
Energy-Efficient Mobile Robot Control via Run-time Monitoring of
Environmental Complexity and Computing Workload

Sherif A.S. Mohamed1, Mohammad-Hashem Haghbayan1,3, Antonio Miele2, Onur Mutlu3, and Juha Plosila1

Abstract— We propose an energy-efficient controller to mini-
mize the energy consumption of a mobile robot by dynamically
manipulating the mechanical and computational actuators of
the robot. The mobile robot performs real-time vision-based
applications based on an event-based camera. The actuators of
the controller are CPU voltage/frequency for the computation
part and motor voltage for the mechanical part. We show
that independently considering speed control of the robot and
voltage/frequency control of the CPU does not necessarily result
in an energy-efficient solution. In fact, to obtain the highest
efficiency, the computation and mechanical parts should be
controlled together in synergy. We propose a fast hill-climbing
optimization algorithm to allow the controller to find the
best CPU/motor configuration at run-time and whenever the
mobile robot is facing a new environment during its travel.
Experimental results on a robot with Brushless DC Motors,
Jetson TX2 board as the computing unit, and a DAVIS-346
event-based camera show that the proposed control algorithm
can save battery energy by an average of 50.5%, 41%, and 30%,
in low-complexity, medium-complexity, and high-complexity
environments, over baselines.

I. INTRODUCTION

Constrained energy is a major challenge in the field of
mobile robotics. The research focus has been mainly on
optimizing the motion planning of a robot and kinematic
energy [1], [2]. However, kinematic energy consumption is
not the only source of energy drain. A mobile robot, as a
cyber-physical device, also contains a cyber-part beside the
physical part, such as on-board electrical devices, micro-
controllers, and sensors, each of which consumes power
and contributes to the overall energy consumption [3]. For
example, the execution of heavy vision-based applications
that use onboard computing units and sensors drains a sig-
nificant portion of the available source of energy. Computing
energy consumption of the cyber-part in a robot is one of the
significant portion of the energy consumption in a robot that
should be considered while optimizing the energy.

There have been several studies to reduce the
power/energy consumption of the computing units for cyber-
physical systems (e.g., [4], [5], [6], [7]). In recent mobile
robots computing power management units significantly
reduces the computing power/energy consumption via
dynamic voltage and frequency scaling (DVFS), power

1Sherif A.S. Mohamed, Mohammad-Hashem Haghbayan, and
Juha Plosila are with Autonomous Systems Laboratory (ASL),
University of Turku, 20500, Turku, Finland. {samoha, mohhag,
juplos}@utu.fi

2Antonio Miele is with the Dipartimento di Elettronica, Infor-
mazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy.
antonio.miele@polimi.it

3Mohammad-Hashem Haghbayan and Onur Mutlu are with ETH Zürich,
8092, Zürich, Switzerland. omutlu@gmail.com

Fig. 1: Comparing average power consumption of compu-
tational and mechanical parts of a mobile robot for three
vision-based applications at various robot movement speed.

gating (PG) and/or other hardware knobs, whenever full
performance is not required (e.g., [8], [9], [10], [11], [12]).

Prior techniques try to improve the power/energy con-
sumption of the cyber-part and/or physical-part of the robotic
system separately and independent from each other, without
considering the co-relations between these two parts. One of
these co-relations is the effect of robot mechanical control
decision on the computing workload. In a mobile robot with
a normal frame-based camera as a sensor, the quality of
an image of a scene captured at different speeds is not
the same [13], [14]. This results in workload variation for
processing different captured images of the same scene at
different speeds of the robot1. Another example is a mobile
robot with an event-based camera as the sensor. Here, both
the environmental complexity and the robot speed affect the
number of generated events at each instance of time and
consequently the event processing workload [15], [16].

