Fairness via Source Throttling:

A configurable and high-performance fairness
substrate for multi-core memory systems

Eiman Ebrahimi”
Chang Joo Leex
Onur Mutlu?
Yale N. Patt™

* HPS Research Group T Computer Architecture Laboratory
The University of Texas at Austin Carnegie Mellon University

Wednesday, March 17, 2010

Background and Problem

Core 0 Core | Core 2 Core N

Background and Problem

Off-chip

Core 0

Core |

!

Core 2

!

Core N

3

Shared Cache

Memory Controller

|

|

4
DRAM DRAM DRAM
Bank O Bank | Bank 2

DRAM
Bank K

Chip Boundary

Wednesday, March 17, 2010

Background and Problem

Off-chip

Core 0

{

Core |

!

Core 2

!

Core N

3

~
Shared Cache

Memory Controller

|

4
DRAM DRAM DRAM
Bank O Bank | Bank 2

DRAM
Bank K

Chip Boundary

Wednesday, March 17, 2010

Background and Problem

On-chip

Core 0

Core |

!

Core 2

!

Core N

3

Shared Cache

Off-chip

|

|

DRAM
Bank O

DRAM
Bank |

DRAM
Bank 2

DRAM
Bank K

Chip Boundary

Wednesday, March 17, 2010

Background and Problem

On-chip
Off-chip

Core 0

Core | Core 2

Core N

Shared Cache

Memory Controller

R

|

|

4
DRAM DRAM DRAM
Bank O Bank | Bank 2

DRAM
Bank K

Chip Boundary

Wednesday, March 17, 2010

Background and Problem

Core 0

Core | Core 2

Core N

3

! !
!

Shared Cache

Memory Controller

Bank O

DRAM

DRAM

Bank | Bank 2

DRAM
Bank K

Chip Boundary

Wednesday, March 17, 2010

Background and Problem

Off-chip

Core 0

Core |

Core 2

Core N

<>

<

A
2

>

I

Shared Cache

Memory Controller

DRAM
Bank O

DRAM
Bank |

DRAM
Bank 2

DRAM
Bank K

Shared Memory
Resources

- Chip Boundary

Wednesday, March 17, 2010

Background and Problem

e Applications slow down due to interference from
memory requests of other applications

Wednesday, March 17, 2010

Background and Problem

e Applications slow down due to interference from
memory requests of other applications

e A memory system is fair if slowdowns of

same-priority applications are equal
(MICRO ‘06, MICRO ‘07, ISCA '08)

Wednesday, March 17, 2010

Background and Problem

e Applications slow down due to interference from
memory requests of other applications

e A memory system is fair if slowdowns of

same-priority applications are equal
(MICRO ‘06, MICRO ‘07, ISCA '08)

Shared
Ti

e Slowdown of application i = Mone

Ti

Wednesday, March 17, 2010

Background and Problem

e Applications slow down due to interference from
memory requests of other applications

e A memory system is fair if slowdowns of

same-priority applications are equal
(MICRO ‘06, MICRO ‘07, ISCA '08)

Shared
Ti

e Slowdown of application i = Mone

Ti

Max{Slowdown i} over all applications i

e Unfairness =

Min{Slowdown i} over all applications i
(MICRO '07)

Wednesday, March 17, 2010

Background and Problem

Background and Problem

e Magnitude of each application’s slowdown depends on
concurrently running applications” memory behavior

Wednesday, March 17, 2010

Background and Problem

e Magnitude of each application’s slowdown depends on
concurrently running applications” memory behavior

5

Slowdown
OO - NN W N

Zeus art

Wednesday, March 17, 2010

Background and Problem

e Magnitude of each application’s slowdown depends on
concurrently running applications” memory behavior

5

Slowdown

OO - NN W N
Slowdown
O — NN W N U108 N

Zeus art Ibm omnet apsi vortex

Wednesday, March 17, 2010

Background and Problem

e Magnitude of each application’s slowdown depends on
concurrently running applications” memory behavior

5 7/
c 4 c 6
3 2
o 3 O 4
B, B,
2 2 3 3
e, 2 2
v | - “

0 0

Zeus art Ibm omnet apsi vortex

e Large disparities in slowdowns are unacceptable

Wednesday, March 17, 2010

Background and Problem

e Magnitude of each application’s slowdown depends on
concurrently running applications” memory behavior

5 7/
c 4 c 6
3 2
o 3 O 4
B, B,
2 2 3 3
e, 2 2
v | - “

0 0

Zeus art Ibm omnet apsi vortex

e Large disparities in slowdowns are unacceptable
* Low system performance

Wednesday, March 17, 2010

Background and Problem

e Magnitude of each application’s slowdown depends on
concurrently running applications” memory behavior

5 7/
c 4 c 6
3 2
o 3 O 4
B, B,
2 2 3 3
e, 2 2
v | - “

0 0

Zeus art Ibm omnet apsi vortex

e Large disparities in slowdowns are unacceptable
* Low system performance
* Vulnerability to denial of service attacks

Wednesday, March 17, 2010

Background and Problem

e Magnitude of each application’s slowdown depends on
concurrently running applications” memory behavior

5 7/
c 4 c 6
3 2
o 3 O 4
B, B,
2 2 3 3
e, 2
o “

0 0

Zeus art Ibm omnet apsi vortex

e Large disparities in slowdowns are unacceptable
* Low system performance
* Vulnerability to denial of service attacks
* Difficult for system software to enforce priorities

Wednesday, March 17, 2010

Outline

e Background and Problem

e Motivation for Source Throttling

e Fairness via Source Throttling (FST)
e Evaluation

e Conclusion

Prior Approaches

Prior Approaches

e Primarily manage inter-application interference in
only one particular resource

e Shared Cache, Memory Controller, Interconnect, etc.

Wednesday, March 17, 2010

Prior Approaches

e Primarily manage inter-application interference in
only one particular resource

e Shared Cache, Memory Controller, Interconnect, etc.

e Combining techniques for the different resources can
result in negative interaction

Wednesday, March 17, 2010

Prior Approaches

e Primarily manage inter-application interference in
only one particular resource

e Shared Cache, Memory Controller, Interconnect, etc.

e Combining techniques for the different resources can
result in negative interaction

e Approaches that coordinate interaction among
techniques for different resources require
complex implementations

Wednesday, March 17, 2010

Prior Approaches

e Primarily manage inter-application interference in
only one particular resource

e Shared Cache, Memory Controller, Interconnect, etc.

e Combining techniques for the different resources can
result in negative interaction

e Approaches that coordinate interaction among
techniques for different resources require
complex implementations

Our Goal: Enable fair sharing of
the entire memory system by dynamically detecting
and controlling interference in a coordinated manner

. J

6

Wednesday, March 17, 2010

Our Approach

Our Approach

e Manage inter-application interference at
the cores, not at the shared resources

Wednesday, March 17, 2010

Our Approach

e Manage inter-application interference at
the cores, not at the shared resources

e Dynamically estimate unfairness in the
memory system

Wednesday, March 17, 2010

Our Approach

e Manage inter-application interference at
the cores, not at the shared resources

e Dynamically estimate unfairness in the
memory system

e If unfairness > system-software-specified
target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

Wednesday, March 17, 2010

Wednesday, March 17, 2010

- N
Unmanaged

Interference
_ Y,

e B
Fair Source

Throttling
. J

Wednesday, March 17, 2010

queue of requests to
shared resources

4 hE |
Unmanaged | A:
Interference | : - B:

N J '

Oldest ->
Shared Memory
Resources

4 h A:

Fair Source
Throttling B:
_)

Wednesday, March 17, 2010

queue of requests to

shared resources

4 A :

Unmanaged EA: Compute

Interference | : ' B:
N | : Compute

Oldest »
Shared Memory
Resources

g A A:

Fair Source

Throttling B:
- J

Wednesday, March 17, 2010

queue of requests to (Request Generation Order:

shared resources
A
. B:

4 N

Unmanaged
Interference

_)

Oldest ->

Resources
-~ ™ A
Fair Source
Throttling B:
- Y,

=

Shared Memory

>

Compute

Compute

Al,A2,A3,A4,B|

Wednesday, March 17, 2010

queue of requests to Request Generation Order:

shared resources Al,A2,A3 A4, Bl
4 N ! :
Unmanaged Bl ;A: Compute

Interference | : At | .

g J A3 Compute
| A2
Oldest -5 Al

=

Shared Memory

Resources
-~ B A
Fair Source
Throttling B:
N Y,

Wednesday, March 17, 2010

queue of requests to

shared resources

4 g :
Unmanaged B! A:
Interference | At | .

