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ABSTRACT

DRAM systems achieve high performance when all DRAM
banks are busy servicing useful memory requests. The degree
to which DRAM banks are busy is called DRAM Bank-Level
Parallelism (BLP). This paper proposes two new cost-effective
mechanisms to maximize DRAM BLP. BLP-Aware Prefetch Is-
sue (BAPI) issues prefetches into the on-chip Miss Status Hold-
ing Registers (MSHRs) associated with each core in a multi-core
system such that the requests can be serviced in parallel in dif-
ferent DRAM banks. BLP-Preserving Multi-core Request Issue
(BPMRI) does the actual loading of the DRAM controller’s re-
quest buffers so that requests from the same core can be serviced
in parallel, minimizing the serialization of each core’s concurrent
requests. When combined, BAPI and BPMRI improve system
performance by 11.7% on a 4-core CMP system for a wide va-
riety of multiprogrammed workloads. BAPI and BPMRI also
complement various existing DRAM scheduling and prefetching
algorithms, and can be used in conjunction with them.

Categories and Subject Descriptors: C.1.0 [Processor Architec-
tures]: General; C.5.3 [Microcomputers]: Microprocessors;

General Terms: Design, Performance.

1. INTRODUCTION
Modern DRAM chips consist of multiple banks that can be

accessed independently. Requests to different DRAM banks can
proceed concurrently. As a result, their access latencies can be
overlapped and DRAM throughput can improve leading to high
system performance. The notion of servicing multiple requests
in parallel in different DRAM banks is called DRAM Bank-Level
Parallelism (BLP).

Many sophisticated performance improvement techniques
such as prefetching, out-of-order execution, and runahead exe-
cution [4, 16] are designed to amortize the cost of long mem-
ory latencies by generating multiple outstanding memory re-
quests with the hope of exploiting Memory-Level Parallelism
(MLP) [8]. The effectiveness of these techniques critically de-
pends on whether the application’s outstanding memory re-
quests are actually serviced in parallel in different DRAM banks.
If the requests in the DRAM controller’s buffers (which we call
DRAM request buffers) are NOT to different banks, the amount
of BLP exploited will be very low, thereby reducing the effec-
tiveness of such techniques.

This paper shows that the issue policy of memory requests
into Miss Status Holding Registers (MSHRs) and DRAM re-
quest buffers significantly affects the level of BLP exploited by
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the DRAM controller. MSHRs [11] keep track of all outstanding
cache misses for a processing core. All memory requests must
first be allocated an MSHR entry before entering the DRAM re-
quest buffers where they are considered for DRAM scheduling.
The request remains in the MSHR until serviced by DRAM.
The MSHR structure is complex and not scalable in size [26]
since it requires content-associative search. Therefore, the choice
of which requests are placed into the MSHRs and finally into
DRAM request buffers significantly affects the amount of BLP
exploited by the DRAM controller. To this end, we propose new
request issue policies into MSHRs and DRAM request buffers
that aim to maximize DRAM BLP, and evaluate the effective-
ness of our techniques on single and multi-core systems in the
presence of two commonly-used mechanisms that exploit MLP:
prefetching and out-of-order execution.

We propose two techniques: BLP-Aware Prefetch Is-
sue (BAPI) and BLP-Preserving Multi-core Request Issue
(BPMRI). BAPI tries to maximize the BLP of prefetch requests
exposed to the DRAM controller. It does so by prioritizing
prefetch requests to different banks over prefetch requests to the
same bank when issuing requests into the MSHRs. When BAPI
is employed on each core of a CMP system, the increased BLP
it exposes for a core can be destroyed by interference from other
cores’ requests. To prevent this, we propose BPMRI, which is-
sues memory requests into DRAM request buffers such that the
requests from each core (application) can be serviced by the
DRAM controller without destroying the BLP of each applica-
tion. BPMRI achieves this by issuing memory requests from the
same core back-to-back to the DRAM request buffers.

Our evaluations show that the proposed mechanisms improve
system performance significantly by increasing DRAM BLP.
BAPI improves the performance of the 14 most memory inten-
sive SPEC CPU 2000/2006 benchmarks by 8.5% on a single-
core processor compared to a conventional memory system de-
sign. BAPI combined with BPMRI improves system perfor-
mance (weighted speedup) for 30 multiprogrammed workloads
by 11.7% on a 4-core CMP. We show that our mechanisms are
simple to implement and low-cost, requiring only 11.5KB of stor-
age in a 4-core CMP system.

Contributions: To our knowledge, this is the first paper that
proposes adaptive memory request issue policies in the on-chip
memory system that aim to maximize DRAM BLP. We make
the following contributions:

1. This paper shows that BLP-unaware request issue policies
in the on-chip memory system can destroy DRAM BLP, thereby
significantly reducing the effectiveness of techniques that benefit
from MLP such as prefetching and out-of-order execution.

2. We propose a new adaptive prefetch issue policy into
MSHRs that increases the level of DRAM BLP exposed to the
memory controller for an individual application.

3. We propose a new request issue policy to DRAM request
buffers that tries to preserve the DRAM BLP of each application
when multiple applications run together on a CMP system.

4. We evaluate our techniques for various prefetching algo-
rithms and configurations on single-core and CMP systems, and
show that they significantly improve system performance. We
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show that the proposed techniques complement parallelism- and
prefetch-aware DRAM scheduling policies.

2. BACKGROUND AND MOTIVATION

2.1 Baseline CMP Memory System Design

Prefetcher

MSHRs

L2 cache 

Core 1
Core 0

Prefetch

MSHR allocator

L2 fill buffer

buffer
request

L2 miss buffer

L2 access buffer
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Figure 1: CMP memory system

Figure 1 illustrates our
baseline CMP system design
that consists of multiple cores
and multiple DRAM channels.
Each core has its own hardware
prefetcher that monitors its
L2 demand access stream to
generate prefetch requests.
Once generated, prefetch re-
quests are buffered in a FIFO
(First-In First-Out) buffer
which we call the prefetch
request buffer. This buffer is
similar to the prefetch buffer
for the L1 cache in the Intel
Core processor [3].1 The oldest
prefetch in the prefetch request
buffer is chosen to be sent
to the MSHR allocator every
processor cycle. The MSHR
allocator decides whether an
L1 instruction/data miss or a
prefetch request is allocated.
It prioritizes demands over
prefetches since delaying the service of demands can hurt
performance. Before an MSHR entry is allocated, all existing
MSHRs are searched for a matching entry. If no matching entry
is found, a free MSHR entry is allocated and the request is
sent to the L2 access buffer. If this request is a prefetch, it is
invalidated from the prefetch request buffer.

When an L2 access (either a demand or prefetch) turns out
to be an L2 miss, it is sent to the L2 miss buffer where it waits
until it is sent to the DRAM request buffer in the correspond-
ing DRAM channel. The destination (i.e., which DRAM re-
quest buffer in which DRAM channel) is predetermined based
on the physical address of the request. L2 miss requests in
the L2 access buffer from each core contend for DRAM request
buffers. The L2-to-DRAM Controller (L2-to-DC) request issuer
performs this arbitration in a round-robin fashion among cores.
The DRAM controller in each DRAM channel examines all re-
quests in its DRAM request buffers and decides which request
will be serviced by the DRAM system. Once a request is ser-
viced, the data from DRAM is sent to the L2 cache through the
L2 fill buffer and the corresponding MSHR entry is freed.