As an example, Figure 1 shows the energy consumption
per unit distance (referred to as locomotion cost in literature
[17], [18], [19]) for different speeds of a mobile robot with
an event-camera sensor, when running three different image
processing tasks on the event data2. The Power Management
Unit is responsible for reducing the computing power con-
sumption as much as possible, while avoiding unacceptable
throughput loss, by manipulating the voltage and frequency
of the processing unit. The overall drained energy of the

1This happens due to changes in the captured image quality.
2Details on our applications are provided in Section II-A

robot is calculated as follows:

E =

∫ T

0

(
pvmotor + pecpu

)
dt (1)

where pmotor, pcpu are respectively the power of the me-
chanical motors, motor, and computing unit, cpu, which
are functions of robot speed, v, and captured events, e,
respectively. The integral spans over the entire duration of
the mission T to compute the energy consumption.

Figure 1 shows that increasing the speed to the maximum
possible value does not necessarily result in an optimal
energy consumption. In fact, if the robot’s mechanical
controller uses the highest possible speed to reduce the
movement time, in addition to the requirement for high in-
stantaneous power of the motors, computing a large number
of generated events per time unit consumes a high amount of
power. Having a low speed for the robot saves mechanical
energy significantly. On the other hand, computing energy
becomes dominant despite a lower frequency of generated
events. The reason for this is that, by decreasing the speed
and increasing the overall time of the travel, most of the
energy consumed by the processing units is static energy that
is used constantly during the waiting periods of the units. It
can be seen that the lowest energy consumption is obtained
at a specific speed of the robot. Another important fact that
can be observed is that the most energy-efficient speed for
different applications are not necessarily the same value. This
is due to the different strategies in the Power Management
Unit for different types of software executing on the com-
puting platform. Therefore, to obtain energy-efficient control
of the robot, both computational and mechanical controllers
must be tuned together at run-time, to dynamically adjust the
robot speed and voltage/frequency of the computing unit.

Given the above motivation, this paper presents a novel
energy-efficient control technique to manipulate the me-
chanical and the computational actuators of a mobile robot
together to obtain the best possible overall energy consump-
tion. The actuators are the voltage of the motors, to change
the speed, and the voltage/frequency of the CPU. To manipu-
late the actuators, the instantaneous power of the mechanical
and computational parts are fed back to the controller. Then,
the controller performs a fast hill-climbing algorithm at
run-time to iteratively improve the system configuration to
minimize the overall energy consumption.

In summary the novel contributions of the paper are:
• A controller framework capable of co-managing me-

chanical and computational parts of the robot system
executing vision-based applications.

• A control policy to select the best motor speed and CPU
voltage level configurations to guarantee application
throughput while minimizing energy consumption.

• An experimental session showing an improvement in
energy saving up to 50% w.r.t. the baseline solutions.

The rest of the paper is organized as follows. Section II
provides the working scenario and the motivation for the
proposed controller. In Section III, the proposed approach
is described. Section IV provides the experimental results.

Fig. 2: Platform setup.

Section V is devoted to the related works. Finally, Section VI
concludes the paper with some discussion and comments on
future work.

II. WORKING SCENARIO AND MOTIVATION

We present the overall robot architecture and a motivating
example that shows how in different environmental situations
the most energy-efficient values for voltage/frequency and
robot speed changes. This motivational example demon-
strates an overview of the dynamics of the system in different
environmental complexities and motivates the proposed ap-
proach for an energy-efficient run-time controller.

