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memory requests of other applications

e A memory system is fair if slowdowns of

same-priority applications are equal
(MICRO ‘06, MICRO ‘07, ISCA '08)

Shared
Ti

e Slowdown of application i = Mone

Ti

Max{Slowdown i} over all applications i

e Unfairness =

Min{Slowdown i} over all applications i
(MICRO '07)
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e Large disparities in slowdowns are unacceptable
* Low system performance
* Vulnerability to denial of service attacks
* Difficult for system software to enforce priorities
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Prior Approaches

e Primarily manage inter-application interference in
only one particular resource

e Shared Cache, Memory Controller, Interconnect, etc.

e Combining techniques for the different resources can
result in negative interaction

e Approaches that coordinate interaction among
techniques for different resources require
complex implementations

Our Goal: Enable fair sharing of
the entire memory system by dynamically detecting
and controlling interference in a coordinated manner

. J

6
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Our Approach

e Manage inter-application interference at
the cores, not at the shared resources

e Dynamically estimate unfairness in the
memory system

e If unfairness > system-software-specified
target then
throttle down core causing unfairness &
throttle up core that was unfairly treated
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e Runtime Unfairness Evaluation

e Dynamically estimates the unfairness in the
memory system

e Dynamic Request Throttling

e Adjusts how aggressively each core makes
requests to the shared resources
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Min{Slowdown i} over all applications i
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Min{Slowdown i} over all applications i

Shared
Ti

e Slowdown of application / =

Al . .
e How can Ti one be estimated in shared mode?

E
o Ti s the number of extra cycles it takes

application 7 to execute due to interference

Alone Shared I_Excess

o Tj = Ti - Ti
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Tracking Inter-Core Interference

Three interference sources:
1. Shared Cache
2. DRAM bus and bank

-3. DRAM row-buffers
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Tracking Inter-Core Interference

---------------------------

E'FST hardware
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Core# 0 | 2 3

Shared Cache

. Interference per core
bit vector

---------------------------
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!
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Tracking Inter-Core Interference

---------------------------

E'FST hardware
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Tracking DRAM Row-Buffer

Interference

Core 0

Core |
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Tracking DRAM Row-Buffer
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Tracking DRAM Row-Buffer
Interference

Core 0 Core |
Row A
Row A
Row B | :queue of requests to bank 2
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Tracking DRAM Row-Buffer
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Tracking Inter-Core Interference
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Fairness via Source Throttling (FST)

F T e
Unfairness Estimate

. | Runtime Unfairness App-slowest ) Dynamic
Evaluation App-interfering ) Request Throttling
1- Estimating system unfairness . . .

>- Find app. with the highest g(Unfalrness Estimate >Target)
?J,l-ml/:\,iﬂ(c)l\/\;n (Alzapzlionwenigst 1-Throttle down App-interfering

. PP 9 2-Throttle up App-slowest
interference for App-slowest v

(App-interfering)
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Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core
bit vector

Core#0 | 2 3
ololo]o

I
0
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Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)
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Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core
bit vector

Interfered with core

Core#0 | 2 3
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Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
bit vector Counters per core

Interfered with core
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Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)
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bit vector Counters per core
Interfered with core
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L 3lofojof- cne3,0 [ cne3t || cne32
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Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)
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Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
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Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
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Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
bit vector Counters per core
Interfered with core
—_—— App-slowest = 2
Core#0(1)2 3 —
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| 3[ofo0]0]- with cnt3,0 || cne3l |[\Cnt32
N
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determines App-interfering
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Fairness via Source Throttling (FST)

LS,
Unfairness Estimate

. | Runtime Unfairness App-slowest ) Dynamic

i Evaluation App-interfering | Request Throttling
1- Estimating system unfairness . . .

>- Find app. with the highest g(Unfalrness Estimate >Target)
gI_O\I/:vi(r:I]EV\;n (Alzapt;i,liﬂwenitgst 1-Throttle down App-interfering
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Dynamic Request Throttling
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Dynamic Request Throttling

e Goal: Adjust how aggressively each core
makes requests to the shared resources
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Dynamic Request Throttling

e Goal: Adjust how aggressively each core
makes requests to the shared resources

e Mechanisms:
e Miss Status Holding Register (MSHR) quota

e Controls the number of concurrent requests
accessing shared resources from each application
e Request injection frequency

e Controls how often memory requests are issued
to the last level cache from the MSHRs
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Dynamic Request Throttling

e Throttling level assigned to each core determines
both MSHR quota and request injection rate
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Dynamic Request Throttling

e Throttling level assigned to each core determines
both MSHR quota and request injection rate

Throttling level MSHR quota Request Injection
Rate
100% |28 Every cycle

50% 64 Every other cycle
25% 32 Once every 4 cycles
0% |2 Once every |0 cycles
5% 6 Once every 20 cycles
4% 5 Once every 25 cycles
. 3% 3 Once every 30 cycles
MSHRs: 128 2% 2 Once every 50 cycles

21
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Dynamic Request Throttling

e Throttling level assigned to each core determines
both MSHR quota and request injection rate

