
Efficient Runahead Threads

Tanausú Ramírez
Dept. Arquitectura de

Computadores
Universitat Politecnica de

Catalunya
Barcelona, Spain

tramirez@ac.upc.edu

Alex Pajuelo
Dept. Arquitectura de

Computadores
Universitat Politecnica de

Catalunya
Barcelona, Spain

mpajuelo@ac.upc.edu

Oliverio J. Santana
Dept. Informática y Sistemas
University of Las Palmas de

Gran Canaria
Las Palmas de GC, Spain

ojsantana@dis.ulpgc.es

Onur Mutlu
Dept. of Electrical and
Computer Engineering

Carnegie Mellon University
Pittsburgh, PA, USA
onur@cmu.edu

Mateo Valero
DAC - UPC

BSC - Centro Nacional
Supercomputación
Barcelona, Spain

mateo@ac.upc.edu

ABSTRACT
Runahead Threads (RaT) is a promising solution that en-
ables a thread to speculatively run ahead and prefetch data
instead of stalling for a long-latency load in a simultane-
ous multithreading processor. With this capability, RaT can
reduces resource monopolization due to memory-intensive
threads and exploits memory-level parallelism, improving both
system performance and single-thread performance. Unfor-
tunately, the benefits of RaT come at the expense of increas-
ing the number of executed instructions, which adversely af-
fects its energy efficiency.

In this paper, we propose Runahead Distance Prediction
(RDP), a simple technique to improve the efficiency of Runa-
head Threads. The main idea of the RDP mechanism is to
predict how far a thread should run ahead speculatively such
that speculative execution is useful. By limiting the runa-
head distance of a thread, we generate efficient runahead
threads that avoid unnecessary speculative execution and en-
hance RaT energy efficiency. By reducing runahead-based
speculation when it is predicted to be not useful, RDP also al-
lows shared resources to be efficiently used by non-speculative
threads. Our results show that RDP significantly reduces
power consumption while maintaining the performance of
RaT, providing better performance and energy balance than
previous proposals in the field.

Categories and Subject Descriptors
B.8 [Hardware]: Performance and Reliability—General,
Performance Analysis and Design Aids; C.1.3 [Processor
Architectures]: Other Architecture Styles—SMT proces-
sors, Out-of-order processors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

General Terms
Measurement, Performance, Experimentation

Keywords
Simultaneous multithreading, Runahead, energy-efficiency

1. INTRODUCTION
Multi-threaded processors provide support for many si-

multaneous hardware threads of execution in various ways,
including Simultaneous Multithreading (SMT) [22][25] and
Chip Multiprocessing (CMP) [15]. Regardless of how many
cores are available in the future, the ability to deal with
varying (due to novel on-chip memory hierarchies) and large
memory latencies will continue to be very important, espe-
cially for multithreading processors due to different threads’
performance and interference in shared resources.

In this scenario, processor architects and manufacturers
have noticed the importance of the memory wall problem
[24] and resource contention in SMT/CMT processors. Re-
cently, several proposed techniques exploit memory-level par-
allelism (MLP) [10] of memory-intensive threads while pre-
venting them from clogging shared resources. An interesting
solution is Runahead Threads (RaT) [16]. RaT detects when
a thread executes a long-latency load, and then it turns the
offending thread into a runahead thread while the miss is
outstanding. SMT processors have two main advantages
using RaT: 1) by allowing runahead execution on the L2-
missing thread, RaT prefetches data and improves the indi-
vidual performance of that thread, 2) by allowing a thread
to execute speculatively rather than stall on an L2 miss,
RaT ensures that this thread (that incurs an L2 miss) recy-
cles faster the resources it uses instead of clogging up shared
resources that could be used by other threads.

However, while RaT is an interesting solution that both
improves thread performance and reduces resource clogging
in SMT processors, this mechanism has an important short-
coming: its benefits come at the cost of executing a large
number of instructions due to runahead speculative execu-
tion. When this speculative runahead execution does not
expose prefetching through MLP, it does not contribute to

performance improvement. As a consequence, that runa-
head thread execution is not useful from the thread perfor-
mance point of view and degrades energy efficiency of the
processor by executing a large number of useless instruc-
tions.

In this paper, we aim to improve the efficiency of the runa-
head threads to alleviate this drawback. We focus on reduc-
ing the useless speculative work done by runahead threads as
much as possible without degrading their performance bene-
fits. To this end, we introduce a prediction mechanism which
is guided by the “useful runahead distance”, a new concept
that indicates how far a thread should run ahead such that
speculative runahead execution is useful. Based on this dis-
tance information obtained dynamically, our technique takes
two actions. First, it decides whether or not a thread should
start runahead execution, (i.e. whether or not runahead ex-
ecution is useful) to avoid the execution of useless runahead
periods. Second, it predicts how long the thread should ex-
ecute in runahead mode to reduce unnecessary extra work
done by useful runahead periods. With these capabilities,
this new mechanism indirectly predicts the maximum MLP
achievable by a particular runahead thread while at the same
time reducing the extra speculative work.

This paper also provides new, quantitative full-chip power
and energy-delay results for runahead execution, unlike pre-
vious research in runahead efficiency that report only the
reduction in speculative instructions. According to these re-
sults, our new proposal reduces the power consumption of
RaT on SMT processors by 14% on average, without signif-
icantly affecting its performance. Moreover, it provides the
best energy-delay square ratio compared to other efficient
runahead execution techniques used with RaT.

The remainder of this paper is organized as follows. We
provide a brief discussion of the previous work in Section
2. In Section 3 we describe in detail our technique to opti-
mize runahead threads. Section 4 describes our experimen-
tal framework. We provide a detailed evaluation comparing
our proposal to prior work in Section 5 and analysis and
data about our proposal in Section 6. Finally, we present
our conclusions in Section 7.