A. Working scenario

System architecture. The platform in this work consists of
three main parts, i.e., overall robot architecture, the archi-
tecture of the computing unit, and vision-based applications.
Each of them is separately explained below.
Overall robot architecture. This includes the physical parts
of the platform, such as an embedded system, an event-based
camera, and a brushless dc motor, as shown in Figure 2.
The Jetson TX2 board is a super power-efficient embedded
board with two clusters: quad-core ARM Cortex-A57 and
dual-core NVIDIA Denver. The event-based camera, i.e.,
DAVIS-346, can capture both intensity images and a stream
of asynchronous events with a high temporal resolution of up
to 10 million events in a second [20], [21]. A DC brushless
motor is used to power up the robot. The motor has 3000
kV which can spin at 50000 RPM. The power supply of
motors is calculated based on the current measurement circuit
that measures the instantaneous electric current toward the
motors.
The architecture of the CPU controller. For executing the
applications, a mapping unit, as the middleware proposed
in [10], allocates the tasks on the various cores inside the
CPU clusters. The cores can run at a maximum frequency
of 2 GHz. However, run-time DVFS is capable to reduce the
voltage/frequency of the CPU cluster at various intermediate
steps down to 300 kHz. The middleware is capable to report
the throughput for each application that helps to show if
the application is loosing some parts of the data due to
overload or not. Throughput value ranges between 0 to 1

(a) Low-complexity environment (b) Medium-complexity environment (c) High-complexity environment

Fig. 3: The parameters configuration space for the robot while running three applications with different environmental
complexity. The color of each cell represents the achieved application throughput (spanning from 0 to 1), while for valid
configurations (i.e. with throughput equal to 1) the reported number is the energy consumption in Joule.

Fig. 4: Energy consumption per meter of the robot in three
different environmental complexities, i.e, low, medium, and
high-complexity.

where reported value 1 means all the captured data are fully
being processed.
Application. Three different applications with different lev-
els of complexity are used, that are image reconstruction,
corner detection, and corner detection with filtering. The
image reconstruction application [22] is considered to have
low complexity and it can produce intensity-based images
from a pure event stream using a high-pass filter. The second
application is a corner detector [23], which extracts corners
from a stream of events. The application is considered to
have a high level of complexity since it requires computing
the eigenvalues for each incoming event to decide whether
the event is a corner or not. The corner detection application
is used with a three-level filtering [24] to reduce the compu-
tational complexity and obtain a medium level of complexity.

B. Motivating discussion

Figure 3(a-c) shows different values of the robot’s overall
energy and throughput levels while applying different (CPU
voltage/frequency, robot speed) pairs for three kinds of en-
vironments, i.e., 1) low-complexity, 2) medium-complexity,
and 3) high-complexity. It is worth noting that the throughput
and energy of the mobile robot are measured for each point at
run-time by enforcing the specific configuration. The vertical
axis in the figure shows the speed of the robot and the

horizontal axis shows the CPU voltage/frequency level3. The
color of each (CPU voltage/frequency, speed) point shows
the throughput of the applications, where the value 1.0, i.e.,
dark purple color, represents full throughput.

As it can be noticed from the colors in the figure the 3D
surface representing the throughput has a hill shape where the
only global peak is placed on the right-bottom side of each
plot: in fact, higher CPU frequencies provide larger com-
putation power and lower motor speeds reduce the number
of events to process per unit of time. Moreover, throughput
saturates to 1.0 since the application is designed to do not
over-perform when enforcing higher CPU frequency levels
or lower motor speed. Therefore, the top of the hill presents
a plateau of purple points. When analyzing the three graphs
together it can also be noticed that plateaus have not the
same extension but at the opposite with the increase of the
environmental complexity, the plateau shifts to the right-
bottom side. This comes from the fact that the number of the
generated events increases and more powerful processing is
needed for obtaining real-time full-throughput outcomes.

We show inside each box the overall energy consumption
of the robot. Since only the full-throughput cases are ac-
ceptable, energy values are reported for the areas with full-
throughput, i.e., dark purple points. Here there is an opposite
trend w.r.t. the throughput one. In fact, energy consumption
decreases when motor speed is higher (since the overall
trip takes a shorter time) and the CPU frequency is lower
since consuming less static power consumption. Therefore,
the energy surface forms a slope in the left-top direction.

Given these considerations, we state that the most energy-
efficient (CPU voltage/frequency, robot speed) pair should
be found at the frontier of the purple area. Figure 4 reports
only the points on the frontier of the plateau in each one of
the three cases. In particular, each line is composed of the
points highlighted with the black box in Figure 3 (without
loss of generality, to simplify the chart, we took a single
point for each speed value). From the plot, we confirm
the trend, and in particular the fact that there is a single
global minimum in each case and no other local minima.