- Vil A3 |

| A2
Oldest -5 Al
Shared Memory
Resources

4 A A:

Fair Source
Throttling B:
_ 4

Request Generation Order:

Al,A2,A3,A4,BI

Compute

Stall on Al

Stall on A2

Stall on A3

Stall on A4

Compute

Wednesday, March 17, 2010

queue of requests to

shared resources

e N
Unmanaged Bl | A
Interference A4 B:
N | A3
A2
Oldest -» Al
Shared Memory
Resources
- D A
Fair Source
Throttling B:
N J

Request Generation Order:

Al,A2,A3,A4,BI

Compute

Stall on Al

Stall on A2

Stall on A3

Stall on A4

Compute

Core A’s stall time

Wednesday, March 17, 2010

queue of requests to

shared resources

e N
Unmanaged Bl | A
Interference A4 B:
N | A3
A2
Oldest -» Al
Shared Memory
Resources
- D A
Fair Source
Throttling B:
N J

Request Generation Order:

Al,A2,A3,A4,BlI
Compute [Stall on Al [Stall on A2|Stall on A3 |Stall on A4
Compute Stall waiting for shared resources

Core A’s stall time

Wednesday, March 17, 2010

queue of requests to

shared resources

- B
Unmanaged Bl | A
Interference A4 B:
N il A3
A2
Oldest -» Al
Shared Memory
Resources
- p A
Fair Source
Throttling B:
N J

Request Generation Order:

Al,A2,A3,A4,BlI
Compute [Stall on Al [Stall on A2|Stall on A3 |Stall on A4
Compute Stall waiting for shared resources Stall on Bl

Core A’s stall time

Wednesday, March 17, 2010

queue of requests to

shared resources

- B
Unmanaged Bl | A
Interference A4 B:
N il A3
A2
Oldest -» Al
Shared Memory
Resources
- p A
Fair Source
Throttling B:
N J

Request Generation Order:

Al,A2,A3,A4,BlI
Compute [Stall on Al [Stall on A2|Stall on A3 |Stall on A4
Compute Stall waiting for shared resources Stall on Bl

Core A’s stall time

Core B’s stall time

Wednesday, March 17, 2010

queue of requests to

shared resources

e N
Unmanaged Bl | A
Interference A4 B:
N | A3
A2
Oldest -» Al
Shared Memory
Resources
- D A
Fair Source
Throttling B:
N J

Request Generation Order:

Al,A2,A3,A4,BlI
Compute [Stall on Al [Stall on A2|Stall on A3 |Stall on A4
Compute Stall waiting for shared resources Stall on Bl

Core A’s stall time

Core B’s stall time

Intensive application A generates many requests and
causes long stall times for less intensive application B

Wednesday, March 17, 2010

queue of requests to

Request Generation Order:

shared resources Al,A2,A3,A4,BI
-~ ™
Unmanaged i‘I‘ A:| Compute |Stall on Al [Stall on A2|Stall on A3 [Stall on A4
\lnterference Y B: Compute Stall waiting for shared resources Stall on Bl
A2 Core A’s stall time q
Oldest -»| Al Core B’s stall time

=

Shared Memory

Intensive application A generates many requests and
causes long stall times for less intensive application B

Resources
4 A A:
Fair Source Compute
Throttling B: | Compute
_ J

Request Generation Order
Al,A2,A3,A4,BI

Wednesday, March 17, 2010

queue of requests to

Request Generation Order:

shared resources Al,A2,A3,A4,BI
-~ ™
Unmanaged i‘I‘ A:| Compute |Stall on Al [Stall on A2|Stall on A3 [Stall on A4
\lnterference Y B: Compute Stall waiting for shared resources Stall on Bl
A2 Core A’s stall time q
Oldest -»| Al Core B’s stall time

=

Shared Memory

Intensive application A generates many requests and
causes long stall times for less intensive application B

Resources
4 A A:
Fair Source Compute
Throttling B: | Compute
_ J

Request Generation Order

AI,|A2,A;31

A4|B U

~
Sas”’

,4
L 4

Wednesday, March 17, 2010

queue of requests to Request Generation Order:

shared resources

Al,A2,A3,A4,BI

- N
Unmanaged Bl | A

Compute [Stall on Al [Stall on A2|Stall on A3 |Stall on A4

Interference A4 B:

Compute Stall waiting for shared resources Stall on Bl

\ J A3
A2
Oldest - Al

=

Shared Memory

Core A’s stall time
Core B’s stall time

Intensive application A generates many requests and
causes long stall times for less intensive application B

Resources
Request Generation Order Throttled
Al BIA2,A3,A4 " Requests
4 A A:
Fair Source -
Throttling B: | Compute
_ J

Wednesday, March 17, 2010

queue of requests to

shared resources
A:
B:

4)

Unmanaged B
Interference A4
N Y, A3
A2

Oldest -3 Al

Shared Memory

=

Resources

Request Generation Order:

Al,A2,A3,A4,BlI
Compute [Stall on Al [Stall on A2|Stall on A3 |Stall on A4
Compute Stall waiting for shared resources Stall on Bl

Core A’s stall time

Core B’s stall time

Intensive application A generates many requests and
causes long stall times for less intensive application B

queue of requests to

shared resources

A:

e B\
Fair Source

Throttling
. J

Oldest->

B:

Shared Memc;ry

Resources

Compute

Compute

Request Generation Order

Al BI,

A2,A3,A4

Throttled

" Requests

Wednesday, March 17, 2010

queue of requests to

shared resources

e B\
Unmanaged B
Interference A4

N Y, A3

A2
Oldest -3 Al

A:
B:

Shared Memory

=

Resources

Request Generation Order:

Al,A2,A3,A4,BlI
Compute [Stall on Al [Stall on A2|Stall on A3 |Stall on A4
Compute Stall waiting for shared resources Stall on Bl

Core A’s stall time

Core B’s stall time

Intensive application A generates many requests and
causes long stall times for less intensive application B

queue of requests to

shared resources

‘ | A4
Fair Source

Throttling | [_A3

N\ Vil A2

Bl

Oldest-» Al

A:

B:

Shared Memc;ry

Resources

Compute

Compute

Request Generation Order

Al BI,

A2,A3,A4

Throttled

" Requests

Wednesday, March 17, 2010

queue of requests to

Request Generation Order:

shared resources Al,A2,A3,A4,BI
e N
Unmanaged iL A:| Compute |Stall on Al |Stall on A2|Stall on A3 [Stall on A4
\Interference HT B: Compute Stall waiting for shared resources Stall on Bl
A2 Core A:s stall t?me S
Oldest -5 Al Core B’s stall time
g A Intensive application A generates many requests and
Shared Memory |causes long stall times for less intensive application B
Resources
Request Generation Order Throttled
queue of requests to Al,BI,| A2,A3, A4 >
shared resources Requests
g Fai VLA A Compute |Stall on Al
air Source A3
Throttling B: :
L)T A2 Compute | Stall wait.
Bl
Oldest-» Al

Shared Memc;ry

Resources

Wednesday, March 17, 2010

queue of requests to

Request Generation Order:

shared resources Al,A2,A3,A4,BI
e N
Unmanaged i‘: A:| Compute |Stall on Al |Stall on A2|Stall on A3 [Stall on A4
\Interference HT B: Compute Stall waiting for shared resources Stall on Bl
A2 Core A:s stall t?me S
Oldest -5 Al Core B’s stall time
g A Intensive application A generates many requests and
Shared Memory |causes long stall times for less intensive application B
Resources
Request Generation Order Throttled
queue of requests to Al,BI,| A2,A3, A4 >
shared resources Requests
C VLA A Compute |Stall on Al | Stall wait.
Fair Source A3
Throttling B: | Compute | Stall wait. |Stall on B
N i A2
Bl
Oldest-» Al