The total number of outstanding demand/prefetch requests in
the system cannot be more than the total number of MSHR en-
tries. Also, the size of the DRAM request buffers limit the scope
of the DRAM controller for DRAM access scheduling. There-
fore, the order we send requests to the MSHRs and DRAM re-
quest buffers can significantly affect the amount of DRAM BLP
exploited by the DRAM controller. In this paper, we focus on
the issue policies for entrance into these two buffers. The parts
of the baseline design we modify are highlighted in Figure 1.

1The FIFO queue in Intel’s processor sends the oldest request to
the L1 cache as long as a Fill Buffer entry (MSHR entry) is avail-
able. If the prefetch FIFO is full in Intel Core, a new prefetch
overrides the oldest prefetch. Our prefetch request buffer is also
a FIFO, but is connected to the L2 cache (instead of L1) and
does not allow a new prefetch to override the oldest one (instead
we just stall the prefetcher) since we found that overriding hurts
performance by removing many useful prefetches.

2.2 Hardware Prefetchers
A hardware prefetcher speculates on an application’s memory

access patterns and sends memory requests to the memory sys-
tem earlier than the application demands the data. If done well,
the prefetched data is installed in the cache and future demand
accesses that would have otherwise missed now hit in the cache.
If the prefetcher generates a large number of useful prefetches,
then significant performance improvement can be achieved.

We use a stream prefetcher [23, 12] similar to the one in IBM’s
POWER 4 [25] for most of our experiments. Stream prefetchers
are commonly used in many processors [25, 9] since they do not
require significant hardware cost and work well for many appli-
cations. Our implementation of the stream prefetcher is best-
performing on average among a variety of prefetchers we eval-
uated for the 55 SPEC CPU 2000/2006 benchmarks. We also
evaluate our mechanisms with other prefetchers in Section 5.3.

2.3 Prefetching: Increasing Potential for DRAM
Bank-Level Parallelism

Hardware prefetchers can increase the potential for DRAM
BLP because they generate multiple memory requests within
a short period of time. With prefetching enabled, demand re-
quests and potential future requests (useful prefetches) are both
in the memory system at the same time. This increase in con-
current requests provides more potential to exploit DRAM BLP
as shown in the following example.

Figure 2(a) shows a code example from libquantum where
a significant number of useful prefetches are generated by the
stream prefetcher. For ease of understanding, we abstract away
many details of the DRAM system (also for Figures 3 and 5).
Figure 2(b) shows the memory accesses generated when the code
is executed both with and without a prefetcher. We assume that
the first two accesses (to cache line addresses A, and A+1) are
mapped to the same DRAM bank and that the two subsequent
accesses (to A+2, and A+3) are mapped to a different bank.

Dem A

Dem A

(d) DRAM service time with prefetcher

Pref A+1

Pref A+2 Pref A+3

Time

Saved cycles

Bank 0

Bank 1

Overlapped service time

prefetching
With

(c) DRAM service time without prefetcher

Bank 0 Dem A+1

Dem A+2 Dem A+3

Time

Bank 1

Overlapped service time

prefetching}

}

Without

Dem x: Demand to address x
Pref x: Prefetch to address x

Dem A, Pref A+1, Pref A+2, Pref A+3

Dem A, Dem A+1, Dem A+2, Dem A+3

With prefetcher (for reg−>node[].state)

Without prefetcher (for reg−>node[].state)

{  

for(i=0; i<reg−>size; i++)

    reg−>node[i].state ^=

    ((MAX_UNSIGNED) 1 << target);
}

(a) Code example

(b) Memory access stream

Figure 2: How prefetching can increase DRAM BLP (libquantum)

Figure 2(c) shows the DRAM service time when the code is
executed without prefetching. Due to the lookahead provided by
the processor’s instruction window, accesses to A+1 and A+2
are slightly overlapped. On the other hand, with the prefetcher
enabled, if the prefetches reach the memory system (DRAM re-
quest buffers) quickly such that the DRAM controller can see
all these requests, the DRAM service time of the prefetches sig-
nificantly overlap as shown in Figure 2(d). Therefore, overall
DRAM service time is significantly improved compared to no
prefetching (shown as “Saved cycles” in the figure).

As shown in the example, a hardware prefetcher can increase
the potential for improving DRAM bank-level parallelism. How-
ever, we found that this potential is NOT always fully exposed
to the DRAM system.

2.4 What Can Limit Prefetching’s Benefits?
If an on-chip memory system design does not take DRAM

BLP into account, it may limit the benefits of prefetching. For
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example, the FIFO buffer (which we call prefetch request buffer)
in the Intel Core design [3] buffers prefetch requests until they
can be sent to the memory system. This FIFO structure will
always send the oldest prefetch request to the memory system
provided that the memory system has room for an additional re-
quest. This design choice can limit the amount of DRAM BLP
exploited when servicing the prefetch requests since the oldest
request in the buffer is always sent first regardless of whether
or not it can be serviced in parallel with other requests. A
more intelligent policy would consider DRAM BLP when send-
ing prefetch requests to the memory system.

Figure 3 illustrates this problem. Figure 3(a) shows the initial
state of the prefetch request buffer, MSHRs (three entries), and
DRAM request buffers (three entries per DRAM bank). There
is only one outstanding demand request (request 1 in the figure).
This request is mapped to bank 0 and just about to be sched-
uled to access DRAM. There are five prefetches in the prefetch
request buffer. The first two prefetches will access DRAM bank
0 and the three subsequent prefetches will access DRAM bank
1. For this example we assume that all the prefetches are useful
and therefore will be required by the program soon.

Prefetch request bufferMSHRs

1.Dem B0
6.Pref B1

5.Pref B1

4.Pref B1

3.Pref B0

2.Pref B0
Older

Dem Bx: Demand to DRAM bank x
Pref Bx: Prefetch to DRAM bank x

DRAM
request
buffers

1

DRAM controller

Time

Time

1. DemB0 2. PrefB0 3. PrefB0

5.Pref B1 6.Pref B1

2.Pref B0 3.Pref B0

4.Pref B1 5.Pref B1

1.Dem B0

6.Pref B1

4.Pref B1

Prefetch issue order to MSHRs: 4, 2, 5, 3, 6

Overlapped service time

Overlapped service time

Bank 1

Bank 0

Bank 1

Bank 0

}

}

Prefetch issue order to MSHRs: 2, 3, 4, 5, 6

BLP−

FIFO

(b) DRAM service time for FIFO prefetch issue

Bank 0 Bank 1

(a) Initial state of memory buffers (c) DRAM service time for DRAM BLP−aware prefetch issue

aware

Saved cycles

Figure 3: FIFO vs. DRAM BLP-aware prefetch issue policy

Figure 3(b) shows the DRAM service timeline when prefetches
are issued into MSHRs in a FIFO fashion. In this case, the
demand request and the two prefetch requests to bank 0 fill up
the MSHRs and therefore the first prefetch to bank 1 will not
be issued until the demand request gets serviced by DRAM and
its MSHR entry is freed. As a result, BLP is low.

A DRAM BLP-aware issue policy would send a prefetch to
bank 1 first, followed by a prefetch to bank 0. In other words,
we can alternately issue prefetches to bank 1 and bank 0. Using
this issue policy, the service of prefetches to bank 1 can start
earlier and overlap with accesses to bank 0 as shown in Fig-
ure 3(c). Therefore, BLP increases and overall DRAM service
time improves (shown as “Saved cycles” in the figure).