2. RELATED WORK
Memory-Level Parallelism (MLP) refers to the idea of gen-

erating multiple cache misses in parallel such that their la-
tencies are overlapped [10]. Previous research has shown
that exploiting MLP is an effective approach for improv-
ing the performance of memory bound applications [5][11].
Recent techniques focus on exploiting MLP of threads to ad-
dress the long-latency load problem on SMT processors. The
prevailing idea behind these approaches is that a thread can
continue executing after it incurs a long-latency cache miss
to overlap multiple independent long-latency loads. The
goal is to preserve single thread performance in the pres-
ence of long-latency loads within the context of an SMT
processor while ensuring that a memory bound thread does
not hold on to too many processor resources.

Two MLP-aware techniques [8] were built on top of stall
and flush fetch policies [20] to achieve this objective by using
an MLP predictor. Using this MLP predictor, these fetch
policies decide to (1) stall or flush the L2-missing thread if
there is no MLP or (2) continue executing as many instruc-
tions as predicted by the MLP predictor. After that, the
thread is either stalled (MLP stall) or flushed (MLP flush).

Due to their design, the disadvantage of these techniques is
that they are limited by the reorder buffer size in the amount
of MLP they can exploit. Thus, a thread that misses in the
L2 cache cannot execute more instructions than the reorder
buffer size permits, which cannot be scaled without intro-
ducing large additional complexity.

The Runahead Threads (RaT) approach [16] exploits MLP
by applying runahead execution [14] to any running thread
when a long-latency load is pending. RaT allows memory-
intensive threads to advance speculatively in a multithreaded
environment instead of stalling the thread, doing benefi-
cial work (prefetching) to improve the performance. RaT
reaches further MLP going speculatively beyond the pro-
cessor’s instruction window, overcoming the limitation of
MLP-aware techniques aforementioned. However, RaT has
no information about the existence of MLP for a particu-
lar runahead period and therefore it performs useless extra
work if there is no available MLP.

Previous research [13] proposed techniques to improve the
efficiency of runahead execution in single-thread processors.
That work identified three causes of inefficiency in runahead
execution (short, overlapping, and useless runahead periods)
and proposed several techniques to reduce their occurrences.
To eliminate short and overlapping periods, threshold-based
heuristics are used. To eliminate useless runahead periods,
that work proposes a technique with a binary MLP pre-
dictor based on two-bit saturating counters. In case there
is no MLP to be exploited, a runahead period is not initi-
ated at all. In parallel to our work, another approach [7]
combines the advantages of both MLP-aware flush and RaT
mechanisms. This proposal predicts the MLP only in order
to decide whether the thread goes into full runahead exe-
cution (far-distance MLP) or the thread is flushed/stalled
(short-distance MLP). However, in these previous propos-
als, if a runahead period is activated, the processor will stay
in runahead mode until the load that misses in the L2 is
completely serviced.

We develop a different mechanism for improving the en-
ergy efficiency of RaT. The new idea in our proposal is to
predict how long a thread should stay in runahead mode.
In contrast, existing proposals predict only whether or not
to enter in a full runahead execution episode (i.e., a runa-
head episode that ends when the runahead-causing miss is
serviced). For this very reason, as we will show, our mech-
anism is able to eliminate more useless speculative instruc-
tions (even in useful runahead periods) than previous pro-
posed techniques.

3. A TECHNIQUE FOR EXECUTING
EFFICIENT RUNAHEAD THREADS

Previous studies [16][7] have shown that RaT provides
better SMT performance and fairness than prior SMT re-
source management policies. Nevertheless, its advantages
come at the cost of executing a large amount of useless
speculative work. The efficiency of Runahead threads can
be indirectly related to the performance improvement pro-
vided by prefetching and the number of additional specula-
tive instructions due to runahead execution. This efficiency
relation is illustrated in Figure 1. This figure shows the in-
crease in executed instruction (bars) and the corresponding
increase in performance (triangular marks) due to RaT over
a baseline SMT processor with ICOUNT fetch policy [21] for

different evaluated workloads (see Section 4 for the experi-
mental framework). Looking at the averages (AVG) for each
set of multithreaded workloads, RaT increases the number
of executed instructions by 41% for 2-thread and 42% for
4-thread workloads to improve the throughput performance
by 52% and 21% respectively compared to ICOUNT.

Figure 1: Extra executed instructions vs. performance SpeedUp
due to Runahead Threads.

Since the execution of every instruction requires energy,
all of this extra work directly affects the processor’s power
consumption. We measure and analyze this extra work in
terms of energy (see Figure 7 in Section 5.2), and based
on our studies, RaT consumes on average 57% more power
for 2-thread workloads and 43% for 4-thread workloads than
the basic ICOUNT fetch policy. Consequently, RaT requires
more energy to increase the performance of the SMT proces-
sor. Even though the SMT processor using RaT is higher
performance than ICOUNT, it is desirable to control the
number of useless instructions executed by runahead threads
to get improve energy-efficiency.

3.1 Runahead Distance
The usefulness of a runahead thread depends on the total

amount of prefetching that a particular runahead thread is
able to do during its speculative execution. Hence, in order
to improve RaT efficiency, we would like to stop execut-
ing the runahead thread when it finishes generating useful
prefetch requests, that is, there is no more MLP to be ex-
ploited. Therefore, we want to determine the useful lifetime
of a runahead thread to expose as much MLP as possible
with the minimum number of speculative instructions.