Shared Memc;ry

Resources

Wednesday, March 17, 2010

queue of requests to

Request Generation Order:

shared resources Al,A2,A3,A4,BI
e N
Unmanaged i‘: A:| Compute |Stall on Al |Stall on A2|Stall on A3 [Stall on A4
\Interference J A3 B: Compute Stall waiting for shared resources Stall on Bl
A2 Core A:s stall t?me S
Oldest -5| Al Core B’s stall time
g A Intensive application A generates many requests and
Shared Memory | causes long stall times for less intensive application B
Resources
Request Generation Order Throttled
queue of requests to Al,BI,| A2,A3, A4 >
shared resources Requests
[LA A Compute |Stall on Al | Stall wait.
Fair Source A3
Throttling B: | Compute | Stall wait. |Stall on Bl
. | A2
Bl
Oldest-» Al Core B’s stall time

Shared Memc;ry

Resources

<

>

Wednesday, March 17, 2010

queue of requests to

Request Generation Order:

shared resources Al,A2,A3,A4,BI
-~ ™
Unmanaged i‘I‘ A:| Compute |Stall on Al [Stall on A2|Stall on A3 [Stall on A4
\lnterference Y B: Compute Stall waiting for shared resources Stall on Bl
A2 Core A’s stall time q
Oldest -»| Al Core B’s stall time

=

Shared Memory
Resources

Intensive application A generates many requests and
causes long stall times for less intensive application B

Request Generation Order Throttled
queue of requests to Al,BI,| A2,A3, A4 >
shared resources Requests
- ™ :
S 2‘; A | Compute [Stall on Al | Stall wait. |Stall on A2 |Stall on A3 |Stall on A4
Throttling B: | Compute | Stall wait. |Stall on B
- i A2
Bl
Oldest-» Al Core Bs stall time

Shared Memc;ry
Resources

Wednesday, March 17, 2010

queue of requests to

Request Generation Order:

shared resources Al,A2,A3,A4,BI
e N
Unmanaged i‘: A:| Compute |Stall on Al |Stall on A2|Stall on A3 [Stall on A4
\Interference HT B: Compute Stall waiting for shared resources Stall on Bl
A2 Core A:s stall t?me . |
Oldest -5 Al Core B’s stall time >
g A Intensive application A generates many requests and
Shared Memory |causes long stall times for less intensive application B
Resources :
Request Generation Order Thrqittled
queue of requests to Al,BI,| A2,A3, A4 > .
shared resources Reql:’leStS :
s R : '
. A4 | Al Compute |Stall on Al | Stall wait. |Stall on A2|Stall on A3 [Stall on A4
Fair Source A3
Throttling B: : + Extra Cycles
L)T A2 Compute | Stall wait. |Stall on Bl € CoreA):
Bl « CoreA’s stall time).
Oldest-» Al Core B’s stall time

Shared Memc;ry

Resources

<

>

Wednesday, March 17, 2010

queue of requests to

Request Generation Order:

shared resources Al,A2,A3,A4,BI
e N
Unmanaged i‘: A:| Compute |Stall on Al |Stall on A2|Stall on A3 [Stall on A4
\Interference HT B: Compute Stall waiting for shared resources Stall on Bl
A2 Core A’s stall t?me . |
Oldest -5 Al Core B’s stall time >
g A Intensive application A generates many requests and
Shared Memory |causes long stall times for less intensive application B
Resources :
Request Generation Order Throittled
queue of requests to Al,BI,| A2,A3, A4 > .
shared resources Reql:’leStS
- ™ :
= A4 | Al Compute |Stall on Al | Stall wait. |Stall on A2|Stall on A3 [Stall on A4
air Source A3
Throttling B: : ! Extra Cycled
L)T A2 Compute | Stall wait. [Stall on Bl € CoreA)i
Bl « CoreA’s stall time).
Oldest-3 Al ._Core B stall time

Shared Memc;ry
Resources

Wednesday, March 17, 2010

queue of requests to Request Generation Order:

shared resources

Al,A2,A3,A4,BI

- N
Unmanaged Bl | A

Compute [Stall on Al [Stall on A2|Stall on A3 |Stall on A4

Interference A4 B:

Compute Stall waiting for shared resources Stall on Bl

\ J A3
A2
Oldest - Al

=

Shared Memory

Core A’s stall time
Core B’s stall time

Intensive application A generates many requests and
causes long stall times for less intensive application B

Resources
Request Generation Order Thrqttled
queue of requests to Al Bl |A2,A3,A4
shared resources RequeStS
e N :
= A4 | Al| Compute |Stall on Al | Stall wait. |Stall on A2|Stall on A3 [Stall on A4
air Source A3

Throttling B: : ! Extra Cycled
L Y Compute | Stall wait. |Stall on Bl € CoreA)i
BI <« CoreA’s stall time e i
Oldest-» Al « Core B’s stall time -(%)

Shared Memc;ry
Resources

Dynamically detect application A’s interference for
application B and throttle down application A

Wednesday, March 17, 2010

Outline

e Background and Problem

e Motivation for Source Throttling

e Fairness via Source Throttling (FST)
e Evaluation

e Conclusion

Fairness via Source Throttling (FST)

10

Fairness via Source Throttling (FST)

e Runtime Unfairness Evaluation

e Dynamically estimates the unfairness in the
memory system

10

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

e Runtime Unfairness Evaluation

e Dynamically estimates the unfairness in the
memory system

e Dynamic Request Throttling

e Adjusts how aggressively each core makes
requests to the shared resources

10

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

Interval | Interval 2 Interval 3
<€ > <€ > <€

> Time
>
ES L e
Runtime Unfairness Dynamic
Evaluation Request Throttling

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

Interval | Interval 2 Interval 3
<€ > <€ > <€

> Time
= = >
Slowdown
Estimation
ES L e
Runtime Unfairness Dynamic
Evaluation Request Throttling

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

Interval | Interval 2 Interval 3
<€ > <€ > <€

Time
N = >
Slowdown
Estimation
ES
Runtime Unfairness Dynamic
Evaluation Request Throttling

1- Estimating system unfairness

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

Interval | Interval 2 Interval 3
<€ > <€ > <€

Time
N - >
Slowdown
Estimation
ES
Runtime Unfairness Dynamic
Evaluation Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

Interval | Interval 2 Interval 3
<€ > <€ > <€ >

Time
= = >
Slowdown
Estimation
S oo
. | Runtime Unfairness Dynamic
i Evaluation Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)

3- Find app. causing most
interference for App-slowest
(App-interfering)

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

Interval | Interval 2 Interval 3
<€ > <€ > <€ >

Time

- - >

Slowdown

Estimation
Y
Unfairness Estimate)
. | Runtime Unfairness App-slowest , Dynamic
Evaluation App-interfering | Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)

3- Find app. causing most
interference for App-slowest
(App-interfering)

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

Interval | Interval 2 Interval 3
<€ > <€ > <€ >

Time
= = >
Slowdown
Estimation
DS e
Unfairness Estimate)
. | Runtime Unfairness App-slowest g Dynamic
Evaluation App-interfering | Request Throttling
1- Estimating system unfairness . . .
>- Find app. with the highest E(Unfalrness Estimate >Target)

slowdown (App-slowest)

3- Find app. causing most
interference for App-slowest
(App-interfering)

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

Interval | Interval 2 Interval 3
<€ > <€ > <€ >

Time
N - >
Slowdown
Estimation
ES T e
Unfairness Estimate)
Runtime Unfairness App-slowest g Dynamic
Evaluation App-interfering X Request Throttling
1- Estimating system unfairness . . .
2- Find app. with the highest E(Unfalrness Estimate >Target)
slowdown (App-slowest) 1-Throttle down App-interfering

3- Find app. causing most
interference for App-slowest
(App-interfering)

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

Interval | Interval 2 Interval 3
<€ > <€ > <€ >

Time
= = >
Slowdown
Estimation
S oo
Unfairness Estimate)
. | Runtime Unfairness App-slowest g Dynamic
Evaluation App-interfering | Request Throttling
1- Estimating system unfairness . . .
>- Find app. with the highest E(Unfalrness Estimate >Target)
;I_O\I/:vicr:l]chV\;n (Alzgllzli?]wensqtgst 1-Throttle down App-interfering
. PP d 2-Throttle up App-slowest
interference for App-slowest Y
(App-interfering)

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

FO T e
Unfairness Estimate

. | Runtime Unfairness App-slowest) Dynamic
Evaluation App-interfering) Request Throttling
1- Estimating system unfairness . . .

