
SAFARI Technical Report No. 2015-001. Feb 20, 2015.
This is a summary of the original paper, entitled "Improving DRAM Performance by Parallelizing Refreshes with Accesses" which

appears in HPCA 2014 [1].

Reducing Performance Impact of DRAM Refresh
by Parallelizing Refreshes with Accesses

Kevin Kai-Wei Chang Donghyuk Lee Zeshan Chishti†

Alaa R. Alameldeen† Chris Wilkerson† Yoongu Kim Onur Mutlu

Carnegie Mellon University †Intel Labs

1. Summary

1.1. The Problem

DRAM requires periodic refresh to prevent data loss from
charge leakage. There exists two main refresh methods em-
ployed in the majority of today’s DRAM systems. The first
method is to carry out refresh operations at the rank level, called
all-bank refresh (REFab), which is mainly used by commodity
DDR DRAM [6]. Because all-bank refresh prevents all banks
within an entire DRAM rank from serving memory requests,
it significantly degrades performance. The second method is
to perform refreshes at the bank level, called per-bank refresh
(REFpb), which is currently supported in LPDDR DRAM used
in mobile platforms [7]. In contrast to REFab, REFpb enables
a bank to be accessed while another bank is being refreshed,
alleviating part of the negative performance impact of refresh.

Unfortunately, there are two shortcomings of per-bank re-
fresh. First, refreshes to different banks are scheduled in a strict
round-robin order as specified by the LPDDR standard [7]. Us-
ing this static policy may force a busy bank to be refreshed,
delaying the memory requests queued in that bank, while other
idle banks are available to be refreshed. Second, refreshing
banks cannot concurrently serve memory requests. Further-
more, the negative performance impact of DRAM refresh be-
comes exacerbated as DRAM density increases in the future.
Figure 1 shows the average performance degradation of all-
bank/per-bank refresh compared to ideal baseline without any
refreshes.1 Although REFpb performs slightly better than REFab,
the performance loss is still significant, especially as the den-
sity grows (16.6% loss at 32Gb). Therefore, the goal of our
paper [1] is to provide practical mechanisms to overcome these
two shortcomings to mitigate the performance overhead of
DRAM refresh.

 0
 5

 10
 15
 20

8Gb 16Gb 32Gb

P
er

fo
rm

a
n

ce
L

o
ss

 (
%

)

DRAM Density

REFab REFpb

Figure 1: Performance loss due to REFab and REFpb.

1.2. Proposed Solutions

We propose two mechanisms, Dynamic Access Refresh Par-
allelization (DARP) and Subarray Access Refresh Paralleliza-
tion (SARP), that hide refresh latency by parallelizing refreshes

1The detailed methodology is described in our HPCA paper [1].

with memory accesses across banks and subarrays, respectively.
DARP is a new refresh scheduling policy that consists of two
components. The first component is out-of-order per-bank re-
fresh that enables the memory controller to specify a particular
(idle) bank to be refreshed as opposed to the standard per-bank
refresh policy that refreshes banks in a strict round-robin order.
With out-of-order refresh scheduling, DARP can avoid refresh-
ing (non-idle) banks with pending memory requests, thereby
avoiding the refresh latency for those requests. The second com-
ponent is write-refresh parallelization that proactively issues
REFpb to a bank while DRAM is draining write batches to other
banks, thereby overlapping refresh latency with write latency.
The second mechanism, SARP, allows a bank to serve mem-
ory accesses in idle subarrays while other subarrays within the
same bank are being refreshed. SARP exploits the fact that re-
freshing a row is contained within a subarray, without affecting
the I/O bus used for transferring data.

1.2.1. DARP: Out-of-order Per-bank Refresh. The limita-
tion of the current REFpb mechanism is that it disallows a mem-
ory controller from specifying which bank to refresh. Instead,
a DRAM chip has internal logic that strictly refreshes banks
in a sequential round-robin order. Because DRAM lacks vis-
ibility into a memory controller’s state (e.g., request queues’
occupancy), simply using an in-order REFpb policy can unnec-
essarily refresh a bank that has multiple pending requests to
be served when other banks may be free to serve a refresh
command. To address this problem, we propose the first com-
ponent of DARP, out-of-order per-bank refresh. The idea is to
remove the bank selection logic from DRAM and make it the
memory controller’s responsibility to determine which bank
to refresh. As a result, the memory controller can refresh an
idle bank to enhance parallelization of refreshes and accesses,
avoiding refreshing a bank that has pending requests as much
as possible.