A full runahead thread execution consists of the total
number of instructions that a particular thread executes
from the L2-miss load that triggers a runahead execution
to the last runahead instruction executed before flushing
the pipeline when that L2-miss is resolved. Figure 2 illus-
trates an example of a runahead thread execution generated
by a long-latency load miss. This figure depicts all instruc-
tions executed by a particular runahead thread, indicating
the long-latency loads (LLLi). After the execution of LLL4,
there are no more long-latency loads until the runahead-
causing load is serviced. Intuitively, executing a runahead
thread beyond the LLL4 instruction does not provide signif-
icant performance benefit and, in addition, it wastes energy.
Based on this observation, we define useful runahead dis-
tance as the number of executed instructions between the
L2-miss load that triggers the runahead thread and the last
speculatively-executed load instruction that caused an L2

miss in a particular runahead thread execution (i.e., LLL4
in the example illustrated in the figure).

Figure 2: Illustration of the “useful runahead distance” under a
runahead thread execution

The useful runahead distance can be tracked on a per
static load basis, and the runahead distance of the next
runahead episode caused by that load can be predicted by
the useful distance recorded in previous runahead instances
caused by that load. One important data in our studies is
that only 12% of static loads generate 90% of all runahead
threads (similar results for cache misses were shown in [6]).
According to this analysis, it would be possible to track the
useful runahead distance of the vast majority of runahead
threads by tracking a small number of static loads.

3.2 Runahead Distance Prediction
To this end, we propose Runahead Distance Prediction

(RDP), a mechanism that predicts and decides how many
instructions a runahead thread should execute. The idea of
this mechanism is to capture dynamically the useful runa-
head distance of runahead threads caused by each static
load. If the runahead distance is stable, the next runahead
thread initiated by that load is run only up to the useful
runahead distance with the hope that no useless instructions
that do not benefit performance will be executed. In case
the predicted useful distance is low, RDP does not initiate
a runahead thread because the benefit of runahead would
likely be lower than its cost (i.e., the runahead thread is
very likely fully useless for performance).

With this ability, RDP has three major benefits: 1) it
reduces the extra dynamic energy consumption due to ex-
ecuting useless speculative instructions, 2) it reduces the
pressure that useless speculative instructions exert on shared
SMT resources, thereby allowing other threads in the pro-
cessor to make faster progress and thus improving the uti-
lization of the SMT system, 3) it minimizes other possible
causes of thread performance degradation (e.g., due to cache
pollution or bandwidth interference) that might be caused
by executing useless runahead instructions.

3.2.1 RDP Overview
RDP is based on learning the useful runahead distances

of previous runahead thread executions caused by the same
static load instruction to predict the useful runahead dis-
tance of future runahead periods for that load. Based on
this prediction, RDP decides (1) whether or not a possi-
ble runahead thread should be initiated on an L2-miss load
(avoiding the execution of useless runahead periods) and (2)
if runahead thread is initiated, how long the runahead exe-
cution should be according to the useful runahead distance.
With this prediction mechanism, (1) eliminate useless runa-
head threads that do not provide performance benefit, 2)
not execute the final portions of runahead threads that do
not provide performance benefit.

We propose an RDP predictor that keeps track of two
runahead distance values per load: 1) the useful runahead
distance obtained in the last full-length runahead execution

period, called full useful distance, 2) the useful runahead
distance of the last runahead execution period, called last
useful distance. The former is a register that is updated
each time a runahead thread is fully executed (i.e., executed
until the runahead-causing miss is fully serviced). The latter
is a register that is always updated at the end of a runahead
episode. To store the two useful runahead distance values
associated with each L2-miss static load, we include a tagged
table, called Runahead Distance Information Table (RDIT).
As we show in Figure 3, each entry of the RDIT contains
the load PC tag, the thread identifier, the two runahead
distances: the last and the full, and a 2-bit counter that we
explain below its functionality.

Figure 3: Runahead Distance Information Table

3.2.2 RDP Description
Figure 4 shows a flow diagram that summarizes the how

the RDP mechanism works. First of all, when a load misses
in the L2 cache, RDIT is accessed to obtain the runahead
distance information (i.e., the full and last useful distance
values) for a particular long-latency load (1). The first time
a static load accesses the RDIT, the table has no distance
information for that load. For this reason, when this load
reaches the head of the reorder buffer, a runahead thread is
activated and it is executed until the L2 miss is fully ser-
viced. At the end of this runahead execution, the load that
caused the runahead thread activation allocates a new entry
in the RDIT and stores its observed useful runahead dis-
tance in both full and last useful distance fields because the
runahead episode was executed in full.

Later, when the same load misses in the L2 cache again
during normal thread execution, it accesses the RDIT to
obtain the useful runahead distance associated with it. Ini-
tially, RDP checks whether the recorded distance values are
reliable (2). To do this, RDP computes the difference be-
tween the full and the last runahead distance values and
compares the result to a threshold value (called Distance Dif-
ference Threshold - DDT). If the distance difference is larger
than DDT, the stored distance information is considered un-
reliable (or unstable). In this case, the runahead episode is
executed in full (that is, until the runahead-causing L2-miss
load is fully serviced). Both last and full useful distance val-
ues are updated again at the end of this runahead episode.1

We have assessed several values for DDT and we found that
a threshold value of 64 obtains the best tradeoff between
performance and efficiency. We show this DDT analysis in
section 6.1.

1Hence, RDP corrects the useful runahead distance value if
the last distance has become significantly different than the
previous ones.