>- Find app. with the highest g(Unfalrness Estimate >Target)
gl_O\I/:viiZV\;n (Alzap_zli?qwensqtgst 1-Throttle down App-interfering

. PP. calsing 2-Throttle up App-slowest
interference for App-slowest v

(App-interfering)

12

Wednesday, March 17, 2010

Estimating System Unfairness

Max{Slowdown i} over all applications i

e Unfairness =

Min{Slowdown i} over all applications i

Shared
Ti

e Slowdown of application i =

13

Wednesday, March 17, 2010

Estimating System Unfairness

Max{Slowdown i} over all applications i

e Unfairness =

Min{Slowdown i} over all applications i

Shared
Ti

e Slowdown of application i =

Al . .
e How can T one be estimated in shared mode?

13

Wednesday, March 17, 2010

Estimating System Unfairness

Max{Slowdown i} over all applications i
e Unfairness = { s PP |

Min{Slowdown i} over all applications i

Shared
Ti

e Slowdown of application / =

Al . .
e How can Ti one be estimated in shared mode?

E
o Ti s the number of extra cycles it takes

application 7 to execute due to interference

13

Wednesday, March 17, 2010

Estimating System Unfairness

Max{Slowdown i} over all applications i
e Unfairness = { s PP |

Min{Slowdown i} over all applications i

Shared
Ti

e Slowdown of application / =

Al . .
e How can Ti one be estimated in shared mode?

E
o Ti s the number of extra cycles it takes

application 7 to execute due to interference

Alone Shared I_Excess

o Tj = Ti - Ti

13

Wednesday, March 17, 2010

Tracking Inter-Core Interference

14

Tracking Inter-Core Interference

Core 0 Core | Core 2 Core 3

!) J
1 {

Shared Cache

Memory Controller

! 1 !

Bank O Bank | Bank 2 Bank 7

14

Tracking Inter-Core Interference

Core 0

Core | Core 2

Core 3

J

1¢¢

Shared Cache

Memory Controller

!

o

Bank O

Bank | Bank 2

!

Three interference sources:

Bank 7

14

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0 Core | Core 2 Core 3

Shared Cache

Memory Controller Three interference sources:
~1. Shared Cache

! 1 !

Bank O Bank | Bank 2 Bank 7

14

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0

Core | Core 2

Core 3

J

1¢¢

Shared Cache

Memory Controller

T —

Bank O

Bank | Bank 2

Three interference sources:
1. Shared Cache
-2. DRAM bus and bank

14

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Three interference sources:
1. Shared Cache
2. DRAM bus and bank

-3. DRAM row-buffers

Core 0 Core | Core 2 Core 3
Shared Cache
Memory Controller
Row
Bank O Bank | Bank 7

Bank 2

14

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0

Core |

!

Core 2

)

Core 3

J

Shared Cache

Memory Controller

!

!

}

Bank O

Bank |

Row

Bank 2

Three interference sources:
1. Shared Cache

2. DRAM bus and bank
3. DRAM row-buffers

Bank 7

14

Wednesday, March 17, 2010

Tracking Inter-Core Interference

E'FST hardware

Core 0 Core | Core 2 Core 3

: ojofofoO
Core# 0 | 2 3

Shared Cache

. Interference per core
bit vector

Memory Controller

Three interference sources:
1. Shared Cache
2. DRAM bus and bank

!

!

}

Bank O

Bank |

Row

Bank 2

Bank 7

3. DRAM row-buffers

14

Wednesday, March 17, 2010

Tracking Inter-Core Interference

E'FST hardware

Core 0 Core | Core 2 Core 3
1 : OfOfOfO
Core# 0 | 2 3
Shared Cache Interference per core
' bit vector
Memory Controller Three interference sources:

1. Shared Cache

2. DRAM bus_a.n%
f i i] {3. DRAM row-buffers
Row

Bank O Bank | Bank 2 Bank 7

14

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer

Interference

Core 0

Core |

15

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer

Interference

Core 0

Core |

Bank O

Bank |

Bank 2

Bank 7

15

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |
Row A
Row A
Row B | :queue of requests to bank 2

Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |
Row A
Row A
Row B | :queue of requests to bank 2

Row Buffer:
Row B

Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |
Soladdidons
Row A
Row A .
Row B |:queue of requests to bank 2
: : Row Buffer:
e 5 Row B

Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |
FST additions ~~ L——
Row A

iCore # 0 | Row A ,
' ol o . | Row B |:queue of requests to bank 2

Interference """"""""""""""""
: per core 5 Row Buffer:
.. Dbitvector 5 Row B

Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |

FST additions

Shadow Row Address Register
(SRAR) Core | :

Shadow Row Address Register
(SRAR) Core O:

Row A
‘Core# 0 | Row A ,
' ol o . | Row B |:queue of requests to bank 2
Interference """"""""""""""""
: per core 5 Row Buffer:
.. Dbitvector 5 Row B
Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |

FST additions

Shadow Row Address Register
(SRAR) Core | :

Shadow Row Address Register
(SRAR) Core O:

| RowA |
iCore # 0 |
: ol o : (Row B | :dueue of requests to bank 2
Interference {7
: per core 5 Row Buffer:
5 bit vector 5 Row B
Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |

FST additions

Shadow Row Address Register
(SRAR) Core | :

Shadow Row Address Register
(SRAR) Core O:

Row A
iCore # 0 | Row A .
I 010 : 5 ‘queue of requests to bank 2
Interference oo S
: per core Row Hit Row Buffer:
E bit vector 5 Row B
Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |

FST additions

Shadow Row Address Register
(SRAR) Core | :

Shadow Row Address Register
(SRAR) Core 0 : | Row BT

Row A
iCore # 0 | Row A .
I 010 : 5 ‘queue of requests to bank 2
Interference oo S
: per core Row Hit Row Buffer:
E bit vector 5 Row B
Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |

FST additions

""" Shadow Row Address Register |
(SRAR) Core | : ‘ RowAi
Shadow Row Address Register
(SRAR) Core 0 : | Row BT

Row A
iCore # 0 | . :
: ol o L ' queue of requests to bank 2
Interference 1 T TTTTTTTITTTTTTUoetT
per core Row Conflict Row Buffer:
______ bit vector | Row A
Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |

FST additions

Shadow Row Address Register
(SRAR) Core | : ‘ RowAi

Shadow Row Address Register
(SRAR) Core 0 : | Row BT

Row B
| RowA

iCore # 0 | . !

: ol o P ' queue of requests to bank 2

Interference | __ Tttt
per core Row Conflict Row Buffer:
______ bit vector Row A
Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |

FST additions

""" Shadow Row Address Register |
(SRAR) Core | : ‘ RowAi
Shadow Row Address Register
(SRAR) Core 0 : | Row BT

Row B
iCore # 0 | : .
: 010 : 5 ‘queue of requests to bank 2
Interference """"""""""" S
per core 5 Row Hit Row Buffer:
bit vector 5 Row A
Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |

FST additions

""" Shadow Row Address Register |
(SRAR) Core | : ‘ RowAi
Shadow Row Address Register
(SRAR) Core 0 : | Row BT

:Core# 0 | L I
: 010 L ' queue of requests to bank 2
Interference ¢ CTTTTTTTTTTTeTeTeemtt

per core Row Conflict Row Buffer:

bit vector 5 Row B \

Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |

FST additions

""" Shadow Row Address Register |
(SRAR) Core | : ‘ RowAi
Shadow Row Address ReTister

(SRAR) Core 0 : | Row B

. Interference induced

row conflict

‘Core# 0 | . .
: 0ol o Lo ' queue of requests to bank 2

Interference

per core Row Conflict Row Buffer:

bit vector 5 Row B \

Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking DRAM Row-Buffer
Interference

Core 0 Core |

FST additions

""" Shadow Row Address Register |
(SRAR) Core | : ‘ RowAi
Shadow Row Address Register
(SRAR) Core 0 : | Row BT

. Interference induced

. row conflict
‘Core# 0 | v .
: | | O Lo ‘queue of requests to bank 2

T A .

