 

different banks with new per-bank refresh scheduling algorithms 
–  2. Enable serving accesses concurrently with refreshes in the same bank 

by exploiting DRAM subarrays 

•  Improve system performance and energy efficiency for a wide 
variety of different workloads and DRAM densities 
–  20.2% and 9.0% for 8-core systems using 32Gb DRAM 
–  Very close to the ideal scheme without refreshes 
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