Figure 4: Flowchart of Runahead Distance Prediction technique

On the other hand, if the difference between last and full
distances is smaller than DDT, the distance values are con-
sidered to be reliable. In this case, the last useful distance
value is used to decide whether or not to start the runahead
thread and to control how long the runahead thread should
be executed. RDP decides to start a runahead thread if the
value of the last useful runahead distance is above a partic-
ular activation threshold (3). We select this threshold based
on a study of the number of instructions that can be exe-
cuted from the time a candidate runahead load is detected to
the time the load reaches the head of the ROB. We set this
threshold value in 32 instructions based on the global aver-
age result of this study for the different workloads. There-
fore, if the last useful distance is below this activation thresh-
old value (32), it means that the possible (near) MLP can
be exploited without entering runahead execution, since all
overlapping loads would be issued by the out-of-order exe-
cution window. Otherwise (if the last useful distance value
is greater than this threshold), RDP initiates runahead ex-
ecution and ensures that the runahead threads executes at
most as many instructions as indicated by the last useful
distance value. Once the runahead thread executes as many
instructions as the last useful runahead distance indicates,
RDP updates the corresponding last useful runahead dis-
tance field in RDIT (4) for the runahead-causing load based
on the observed useful distance in this very last period. We
want to note that the distance comparison (between current
distance and the last useful distance) needed to terminate
the runahead thread to ensure it executes no more than last
useful distance number of instructions is performed concur-
rently with the retirement stage during the runahead spec-
ulative commit process.

3.2.3 Ensuring Reliability of Small Useful Distances
According to the initial analysis with the proposed RDP

design, we found that some runahead periods caused by a
load initially have a small useful runahead distance (small
enough to not start a runahead thread), but that useful
runahead distance becomes larger later. Our study shows
that 38% of static loads had a small useful runahead dis-
tance at first and 26% of static loads increase their useful
runahead distance value later. As a result, if we use informa-
tion from the early runahead instances of these loads, these
loads would never initiate runahead later even though their
runahead periods might become useful in the future. Conse-
quently, performance degrades because useful runahead pe-
riods are eliminated. If RDP cannot take these cases into
account, it could degrade performance compared to baseline
RaT.

To prevent this, we use a simple heuristic that allows our
mechanism to build confidence in a small useful runahead
distance before enforcing. The key idea is to monitor how
many times the static load instruction caused a runahead
episode that is smaller than a threshold. In this case, we
only allow RDP to enforce a small runahead distance if the
static load has been very consistent in causing runahead
episodes with small useful distances. To implement this
idea, if thelast useful runahead distance is lower than start-
ing runahead thread condition (e.g. a distance less than 32)
in the last N times for a load instruction, RDP initiates full
runahead execution for that load instruction (instead of not
starting runahead mode). Note that we enforce a limit of N
for this heuristic because if we always enable full runahead
execution, we will ignore when the runahead periods are
truly useless, diminishing our technique’s ability to reduce
the useless extra work. After performing an exploration of
the design space, our experiments show that a value of N=3
performs well. So, we use a 2-bit counter per-entry in RDIT
to perform this countdown (Figure 3). This new heuristic es-
sentially provides an additional confidence mechanism that
determines whether or not a small distance is reliable.

3.2.4 Implementation issues
Runahead Distance Prediction described in this section

is a simple mechanism that aims to improve the efficiency
of runahead threads with low hardware cost and complex-
ity. Basically, the processor needs to track the last-issued
L2 miss load in each runahead thread execution to compute
the useful runahead distance. To this end, we introduce the
use of two new registers per hardware context: the total-
runahead-distance counter and the useful-runahead-distance
register. The first one is incremented per each instruction
pseudo-retired during a runahead period. The second one
holds the last-observed useful runahead distance for a par-
ticular thread execution. Thus, when a runahead thread
starts, both registers are set to zero. Then, whenever a
long-latency load is encountered during runahead execution,
the total-runahead-distance counter value is copied into the
useful-runahead-distance register. This procedure continues
until the runahead thread ends. At this point in time, the
value of the useful-runahead-distance register is used to up-
date the RDIT for the corresponding load.

The RDIT configuration consists of a 4-way table of 1024
entries. So, the total RDIT size according to the different
fields of each entry described in Figure 3 is around 4.5KB
(which is much less than 1% of the L2 cache area). We
used CACTI [18] to determine the access time to the RDIT.
Assuming a 0.65nm technology and a 2GHz frequency, RDIT
access/update can be performed in less than one cycle. As
the useful runahead distance can depend on the program
path leading to the L2-miss load instruction, the RDIT is
indexed by an XOR function of the program counter of the
load and 2 bits from the two previous conditional branches
history. Access and update of RDIT are out of the critical
path of execution. First, RDIT is accessed when a load
misses in the L2 cache, which is a relatively infrequent event,
and the required runahead distance prediction is not needed
till the load reaches the head of the ROB. Second, RDIT is
updated when the processor terminates a runahead thread.
So, RDIT update latency can therefore be overlapped with
the pipeline flush at the end of runahead thread.

4. EXPERIMENTAL SETUP
We use a dynamic resource partitioning model in our SMT

processor. In this model, threads coexist in the different
pipeline stages sharing the important hardware resources (is-
sue queues, rename registers, functional units, caches, mem-
ory system). To prioritize threads in the fetch stage, we use
the ICOUNT(2,8) as the underlying policy, which selects
two different threads and fetches up to eight instructions
from each thread in each cycle. The modeled memory sub-
system includes a two level cache organization and the main
memory with the corresponding latencies. We set the main
memory latency to a minimum of 300 cycles to emulate the
importance of the memory wall problem. The processor also
employs a similar aggressive prefetcher based on the stream-
based stride predictor proposed in [9], that can detect and
generate prefetches for different access streams into the L2
cache. The main configuration parameters of the SMT pro-
cessor model are listed in Table 1.