3Figures report only the frequency values since it is the knob actually
tuned by the operating system; then the hardware DVFS controller selects
the corresponding voltage level.

Vision-based
Applications

Task
Mapping Unit

E
xt

e
rn

a
l
E

n
v
ir
o

n
m

e
n

t

In
te

rn
a

l E
n

v
ir
o

n
m

e
n

t
(C

o
m

p
u

ti
n

g
 U

n
it
)

Frame-based
Camera

M
o

to
r

Event-based
Camera

+
-

S
ce

n
e

Voltage

CPU Power

Allocation

Current
Throughput

Events

A
p

p
lic

a
tio

n
 I

n
fo

R
e

fe
re

n
ce

T
h

ro
u

g
h

p
u

t

Throughput
 Error

Motor Power

Entropy

Appication CPU Controller Module

Ta
sk

s
DVFSPerformance

Management Unit

Fig. 5: The system architecture of the proposed cyber-
physical automation for robots.

Moreover, since the plateau and the corresponding frontier
change with the environmental complexity, it is not possible
to determine at design time a unique best configuration
for any working scenario/application. As a consequence, we
here propose a control approach capable of optimizing the
robot configuration at run-time by properly exploring the
peculiarities of the considered problem space.

III. THE PROPOSED CONTROLLER

A. Overall organization of the controller

The overall structure of the proposed throughput-aware
run-time controller is depicted in Figure 5. The unit is hosted
on the Performance Management Unit which controls the
system based on the feedback from the Internal Environment,
which is the computing unit, and External Environment,
which is the environment of the mobile robot. The entropy of
the vision data has been used as the metric for environmental
complexity. The entropy is computed from intensity images
captured by a frame-based camera.

We borrowed a fairly standard internal organization (as
in [10]) for the application mapping unit. Different types of
applications, e.g., image reconstruction and corner detection,
are given to the Application Mapping Unit in run-time for
execution. Each application has a pre-specified throughput
requirement that is given to the mapping unit at design time.
The Application Mapping Unit allocates the applications on
the CPU cluster (ARM Cortex-A57 or NVIDIA Denver)
selected as the best one at design time (future work is devoted
to the automatic selection of the CPU cluster at run-time
without any pre-profiling). This unit also provides infor-
mation about the current running applications, Application
info, and the required throughput for each application, i.e.,
Throughput error λe, for the Performance Management Unit.
The observations for the Performance Management Unit are
1) current power consumption of the CPU, 2) current power
of the robot motors, 3) entropy of the vision sensors, and 4)
the difference between the current throughput of the appli-
cations and the desired throughput, i.e., Throughput error.
Based on the feedback received from the external and the
internal environments, the Performance Management Unit
regulates the actuation values of the CPU voltage/frequency
and motor voltage.

During the system operation, run-time events are produced
via the Event-based Camera and are passed to the Comput-
ing Unit. Based on the types of running applications, the
Computing Unit processes the events. The number of events
relates to two factors: 1) the environmental complexity and 2)
the rate of the change in the environmental information. The
environmental complexity is measured through the entropy
of the captured frame-based image in run-time. The rate of
the change in the environmental information is measured by
the speed of the robot, which is calculated by measuring
the acceleration force toward the motors. If the number of
generated events in the camera increases, that might be due
to the increase in the complexity of the environment or
the speed of the robot, the CPU load increases that affect
the throughput. The current throughput of the application
must always be higher than a pre-specified throughput for
the application. In the case that throughput goes below the
threshold due to a heavy workload, the Performance Manage-
ment Unit is capable to increase the speed of the computation
by increasing the voltage/frequency of the computational
cores, or, decreasing the speed of the robot by decreasing
the motor voltage.