This example provides two insights. First, simply increasing
the number of outstanding requests in the memory system does
not necessarily mean that their latencies will overlap. A BLP-
unaware prefetch issue policy (to MSHRs) can severely limit
the BLP exploited by the DRAM controller. Second, a simple
prefetch issue policy that is aware of which bank a memory re-
quest will access can improve DRAM service time by prioritizing
prefetches to different banks over prefetches to the same bank.

So far we assumed that all prefetches are useful. However, if
prefetches are useless, the BLP-aware prefetch issue policy will
not be helpful. It may increase DRAM throughput but only for
useless requests. We address this issue in Section 3.1.

3. MECHANISM
Our mechanism consists of two techniques to increase DRAM

BLP. One is BLP-Aware Prefetch Issue (BAPI) which attempts
to increase BLP for prefetch requests on each core. The other is
BLP-Preserving Multi-core Request Issue (BPMRI) which tries

to minimize the destructive interference in the BLP of each ap-
plication when multiple applications run together on a CMP
system. We describe these two techniques in detail below.

3.1 BLP-Aware Prefetch Issue
BLP-Aware Prefetch Issue (BAPI) tries to send prefetches

from the prefetch request buffer to the MSHRs such that the
number of different DRAM banks the requests access is maxi-
mized rather than sending the prefetches based on FIFO order.
To achieve this, the FIFO prefetch request buffer is modified into
the structures shown in Figure 4. Instead of having one unified
FIFO buffer for buffering new prefetch requests before they enter
MSHRs, BAPI contains multiple FIFOs (one per DRAM bank)
that buffer new prefetch requests. However, to keep the num-
ber of supported new prefetch requests the same as the baseline
and also to minimize the total storage cost dedicated to prefetch
requests, we use multiple index buffers (one per DRAM bank)
and a single, unified prefetch request storage structure. An in-
dex buffer stores indexes (i.e., pointers) into the prefetch request
storage structure. The prefetch request storage structure is a
regular memory array that stores prefetch addresses generated
by the prefetcher. Last, there is a free list that keeps track of
free indexes in the prefetch request storage structure. The index
buffers and free list are all FIFO buffers and all of the buffers
have the same number of entries as the baseline unified FIFO.

Index

Index

Index

Index

Index

Index

Prefetch selected

MSHR allocator

Pref addr

Pref addr

storage
Prefetch request

generated
Pref addr

From prefetcher

Free list

Free index

Index buffer 

BLP−aware prefetch issuer

Index buffer 

MSHR bank
occupancy

Prefetch
accuracy

for bank N−1for bank 0

Index selected

Figure 4: BLP-Aware Prefetch Issue

When the prefetcher
generates a request, the
free list is consulted. If
a free index exists, the
request address is in-
serted into the prefetch
request storage structure
at the index allocated to
it. At the same time,
that index is also inserted
into the appropriate in-
dex buffer corresponding
to the bank the prefetch is mapped to. BAPI selects one index
among the oldest indexes from each index buffer every processor
cycle. Then, the corresponding prefetch request (i.e., prefetch
address) is obtained from the prefetch request storage and sent
to the MSHR allocator. If the MSHR allocator successfully allo-
cates an entry for the prefetch request, the selected index is in-
serted into the free list and also removed from the index buffer.

Prefetch Issue Policy: BAPI, shown in Figure 4, de-
cides which prefetch to send to the MSHR allocator among the
prefetch indexes from each index buffer. It makes its decision
based on the DRAM BLP currently exposed in the memory sys-
tem. To monitor the DRAM BLP of requests, the processor
keeps track of the number of outstanding requests (both de-
mands and prefetches) in the MSHRs separately for each DRAM
bank. To accomplish this, we use a counter for each DRAM
bank, called MSHR bank occupancy counter, which keeps track
of how many requests to that bank are currently present in
the MSHRs. When a demand/prefetch request is allocated an
MSHR entry, its corresponding bank occupancy counter is in-
cremented. When a request is serviced and its MSHR is freed,
the corresponding bank occupancy counter is decremented.

The key idea of BAPI is to select the next prefetch to place into
the MSHRs by examining MSHR bank occupancy counters such
that the selected request improves the potential DRAM BLP. To
do so, one would choose a prefetch request to the bank whose
MSHR bank occupancy counter is the smallest. However, we
found that this policy alone is not enough to expose more BLP
to the DRAM controller for all applications. There are a large
number of applications for which a prefetcher generates many
prefetches to just a single bank but almost no prefetches to the
other banks during a phase of execution (especially for streaming
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applications). For such applications, the issue policy based on
MSHR occupancy alone still ends up filling the MSHRs with
requests to only one bank. This results in two problems. First, it
results in no BLP improvement because the prefetches/demands
to other banks that are soon generated cannot be sent to the
memory system because the MSHRs are already full. Second,
the MSHRs can be filled up with prefetches and thus demands
that need MSHR entries can be delayed.

To prevent this problem, BAPI uses a threshold,
prefetch send threshold to limit the maximum number
of requests to a single bank that can be outstanding in the
MSHRs. This policy reserves room in the MSHRs for requests
to other banks when most requests being generated are biased
to just a few banks. Because many applications exploit row
buffer locality in DRAM banks (since the access latency to the
same row accessed last time is relatively low), having too low
a threshold can hurt performance by preventing many of the
useful prefetches to the same row from being row-hits (because
the row may be closed before the remaining prefetch requests
arrive). On the other hand, having too high a threshold will
result in no BLP improvement as the MSHRs may get filled
with accesses to only a few banks. Therefore, balancing the
threshold is important for high performance. We empirically
found that a value of 27 (when the total number of MSHR
entries is 32) for prefetch send threshold provides a good
trade-off for SPEC benchmarks by exploiting BLP without
constraining the row-buffer locality of requests.

Rule 1 summarizes our prefetch issue policy to MSHRs.

Rule 1 BLP-Aware Prefetch Issue policy (BAPI)

for each issue cycle do

1. Make the oldest prefetch to each bank valid only if the cor-
responding MSHR bank occupancy counter value is less than
prefetch send threshold.
2. Among those valid prefetches, select the request to the bank
whose MSHR bank occupancy counter value is least.

end for

Adaptive thresholding based on prefetch accuracy es-

timation: Prefetching may not work well for all applications or
all phases of a single application. In such cases, performance im-
provement is low (or may even degrade) since useless prefetches
will eventually be serviced, resulting in artificially high BLP and
wasted DRAM bandwidth. A good prefetch issue policy should
prohibit or allow sending prefetches to the memory system based
on how accurate the prefetcher is. Our BLP-aware adaptive
prefetch issue policy does exactly that: it limits the number
of prefetches allowed in the MSHRs by dynamically adjusting
prefetch send threshold based on the run-time accuracy of the
prefetcher. This naturally limits the number of prefetches sent
to memory when prefetch accuracy is low. This improves per-
formance for two main reasons: 1) It reserves more room in the
MSHRs for demands, thereby reducing contention between de-
mand requests and useless prefetches and 2) It effectively stalls
the prefetcher from generating more useless prefetches since the
prefetch request buffer will quickly become full.

To implement this, we need to measure the run-time accuracy
of the prefetcher [23, 12, 5]. Therefore, we add an extra prefetch
bit per L2 cache line and MSHR entry which indicates whether
a line was brought in by a prefetch. Using this bit, each core
keeps track of the number of useful prefetches in a counter, useful
prefetch counter. It also counts the total number of prefetches
in another counter, prefetch sent counter. Each core’s prefetch
accuracy is calculated by division of its two counters and the
result is stored in its prefetch accuracy register. The two coun-
ters are reset over predetermined intervals so that the accuracy
measurement adapts to the phases of an application.