Processor core
Pipeline depth 10 stages
Fetch/decode/issue/execute width 8 way
Reorder buffer size 64 entries per context
INT/FP registers 32 arch. + 48 phys. per context
INT/FP/LS issue queues 64 / 64 / 64
INT/FP/LdSt units 4 / 4 / 2
Branch predictor perceptron (256-entry)
Hardware prefetcher Stream buffers (16)

Memory subsystem
Icache 64 KB, 4-way, 1-cycle access latency
Dcache 64 KB, 4-way, 3-cycle access latency
L2 Cache 1 MB, 8-way, 20-cycle access latency
Cache line size 64 bytes
Main memory latency 300-cycle minimum latency

Table 1: Baseline SMT processor configuration

We use an execution-driven SMT simulator derived from
SMTSIM [19] including an enhanced power model based on
Wattch [2]. We model the power for all the main hard-
ware structures of the processor (functional units, registers,
branch predictor, queues, rob, memory system, etc), includ-
ing also the clock. With this accurate power model, we
report power and energy consumption of the different mech-
anisms evaluated.

The experiments have been performed with multiprogram-
ming workloads created by combining single-threaded bench-
marks from the SPEC CPU2000 suite. All benchmarks
were compiled on an Alpha AXP-21264 using the Compaq
C/C++ compiler with the -O3 optimization level to obtain
Alpha ISA binaries. For each benchmark, we simulate 300
million representative instructions using the reference input
set. To identify representative simulation segments, we an-
alyzed the distribution of basic blocks using SimPoint [17].
Measurements are then taken using the FAME [23] method-
ology. FAME re-executes all traces in a multiprogrammed
workload until all of them are fairly represented in the final
measurements.

To create the workloads, we characterized each program
based on the L2 cache miss rate it attains when run on a
single-threaded processor. A benchmark that has a high L2
cache miss rate is classified as a memory intensive bench-
mark, otherwise it is classified as computing intensive. We
compose mixes of 2 and 4 threads workloads and create
three different kinds of workload mixes: those consisting of
computing-intensive benchmarks (ILP), those consisting of

ILP2 MIX2 MEM2 ILP4 MIX4 MEM4
apsi,eon applu,vortex applu,art apsi,eon,fma3d,gcc ammp,applu,apsi,eon art,mcf,swim,twolf
apsi,gcc art,gzip art,mcf apsi,eon,gzip,vortex art,gap,twolf,crafty art,mcf,vpr,swim

bzip2,vortex bzip2,mcf art,twolf apsi,gap,wupwise,perl art,mcf,fma3d,gcc art,twolf,equake,mcf
fma3d,gcc equake,bzip2 art,vpr crafty,fma3d,apsi,vortex gzip,twolf,bzip2,mcf equake,parser,mcf,lucas

fma3d,mesa galgel,equake equake,swim fma3d,gcc,gzip,vortex lucas,crafty,equake,bzip2 equake,vpr,applu,twolf
gcc,mgrid lucas,crafty mcf,twolf gzip,bzip2,eon,gcc mcf,mesa,lucas,gzip mcf,twolf,vpr,parser
gzip,bzip2 mcf,eon parser,mcf mesa,gzip,fma3d,bzip2 swim,fma3d,vpr,bzip2 parser,applu,swim,twolf
gzip,vortex swim,mgrid swim,mcf wupwise,gcc,mgrid,galgel swim,twolf,gzip,vortex swim,applu,art,mcf
mgrid,galgel twolf,apsi swim,vpr
wupwise,gcc wupwise,twolf twolf,swim

Table 2: Multithreaded workloads grouped by categories

memory-intensive benchmarks (MEM), and those consisting
of a mixture of the two (MIX). Table 2 shows these work-
loads.

5. EVALUATION
We quantitatively evaluate the performance and energy ef-

ficiency of the RDP technique and other related mechanisms
through different metrics. Regarding SMT related tech-
niques, we include the MLP-aware flush policy [8] (MLP-
Flush) and the recent proposal MLP-aware runahead thread
[7] (MLP-RaT). In addition, we apply the techniques in the
single-threaded context for efficient runahead execution [13]
to Runahead Threads in SMT. We label this combination as
RaT-SET (Single-thread Execution Techniques -SET).

5.1 Performance
Figure 5(a) and 5(b) show the performance results of the

mentioned techniques in terms of throughput (total IPC)
and Hmean speedup [12] (harmonic mean of individual thread
speed-ups) metrics respectively. Using these metrics, we
evaluate the overall system performance of our SMT proces-
sor model, measuring the overall IPC and the performance-
fairness balance of each technique regarding the individual
thread performance.

Figure 5(a) demonstrates the performance improvement
achievable using RaT mechanisms. In general, all RaT based
mechanisms provide high performance, especially for MIX
and MEM workloads in which there are memory-intensive
threads involved. RDP obtains 33% speedup over the base-
line ICOUNT, which is the closest throughput improvement
to RaT (35%). RaT+SET and MLP-RaT provide 23% and
28% performance improvement respectively. In the RaT-
SET case, the processor either executes the whole runahead
period until the L2 miss returns or it does not enter runa-
head mode due to the heuristics and the binary prediction
applied. So, RaT+SET eliminates extra work avoiding full
runahead periods but it also eliminates useful runahead peri-
ods, thereby degrading performance by reducing prefetching
benefits. In contrast, RDP is more fine-grained since the
processor executes a runahead thread until the predicted
runahead distance (i.e., until the runahead execution stops
being useful), with the special case that if the predicted dis-
tance is smaller than the activation threshold, the processor
does not enter runahead mode. On the other hand, while
MLP-Flush improves the throughput over ICOUNT by 12%
on average, this technique cannot improve the performance
as much as RaT proposals mainly because it cannot go be-

yond the reorder buffer size to exploit prefetching due to
distant MLP.

For Hmean metric, the performance results are similar as
for throughput. RaT-SET, MLP-RaT and RDP obtain rel-
atively close Hmean performance results to RaT. RaT pro-
vides 31% and 14% higher hmean speedup than ICOUNT for
2- and 4-thread workloads respectively. MLP-RaT and RDP
provide similar results with slightly lower Hmean speedup
(4% and 5% respectively). The predictor misspredictions
in each technique degrades sometimes the individual IPC
of memory-intensive threads compared to the original RaT
mechanism, which reduces Hmean speedup. RaT-SET shows
6% slowdown for Hmean compared to RaT. We therefore
conclude that RDP preserves the performance of runahead
threads better than previous mechanisms.