Due to REFpb reordering, the memory controller needs to
guarantee that deviating from the original in-order schedule
still preserves data integrity. To achieve this, we take advantage
of the fact that the contemporary DDR JEDEC standard [6]
provides some refresh scheduling flexibility. The standard al-
lows up to eight all-bank refresh commands to be issued late
(postponed) or early (pulled-in). This implies that each bank
can tolerate up to eight REFpb to be postponed or pulled-in.
Therefore, the memory controller ensures that reordering REFpb
preserves data integrity by limiting the number of postponed or
pulled-in commands. Our paper [1] describes the algorithm of
out-of-order per-bank refresh in detail.



1.2.2. DARP: Write-refresh Parallelization. The key idea of
the second component of DARP is to actively avoid refresh
interference on read requests and instead enable more paral-
lelization of refreshes with write requests. We make two obser-
vations that lead to our idea. First, write batching in DRAM
creates an opportunity to overlap a refresh operation with a
sequence of writes, without interfering with reads. A modern
memory controller typically buffers DRAM writes and drains
them to DRAM in a batch to amortize the bus turnaround
latency, also called tWTR or tRTW [6, 12, 13], which is the
additional latency incurred from switching between serving
writes to reads. Typical systems start draining writes when the
write buffer occupancy exceeds a certain threshold until the
buffer reaches a low watermark. This draining time period is
called the writeback mode, during which no rank within the
draining channel can serve read requests [2, 13, 20]. Second,
DRAM writes are not latency-critical because processors do
not stall to wait for them: DRAM writes are due to dirty cache
line evictions from the last-level cache [13, 20].

Given that writes are not latency-critical and are drained in
a batch for some time interval, they are more flexible to be
scheduled with minimal performance impact. We propose the
second component of DARP, write-refresh parallelization, that
attempts to maximize parallelization of refreshes and writes.
Write-refresh parallelization selects the bank with the minimum
number of pending demand requests (both read and write) and
preempts the bank’s writes with a per-bank refresh. As a result,
the bank’s refresh operation is hidden by the writes in other
banks. We refer the reader to Section 4 of our paper [1] for
more details on the algorithm and implementation of DARP.

1.2.3. Subarray Access Refresh Parallelization (SARP). To
tackle the problem of refreshes and accesses colliding within
the same bank, we propose SARP (Subarray Access Refresh
Parallelization) that exploits the existence of subarrays within
a bank. The key observation leading to our second mechanism
is that a refresh operation is constrained to only a few subar-
rays within a bank whereas the other subarrays and the I/O
bus remain idle during the process of refreshing. The reasons
for this are two-fold. First, refreshing a row requires only its
subarray’s sense amplifiers that restore the charge in the row
without transferring any data through the I/O bus. Second, each
subarray has its own set of sense amplifiers that are not shared
with other subarrays.

Based on this observation, SARP’s key idea is to allow mem-
ory accesses to an idle subarray while other subarrays are re-
freshing. Figure 2 shows the service timeline and the perfor-
mance benefit of our mechanism. As shown, SARP reduces
the read latency by performing the read operation to Subar-
ray 1 in parallel with the refresh in Subarray 0. Compared to
DARP, SARP provides the following advantages: 1) SARP is
applicable to both all-bank and per-bank refresh and 2) SARP
enables memory accesses to a refreshing bank, which cannot
be achieved with DARP.

SARP requires modest modifications that reduce the sharing
of the peripheral circuits for refreshes and accesses in each
bank without changing the cell arrays. These modifications
result in 0.71% DRAM die area overhead. Section 4.3 of our
paper [1] describes these changes in detail.

REFab/pb

Time

Time

Subarray0

Subarray1

Time

Time

Subarray0

Subarray1

Saved Cycles

All-Bank or 
Per-Bank 
Refresh

Subarray
Access Refresh
Parallelization

REFab/pb

READ

READ

Bank0

Bank0

REF Delays Read

Figure 2: Service timeline of a refresh and a read request to two differ-
ent subarrays within the same bank.