Interference | ¥ TTTTTTTTTTTeUs

per core Row Conflict Row Buffer:

bit vector 5 Row B \

Bank O Bank | Bank 2 Bank 7

Wednesday, March 17, 2010

Tracking Inter-Core Interference

--

5' FST hardware

Core 0 Core | Core 2 Core 3 |:
i . 0]0[10(0O
iCore # 0 | 2 3
Shared Cache Interference per core
: bit vector

--

Memory Controller

! 1 !

Bank O Bank | Bank 2 Bank 7

16

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0

Core |

Core 2

!

)

J

Shared Cache

Memory Controller

!

!

}

Bank O

Bank |

Bank 2

!

Bank 7

--

5' FST hardware
Core 3 |:

0

0

0

iCore#O 2 3

I
Interference per core Excess Cycles

bit vector Counters per core

O IO |IC ||O

--

16

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0

Core |

Core 2

!

)

J

Shared Cache

‘ Memory Controller ’

!

!

}

Bank O

Bank |

Bank 2

!

Bank 7

5' FST hardware
Core 3 |:

Cycle Count T

0

0[0]O0

iCore# 0

O IO |IC ||O
hd
—

| 2 3

I
Interference per core Excess Cycles
bit vector Counters per core

16

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0

Core | Core 2

Core 3 |:

1¢¢

Shared Cache

Memory Controller

!

!

}

Bank O

Bank | Bank 2

!

Bank 7

Cycle Count T

--

I
Interference per core Excess Cycles
bit vector Counters per core

--

16

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0

Core |

Core 2

!

)

J

Shared Cache

Memory Controller

!

!

}

Bank O

Bank |

Bank 2

!

Bank 7

Cycle Count

--

5' FST hardware
Core 3 |:

0

0

iCore#O 2 3

I
Interference per core Excess Cycles
Counters per core

bit vector

O IO |IC ||O

--

16

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0

Core |

Core 2

!

)

J

Shared Cache

Memory Controller

!

!

}

Bank O

Bank |

Bank 2

!

Bank 7

5' FST hardware
Core 3 |:

Cycle Count

0

0

iCore#O 2 3

I
Interference per core Excess Cycles
Counters per core

bit vector

--

16

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0 Core | Core 2 Core 3 |:
) l |]

Shared Cache

)

Memory Controller

!

!

}

Bank O

Bank |

!

Bank 2

Bank 7

--

Cycle Count
5' FST hardware
. | { 0] O
iCore# o I 2 3

I
Interference per core Excess Cycles
bit vector

O IO IO |

Counters per core

--

16

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0 Core | Core 2 Core 3 |:
) l |]

Shared Cache

Memory Controller

!

!

}

Bank O

Bank |

Bank 2

!

Bank 7

Cycle Count

--

5' FST hardware

0

. I
. Interference per core Excess Cycles
: Counters per core

bit vector

2

3

O IO IO |

--

16

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0

Core |

Core 2

!

)

J

Shared Cache

Memory Controller

!

!

}

Bank O

Bank |

Bank 2

!

Bank 7

Cycle Count

--

5' FST hardware
Core 3 |:

0

iCore#O 2 3

I
Interference per core Excess Cycles
Counters per core

bit vector

O IO IO |

--

16

Wednesday, March 17, 2010

Tracking Inter-Core Interference

Core 0

Core |

Core 2

!

)

J

Shared Cache

Memory Controller

!

!

}

Bank O

Bank |

Bank 2

!

Bank 7

5' FST hardware
Core 3 |:

Cycle Count

0

iCore#O 2 3

T+3
3
0 Excess
¥ < :
/
|
0

I
Interference per core Excess Cycles

bit vector

Counters per core

--

16

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

F T e
Unfairness Estimate

. | Runtime Unfairness App-slowest) Dynamic
Evaluation App-interfering) Request Throttling
1- Estimating system unfairness . . .

>- Find app. with the highest g(Unfalrness Estimate >Target)
?J,l-ml/:\,iﬂ(c)l\/\;n (Alzapzlionwenigst 1-Throttle down App-interfering

. PP 9 2-Throttle up App-slowest
interference for App-slowest v

(App-interfering)

17

Wednesday, March 17, 2010

Tracking Inter-Core Interference

18

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

18

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

18

Wednesday, March 17, 2010

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core
bit vector

Core#0 | 2 3
ololo]o

I
0

18

Wednesday, March 17, 2010

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core
bit vector

0

Core #0 |
0]-|o
I
2
3

2
0
o]-]o

0[0] -
0[0]O] -

o |l|lo ||lo |W

18

Wednesday, March 17, 2010

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core
bit vector

Interfered with core

Core#0 | 2 3

- 0L-Jofo]o
Interfering | 1|of-[o0]o
core | 2[ofo]-]o
| 3{o]ofo]-

18

Wednesday, March 17, 2010

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
bit vector Counters per core

Interfered with core

Core#0 | 2 3

- 0L-Jofo]o
Interfering | 1|of-[o0]o
core | 2[ofo]-]o
| 3{o]ofo]-

CntO Cnt | Cnt 2 Cnt 3

18

Wednesday, March 17, 2010

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
bit vector Counters per core
Interfered with core
Core#0 1 2 3

0 JoJoJo Cnt0,l || Cnt02 | Cnt0,3
Interfering | I[of-]o]o Cnt 1,0 - Cnt12 | Cntl,3
core | 2|ofo]-[o cnt2,0 [Cnc2,l - Cnt 2,3

L 3lofojof- cne3,0 [cne3t || cne32

18

Wednesday, March 17, 2010

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
bit vector Counters per core
Interfered with core
Core#0 1 2 3

0 JoJoJo Cnt0,l || Cnt02 | Cnt0,3
Interfering | I[of-]o]o Cnt 1,0 - Cnt12 | Cntl,3
core | 2|of1]-[o cnt2,0 [Cnc2,l - Cnt 2,3

L 3lofojof- cne3,0 [cne3t || cne32

18

Wednesday, March 17, 2010

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
bit vector Counters per core
Interfered with core
Core #0(1)2 3

0 Jo[oJo Cnt0,l || Cnt02 | Cnt0,3
Interfering | 1|of-[o0]o| core?2 L[_Cntl0 - Cnt12 || Cntl,3
core <(_2? Ol!1}]-10 interfered Cnt 2,0 Cnt 2,1 - Cnt 2,3

3[ojoJof-| with cne30 | cne3l | cne32

core |

18

Wednesday, March 17, 2010

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
bit vector Counters per core
Interfered with core
Core #0(1)2 3
0 Jo[oJo - Cnt0,l || Cnt02 | Cnt0,3
Interfering | I[o]-Tole] " core 2 L-Cot 1.0 - Cne 12 || cnel3
R P L_"~
core @ ol Iq-1]0 interfered Cnt 2,0 '|+Cnt 2,1 ++ - Cnt 2,3
3[ojoJof-| with cne30 | cne3l | cne32 -
core |

18

Wednesday, March 17, 2010

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
bit vector Counters per core
Interfered with core App-slowest = 2
Core #0(1)2 3
0 Jofolo] ... Cnt0,l || Cnt02 | Cnt0,3
Interfering | 1]o[-{o]o]"" core 2 "[:Cor 1.0 : Cnt 1,2 || Cntl3
core |@Lolit~[o] interfered [cnt2.0 feneai++ - Cnt 2,3
3[ojoJof-| with cne30 | cne3l | cne32 :
core |

18

Wednesday, March 17, 2010

Tracking Inter-Core Interference

e To identify App-interfering, for each core j

e FST separately tracks interference
caused by each corej (j #1i)

Interference per core Excess Cycles
bit vector Counters per core
Interfered with core
—_—— App-slowest = 2
Core#0(1)2 3 —
0[Jo[oJo - i cnt0,l || /cnt02\ || cnto,3
Interfering | I[o]-Tole] " core 2 L-Cot 1.0 - Cnt 1,2) Cnt 1,3
R P ;_"~
core @ ol Iq-1]0 interfered Cnt 2,0 '|+Cnt 2,1 ++ - Cnt 2,3
| 3[ofo0]0]- with cnt3,0 || cne3l |[\Cnt32
N
core | Row with largest count

determines App-interfering

18

Wednesday, March 17, 2010

Fairness via Source Throttling (FST)

LS,
Unfairness Estimate

. | Runtime Unfairness App-slowest) Dynamic

i Evaluation App-interfering | Request Throttling
1- Estimating system unfairness . . .