B. The control algorithm

The Performance Management Unit works as a closed-
loop controller to adjust the performance based on the
feedback it gets from the power sensors on the motor and the
CPU. Due to the peculiar characteristics of the problem space
discussed in Section II-B, we have designed the controller
algorithm by means of the hill-climbing algorithm, a simple
and fast heuristic to search in a solution space based on
local moves. Algorithm 1 shows the controller algorithm. The
inputs of the algorithm are the entropy of the environmental
information et, current power consumption of the CPU pcpu,
current power consumption of the motor pmotor, throughput
error λe and the application info ai. The outputs of the
algorithm are the CPU voltage/frequency, vf , and the motor
voltage mv.

The algorithm is executed whenever working scenario
changes, due to entering of new applications or leaving
of currently executing ones. At the beginning, the CPU
voltage/frequency and motor voltage are determined based on
an initialization process (Lines 1-3). In this phase, the CPU
voltage/frequency and the motor voltage are adjusted based
on some safe values that approximately satisfies the required
throughput; a conservative choice for our experiment is
the maximum voltage/frequency level. The current entropy,
etcurrent, is initialized to zero to be updated later in the
algorithm. This initialization of entropy to zero is due to
the fact that in zero entropy no event will be generated
by the event-based camera and the best possible adjustment
of actuations can be calculated in the initialization phase.
Therefore there is no need for any optimization. However,
if the captured entropy value from the environment is above
zero, the process of tuning the CPU voltage/frequency and
the motor voltage starts and continues until the applica-
tion information is valid (Lines 4-19). During this period,

Algorithm 1 Performance Management algorithm
Input: Entropy: et; CPU power: pcpu; Motor power: pmotor ; Throughput
error: λe; Application Info: ai;
Output: CPU voltage/frequency: vf ; Motor voltage: mv;
Constant: Entropy threshold: etth; Energy threshold: eth;

1: (vf,mv)← Initialization(ai)
2: statecurrent ← (vf,mv)
3: etcurrent ← 0
4: while ai is valid do
5: if |etcurrent − et| > etth then
6: et← etcurrent

7: repeat
8: neighborsliststate ← Get neighbors (statecurrent)
9: for all (vf,mv) in neighborsliststate do

10: Apply (vf,mv)
11: Delay()
12: Enew ← Compute energy(pcpu, pmotor)
13: if Enew − E < eth and λe = 0 then
14: statenew ← state
15: E ← Enew16: until statecurrent = (vf,mv)
17: statecurrent ← (vf,mv)
18: (vf,mv)← statecurrent

19: Apply (vf ,mv)

whenever the input entropy, et, differs from the current
entropy, etcurrent (i.e., IF statement at Lines 5-18), the
algorithm tries to find the optimal state of the system, i.e.,
CPU voltage/frequency and motor voltage, to minimize the
overall power consumption. This ensures optimized actua-
tions whenever the environmental complexity changes. If
so, the current entropy, etcurrent, gets updated (Line 6),
and the hill-climbing process in the 2D domain of CPU
voltage/frequency and the motor voltage starts to find the
optimal state (Lines 7-16). First, the neighbor states of
the current state are determined (Line 8). After that, the
algorithm systematically tests all the possible neighbors of
the current (CPU voltage/frequency, motor voltage) pair to
find the energy-efficient values. For each test, the new state
will be applied to the robot, both CPU voltage/frequency and
motor voltage, by Apply routine (Line 10).

Then, the algorithm waits for a pre-specified delay to
be able to measure stable values for the instantaneous
power of the CPU and motor and the throughput of the
application. In compute energy routine, the new overall
energy consumption is computed via instantaneous power
feed-back from the Computing Unit and Motor, i.e., pcpu
and pmotor. Subsequently, the new computed overall energy
consumption, Enew, is compared with the old measured
energy value, E, to check whether the new test pair results
in a less overall energy consumption or not. During this
phase, throughput also should be checked since the climbing
process might have a negative effect on throughput (Lines
13-15). Finally, the state that acquires the minimum obtained
overall power will be considered as the new state. This
process continues until the newly obtained state, statenew, is
the same as the current state, statecurrent, which indicates
that the hill-climbing process cannot improve the power
consumption any more (Line 16).