BAPI dynamically adjusts prefetch send threshold for each
core based on the estimated prefetch accuracy. If the estimated

accuracy is very low for an interval, a low prefetch send threshold
value is used which severely limits the number of useless
prefetches sent to each bank. We empirically found that three
levels of prefetch send threshold work well for SPEC workloads.
The threshold values used in our system are shown in Section 4.4.

3.2 BLP Preserving Multi-Core Request Issue
BLP-Aware Prefetch Issue (BAPI) increases the potential of

DRAM BLP for individual applications on each core. In order
for the DRAM controller to exploit this potential, the increased
BLP should be exposed to the DRAM request buffers. How-
ever, in CMP systems, multiple cores share parts of the on-chip
memory system. In our CMP system of Figure 1, the structures
above the L2 miss buffers are shared by all cores. Therefore,
requests from different cores contend for the shared DRAM re-
quest buffers in the DRAM controller. Due to this contention, a
BLP-unaware L2-to-DRAM Controller (L2-to-DC) request issue
policy can destroy the BLP of an individual application.

Figure 5 describes this problem. Figure 5(a) shows the initial
state of the L2 miss buffers of two cores (A and B) and the
DRAM request buffers for two banks. Each core has potential
to benefit from BLP in that one request of each core goes to
bank 0 and the other goes to bank 1. The L2-to-DC request
issuer chooses a single request from the L2 miss buffers to be
placed in the corresponding DRAM request buffer every cycle.2
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(c) Final state of DRAM request buffers & resulting scheduling for BLP−preserving issue

Bank 1

Figure 5: Round-robin vs. BLP-preserving request issue policy

Motivation: Existing systems use a round-robin policy in
the L2-to-DC request issuer. Each cycle, a request from a dif-
ferent core is issued into DRAM request buffers and the cores
are prioritized in a round-robin order. If such a policy is used
as shown in Figure 5(b), core A’s request to bank 0 is sent to
the DRAM request buffers the first cycle and core B’s request to
bank 1 is sent the next cycle. The DRAM controller (based on
the first-come first-served principle used in many existing sys-
tems [20, 24]) would service these requests (A0 and B1) from
different cores concurrently because they are the oldest in each
DRAM bank request buffer. This results in the destruction of
the BLP potential of each core because requests from the same
core are serviced serially instead of in parallel. Hence, the full la-
tency of each request is exposed to each core and therefore each
core stalls for approximately two DRAM bank access latencies.

On the other hand, a BLP-preserving L2-to-DC request issue
policy would send all the requests from one core first as shown
in Figure 5(c). Therefore, the DRAM controller will service core
A’s requests (A0 and A1) concurrently since they are the oldest
in each bank. The requests from core B will also be serviced in
parallel, after A’s requests are complete. In this case, the BLP
potential of each core is realized by the DRAM controller. The
service of core A’s requests finishes much earlier compared to
the round-robin policy because core A’s requests are overlapped.
Core A stalls for approximately a single DRAM bank access

2The L2-to-DC request issuer need not run at the processor clock
frequency since L2 misses are not frequent. In our evaluations,
it runs at one-fourth the processor clock frequency.
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latency instead of two and core B’s stall time does not change
much. Therefore, overall system performance improves because
core A can make faster progress instead of stalling.

This example shows that a round-robin-based L2-to-DC re-
quest issue policy can destroy the BLP within an application
by consecutively placing requests from different cores into the
DRAM request buffers. As such, the DRAM controller may not
be able to exploit the BLP potential of each application, which
ultimately results in performance degradation. To ensure that
each application makes fast progress with its DRAM requests
serviced in parallel instead of serially, the L2-to-DC request is-
suer should preserve the BLP of requests from each core.

Mechanism: BLP Preserving Multi-core Request Issue
(BPMRI) tries to minimize the destructive interference in the
BLP of each application on a CMP system. The basic idea is to
consecutively send many memory requests from one core to the
DRAM request buffers so that the BLP of that core (or applica-
tion) can be preserved in the DRAM request buffers for DRAM
scheduling. If requests from a single core arrive consecutively
(back-to-back) into the DRAM request buffers, they will be ser-
viced concurrently as long as the requests span multiple DRAM
banks, thereby preserving the BLP within the individual appli-
cation. Note that our first technique, BAPI, already increases
the likelihood that outstanding memory requests of a core are
to different banks; hence, BAPI and BPMRI are synergistic.

BPMRI continues issuing memory requests from a single core
into DRAM request buffers until the number of consecutive
requests sent reaches a threshold, request send threshold, or
there are no more requests in that core’s L2 miss buffer. When
this termination condition is met, BPMRI chooses another core
and repeats the process. BPMRI selects the next core based on
how memory intensive each application is. It prioritizes the core
(application) that is the least memory intensive. To do this,
BPMRI monitors the number of requests that come into the L2
miss buffer during predetermined intervals using a counter, L2
miss counter, for each core. At the start of an interval, BPMRI
ranks each core based on the accumulated L2 miss counters
(computed during the previous interval) and records the rank
in a register, rank register, for each core. The core with the low-
est value in its L2 miss counter is ranked the highest. The rank
determined for each core is used to select the next core (upon
meeting a termination condition) during that interval. The L2
miss counters are reset each interval to adapt to the phase be-
havior of applications. Rule 2 summarizes the BPMRI policy.

Rule 2 BLP-Preserving Multi-core Request Issue policy (BPMRI)

A valid request is a request in a core’s L2 miss buffer that has a
free entry in the corresponding bank’s DRAM request buffer.

for each issue cycle do

next core ← previous core
cond1 ← no valid requests in next core’s L2 miss buffer
cond2 ← consecutive requests from next core >= threshold
if cond1 OR cond2 then

next core ← highest ranked core with valid request
end if

issue oldest valid request from next core

end for

We choose to limit the maximum number of consecutive re-
quests sent and also choose to prioritize memory non-intensive
applications since an uncontrolled“one core-first policy”can lead
to the starvation of memory non-intensive applications. If a
memory-intensive application continuously generates many re-
quests, once those requests start to be issued into the DRAM
request buffers, requests from other applications may not get a
chance to enter the DRAM request buffers. Limiting the max-
imum number of requests consecutively sent from a single core
alleviates this problem. In addition, the performance impact
of delaying requests from a memory non-intensive application is

more significant than delaying requests from a memory-intensive
application. Therefore, prioritizing requests from memory non-
intensive applications (ranking) leads to better overall system
performance. Note that this approach is similar to the shortest-
job-first policy in that it prioritizes shorter jobs (memory non-
intensive cores that spend less time in the memory system) from
the point of view of the memory system. The shortest-job-first
policy was shown to lead to optimal system throughput [21].

4. METHODOLOGY

4.1 System Model
We use a cycle accurate x86 CMP simulator for our evalua-

tions. Our simulator faithfully models all microarchitectural de-
tails such as bank conflicts, port contention, and buffer/queuing
delays. The baseline on-chip memory system is modeled as
shown in Figure 1. The baseline configuration of each core is
shown in Table 1 and the shared resource configuration for sin-
gle, 4, and 8-core systems is shown in Table 2. Our simulator
also models a DDR3 DRAM system in detail and Table 3 shows
the DDR3 DRAM timing specifications used for our evaluations.