Throttling level MSHR quota Request Injection
Rate
100% |28 Every cycle

50% 64 Every other cycle

~ 25% 32 Once every 4 cycles
< 10% 12 Once every 10 cycles [—

5% 6 Once every 20 cycles
4% 5 Once every 25 cycles
. 3% 3 Once every 30 cycles
MSHRs: 128 2% 2 Once every 50 cycles
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FST at Work
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>

-------------------------------------------------------------------------------------------------------------

Runtime Unfairness
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App-interfering
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--------------------------------------------------------------------------------------------------------------
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Throttling Levels
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FST at Work
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FST at Work
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Slowdown
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-------------------------------------------------------------------------------------------------------------

Runtime Unfairness
Evaluation

Unfairness Estimate 2.5

>

App-slowest

System software

App-interfering Core |

..............................................................................................................

: Throttle up

Core 2)' fairness goal: | .4

Dynamic

Throttle down:

Request Throttling

Core 0 Covre 1| Core 2| Core 3

Interval i 50% | 100% 0% 100%
Interval i + | 25% | 100% % |00%

< Intervali+2  25% | (50% 100%

—

Throttling Levels
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System Software Support

23




System Software Support

e Different fairness objectives can be
configured by system software

23




System Software Support

e Different fairness objectives can be
configured by system software
e Estimated Unfairness > Target Unfairness

23




System Software Support

e Different fairness objectives can be
configured by system software

e Estimated Unfairness > Target Unfairness
e Estimated Max Slowdown > Target Max Slowdown

23

Wednesday, March 17, 2010



System Software Support

e Different fairness objectives can be
configured by system software

e Estimated Unfairness > Target Unfairness
e Estimated Max Slowdown > Target Max Slowdown
e Estimated Slowdown(i) > Target Slowdown(i)

23

Wednesday, March 17, 2010



System Software Support

e Different fairness objectives can be
configured by system software

e Estimated Unfairness > Target Unfairness
e Estimated Max Slowdown > Target Max Slowdown
e Estimated Slowdown(i) > Target Slowdown(i)

e Support for thread priorities

23

Wednesday, March 17, 2010



System Software Support

e Different fairness objectives can be
configured by system software

e Estimated Unfairness > Target Unfairness
e Estimated Max Slowdown > Target Max Slowdown
e Estimated Slowdown(i) > Target Slowdown(i)

e Support for thread priorities

e Weighted Slowdown(i) =
Estimated Slowdown(i) x Weight(i)
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Hardware Cost

e Total storage cost required
for 4 cores is ~ 12KB

e FST does not require any structures or
logic that are on the processor’s critical
path

24




Outline

e Background and Problem

e Motivation for Source Throttling

e Fairness via Source Throttling (FST)
e Evaluation

e Conclusion
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Evaluation Methodology

e X86 cycle accurate simulator

e Baseline processor configuration

e Per-core
e 4-wide issue, out-of-order, 256 entry ROB

e Shared (4-core system)
e 128 MSHRSs
e 2 MB, 16-way L2 cache

e Main Memory
e DDR3 1333 MHz
e Latency of 15ns per command (tRP, tRCD, CL)
e 8B wide core to memory bus

26
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System Unfairness Results

B No Fairness
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System Unfairness Results
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] Parallelism-Aware Batch Scheduling +VPC
Fairness via Source Throttling (FST)

B Fair Cache Capacity (VPC)

System Performance Results

N 9 & ®© T O
_ - O O

SSQUJIE{ ON| O3 PIZI[BWION] ‘J49d WISAS
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System Performance Results

o B Fair Cache Capacity (VPC)

] Parallelism-Aware Batch Scheduling +VPC

Fairness via Source Throttling (FST)
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System Performance Results

o B Fair Cache Capacity (VPC)
] Parallelism-Aware Batch Scheduling +VPC
Fairness via Source Throttling (FST)
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C

onclusion

Fairness via Source Throttling (FST)
is @ new fair and high-performance
shared resource management approach for CMPs

Dynamically monitors unfairness and throttles down
sources of interfering memory requests

Eliminates the need for and complexity of
multiple per-resource fairness techniques

Improves both system fairness and performance

Incorporates thread weights and enables
different fairness objectives

29
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Fairness via Source Throttling:

A configurable and high-performance fairness
substrate for multi-core memory systems

Eiman Ebrahimi”
Chang Joo Leex
Onur Mutlu?
Yale N. Patt™

* HPS Research Group T Computer Architecture Laboratory
The University of Texas at Austin Carnegie Mellon University
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Backups

31
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Other Source-Based Techniques

B Herdrich et. al. ICS ‘09
Rate-based QoS techniques for cache/
memory in CMP platforms

B Zhang et. al., USENIX ‘09
Hardware execution throttling for
multi-core resource management

W Jahre and Natvig, Computing Frontiers ‘09
A light-weight fairness mechanism for chip
multiprocessor memory systems

32




Interference-Aware
Thread Scheduling

B Zhuravlev et. al. ASPLOS 10
Addressing Shared Resource Contention in
Multicore Processors Via Scheduling

B Schedules applications which interfere less with
each other as best as possible
B Advantages of FST:

'he mix of apps may force co-scheduling of intensive
applications

FST can make scheduling decisions easier for system
software

B Advantages of using thread scheduling:
Does not require hardware support
B Approaches are complementary

33
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Tracking Cache Interference

Core |’s pollution filter

Pollution: :

Shared Cache bit ECore id Interfered with core
Core# 0 | 2 3
O[-10(0]0
InterferingﬂI 01-101]0
Hash s core |2(0|0|-|0
Function 3(010]0] -
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Tracking Cache Interference
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Tracking DRAM Bank Interference

Interfered with core

— —

Core# 0 | 2 3
| O0l-[0]0|0O
Core 2| |
i Interfering 110-10]0
Core 2| | | Core | 4
i § g core 2(0]10]-10
Core 2| | ' |Core 2| || Core 2
emory Core || i [Core || :|Core 0 ; |Core 2
Controller | |
Core 0 Core | Core 3 Core 3
BankO ' Bank | ' Bank2 ' Bank3

Snapshot of memory requests

35

Wednesday, March 17, 2010



Tracking DRAM Bank Interference

Interfered with core

— —

Core# 0 | 2 3
/\ 0[-|ojo]fo
Core 2|\
/ \ i Interfering 110]-10]0
Core 2| | | Core | 4
g g g core 2/0(0]-10
Core 2| | ' |Core 2| || Core 2
emory Core || ‘Core || i|Core 0| |Core 2
Controller | |
Core 0 Core | Core 3 Core 3
Bank 0/’ Bank | ' Bank2 ' Bank3
\_/

Snapshot of memory requests

35

Wednesday, March 17, 2010



Tracking DRAM Bank Interference

r~

Interfered with core

Core# 0 | 2 3
/\ 0[-Joloo
Core 2|\
/ \ i Ineringlo'oo
Core 2| | | Core | 4
é g g core 2(0({0]-10
Core 2| | | Core 2|i|Co
M f = 3/]0({0]0] -
cmory Core || ‘Core || i|Core 07 |Core 2
Controller | //
Core 0 Core | Core 3 Core 3
Bank 0/ Bank | ' Bank2 ' Bank3
N\

Snapshot of memory requests

35

Wednesday, March 17, 2010



Tracking DRAM Bank Interference

Interfered with core

— —

r~

/\ Core# 0| 2 3

5 ’ = 0| -1[o]o
Core 2|\ =
/Corez\ 5co.~e|W' 0|-]0]0
| — core 20010l -10
CoreZE E,Gcre/fgCoreZ 3o Tolo
Memory Core | Core 0 Core 2
Controller ' : 5

CoreO: Core || | |Core 3 Core 3
Bank 0/ Bank | ' Bank2 ' Bank3

NS

Snapshot of memory requests

35

Wednesday, March 17, 2010



Tracking DRAM Bank Interference

Interfered with core

r~

Core# 0 | 2 3
/\ o -[1]i]o
Core 2|\ e i
/ — | 5 __Interfering] | | 0] - |00
Core 2| i | Coret *
2 | = core 2(0(0]-1]0
Core 2H ' |Core 2| || Core 2
M 5 g *3|10]10([0| -
emory Core || ‘Core || i|Core 0| |Core 2
Controller = |
Core 0 Core | Core 3 Core 3
Bank 0/ Bank | ' Bank2 ' Bank3
N/

Snapshot of memory requests

35

Wednesday, March 17, 2010



Tracking DRAM Bank Interference

Interfered with core

— —

Core# 0 | 2 3
5 of-Ti]i]o
Core 2| |
i Interfering | 1 | O -0 [0
Core 2| | | Core | 4
i § g core 2(0]10]-10
Core 2| | '|Core 2| |Core 2
M 5 i 310100 -
emory Core || i [Core || :|Core 0 ; |Core 2
Controller | |
Core 0 Core | Core 3 Core 3
BankO ' Bank | ' Bank2 ' Bank3

Snapshot of memory requests

35

Wednesday, March 17, 2010



Tracking DRAM Bank Interference

Interfered with core

— —

Core# 0 | 2 3
5 of-Ti]i]o
Core 2| :
i i Interfering 110]-10]0
Core 2| | | Core | 4
é g g core 2(0]10]-10
Core 2| |Core 2| || Core 2 ST
Memory Core || i | Core | Core 0 Core 2
Controller | ’
Core 0 Core | Core 3 Core 3
BankO ' Bank | ' Bank2 ' Bank3

Snapshot of memory requests

35

Wednesday, March 17, 2010



Results For Alternative
Svystem Unfairness Metric

) | B Fair Cache Capacity (VPC)
] Parallelism-Aware Batch Scheduling +VPC
Fairness via Source Throttling (FST)
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O
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Deviation of Variation Normalized to No Fairness
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Results of Different
Throttling Mechanisms
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Normalized Performance
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Results With 2 Memory Channels

] Parallelism-Aware Batch Scheduling + VPC

B FST
.10 R
.08 0.
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Support For Constraining
Max Slowdown
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Support For Thread Priorities
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Case Study
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