It is worth noting that, even if simple, the proposed

Low Medium High
0

0.5

1

0
.3
6

0
.2
3

0
.1

0
.6

0
.5

0
.4

0
.7
3

0
.6
3

0
.5
4

1 1 1

T
hr

ou
gh

pu
t

HS AS AS∗ Ours

Fig. 6: Different obtained throughput for different control
techniques in three different environmental complexities:
low-, medium-, and high-complexity.

approach is effective, as also demonstrated later by the
experimental results, due to the peculiar characteristics of
the problem space discussed in Section II-B. Moreover, no
scalability issues may raise as the problem space cannot
grow sensibly for different system architectures. In fact, the
number of motor speed steps and voltage/frequency levels in
a general scenario is in the order of the considered working
scenario. Nonetheless, we claim that the test of all the local
moves, i.e., Line 9-15, may be replaced with a smarter
selection of the neighbors of the current configuration based
on the slope trend shown in Figure 3. This improvement is
left as a future work.

IV. EXPERIMENTAL RESULTS

The proposed controller has been implemented in C++
that is executed as a middle-ware in Linux OS user space
at run-time. We run the proposed control algorithm for three
different environments, i.e., 1) low, 2) medium-complexity,
and 3) high-complexity.

Effectiveness: To demonstrate the effectiveness of the
proposed approach we compared it against three different
baseline schemes in the experiments: 1) while the controller
uses the highest possible speed for the robot and highest pos-
sible voltage/frequency, i.e., HS, 2) while the controller uses
a medium speed and highest possible voltage/frequency, i.e.,
AS, and 3) while the controller uses the medium speed with a
medium voltage frequency, i.e., AS∗. Three applications are
used as vision-based tasks, i.e., 1) image reconstruction that
is shown by app1, 2) corner detection, app2, and 3) corner
detection without filtering, app3, please see Section II-A. The
overall number of generated events for each environment is
the same for all of these control techniques, including the
proposed method. The reason is that the environment is the
same for all techniques4. Figure 6 shows the average obtained
throughput for different techniques. It can be seen that the
proposed method obtains the highest average throughput in
comparison with other methods. Here only the proposed
controller can keep the throughput satisfiable for all the
information environments. This is because of the fact that
the motor speed affects the workload and should be tuned
based on the workload of the system.
Efficiency. To show the efficiency of our technique, we used
the energy per meter metric that shows the amount of energy

4In macroscopic level, the amount of perceptual information for a mobile
robot in a specific path is constant

(a) Low-complexity environment (b) Medium-complexity environment (c) High-complexity environment

Fig. 7: Evaluation of the average energy per distance in three different environmental complexity.

(a) Low-complexity environment

(b) Medium-complexity environment

(c) High-complexity environment

Fig. 8: Evaluation of the power consumption during the time
for the three different scenarios.

consumption per distance unit for a mobile robot running
a specific application. Figure 7 shows the overall energy
consumption per meter (J/m) of the different techniques for
the three different applications and in three different envi-
ronments. As can be seen, the proposed approach saves the
energy of traveling per distance unit significantly compared
with the other methods. Our method is able to save an
average of 50.5%, 41%, and 31% of total energy in a low,
medium, and high-complexity environment respectively.
Stability. To have a better understanding of the controller op-
eration and to demonstrate the stability of the controller, the
power and speed traces of two experiments in high, medium,
and low-complexity environments, while app1 is executing,

are shown in Figure 8. As can be seen, at the beginning,
the controller starts the hill-climbing process to find the
appropriate speed and adjusts the CPU’s voltage/frequency.
This causes fluctuations in speed during the start-up time.
However, for the rest of the travel, the controller adjusts the
speed, and CPU power is quite steady. The reason is that
environmental information usually does not change rapidly.
This gives the hill-climbing algorithm an opportunity to
adjust the CPU voltage/frequency efficiently.
Execution times. The average execution time of each mod-
ule is as follows: the event-based camera module: 10 us; the
frame-based camera module: 2.4 ms; and the Performance
Management Unit module: 50 ms that is the average time for
finding the optimal solution. As can be noticed, the execution
time for the algorithm is acceptable for a macroscopic size
robot with a normal change of speed rate.