Out of order; decode/retire up to 4 instructions,
Execution core issue/execute up to 8 microinstructions; 15 stages

256-entry reorder buffer; 32-entry MSHRs
Fetch up to 2 branches; 4K-entry BTB;Front end
64K-entry gshare/PAs hybrid branch predictor
L1 I and D: 32KB, 4-way, 2-cycle, 1 read/write ports;

On-chip caches Unified L2: 512KB (1MB for 1-core), 8-way, 8-bank,
15-cycle, 1 read/write port; 64B line size for all caches
Stream prefetcher: 32 stream entries,

Prefetcher prefetch degree of 4, prefetch distance of 64 [25, 23],
128-entry prefetch request buffer

Table 1: Baseline configuration of each core

800MHz DRAM bus cycle, DDR3 1600MHz [14],
8 to 1 core to DRAM bus frequency ratio;DRAM and bus
8B-wide data bus per channel, BL = 8; 1 rank,
8 banks per channel, 8KB row buffer per bank;
On-chip, open-row, demand-first [12] FR-FCFS [20]DRAM controllers
1, 2, 4 channels for 1, 4, 8-core CMPs;
64-entry (8 × 8 banks) for single-core processorDRAM request
256 and 512-entry (16 × 8 banks per channel)buffers
for 4 and 8-core CMPs

Table 2: Baseline shared resource configuration

Param DRAM cycles Param DRAM cycles Param DRAM cycles
tRP 11 tRCD 11 CL 11

CWL 8 AL 0 tBL 4
tRC 39 tRAS 28 tRTP 4
tBL 4 tCCD 4 tRRD 4

tFAW 24 tWT R 4 tWR 12

Table 3: DRAM timing specifications

4.2 Metrics
To measure CMP system performance, we use Individual

Speedup (IS), Weighted Speedup (WS) [22], and Harmonic mean
of Speedups (HS) [13]. WS corresponds to system throughput
and HS corresponds to the inverse of job turnaround time [6].
In the following equations, N is the number of cores in the CMP
system. IPCalone

i is the IPC when application i runs alone on
one core of the CMP system (other cores are idle). IPC

together
i

is the IPC when application i runs on one core and other appli-
cations run on the other cores of the CMP system.

ISi =
IPC

together
i

IPCalone
i

, WS =

N
X

i

IPC
together
i

IPCalone
i

, HS =
N

N
X

i

IPCalone
i

IP C
together
i

To evaluate how our mechanisms improve the performance of
prefetching, we define prefetch-related metrics. Bus traffic is
the number of cache lines transferred over the bus during the
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No prefetcher Prefetcher No prefetcher Prefetcher

Benchmark Type IPC MPKI BLP IPC MPKI BLP ACC COV Benchmark Type IPC MPKI BLP IPC MPKI BLP ACC COV
171.swim FP00 0.29 27.58 2.60 0.61 10.81 3.58 99.95% 60.79% 178.galgel FP00 1.05 12.62 3.78 0.93 11.53 3.35 23.98% 12.50%
179.art FP00 0.14 130.80 1.25 0.13 106.74 1.60 46.76% 18.40% 183.equake FP00 0.48 19.89 1.29 1.08 0.78 1.89 94.76% 96.06%

189.lucas FP00 0.48 10.61 1.60 0.62 3.01 1.60 72.81% 71.62% 429.mcf INT06 0.12 39.08 1.86 0.13 36.03 1.98 23.00% 11.13%
410.bwaves FP06 0.58 18.71 1.56 1.25 0.08 1.69 99.96% 99.57% 433.milc FP06 0.40 29.33 1.40 0.35 21.13 1.94 20.24% 27.96%
437.leslie3d FP06 0.46 21.14 1.64 0.76 2.06 2.20 88.25% 90.39% 450.soplex FP06 0.36 21.52 1.37 0.64 3.58 1.84 81.83% 83.40%

459.GemsFDTD FP06 0.42 16.29 2.27 0.81 1.95 2.80 90.36% 88.04% 462.libquantum INT06 0.45 13.51 1.01 1.03 0.00 1.19 99.98% 99.99%
470.lbm FP06 0.36 20.16 2.12 0.40 7.46 1.91 92.37% 63.01% 471.omnetpp INT06 0.39 11.47 1.46 0.39 9.89 1.77 11.40% 19.84%

Table 4: Characteristics for 14 memory-intensive SPEC benchmarks with/without stream prefetcher: IPC, MPKI (L2 misses Per 1K Instruc-
tions), DRAM BLP, ACC (prefetch accuracy), and COV (prefetch coverage)

execution of a workload. It comprises the cache lines brought in
from demand, useful prefetch, and useless prefetch requests. We
define Prefetch accuracy (ACC) and coverage (COV) as follows:

ACC =
Number of useful prefetches

Number of prefetches sent
,

COV =
Number of useful prefetches

Number of demand requests + Number of useful prefetches

We define DRAM BLP as the average number of DRAM
banks which are busy (servicing a request) when at least one
bank is busy. To evaluate the effect of DRAM throughput im-
provement on each core, we define instruction window Stall cy-
cles Per Load instruction (SPL) which indicates on average how
much time the processor spends idly waiting for DRAM service.

SPL =
Total number of window stall cycles

Total number of load instructions

4.3 Workloads
We use the SPEC CPU 2000/2006 benchmarks for experimen-

tal evaluation. Each benchmark was compiled using ICC (Intel
C Compiler) or IFORT (Intel Fortran Compiler) with the -O3
option. We ran each benchmark with the reference input set
for 200 million x86 instructions selected by Pinpoints [19] as a
representative portion of each benchmark.

The characteristics of the 14 most memory-intensive SPEC
benchmarks with and without a stream prefetcher are shown
in Table 4. To evaluate our mechanism on CMP systems, we
formed combinations of multiprogrammed workloads from all
the 55 SPEC 2000/2006 benchmarks. We ran 30 and 15 pseudo-
randomly chosen workload combinations3 for our 4 and 8-core
CMP configurations respectively.

4.4 Implementation and Hardware Cost
For evaluations of BAPI, we use prefetch send threshold val-

ues based on the run-time prefetcher accuracy as shown in Ta-
ble 5. We use a value of 10 for request send threshold for
BPMRI. The estimation of prefetch accuracy and rank record-
ing is performed every 100K processor cycles. These values were
empirically determined by simulations.

Prefetch accuracy (%) 0 - 40 40 - 85 85 - 100
prefetch send threshold 1 7 27

Table 5: Dynamic prefetch send threshold values for BAPI

Table 6 shows the storage cost for our implementation of BAPI
and BPMRI. The total storage cost for the 4-core system de-
scribed in Tables 1 and 2 is 94,440 bits (∼11.5KB), which is
equivalent to only 0.6% of the L2 cache data storage. Note
that the additional FIFOs (for index buffers and free lists) and
prefetch bits account for 99% of the total storage. FIFOs are

3We imposed the requirement that each of the multiprogrammed
workloads have at least one memory-intensive application since
these applications are most relevant to our study. We consider
an application to be memory-intensive if its L2 Misses Per 1K
Instructions (MPKI) is greater than 5.

made of regular memory arrays and index registers (pointers to
the head/tail) and therefore the actual design cost/effort is not
expensive. Prefetch bits are already used in many proposals [7,
29, 23, 12] to indicate whether or not a cache line (or request)
was brought in (or made) by the prefetcher.

None of the issuing logic for BAPI or BPMRI is on the critical
path of execution. Therefore, we believe that our mechanism is
easy to implement with low design cost/effort.