5.2 Energy Efficiency
We now study the implications of using the different tech-

niques in terms of energy efficiency. We quantify the extra
work reduction, the power consumption and performance-
energy balance to show a detailed energy/power evaluation.

Figure 6 shows the normalized number of speculatively
executed instructions of different techniques compared to
baseline RaT (note that we only show the mechanisms that
employ runahead threads in this figure). We also show the
optimum instruction reduction ratio using an oracle tech-
nique (RDP Oracle) that is unimplementable in real hard-
ware. This optimum reduction is obtained by executing each
runahead thread for its ideal useful runahead distance, i.e.
until the last instruction that generates an L2 miss in the
episode is executed. As Figure 6 shows, the optimum reduc-
tion in speculative instructions is 64% on average.

According to Figure 6, MLP-RaT reduces the specula-
tive work by 10% (extra flushed instructions due to flush
mechanism also count for speculative instructions) whereas
applying RaT-SET this reduction is 31%. In both mecha-
nisms (MLP-RaT and RaT-SET), if a runahead thread is
predicted to be executed, the processor fully executes the
runahead thread until the L2 miss that caused entry into
runahead is serviced. For this reason, even if runahead ex-
ecution does not provide any benefits beyond some point
in the runahead execution (that we called useful runahead
distance), these mechanisms continue executing speculative
useless instructions.

In contrast, the reduction in speculative instructions us-
ing RDP comes from eliminating both the useless runahead
threads (as other techniques also try to do) and the useless
runahead instructions at the end of useful runahead threads
(thanks to the fine-grain runahead distance prediction). As

(a) Throughput (b) Hmean

Figure 5: Performance of our RDP versus efficient runahead and MLP-aware SMT fetch policies.

a result, RDP achieves the highest reduction in the amount
of speculatively executed instructions: 44% on average ac-
cording to Figure 6.

Figure 6: Fraction of speculative instructions normalized to RaT

To quantify the impact of this extra work reduction in
terms of energy, Figure 7 shows the SMT processor power
consumption when each different evaluated technique is em-
ployed. For this evaluation, we get the power for all im-
portant processor core and memory components using our
power model during all workload executions. We faithfully
model the power consumption of the additional structures
required by each techniques, e.g. the RDIP in our proposal.
To this end, we use CACTI to get the power consumption
estimation per access of each additional hardware structure
and integrate this value in our Wattch model. For instance,
the basic power for the RDIT is 1.09 watts, which is less than
1% of total processor power consumption and it is much less
than caches (4,7W for Icache and 9,4W for Dcache).

Our results show that the average dynamic power of the
processor tends to be correlated with the number of exe-
cuted instructions, similarly to Annavaram et al.’s obser-
vation [1]. For instance, the average power consumption
for 4-thread workloads is higher than 2-thread ones mainly
because IPC of the former is significantly higher. Look-
ing the Figure7, all techniques consume more power than
baseline SMT with ICOUNT. According to these power re-
sults, MLP-Flush mechanism consumes 16% whereas RaT
consumes 42% more power than ICOUNT on average.

Figure 7: Average Power consumption

Among the techniques that control runahead thread ex-
ecutions, RaT-SET reduces the power requirements by 9%
over RaT, although this reduction comes with a correspond-
ing performance degradation as we have seen in Figure 5(a)
(9% less performance compared to RaT). MLP-RaT achieves
4% average power reduction. In comparison, RDP effec-
tively reduces the power consumption by 14% on average
compared to RaT (up to 20% for MEM2 workloads) and by
10% compared to MLP-RaT. Hence, we conclude that the
RDP mechanism is the most efficient technique among all
RaT-based mechanisms.

Finally, we measure the energy-delay square product (ED2)
[3] of MLP-Flush, RaT-SET, MLP-RaT and RDP to assess
energy efficiency. This voltage-invariant metric indicates the
balance between performance and power and it gives us an
energy efficiency measure for high-performance processors.
A lower value of ED2 is better, since it indicates a more
efficient mechanism which minimizes the relation of power
consumption and cycles per instruction.

Figure 8 shows the ED2P ratio compared to the ICOUNT
mechanism and then normalized that results to the origi-
nal RaT mechanism. This figure shows that RDP provides
the best ED2 product results among all techniques (10% on
average better than RaT). Particularly, RDP provides 7%
lower ED2P than RaT for 2-thread workloads. The results
are even better for 4 threads, since RDP provides the best
average improving ED2P by 13% over RaT in these work-
loads. RaT-SET and MLP-RaT energy efficiency are lower,

with 24% and 33% ED2 ratio degradation respectively com-
pared to RDP. The reason RDP improves energy efficiency is
twofolds: 1) RDP executes the lowest number of speculative
instructions (44% compared to RaT) among all techniques,
thereby causing less power consumption (14% reduction),
2) RDP provides similar performance to RaT. We conclude
that RDP provides the highest energy efficiency compared
to all other evaluated techniques.

Figure 8: Energy-Delay2 of evaluated Runahead thread tech-
niques

6. RDP ANALYSIS
In this section, we analyze some features and relevant data

about the proposed RDP technique. We provide insights
about how this technique works and why RDP scheme is
effective to support the previous results.