V. RELATED WORKS

The related works for energy-efficient robot control, or a
swarm of robots, can be divided into two main categories:
1) those works that focus on energy-efficient computation
for robotic applications, and 2) those works that focus on
reducing the energy cost of the mechanical parts. From the
computing perspective, several strategies have been used to
control the instantaneous power and overall energy of the
computation using different techniques acting at both archi-
tecture and application levels, such as DVFS [8], energy-
efficient task mapping and scheduling [9], and software
approximate computing [10]. The main idea in these works is
to reduce the computing power/energy as much as possible
while keeping the quality of service (in terms of the pro-
vided throughput) satisfactory. On the other hand, and from
the robotics perspective, there have been several researches
to optimize the energy cost and battery utilization of the
mechanical parts that are ranging from conceptual studies
such as bio-inspired theories based on least action principle
(LAP) [25], to optimizing mechanical motion algorithms,
e.g., reducing locomotion cost of different parts of the
robot [7], [19] and energy-efficient path planning [1], [2].

To the best of our knowledge, all of the studies in these
two areas are considering the optimization of the computing
and mechanical parts independent from each other, i.e., co-
optimization has not been investigated in practice. In [25],
the authors have proposed a new theory in multi-robot

environment in which computing and mechanical parts are
considered together under the umbrella of overall entropy
measurement of the system. It is stated that the main goal of
an autonomous system should be to save energy by reducing
the entropy as much as possible. In [26], the author has
proposed an architectural characterization for cyber-physical
agents that consists of internal and external environments,
and by evaluating measurements from these two environ-
ments the controller should decide the values of internal and
external actuators. In this paper, the internal and external
environments correspond to the computing platform and the
robot environment respectively, and, internal and external
actuators correspond to voltage/frequency scaling for the
computing unit and controlling the robot speed respectively.

VI. CONCLUSIONS

In this paper, a novel control approach is proposed to
intelligently tune the CPU voltage/frequency and motor volt-
age of a mobile robot running vision-based applications. The
proposed approach uses the complexity of the environment,
instantaneous power of the motor, and CPU to compute the
overall energy consumption of the system and manipulate the
CPU voltage/frequency and the motor voltage of the robot
at run-time. A run-time hill-climbing algorithm has been
proposed to find the near-optimal energy-efficient solution
for the controller. Experimental results show that by utilizing
our method a mobile robot equipped with a Jetson TX2
board can save an average of 50.5% of the energy in a
low-complexity environment, 41% in a medium-complexity
environment, and 30% in a high-complexity environment. As
future work, we intend to extend our approach by considering
the energy consumption of the path planning module.

ACKNOWLEDGMENT

This work has been financially supported by the Academy
of Finland funded projects 335512 - ADAFI (Adaptive-
Fidelity Digital Twins for Robust and Intelligent Control
Systems) and 330493 - AURORA (Autonomous Performance
Management in Digital Manufacturing), and by Nokia Jorma
Ollila Grant.

REFERENCES

[1] T. Kundu and I. Saha, “Energy-Aware Temporal Logic Motion
Planning for Mobile Robots,” in Proc. Intl. Conf. on Robotics and
Automation (ICRA), 2019, pp. 8599–8605.

[2] C. Cunningham, J. Amato, H. L. Jones, and W. L. Whittaker, “Acceler-
ating energy-aware spatiotemporal path planning for the lunar poles,”
in Proc. Intl. Conf. on Robotics and Automation (ICRA), 2017, pp.
4399–4406.