1.3. Summary of Results

Here, we briefly summarize our results on an 8-core system.
Section 6 of our paper provides the detailed evaluations. Fig-
ure 3 shows the average system performance and energy of
our final mechanism, DSARP, the combination of DARP and
SARP, compared to two baseline refresh schemes and an ideal
scheme without any refreshes. The percentage numbers on top
of the bars are the performance improvement of DSARP over
REFab. We draw two observations. First, DSARP consistently
improves system performance and energy efficiency over prior
refresh schemes, capturing most of the benefit of the ideal base-
line. Second, as DRAM density (refresh latency) increases, the
performance benefit of DSARP gets larger.

 0

 1

 2

 3

 4

 5

 6

8Gb 16Gb 32Gb

W
ei

g
h

te
d

 S
p

ee
d

u
p

DRAM Density

7.9% 12.3% 20.2%

REFab
REFpb

DSARP
No REF

8Gb 16Gb 32Gb
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45

E
n

er
g
y
 P

er
 A

cc
es

s 
(n

J
)

DRAM Density

3.0% 5.2% 9.0%

Figure 3: Average system performance and energy consumption.

2. Significance

2.1. Novelty

To our knowledge, this is the first work to comprehensively
study the effect of per-bank refresh and propose 1) a refresh
scheduling policy built on top of per-bank refresh and 2) a
mechanism that achieves parallelization of refresh and memory
accesses within a refreshing bank. As a result, our mechanisms
significantly improve system performance by effectively paral-
lelizing refreshes with accesses.

Prior works have investigated refresh scheduling policies
on all-bank refresh or DDR4 fine granularity refresh to hide
refresh operations behind rank idle time [17, 19].2 However,
they provide minimal performance benefits because an all-bank
refresh operates at the rank level, occupying all the banks, thus
making it difficult to find a long enough idle period to hide the
refresh latency. On the other hand, some works have proposed
to exploit retention time variation among DRAM cells [15,
22]. Although this approach has the potential to reduce the

2A recent work [21] that was published after our work proposes to operate
DDR4 refresh at sub-rank level, which performs worse than per-bank refresh.

2



number of refreshes, determining the retention time of DRAM
cells accurately is still an unsolved research problem due to
the Variable Retention Time and Data Pattern Dependence
phenomena [11, 14]. In comparison, our proposed techniques
do not rely on retention time profiling and are guaranteed to
preserve data integrity.

Other works have proposed to skip refreshes in different sce-
narios. Ghosh and Lee [3] propose to skip refreshes to rows that
had been recently accessed. Liu et al. [16] propose Flikker to
lower refresh rate of non-critical data regions. Isen and John [5]
propose ESKIMO to avoid refreshing invalid or unused data
based on program semantics. DSARP is complementary to
these techniques.
2.2. Potential Long Term Impact

In this section, we describe three trends in the current and
future DRAM subsystem that will likely make our proposed
solutions more important in the future.

2.2.1. Worsening retention time. As DRAM cells’ feature
size continues to scale, the cells’ retention time will likely
become shorter, exacerbating the refresh penalty [18]. When
the surface area of cells gets smaller with further scaling, the
depth/height of the cell needs to increase to maintain the same
amount of capacitance that can be stored in a cell. In other
words, the aspect ratio (the ratio of a cell’s depth to its diameter)
needs to be increased to maintain the capacitance. However,
many works have shown that fabricating high aspect-ratio cells
is becoming more difficult due to processing technology [4, 10].
Therefore, cells’ capacitance (retention time) may potentially
decrease with further scaling, increasing the refresh frequency.
Using DSARP is a cost-effective way to alleviate the increasing
negative impact of refresh as our results show [1].

2.2.2. New DRAM standards with flexible per-bank refresh.
According to the recently released DRAM standards, the indus-
try is already in the process of implementing a similar concept
of enabling the memory controller to determine which bank to
refresh. In particular, the two standards are: 1) HBM [8] (Octo-
ber 2013, after the submission of our work) and 2) LPDDR4 [9]
(August 2014). Both standards have incorporated a new refresh
mode that allows per-bank refresh commands to be issued in
any order by the memory controllers. Neither standard specifies
a preferred order which the memory controller needs to follow
for issuing refresh commands.

Our work has done extensive evaluations to show that our pro-
posed per-bank refresh scheduling policy, DARP, outperforms
a naive round-robin policy by opportunistically refreshing idle
banks. As a result, our policy can be potentially adopted in the
future processors that use HBM or LPDDR4 DRAM.