>- Find app. with the highest g(Unfalrness Estimate >Target)
gI_O\I/:vi(r:I]EV\;n (Alzapt;i,liﬂwenitgst 1-Throttle down App-interfering

. PP d 2-Throttle up App-slowest
interference for App-slowest Y

(App-interfering)

19

Wednesday, March 17, 2010

Dynamic Request Throttling

20

Dynamic Request Throttling

e Goal: Adjust how aggressively each core
makes requests to the shared resources

20

Wednesday, March 17, 2010

Dynamic Request Throttling

e Goal: Adjust how aggressively each core
makes requests to the shared resources

e Mechanisms:
e Miss Status Holding Register (MSHR) quota

20

Wednesday, March 17, 2010

Dynamic Request Throttling

e Goal: Adjust how aggressively each core
makes requests to the shared resources

e Mechanisms:
e Miss Status Holding Register (MSHR) quota

e Controls the number of concurrent requests
accessing shared resources from each application

20

Wednesday, March 17, 2010

Dynamic Request Throttling

e Goal: Adjust how aggressively each core
makes requests to the shared resources

e Mechanisms:
e Miss Status Holding Register (MSHR) quota

e Controls the number of concurrent requests
accessing shared resources from each application

e Request injection frequency

20

Wednesday, March 17, 2010

Dynamic Request Throttling

e Goal: Adjust how aggressively each core
makes requests to the shared resources

e Mechanisms:
e Miss Status Holding Register (MSHR) quota

e Controls the number of concurrent requests
accessing shared resources from each application
e Request injection frequency

e Controls how often memory requests are issued
to the last level cache from the MSHRs

20

Wednesday, March 17, 2010

Dynamic Request Throttling

e Throttling level assigned to each core determines
both MSHR quota and request injection rate

21

Wednesday, March 17, 2010

Dynamic Request Throttling

e Throttling level assigned to each core determines
both MSHR quota and request injection rate

Throttling level MSHR quota Request Injection
Rate
100% |28 Every cycle

50% 64 Every other cycle
25% 32 Once every 4 cycles
0% |2 Once every |0 cycles
5% 6 Once every 20 cycles
4% 5 Once every 25 cycles
. 3% 3 Once every 30 cycles
MSHRs: 128 2% 2 Once every 50 cycles

21

Wednesday, March 17, 2010

Dynamic Request Throttling

e Throttling level assigned to each core determines
both MSHR quota and request injection rate

Throttling level MSHR quota Request Injection
Rate
100% |28 Every cycle

50% 64 Every other cycle

~ 25% 32 Once every 4 cycles
< 10% 12 Once every 10 cycles [—

5% 6 Once every 20 cycles
4% 5 Once every 25 cycles
. 3% 3 Once every 30 cycles
MSHRs: 128 2% 2 Once every 50 cycles

21

Wednesday, March 17, 2010

FST at Work

Time
>

Runtime Unfairness
Evaluation

Unfairness Estimate

System software

App-slowest

fairness goal: | .4

App-interfering

Dynamic

| Request Throttling

--

Core 0| Core || Core 2| Core 3
Interval i
Interval i + |
Interval i + 2
Throttling Levels
22

Wednesday, March 17, 2010

FST at Work

Interval |
>

Time
>

—~

Slowdown

FST Estimation

Unfairness Estimate

System software

Runtime Unfairness

App-slowest

fairness goal: | .4

Evaluation

App-interfering

Dynamic

| Request Throttling

--

Core 0| Core || Core 2

Core 3

Interval i 50% 100% 0% 100%
Interval i + |
Interval i + 2
Throttling Levels
22

Wednesday, March 17, 2010

FST at Work

Interval |
>

Time
>
Slowdown
FST Estimation
Unfairness Estimate | System software
Runtime Unfairness |App-slowest | fairness éoalz |,4.
Evaluation App-interferin ynhamic
E P : | Request Throttling
i

--

- ~ Core 0] Core || Core?2| Core 3
<__Interval i 50% | 100% | 10% | 100% =

Interval i + |
Interval i + 2

Throttling Levels
22

Wednesday, March 17, 2010

FST at Work

Interval |
>

Ve

Slowdown

FST Estimation

Time
>

Unfairness Estimate 3 |

Runtime Unfairness

System software

Evaluation

App-slowest Core 2| fairness goal: |.4
Dynamic
App-interfering Core 0
= : ’| Request Throttling
Core 0| Core || Core 2| Core 3
Interval i 50% 100% 10% 100%
Interval i + |
Interval i + 2
Throttling Levels
22

Wednesday, March 17, 2010

FST at Work

Interval |
>

Ve

Slowdown

FST Estimation

Time
>

Unfairness Estimate 3 |

Runtime Unfairness

System software

Evaluation

App-slowest Core 2| fairness goal: |.4
Dynamic
App-interfering Core 0
= : ’| Request Throttling
Core 0| Core || Core 2| Core 3
Interval i 50% 100% 10% 100%
Interval i + |
Interval i + 2
Throttling Levels
22

Wednesday, March 17, 2010

FST at Work

Interval |
>

Time
>

Ve

Slowdown

FST Estimation

Unfairness Estimate 3 | System software
Runtime Unfairness |App-slowest Core 2| fairness goal: |.4

Evaluation App-interfering Core 0 Dynamic ,
’| Request Throttling

L4

Throttle down: : Throttle up
Covre 0| Core | Covre 2| Core 3
Interval i 50% 100% 10% 100%

Interval i + |
Interval i + 2

Throttling Levels
22

Wednesday, March 17, 2010

FST at Work

Interval |
> <€

Interval j+1 q

Time
>

Ve

Slowdown

FST Estimation

Unfairness Estimate 3 |

Runtime Unfairness

App-slowest

System software

Evaluation

. . Dynamic
App-interfering_Core g Request Throttling
Throttle down: : Throttle up
Core 0| Core || Core 2| Core 3
Interval i 50% | 100% | 10% 100%
—Tnterval i + | 100% | (25% | 100%
Interval i + 2
Throttling Levels
22

Core 2’ fairness goal: | .4

I

Wednesday, March 17, 2010

FST at Work

Interval |
> <€

Interval j+1 q

Time
>

=~

Slowdown
Estimation

Runtime Unfairness

Unfairness Estimate 2.5 [System software

>

App-slowest

Core 2)' fairness goal: | .4

Evaluation App-interfering Core | Dynamic .
’| Request Throttling
Core 0| Core || Core 2| Core 3
Interval i 50% | 100% 0% 100%

Interval i + | 25% 100% | 25% 100%
Interval i + 2

Throttling Levels

22

Wednesday, March 17, 2010

FST at Work

Interval |
> <€

Interval j+1 q

Time
>

=~

Slowdown
Estimation

Runtime Unfairness
Evaluation

Unfairness Estimate 2.5 [System software

>

App-slowest

App-interfering Core |

Core 2)' fairness goal: | .4

Dynamic

Request Throttling

..

: Throttle up

Throttle down:

Core 0 Covre 1| Core 2| Core 3
Interval i 50% |00% 10% |00%
Interval i + | 25% 100% | 25% |00%
Interval i + 2
Throttling Levels
22

Wednesday, March 17, 2010

FST at Work

Interval |
> <€

Interval j+1
> <€

Interval j+2)

Time
>

=~

Slowdown
Estimation

Runtime Unfairness
Evaluation

Unfairness Estimate 2.5

>

App-slowest

System software

App-interfering Core |

..