6.1 Distance difference threshold study
As we described in Section 3.2.2, the value of the distance

difference threshold (DDT) fixes the confidence limit of the
two runahead distances (last and full) for a particular load
for the RDP mechanism. Figure 9 shows the relation of per-
formance improvement and extra work reduction in terms
of speculative instructions compared to RaT mechanism for
different evaluated DDT values for RDP. The curve of per-
formance represents the average performance throughput ra-
tio for all workloads between RaT and RDP configurations
with each DDT value. The curve of extra work depicts the
percentage of speculative instruction reduction for the same
experiments compared to RaT as well. We evaluate the
DDT with values that range from 0 to 128. A DDT=0 is
a very strict threshold in which only when the last and full
runahead distance are exactly the same, they are considered
reliable. Larger values involve a more flexible condition in
this sense, therefore allowing runahead threads with some
variability on computed runahead distances.

According to these results, when the DDT is increased,
the extra work is reduced since larger DDT values make the
obtained useful distances fulfill the DDT condition easily.
So, executed runahead threads become shorter due to a less
strict control that allows more differences among full and
last useful runahead distances. However, for DDT values
larger than 64, the RDP starts to lose performance with
regard to RaT. If the distance threshold is bigger, the dif-
ference between full and last useful distances can be bigger
as well. In these cases, the last useful runahead distance
can be decremented with larger margins. This results in

Figure 9: Effect of DDT value on the increase in performance and
extra instructions compared to RaT

inaccurate useful runahead distances which cause the RDP
technique to reduce the prefetching opportunities for the
long-latency loads that cannot be overlapped in the same
runahead thread. As a consequence, this effect generates
more runahead threads due to future L2 cache misses that
could not be avoided by useful previous prefetches which
impact on the performance. Therefore, in order to keep the
performance of the original RaT mechanism, we chose the
DDT=64 as the threshold value with the best tradeoff be-
tween performance and efficiency based on the results for
these experiments. We are studying as future work to gen-
erate and recalibrate dynamically this DDT in function of
certain processor features and work load conditions.

6.2 Length of runahead threads
Figure 10 shows the average length of runahead threads

(measured as number of instructions executed per runahead
thread) using RaT or using RDP. We also show a striped
part for RaT bars which indicates the average ideal use-
ful distance for the executed runahead threads in this case.
This ideal runahead distance represents the optimum dis-
tance calculated for each executed runahead thread with
RaT according to our useful distance definition. This data
provides valuable information about how well RDP manages
the executed runahead threads to control the instruction ex-
ecution with respect to the ideal computed useful runahead
distances.

Figure 10: Avg number of instructions executed per runahead
thread for RAT and RDP

The figure shows that RDP is successful at reducing the
length of runahead threads. This is especially true for the
MIX and MEM workloads. In addition, RDP executes more
instructions than the ideal mechanism, which is expected
because RDP cannot always accurately predict the useful

Figure 11: Distribution of runahead threads execution based on what RDP decided to do with them

distance of a runahead thread. With RDP, he average length
reduction per runahead thread for 2-thread workload is 282
instructions whereas for 4-threads is 201 instructions. This
reduction directly results in the energy savings of RDP.

6.3 Distribution of runahead threads
We show how RDP manages the different runahead threads

according to the predicted useful distance. Figure 11 illus-
trates a more detailed analysis of the runahead thread dis-
tribution in terms of RDP decision for 2-thread workloads.
Each bar is split in three parts: the percentage of runa-
head threads that were fully executed (full), the percentage
of runahead threads whose execution length was limited by
the predicted useful runahead distance (limited), and the
percentage of runahead threads that were not even started
(because their predicted useful distances do not fulfill the
activation threshold, i.e. the distance was less than 32).

Figure 11 indicates diverse behavior among the workloads.
For example, if we analyze how many times our technique
eliminates a runahead thread completely, we can observe
there are workloads with a high percentage of runahead
threads suppressed (’not started’ label). These are the cases
of bzip2-mcf and mcf-eon. Because mcf is a benchmark
with a huge number of dependent loads, it causes invalid
runahead loads that do not issue prefetches which are not
taken into account for useful distance computation. On av-
erage, the percentage of not initiated runahead threads due
to small distances for 2-thread workloads is 34% (in the case
of four threads this percentage is 37%). On the other hand,
there are workloads which have a high ratio of runahead
threads limited by the corresponding useful distance, for in-
stance, mgrid-galgel, galgel-equake,swim-mgrid or applu-art
(around 40% for them). This percentage is 22% for overall
2-thread workloads. Note that limiting the runahead dis-
tance leads to more efficient runahead threads because those
threads execute fewer instructions to achieve the same ben-
efit as if they were executed in full length.

To provide an in-depth examination of the previous re-
sults, Figure 12 shows a histogram of how many runahead
threads execute between N and M instructions (in a range
of 32 instructions) for a particular workload (art,gzip) using
RaT and RDP2. The bar for RDP between 0-32 instruc-
tions indicates the number of runahead threads that were
not started for this workload. RDP has fewer long runahead

2Although we only show one example here, the remaining
workloads follow a similar trend.

threads compared to RaT, but it has more short runahead
threads than RaT. Effectively, RDP converts long runahead
threads into shorter ones by eliminating their useless por-
tions at the end that do not provide any prefetching ben-
efits. The end result is a significant reduction in executed
instructions and hence energy, as we have shown previously.

Figure 12: Runahead threads distance histogram for RDP and
RaT

7. CONCLUSIONS
This paper developed a new technique, called Runahead

Distance Prediction (RDP), to make runahead threads more
efficient. The key idea is to predict how long a runahead
thread should execute before it stops providing useful per-
formance benefits and execute a runahead thread only for
that useful “distance.” The proposed mechanism also de-
cides whether or not a runahead thread should be executed
at all: if the predicted useful distance is too small, the ex-
ecution of the runahead thread is suppressed. RDP is able
to eliminate more instructions than previous runahead tech-
niques because it can eliminate at a fine-grain the useless
portion of runahead threads/episodes.