2.2.3. Increasing number of subarrays. As DRAM density
keeps increasing, more rows of cells are added within each
DRAM bank. To avoid the disadvantage of increasing sens-
ing latency due to longer bitlines in subarrays, more subarrays
will likely be added within a single bank instead of increasing
the size of each subarray. Our proposed refreshing scheme at
the subarray level, SARP, becomes more effective at mitigat-
ing refresh as the number of subarrays increases because the
probability of a refresh and a demand request colliding at the
subarray level decreases with more subarrays.

2.3. New Research Directions
This work will likely create new research opportunities for

studying refresh scheduling policies at different dimensions
(i.e., bank and subarray level) to mitigate worsening refresh
overhead. Among many potential opportunities, one potential
way to further reduce the refresh latency (i.e., tRFCab/pb) is to
trade off higher refresh rate (i.e., tREFI), which is currently
supported as fine granularity refresh in DDR4 DRAM for all-
bank refresh. In this work, we assume a fixed refresh rate for
per-bank refresh as it is specified in the standard. Therefore,
a new research question that our work raises is how can one
combine per-bank refresh with fine granularity refresh and
design a new scheduling policy for that? We think that DARP
can inspire new scheduling policies to improve the performance
of existing DRAM designs.

References
[1] K. K.-W. Chang et al., “Improving DRAM performance by

parallelizing refreshes with accesses,” in HPCA, 2014.
[2] N. Chatterjee et al., “Staged reads: Mitigating the impact of

DRAM writes on DRAM reads,” in HPCA, 2012.
[3] M. Ghosh and H.-H. S. Lee, “Smart Refresh: An Enhanced

Memory Controller Design for Reducing Energy in Conventional
and 3D Die-Stacked DRAMs,” in MICRO, 2007.

[4] S. Hong, “Memory technology trend and future challenges,” in
Intl. Electron Devices Meeting, 2010.

[5] C. Isen and L. John, “Eskimo: Energy savings using seman-
tic knowledge of inconsequential memory occupancy for dram
subsystem,” in MICRO, 2009.

[6] JEDEC, “DDR4 SDRAM Standard,” 2012.
[7] JEDEC, “Low Power Double Data Rate 3 (LPDDR3),” 2012.
[8] JEDEC, “High Bandwidth Memory (HBM) DRAM,” 2013.
[9] JEDEC, “Low Power Double Data Rate 4 (LPDDR4),” 2014.

[10] U. Kang et al., “Co-Architecting Controllers and DRAM to
Enhance DRAM Process Scaling,” in The Memory Forum, 2014.

[11] S. Khan et al., “The efficacy of error mitigation techniques for
dram retention failures: A comparative experimental study,” in
ACM SIGMETRICS, 2014.

[12] Y. Kim et al., “A case for exploiting subarray-level parallelism
(SALP) in DRAM,” in ISCA, 2012.

[13] C. J. Lee et al., “DRAM-Aware last-level cache writeback: Re-
ducing write-caused interference in memory systems,” in HPS
Technical Report, 2010.

[14] J. Liu et al., “An experimental study of data retention behavior in
modern DRAM devices: Implications for retention time profiling
mechanisms,” in ISCA, 2013.

[15] J. Liu et al., “RAIDR: Retention-aware intelligent DRAM re-
fresh,” in ISCA, 2012.

[16] S. Liu et al., “Flikker: Saving dram refresh-power through crit-
ical data partitioning,” in Symp. on Architectural Support for
Programming Languages and Operating Systems, 2011.

[17] J. Mukundan et al., “Understanding and mitigating refresh over-
heads in high-density DDR4 DRAM systems,” in ISCA, 2013.

[18] O. Mutlu, “Memory scaling: A systems architecture perspective,”
in MemCon, 2013.

[19] J. Stuecheli et al., “Elastic refresh: Techniques to mitigate refresh
penalties in high density memory,” in MICRO, 2010.

[20] J. Stuecheli et al., “The virtual write queue: Coordinating DRAM
and last-level cache policies,” in ISCA, 2010.

[21] V. K. Tavva et al., “Efgr: An enhanced fine granularity refresh
feature for high-performance ddr4 dram devices,” TACO, vol. 11,
no. 3, 2014.

[22] R. Venkatesan et al., “Retention-aware placement in DRAM
(RAPID): Software methods for quasi-non-volatile DRAM,” in
HPCA, 2006.

3