: Throttle up

Core 2)' fairness goal: | .4

Dynamic

Throttle down:

Request Throttling

Core 0 Covre 1| Core 2| Core 3

Interval i 50% | 100% 0% 100%
Interval i + | 25% | 100% % |00%

< Intervali+2 25% | (50% 100%

—

Throttling Levels

22

Wednesday, March 17, 2010

System Software Support

23

System Software Support

e Different fairness objectives can be
configured by system software

23

System Software Support

e Different fairness objectives can be
configured by system software
e Estimated Unfairness > Target Unfairness

23

System Software Support

e Different fairness objectives can be
configured by system software

e Estimated Unfairness > Target Unfairness
e Estimated Max Slowdown > Target Max Slowdown

23

Wednesday, March 17, 2010

System Software Support

e Different fairness objectives can be
configured by system software

e Estimated Unfairness > Target Unfairness
e Estimated Max Slowdown > Target Max Slowdown
e Estimated Slowdown(i) > Target Slowdown(i)

23

Wednesday, March 17, 2010

System Software Support

e Different fairness objectives can be
configured by system software

e Estimated Unfairness > Target Unfairness
e Estimated Max Slowdown > Target Max Slowdown
e Estimated Slowdown(i) > Target Slowdown(i)

e Support for thread priorities

23

Wednesday, March 17, 2010

System Software Support

e Different fairness objectives can be
configured by system software

e Estimated Unfairness > Target Unfairness
e Estimated Max Slowdown > Target Max Slowdown
e Estimated Slowdown(i) > Target Slowdown(i)

e Support for thread priorities

e Weighted Slowdown(i) =
Estimated Slowdown(i) x Weight(i)

23

Wednesday, March 17, 2010

Hardware Cost

e Total storage cost required
for 4 cores is ~ 12KB

e FST does not require any structures or
logic that are on the processor’s critical
path

24

Outline

e Background and Problem

e Motivation for Source Throttling

e Fairness via Source Throttling (FST)
e Evaluation

e Conclusion

25

Evaluation Methodology

e X86 cycle accurate simulator

e Baseline processor configuration

e Per-core
e 4-wide issue, out-of-order, 256 entry ROB

e Shared (4-core system)
e 128 MSHRSs
e 2 MB, 16-way L2 cache

e Main Memory
e DDR3 1333 MHz
e Latency of 15ns per command (tRP, tRCD, CL)
e 8B wide core to memory bus

26

Wednesday, March 17, 2010

System Unfairness Results

B No Fairness

V4 B Fair Cache Capacity (VPQC)
] Parallelism-Aware Batch Scheduling+VPC
7 6 Fairness via Source Throttling (FST)
v
£
S
c 4
>
3
5
=
>N
o
0
<&
o
N\
o
¢ &

27

Wednesday, March 17, 2010

System Unfairness Results

M No Fairness >

B Fair Cache Capacity (VPQC)

] Parallelism-Aware Batch Scheduling+VPC

A 6 Fairness via Source Throttling (FST)
v
£
S
£ 4
D

3
5
=
>N
o

0

&

&

27

Wednesday, March 17, 2010

System Unfairness Results

B No Fairness

<4 Fair Cache Capacity (VPC)Y >
] Parallelism-Aware Batch Scheduling+VPC

Fairness via Source Throttling (FST)

N W DA U1 O N

System Unfairness

27

Wednesday, March 17, 2010

System Unfairness Results

B No Fairness
B Fair Cache Capacity (VPQC)

< Parallelism-Aware Batch Scheduling+V

(=

Fairness via Source Throttling (FST)

N W DA U1 O N

System Unfairness

27

Wednesday, March 17, 2010

System Unfairness Results

B No Fairness

7 B Fair Cache Capacity (VPC)

] Parallelism-Aware Batch Scheduling+VPC
§ 6 <1 Fairness via Source Throttling (FST) ——
£
S
= 4
>

3
5
=
>N
o
0
<&
o
N\
o
¢ &

27

Wednesday, March 17, 2010

System Unfairness Results

B No Fairness

V4 B Fair Cache Capacity (VPQC)
] Parallelism-Aware Batch Scheduling+VPC
7 6 Fairness via Source Throttling (FST)
v
£
S
c 4
>
3
5
=
>N
o
0
<&
o
N\
o
¢ &

27

Wednesday, March 17, 2010

System Unfairness Results

B No Fairness

V4 B Fair Cache Capacity (VPQC)
] Parallelism-Aware Batch Scheduling+VPC
7 6 Fairness via Source Throttling (FST)
v
£
S
c 4
>
3
5
=
>N
o
0
<&
o
N\
o
¢ &

27

Wednesday, March 17, 2010

System Unfairness Results

B No Fairness
V4 B Fair Cache Capacity (VPQC)
] Parallelism-Aware Batch Scheduling+VPC
7 6 Fairness via Source Throttling (FST)
v
£
(q°)
= 4
>
3 - -
5
% 2 :
A 36%
0
<&
o
N\
o
¢ &

27

Wednesday, March 17, 2010

] Parallelism-Aware Batch Scheduling +VPC
Fairness via Source Throttling (FST)

B Fair Cache Capacity (VPC)

System Performance Results

N 9 & ®© T O
_ - O O

SSQUJIE{ ON| O3 PIZI[BWION] ‘J49d WISAS

28

Wednesday, March 17, 2010

System Performance Results

o B Fair Cache Capacity (VPC)

] Parallelism-Aware Batch Scheduling +VPC

Fairness via Source Throttling (FST)

1.6

|.2

0.8

0.4

System Perf. Normalized to No Fairness

28

Wednesday, March 17, 2010

System Performance Results

o B Fair Cache Capacity (VPC)
] Parallelism-Aware Batch Scheduling +VPC
Fairness via Source Throttling (FST)

1.6

|.2

0.8

0.4

System Perf. Normalized to No Fairness

28

Wednesday, March 17, 2010

System Performance Results

o B Fair Cache Capacity (VPC)
] Parallelism-Aware Batch Scheduling +VPC
Fairness via Source Throttling (FST)

1.6

1 4%

|.2

25.6%

0.8

0.4

System Perf. Normalized to No Fairness

28

Wednesday, March 17, 2010

C

onclusion

Fairness via Source Throttling (FST)
is @ new fair and high-performance
shared resource management approach for CMPs

Dynamically monitors unfairness and throttles down
sources of interfering memory requests

Eliminates the need for and complexity of
multiple per-resource fairness techniques

Improves both system fairness and performance

Incorporates thread weights and enables
different fairness objectives

29

Wednesday, Marc

h 17,2010

Fairness via Source Throttling:

A configurable and high-performance fairness
substrate for multi-core memory systems

Eiman Ebrahimi”
Chang Joo Leex
Onur Mutlu?
Yale N. Patt™

* HPS Research Group T Computer Architecture Laboratory
The University of Texas at Austin Carnegie Mellon University

Wednesday, March 17, 2010

Backups

31

Wednesday, March 17, 2010

Other Source-Based Techniques

B Herdrich et. al. ICS ‘09
Rate-based QoS techniques for cache/
memory in CMP platforms

B Zhang et. al., USENIX ‘09
Hardware execution throttling for
multi-core resource management

W Jahre and Natvig, Computing Frontiers ‘09
A light-weight fairness mechanism for chip
multiprocessor memory systems

32

Interference-Aware
Thread Scheduling

B Zhuravlev et. al. ASPLOS 10
Addressing Shared Resource Contention in
Multicore Processors Via Scheduling

B Schedules applications which interfere less with
each other as best as possible
B Advantages of FST:

'he mix of apps may force co-scheduling of intensive
applications

FST can make scheduling decisions easier for system
software

B Advantages of using thread scheduling:
Does not require hardware support
B Approaches are complementary

33

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Pollution: :

Shared Cache bit ECore id Interfered with core
Core# 0 | 2 3
O[-10(0]0
InterferingﬂI 01-101]0
Hash s core |2(0|0|-|0
Function 3(010]0] -

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Shared Cache Pollutioni e id | |
bit nterfered Vj'fh core
010

Core # O | 2

3

0]l -{0]0]{0

Interfering{ 110]-]101]0

Hash I core 2(010(-10
Function 3 O O O _

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Shared Cache Pollution; |
bit Interfered Vj'fh core
00

Core # O | 2

3

0]l -{0]0]{0

Interfering{ 110]-]101]0

Hash I core 2(010(-10
Function 3 O O O _

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Pollution: :

Shared Cache bit ECore id Interfered with core
Core# 0 | 2 3
O[-10(0]0
InterferingﬂI 01-101]0
Hash s core |2(0|0|-|0
Function 3(010]0] -

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Pollution: :
Shared Cache bit iCore id Interfered with core
Core | Core# 0 | 2 3
ore 2’s memory request evicts core |’s _
cache line from the shared cache 019 0 01010
Interfering{ 1101-]101]0
Hash I core 2(010(-10
Function 3 O O O _