Our results show that our runahead distance prediction
technique effectively reduces the speculatively executed in-
structions by 44% and thereby the dynamic power consump-
tion due to runahead threads by 14% on average. RDP pro-
vides the best energy-efficiency ratio compared to previously
proposed efficient runahead techniques with a 10% ED2 bet-
ter than the baseline Runahead Threads mechanism. We
conclude that RDP is a new technique that can improve the
efficiency of runahead mechanisms in isolation or in conjunc-
tion with other previous runahead efficiency techniques.

Acknowledgments
This work has been developed and supported by the Min-
istry of Education of Spain under contract TIN-2004-07739-
C02-01 whereas the registration fees and travel costs by con-
tract TIN2007-61763. We would like to thank Francisco
Cazorla and Augusto Vega from Barcelona Supercomput-
ing Center (BSC-CNS) for their useful help on integrating
the Wattch power model with our simulator.

8. REFERENCES
[1] M. Annavaram, E. Grochowski, and J. Shen.

Mitigating amdahls law through epi throttling. In
32nd International Symposium on Computer
Architecture, (ISCA-32)., pages 298–309, 2005.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In 27th International Symposium on
Computer Architecture (ISCA-27), 2000.

[3] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson,
P. N. Kudva, A. Buyuktosunoglu, J.-D. Wellman,
V. Zyuban, M. Gupta, and P. W. Cook. Power-aware
microarchitecture: Design and modeling challenges for
next-generation microprocessors. IEEE Micro,
20(6):26–44, 2000.

[4] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay.
High-performance throughput computing. Micro,
IEEE, 25(3), 2005.

[5] Y. Chou, B. Fahs, and S. G. Abraham.
Microarchitecture optimizations for exploiting
memory-level parallelism. In 31th International
Symposium on Computer Architecture, ISCA-31,
pages 76–89, 2004.

[6] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes,
Y.-F. Lee, D. Lavery, and J. P. Shen. Speculative
precomputation: long-range prefetching of delinquent
loads. In 28th annual International Symposium on
Computer Architecture (ISCA-28), 2001.

[7] K. Craeynest, S. Eyerman, and L. Eeckhout.
Mlp-aware runahead threads in a simultaneous
multithreading processor. In 4th International
Conference on High Performance Embedded
Architectures and Compilers (HiPEAC’09), pages
110–124, 2009.

[8] S. Eyerman and L. Eeckhout. A memory-level
parallelism aware fetch policy for smt processors. In
International Symposium on High-Performance
Computer Architecture, HPCA07, 2007.

[9] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic.
Memory-system design considerations for
dynamically-scheduled processors. In 24th Annual
International Symposium on Computer Architecture
(ISCA-24), pages 133–143, 1997.

[10] A. Glew. Mlp yes! ilp no! In In Wild and Crazy Ideas
Session, 8th International Conference on Architectural
Support for Programming Languages and Operating
Systems, 1998.

[11] T. Karkhanis and J. E. Smith. A day in the life of a
data cache miss. In Workshop on Memory
Performance Issues., 2002.

[12] K. Luo, J. Gummaraju, and M. Franklin. Balancing
throughput and fairness in smt processors. In

International Symposium on Performance Analysis of
Systems and Software (ISPASS’01),
Tucson,AZ,USA,2001.

[13] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for
efficient processing in runahead execution engines. In
32th International Symposium on Computer
Architecture, ISCA-32, pages 370–381, 2005.

[14] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt.
Runahead execution: An alternative to very large
instruction windows for out-of-order processors. In
International Symposium on High-Performance
Computer Architecture, HPCA03, page 129,
Washington, DC, USA, 2003.

[15] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson,
and K. Chang. The case for a single-chip
multiprocessor. SIGOPS Oper. Syst. Rev., 30(5):2–11,
1996.

[16] T. Ramirez, A. Pajuelo, O. J. Santana, and M. Valero.
Runahead threads to improve smt performance. In
International Symposium on High-Performance
Computer Architecture, HPCA08, page 129, Salt Lake
City, UT, USA, 2008.

[17] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and
simulation points in applications. In International
Conference on Parallel Architectures and Compilation
Techniques, PACT’01, pages 3–14, Washington, DC,
USA, 2001.

[18] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. Cacti 4.0.
Technical Report HPL-2006-86, HP Labs, 2006.

[19] D. M. Tullsen. Simulation and modeling of a
simultaneous multithreading processor. In Int. Annual
Computer Measurement Group Conference, pages
819–828, 1996.

[20] D. M. Tullsen and J. A. Brown. Handling long-latency
loads in a simultaneous multithreading processor. In
34rd International Symposium on Microarchitecture,
(MICRO-34), Washington, DC, USA, 2001.

[21] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, and R. L. Stamm. Exploiting choice:
instruction fetch and issue on an implementable
simultaneous multithreading processor. In 23th
International Symposium on Computer Architecture,
(ISCA-23), NY, USA, 1996.

[22] D. M. Tullsen, S. J. Eggers, and H. M. Levy.
Simultaneous multithreading: maximizing on-chip
parallelism. In 22nd International Symposium on
Computer Architecture, (ISCA-22), New York, NY,
USA, 1995.

[23] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana,
E. Fernandez, and M. Valero. A novel evaluation
methodology to obtain fair measurements in
multithreaded architectures. In Workshop on
Modeling, Benchmarking and Simulation, 2006.

[24] W. A. Wulf and S. A. McKee. Hitting the memory
wall: implications of the obvious. SIGARCH
Computer Architecture News, 23(1), 1995.

[25] W. Yamamoto and M. Nemirovsky. Increasing
superscalar performance through multistreaming. In
International Conference on Parallel Architectures and
Compilation Techniques, PACT’95, pages 49–58,
Manchester, UK, 1995.