Cost for
Structure Cost equation (bits)

4-core

Ncore × Nchannel × NbankIndex buffer
×Nbuffer × log2Nbuffer

57,344

Free list Ncore × Nbuffer × log2Nbuffer 3,584
MSHR bank Ncore × Nchannel × Nbank

occupancy counter ×(log2NMSHR + 1) 384

BAPI Prefetch bit Ncore × (Nline + NMSHR) 32,896
Prefetch sent counter Ncore × 16 64
Prefetch used counter Ncore × 16 64

Prefetch accuracy
register

Ncore × 8 32

L2 miss counter Ncore × 16 64
BPMRI

Rank register Ncore × log2Ncore 8

Total storage cost for the 4-core system in Table 1 and 2 94,440
Total storage cost as a fraction of the L2 cache capacity 0.6%

Table 6: Hardware storage cost of BAPI and BPMRI (Nline, Ncore,
NMSHR, Nbuffer, Nchannel, Nbank: number of L2 cache lines,
cores, MSHR entries, prefetch request buffer entries, DRAM
channels, DRAM banks per channel)

5. EXPERIMENTAL EVALUATION

5.1 Single-Core Results
We evaluate BLP-Aware Prefetch Issue (BAPI) in this section.

Recall that BAPI aims to increase the BLP potential of a single
application whether the application is running alone on a single
core machine or running together with other applications on
a CMP system. To eliminate the effects of inter-application
interference, we first evaluate BAPI on our single core system.

Figures 6 and 7 show IPC, DRAM BLP, stall cycles per
load instruction (SPL), and bus traffic for the 14 most mem-
ory intensive benchmarks when we use 1) no prefetching, 2)
the baseline with stream prefetching (using the FIFO prefetch
issue policy), 3) BAPI with a static threshold (BAPI-static),
and 4) BAPI (with adaptive thresholding; BAPI-dynamic or
simply BAPI). BAPI-static uses a single constant value for
prefetch send threshold which is set to 27 empirically, whereas
BAPI-dynamic varies this threshold based on the accuracy of the
prefetcher (as shown in Table 5). IPC is normalized to prefetch-
ing with the baseline issue policies.

On average, BAPI-dynamic improves performance over the
baseline by 8.5%. This improvement is due to two major fac-
tors: 1) increased DRAM BLP of prefetches in phases where the
prefetcher works well, and 2) limiting the issue of prefetches for
applications or phases where the prefetcher is inaccurate. These
two factors are analyzed in detail below.

Analysis: Both BAPI-static and dynamic improve perfor-
mance for the nine leftmost benchmarks shown in Figure 6(a).
These benchmarks are all prefetch friendly as can be seen in
Figure 7: most of the prefetches are useful (high prefetch accu-
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(a) Performance
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(b) DRAM BLP
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(c) Stall cycles per load instruction

Figure 6: Performance, BLP, and SPL of BAPI on single-core system

racy) and these useful prefetches cover a majority of the total
bus traffic (high prefetch coverage).

BAPI increases performance over baseline prefetching by ex-
posing more DRAM BLP of prefetches to the DRAM controller.
As shown in Figure 6(b), BAPI increases BLP for these nine
applications and therefore improves DRAM throughput. This
leads to significant reductions in stall cycles per load (SPL) as
shown in Figure 6(c). DRAM throughput improvement also
leads to high prefetch coverage. Since MSHR entries are freed
sooner due to better DRAM throughput, more prefetches are
able to enter the memory system which improves prefetcher cov-
erage. This is best illustrated by the increase in useful prefetches
with BAPI for swim and lbm as shown in Figure 7.

Note that for lbm, baseline prefetching with FIFO issue de-
grades DRAM BLP while improving performance by 10.9% com-
pared to no prefetching. Ibm consists of multiple sequential
memory access streams in a loop and therefore it exploits DRAM
BLP even without prefetching. The stream prefetcher is benefi-
cial by bringing in many cache lines earlier than needed; hence,
it improves performance. However, this is done in a BLP inef-
ficient way due to the FIFO prefetch issue policy as described
in Section 2.1. In other words, the FIFO prefetch issue pol-
icy significantly limits the DRAM BLP potential for lbm by
filling up the MSHRs with prefetch requests that span just a
few banks even though there are many younger prefetches to
other free DRAM banks waiting in the prefetch request buffer.
As a result, the prefetcher’s performance improvement is rela-
tively small compared to the other prefetch friendly benchmarks.
BAPI mitigates this problem by prioritizing prefetches to differ-
ent banks, thereby improving DRAM BLP by 15.1% and overall
performance by 27.9% compared to the FIFO issue policy.
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Figure 7: Bus traffic of BAPI on single-core system

Adaptivity to Usefulness of Prefetches: On the other
hand, for the five rightmost benchmarks, BAPI-static does not
improve performance over the baseline. As shown in Figure 7,
the stream prefetcher does not work well for these benchmarks:
it generates a large number of useless prefetches which unneces-
sarily consume on-chip buffer/cache resources and DRAM band-
width. As shown in Figure 6(a), prefetching degrades perfor-
mance for galgel, art, and milc. BAPI-static does not help these
benchmarks either since the useless prefetches are still serviced.

In fact, for galgel, art, and milc, BAPI-static increases the num-
ber of useless prefetches due to increased DRAM throughput as
shown in Figure 7. Thus, BLP-aware prefetch issue alone does
not help performance when prefetch accuracy is low.

BAPI-dynamic alleviates the problem of useless prefetches by
limiting the number of prefetches issued into the MSHRs when
the prefetcher generates a large number of useless prefetches.
As a result, MSHR entries do not quickly fill up with useless
prefetches and thus can be used by demand requests. This
mechanism causes the prefetch request buffer to fill up, thereby
stalling the prefetcher. As shown in Figure 7, BAPI-dynamic
eliminates a large number of useless prefetches and reduces total
bus traffic by 5.2% on average. BAPI-dynamic almost recovers
the performance loss due to useless prefetches for galgel and art,
and improves performance for both milc and omnetpp by 6.6%.

Adaptivity to Phase Behavior: BAPI-dynamic adapts
to the phase behavior of lucas, leslie3d, soplex, GemsFDTD,
and lbm. While most of the time the prefetcher gener-
ates useful requests, in certain phases of these applications it
generates many useless prefetches. BAPI-dynamic improves
performance for these benchmarks by adaptively adjusting
prefetch send threshold which removes many of the useless
prefetches while keeping the useful ones as shown in Figure 7.

We conclude that BAPI significantly improves performance
(by 8.5%) by increasing DRAM BLP (by 11.7%) while also re-
ducing memory bus traffic (by 5.2%) in the single-core system.

5.1.1 Sensitivity to MSHR Size

Thus far we have assumed that each core has a limited number
of MSHR entries (32) because MSHRs are not scalable since they
require associative search [26]. In this section, we study the effect
of our techniques with various MSHR sizes. We varied the total
number of MSHR entries from 8 to 256 and measured the average
IPC (gmean) for the 14 most memory-intensive benchmarks as
shown in Table 7. To isolate the effect of limited MSHRs, we as-
sume that there is an unlimited number of DRAM request buffer
entries for this experiment (this is why the IPC improvement of
BAPI with a 32-entry MSHR is different from that shown in
Section 5.1). The values of prefetch send threshold are empir-
ically determined for both BAPI-static and BAPI separately for
each MSHR size to provide the best performance.