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Pollution! :
Shared Cache bit iCore id Interfered with core
Core) | Core#0 | 2 3
ore 2’s memory request evicts core |’s _
cache line from the shared cache 019 0 01010
Interfering{ 1101-]101]0
Evicted line’s address | Hash : | s core 210({0(-10
from core | Function 3/0l0l0] -

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Pollution! :
Shared Cache bit iCore id Interfered with core
Core) | Core#0 | 2 3
ore 2’s memory request evicts core |’s _
cache line from the shared cache 019 0 01010
Interfering{ 1101-]101]0
Evicted line’s address | Hash : | s core 210({0(-10
from core | Function 3/0l0l0] -

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Pollution! :
Shared Cache bit iCore id Interfered with core
Core) | Core#0 | 2 3
ore 2’s memory request evicts core |’s _
cache line from the shared cache 019 0 01010
Interferin,g{I 0[-]10/0
Evicted line’s address | Hash : | s core 210({0(-10
from core | Function 3/0l0l0] -
| I
0

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Pollution: :
Shared Cache bit iCore id Interfered with core
Core) | Core# 0 | 2 3
ore 2’s memory request evicts core |’s _
cache line from the shared cache 019 0 01010
Interfering{ 1101-]101]0
Evicted line’s address | Hash : | s core 210({0(-10
from core | Function 3/0l0l0] -
010

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Pollution: :
Shared Cache bit ECore id Interfered Vjith core
Core# 0 | 2 3
O[-10(0]0
Interfering{ 110]-10]0
Hash s core |2(0|0|-|0
Function 3(010]0] -
OO

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Shared Cache Pollution'q e id .
bit Interfered leth core
l 00 Core# 0 | 2 3
Core | suffers a cache miss 0|0 O[-10(0]0
Interfering{ 110(-10]0
Hash I core 2(010(-10
Function 31o0lo0lo0] -
0|0

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Pollution: :
Shared Cache bit ECore i Interfered with core
l 010 Core# 0 | 2 3
Core | suffers a cache miss 0|0 0Ol-(0]0]0O0
Interfering{ 1101-]101]0
Missing line’s address Hash s | core 2/]0]0(-10
from core | | Function 310lolo] -
0|0

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Pollution: :
Shared Cache bit ECore i Interfered with core

l 010 Core# 0 | 2 3
Core | suffers a cache miss 0|0 0Ol-(0]0]0O0
Interfering{ 1101-]101]0
Missing line’s address Hash s | core 2/]0]0(-10
from core | | Function 310lolo] -

N I

0

34

Wednesday, March 17, 2010

Tracking Cache Interference

Core |’s pollution filter

Shared Cache PoILuiEionécore id Interfered with core
l 00 Core# 0 | 2 3
Core | suffers a cache miss 00 0l-10]|0]0
Interferin,g{I 0[-10]0
Missing line’s address | Hash N core 2(0[1]-10
from core | Function //3’ T 0|l0]| -

SN |-

0

34

Wednesday, March 17, 2010

Tracking DRAM Bank Interference

Interfered with core

— —

Core# 0 | 2 3
| O0l-[0]0|0O
Core 2| |
i Interfering 110-10]0
Core 2| | | Core | 4
i § g core 2(0]10]-10
Core 2| | ' |Core 2| || Core 2
emory Core || i [Core || :|Core 0 ; |Core 2
Controller | |
Core 0 Core | Core 3 Core 3
BankO ' Bank | ' Bank2 ' Bank3

Snapshot of memory requests

35

Wednesday, March 17, 2010

Tracking DRAM Bank Interference

Interfered with core

— —

Core# 0 | 2 3
/\ 0[-|ojo]fo
Core 2|\
/ \ i Interfering 110]-10]0
Core 2| | | Core | 4
g g g core 2/0(0]-10
Core 2| | ' |Core 2| || Core 2
emory Core || ‘Core || i|Core 0| |Core 2
Controller | |
Core 0 Core | Core 3 Core 3
Bank 0/’ Bank | ' Bank2 ' Bank3
_/

Snapshot of memory requests

35

Wednesday, March 17, 2010

Tracking DRAM Bank Interference

r~

Interfered with core

Core# 0 | 2 3
/\ 0[-Joloo
Core 2|\
/ \ i Ineringlo'oo
Core 2| | | Core | 4
é g g core 2(0({0]-10
Core 2| | | Core 2|i|Co
M f = 3/]0({0]0] -
cmory Core || ‘Core || i|Core 07 |Core 2
Controller | //
Core 0 Core | Core 3 Core 3
Bank 0/ Bank | ' Bank2 ' Bank3
N\

Snapshot of memory requests

35

Wednesday, March 17, 2010

Tracking DRAM Bank Interference

Interfered with core

— —

r~

/\ Core# 0| 2 3

5 ’ = 0| -1[o]o
Core 2|\ =
/Corez\ 5co.~e|W' 0|-]0]0
| — core 20010l -10
CoreZE E,Gcre/fgCoreZ 3o Tolo
Memory Core | Core 0 Core 2
Controller ' : 5

CoreO: Core || | |Core 3 Core 3
Bank 0/ Bank | ' Bank2 ' Bank3

NS

Snapshot of memory requests

35

Wednesday, March 17, 2010

Tracking DRAM Bank Interference

Interfered with core

r~

Core# 0 | 2 3
/\ o -[1]i]o
Core 2|\ e i
/ — | 5 __Interfering] | | 0] - |00
Core 2| i | Coret *
2 | = core 2(0(0]-1]0
Core 2H ' |Core 2| || Core 2
M 5 g *3|10]10([0| -
emory Core || ‘Core || i|Core 0| |Core 2
Controller = |
Core 0 Core | Core 3 Core 3
Bank 0/ Bank | ' Bank2 ' Bank3
N/

Snapshot of memory requests

35

Wednesday, March 17, 2010

Tracking DRAM Bank Interference

Interfered with core

— —

Core# 0 | 2 3
5 of-Ti]i]o
Core 2| |
i Interfering | 1 | O -0 [0
Core 2| | | Core | 4
i § g core 2(0]10]-10
Core 2| | '|Core 2| |Core 2
M 5 i 310100 -
emory Core || i [Core || :|Core 0 ; |Core 2
Controller | |
Core 0 Core | Core 3 Core 3
BankO ' Bank | ' Bank2 ' Bank3

Snapshot of memory requests

35

Wednesday, March 17, 2010

Tracking DRAM Bank Interference

Interfered with core

— —

Core# 0 | 2 3
5 of-Ti]i]o
Core 2| :
i i Interfering 110]-10]0
Core 2| | | Core | 4
é g g core 2(0]10]-10
Core 2| |Core 2| || Core 2 ST
Memory Core || i | Core | Core 0 Core 2
Controller | ’
Core 0 Core | Core 3 Core 3
BankO ' Bank | ' Bank2 ' Bank3

Snapshot of memory requests

35

Wednesday, March 17, 2010

Results For Alternative
Svystem Unfairness Metric

) | B Fair Cache Capacity (VPC)
] Parallelism-Aware Batch Scheduling +VPC
Fairness via Source Throttling (FST)

o

N

O
oo

0.4

Deviation of Variation Normalized to No Fairness

36

Wednesday, March 17, 2010

Results of Different
Throttling Mechanisms

1.3

|.2

1.0

09
Normalized Performance

] Parallelism-Aware Batch Scheduling +VPC
B FST-Only Request Injection Rate
B FST-Only MSHR Quota

FST

0.9

0.7

0.5

0.2

O -

Normalized Unfairness

37

Wednesday, March 17, 2010

Results With 2 Memory Channels

] Parallelism-Aware Batch Scheduling + VPC

B FST
.10 R
.08 0.
0.7
.06
0.4
.03 -
1.0 0

Normalized Performance Normalized Unfairness

38

Wednesday, March 17, 2010

Support For Constraining
Max Slowdown

B Max3 [] Max2.5 Max 225 B Max?2

2.5

2.2

1.9

1.6

1.3

I

mgrid parser soplex perlbench

1.0

Support For Thread Priorities

B Gems-WI] Gems-WI
Gems-W4 B Gems-WS8
0.7
0.5
0.4
0.2 -
0 -

No Fairness FST

Case Study

B gromacs [art
astar B h264ref

0.8

0.6

0.4

0.2

i
No Fairness

Technique NFQ+VPC PAR-BS+VPC FST

Wednesday, March 17, 2010