MSHR entries 8 16 32 64 128 256
Storage cost 0.6KB 1.3KB 2.5KB 5.1KB 10.1KB 20.3KB

no-pref IPC 0.36 0.38 0.38 0.38 0.38 0.38
pref (base) IPC 0.43 0.50 0.53 0.56 0.59 0.58
bapi-static IPC 0.47 0.54 0.57 0.59 0.59 0.58

bapi IPC 0.48 0.55 0.59 0.60 0.61 0.61

bapi-static’s IPC ∆ 8.5% 9.1% 7.8% 4.0% 0.0% -0.1%
bapi’s IPC ∆ 10.5% 10.3% 10.0% 6.4% 3.0% 4.3%

Table 7: Average IPC performance with various MSHR sizes

We make three major observations. First, as the number of
MSHR entries increases, the performance of baseline prefetching
increases since more BLP is exposed in DRAM request buffers.
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Figure 8: Case study on the 4-core system (libquantum, lucas, soplex, and GemsFDTD)
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Figure 9: Performance on 4-core CMP

The performance improvement saturates at 128 entries because
the DRAM system itself becomes the performance bottleneck
when a high level of BLP is exposed. In fact, increasing the
MSHR size from 128 to 256 entries slightly degrades performance
because more useless prefetches of some applications (especially,
art and milc) enter the memory system (due to the large number
of MSHR entries) causing interference with demand requests
both in DRAM and in caches.

Second, both BAPI-static and BAPI (with dynamic thresh-
olding) continue to improve performance up to 64-entry MSHRs
since they expose more BLP of prefetches to DRAM request
buffers. Even though BAPI-static’s performance saturates at
64 MSHR entries, BAPI improves performance with 128 and
256-entry MSHRs because it continues to expose higher levels
of useful BLP without filling the memory system with useless
prefetches. Its ability to adaptively expose useful BLP to the
memory system and thereby more efficiently utilize the MSHR
entries makes BAPI best-performing regardless of MSHR size.

Finally, BAPI with a smaller MSHR achieves the benefits
of a significantly larger MSHR without the associated cost of
building one: BAPI with 32-entry MSHRs performs as well as
the baseline with 128-entry MSHRs. Similarly, BAPI with 16-
entry MSHRs performs within 1% of the baseline with 64-entry
MSHRs. Note that BAPI requires very simple extra logic and
FIFO structures (∼2KB storage cost for the single-core system)
whereas increasing the number of MSHR entries is more costly
in terms of both latency and area due to two reasons [26]: 1)
MSHRs require associative search, 2) MSHRs require the stor-
age of cache line data. We conclude that BAPI is a cost-effective
mechanism that efficiently uses MSHRs and therefore provides
higher levels of BLP without the cost of large MSHRs.

5.2 Multi-Core Results
In this section, we evaluate BLP-Aware Prefetch Issue (BAPI)

and BLP-Preserving Multi-core Request Issue (BPMRI) when
employed together in CMP systems. To provide insight into
how our mechanisms work, we begin with a case study.

5.2.1 Case Study on the 4-Core System

We evaluate a workload consisting of four prefetch-friendly
(high prefetch accuracy and coverage) applications to show how
our mechanisms further improve the benefits of prefetching and
thus system performance by improving and preserving DRAM
BLP. Figure 8 shows performance metrics when libquantum, lu-
cas, soplex, and GemsFDTD run together on the 4-core system.

As shown in Figure 8(c), prefetching with the baseline issue
policies (FIFO prefetch issue and round-robin L2-to-DC request
issue) improves WS by 23.5% compared to no prefetching. This
increase is due to the performance improvement of libquantum,
soplex, and GemsFDTD. The performance of lucas actually de-
grades even though baseline prefetching improves performance
for lucas on the single-core system. There are two reasons for
this. First, the baseline round-robin L2-to-DC issue policy de-
stroys the BLP of requests for lucas the most among the four ap-
plications. Since lucas is the least memory intensive (as shown in

Table 4) of the four applications, the issue of lucas’s requests to
DRAM request buffers is relatively infrequent compared to the
others. As a result, 1) lucas’s requests starve behind more inten-
sive applications’ requests in the L2 miss buffer and 2) lucas ’s
BLP is more easily destroyed because requests from other appli-
cations intervene between lucas’s requests when a round-robin
issue policy is used. Second, although amenable to prefetching
in general, the prefetch accuracy of lucas is not as good com-
pared to the other applications, and therefore lucas suffers the
most from useless prefetches (as shown in Section 5.1).

BPMRI alleviates the first problem as shown in Figures 8(a)
and (b). BPMRI ranks lucas’s requests highest because lucas is
the least memory intensive application among the four. When-
ever BPMRI needs to choose the next core to issue requests from,
lucas gets prioritized and its requests are issued consecutively
into the DRAM request buffers. Therefore, lucas’s starvation is
mitigated and its BLP is preserved. BPMRI regains the perfor-
mance lost due to baseline prefetching as shown in Figure 8(a).
BPMRI also significantly improves the performance of the other
three benchmarks by preserving the BLP of each application,
thereby improving WS and HS by 12.0% and 11.3% respectively
compared to the baseline.

BAPI mitigates the second problem of lucas. As discussed in
Section 5.1, BAPI adapts to the phase behavior of lucas: when
the prefetcher generates many useless prefetches, BAPI limits
the issue of prefetches thereby reducing many of the negative
effects of prefetching. On the other hand, BAPI exposes more
BLP of prefetches to the memory system when the prefetcher
is accurate. Therefore, BAPI increases performance for lucas as
well as the other three applications, improving WS and HS by
9.4% and 7.9% compared to baseline prefetching.

When BPMRI and BAPI are combined, the performance of
each application further improves as each application’s SPL is
reduced as shown in Figure 8(b). BAPI increases each appli-
cation’s BLP potential and BPMRI preserves this BLP thereby
allowing the DRAM controller to exploit it. As a result, WS
and HS improve by 19.4% and 17.4% respectively compared to
the baseline BLP-unaware request issue policies.

5.2.2 Overall Performance on the 4-Core System

Figure 9 shows the average system performance and bus traf-
fic for all 30 workloads. When employed alone, BAPI improves
average performance (WS) by 9.1%, BPMRI by 4.6% compared
to the baseline. Combined together, BAPI and BPMRI improve
WS and HS by 11.7% and 13.8% respectively, showing that the
two techniques are complementary. Bus traffic is also reduced
by 5.3%. The performance gain of the two mechanisms are due
to 1) increased DRAM BLP provided by intelligent memory is-
sue policies, 2) reduced waste in DRAM bandwidth and on-chip
cache space due to limiting the number of useless prefetches.

5.2.3 Overall Performance on the 8-Core System

Figure 10 shows the average system performance and bus traf-
fic for the 15 workloads we examined on the 8-core system. BAPI
and BPMRI are still very effective and significantly improve sys-
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tem performance. Combined together, they improve WS and HS
by 10.9% and 13.6%, while reducing bus traffic by 2.9%. In con-
trast to the 4-core system where BAPI alone provided higher
performance than BPMRI alone, BPMRI alone improves per-
formance more than BAPI alone. This is because as the number
of cores increases, destructive interference in each application’s
BLP also increases, and reducing this interference becomes a lot
more important.
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Figure 10: Performance for 8-core CMP

We conclude that the proposed techniques are effective in
terms of both performance and bandwidth-efficiency for a wide
variety of multiprogrammed workloads on both 4-core and 8-core
systems.

5.3 Effect on Other Prefetchers
We evaluate our mechanisms on two different types of

prefetchers: GHB (Global History Buffer)-based CZone Delta
Correlation (C/DC) [18] and PC-based stride [1]. Both the
C/DC and stride prefetchers accurately capture a substantial
number of memory accesses that are mapped to different DRAM
banks, just as the stream prefetcher does. Therefore, BAPI and
BPMRI improve system performance compared to the baseline
(WS: 10.9% and 5.4%, for C/DC and stride respectively). Our
techniques also reduce bus traffic by 4.7% and 2.9% for C/DC
and stride respectively. To conclude, our proposal is effective for
a variety of state-of-the-art prefetching algorithms.
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Figure 11: BAPI and BPMRI with stride and C/DC prefetchers

5.4 Comparison with Parallelism-Aware Batch
DRAM Scheduling

Parallelism-Aware Batch Scheduling (PAR-BS) [15] aims to
improve performance and fairness in DRAM request scheduling.
It tries to service memory requests in the DRAM request buffers
from the same core concurrently so that the DRAM BLP of each
application is preserved in DRAM scheduling. Therefore the
amount of BLP exploited by PAR-BS is limited by the number
of requests to different banks in DRAM request buffers.

BAPI complements PAR-BS: it increases the number of
prefetches to different banks and PAR-BS can exploit this in-
creased level of BLP to improve performance further. BPMRI
also complements PAR-BS even though their benefits partially
overlap. If an application’s requests to different banks are not
all in the DRAM request buffers, PAR-BS cannot exploit the
full BLP of each application. BPMRI, by consecutively issuing

an application’s requests from the L2 miss buffer to the DRAM
request buffers, increases the probability that each application’s
requests to different banks are all in the DRAM request buffers.
Hence, BPMRI increases the potential of each application’s BLP
that can be exploited by PAR-BS.

In addition, by consecutively issuing requests from a core
back-to-back into the DRAM request buffers, BPMRI enables
any DRAM controller to service those requests in parallel.
Hence, a first-come-first-serve based DRAM controller combined
with BPMRI can preserve each application’s BLP without re-
quiring the DRAM controller to be BLP-aware.
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Figure 12: Comparison with PAR-BS

To verify this, we im-
plemented PAR-BS tuned
for best performance for
our 4-core workloads. Fig-
ure 12 shows the per-
formance of 1) baseline
prefetching with the FR-
FCFS DRAM scheduling
policy which exploits row-
buffer locality [20], 2)
PAR-BS, 3) BPMRI, 4)
PAR-BS with BPMRI, 5)
PAR-BS with BAPI, 6)
PAR-BS with BAPI and BPMRI, and 7) BAPI and BPMRI.

BPMRI’s performance gain is equivalent to that of PAR-BS
(with the round-robin L2-to-DC issue policy) since it successfully
preserves the BLP of each application and makes the simple FR-
FCFS DRAM scheduling policy behave similarly to PAR-BS.
When combined with PAR-BS, BPMRI improves WS and HS
by an additional 1.9% and 1.4% by better preserving the BLP
of requests from each application. BAPI along with PAR-BS
significantly improves the performance of PAR-BS (WS and HS
improve by 7.1% and 7.3% respectively) because BAPI exposes
more BLP potential of each application in the DRAM requests
buffers for PAR-BS to exploit. To conclude, our mechanisms 1)
complement PAR-BS, and 2) enable parallelism-unaware DRAM
controllers to achieve similar performance as PAR-BS.

5.5 Comparison with Prefetch-Aware DRAM
Controllers

Prefetch-Aware DRAM Controllers (PADC) [12] was proposed
to maximize DRAM row buffer hits for useful requests (de-
mands and useful prefetches). PADC also delays and drops use-
less prefetches to reduce waste in on-chip buffer resources and
DRAM bandwidth. PADC aims to minimize DRAM latency of
useful requests by prioritizing useful row-hit requests over others
to the same bank. In other words, the main goal of PADC is to
exploit row buffer locality in each bank in a useful manner. Our
goal is orthogonal: BAPI and BPMRI aim to maximize DRAM
bank-level parallelism so that more requests from an application
can be serviced in different DRAM banks in parallel.
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Figure 13: Comparison with PADC

Figure 13 shows the per-
formance of PADC alone
and PADC combined with
our mechanisms for the 4-
core workloads. PADC sig-
nificantly improves WS and
HS by 14.1% and 16.3%
respectively compared to
the baseline. When com-
bined with PADC, BAPI
and BPMRI improve WS
and HS by 20.6% and 22.5%.
We conclude that our mech-
anisms complement PADC and thus significantly improve sys-
tem performance.
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6. RELATED WORK

6.1 DRAM Access Scheduling
A number of DRAM scheduling policies [20, 28, 17, 15, 12]

have been proposed. Although these proposals have the similar
goal of improving performance by increasing DRAM through-
put, they do so by improving the DRAM controller’s scheduling
policy. Therefore, their scope is limited by the number and com-
position of requests in the DRAM request buffers. If the requests
in the DRAM request buffers are not to different banks, BLP will
be low regardless of the DRAM scheduling policy. Our mecha-
nism solves this problem by issuing requests into on-chip buffers
in a BLP-aware manner. It exposes more BLP to the DRAM
scheduler, enabling it to provide higher DRAM throughput. As
such, our techniques are orthogonal to DRAM scheduling poli-
cies. As shown in Sections 5.4 and 5.5, our mechanisms comple-
ment parallelism-aware and prefetch-aware DRAM scheduling.

6.2 Memory-Level Parallelism
Many proposals have explored increasing Memory-Level Par-

allelism (MLP) [8, 16, 27, 2, 26]. These works define MLP as
the average number of outstanding memory requests when there
is at least one outstanding request to memory. They implic-
itly assume that the DRAM latency of outstanding requests to
memory will overlap. In contrast, we show that simply having a
large number of outstanding requests does not necessarily mean
that their latencies will overlap. In order to overlap, the requests
should span multiple banks and be in the DRAM controller con-
currently, which our mechanism enables. Hence, our proposal is
orthogonal to and improves the effectiveness of techniques that
improve MLP. As we quantitatively showed in this paper, our
proposal provides significant benefits over two MLP-improving
techniques, prefetching and out-of-order execution, by enabling
them to better exploit BLP.

6.3 Prefetch Handling
Adaptive prefetch handling techniques [10, 23, 12, 5] aim to

reduce the interference between prefetch and demand requests in
the memory system. In contrast, our work focuses on increasing
and preserving the DRAM BLP of useful requests (demands and
useful prefetches) and therefore is orthogonal to prefetch han-
dling mechanisms. As we discuss in Section 5.5, our mechanisms
are complementary to prefetch-aware DRAM controllers [12]
which employ an adaptive prefetch handling technique that is
reported to outperform feedback-directed prefetching [23].

7. CONCLUSION
We showed that uncontrolled memory request issue policies to

resource-limited on-chip buffers limit the level of DRAM bank-
level parallelism (BLP) that can be exploited by the DRAM
controller, thereby limiting system performance. To overcome
this limitation, we proposed new cost-effective on-chip memory
request issue mechanisms. Our evaluations show that the mech-
anisms 1) work synergistically and significantly improve both
system performance and bandwidth-efficiency, 2) work well with
various types of prefetchers, and 3) complement various DRAM
scheduling policies. We conclude that our proposed mechanisms
improve system performance and bandwidth efficiency for both
single-core and multi-core systems and can be an enabler for
achieving and enhancing the benefits of a multitude of tech-
niques that are designed to exploit memory-level parallelism.
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