[3] Yongguo Mei, Yung-Hsiang Lu, Y. Hu, and C. Lee, “A case study of
mobile robot’s energy consumption and conservation techniques,” in
In Proc. Intl. Conf. on Advanced Robotics, 2005, pp. 492–497.

[4] M. Gabiccini, A. Artoni, G. Pannocchia, and J. Gillis, “A com-
putational framework for environment-aware robotic manipulation
planning,” in Robotics Research: Volume 2, A. Bicchi and W. Burgard,
Eds. Springer, 2018, pp. 363–385.

[5] V. Duchaine, S. Bouchard, and C. Gosselin, “Computationally efficient
predictive robot control,” IEEE/ASME Trans. on Mechatronics, vol. 12,
pp. 570 – 578, 11 2007.

[6] D. E. Orin and W. W. Schrader, “Efficient Computation of the Jacobian
for Robot Manipulators,” Intl. Journal of Robotics Research, vol. 3,
no. 4, pp. 66–75, 1984.

[7] S. Abiko and G. Hirzinger, “Computational efficient algorithms for
operational space formulation of branching arms on a space robot,”
in In Proc. Intl. Conf. on Intelligent Robots and Systems, 2008, pp.
3312–3317.

[8] A. M. Rahmani, B. Donyanavard, T. Mück, K. Moazzemi, A. Jantsch,
O. Mutlu, and N. D. Dutt, “SPECTR: Formal Supervisory Control and
Coordination for Many-core Systems Resource Management,” in Proc.
of Intl. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2018, pp. 169–183.

[9] M. Haghbayan, A. Rahmani, A. Y. Weldezion, P. Liljeberg, J. Plosila,
A. Jantsch, and H. Tenhunen, “Dark silicon aware power management
for manycore systems under dynamic workloads,” in In Proc. of Intl.
Conference on Computer Design (ICCD), 2014.

[10] A. Kanduri, A. Miele, A. M. Rahmani, P. Liljeberg, C. Bolchini, and
N. Dutt, “Approximation-aware coordinated power/performance man-
agement for heterogeneous multi-cores,” in Proc. of ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018, pp. 1–6.

[11] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib, “Distributed Value
Functions for Multi-Robot Exploration: a Position Paper,” Proc. Intl.
Conf. on Robotics and Automation (ICRA), pp. 1544–1550, 02 2013.

[12] N. B. Rizvandi, J. Taheri, and A. Y. Zomaya, “Some observations
on optimal frequency selection in DVFS-based energy consumption
minimization,” Journal of Parallel and Distributed Computing, vol. 71,
no. 8, pp. 1154–1164, 2011.

[13] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, “EKLT: Asyn-
chronous Photometric Feature Tracking Using Events and Frames,”
Intl. Journal of Computer Vision, pp. 1–18, 08 2019.

[14] C. Forster, M. Faessler, F. Fontana, M. Werlberger, and D. Scaramuzza,
“Continuous on-board monocular-vision-based elevation mapping ap-
plied to autonomous landing of micro aerial vehicles,” in Proc. of Intl.
Conf. on Robotics and Automation (ICRA), 2015, pp. 111–118.

[15] U. M. Nunes and Y. Demiris, “Entropy Minimisation Framework for
Event-Based Vision Model Estimation,” in Proc. of European Conf.
on Computer Vision (ECCV), 2020, pp. 161–176.

[16] S. A. S. Mohamed, M. H. Haghbayan, J. Heikkonen, H. Tenhunen,
and J. Plosila, “Towards Dynamic Monocular Visual Odometry Based
on an Event Camera and IMU Sensor,” in Proc. of Intl. Conf. on
Intelligent Transport Systems (INTSYS), 2020.

[17] S. Gao and H. Jia, “Integrated configuration and optimization of
electric vehicle aggregators for charging facilities in power networks
with renewables,” IEEE Access, vol. 7, pp. 84 690–84 700, 2019.

[18] N. V. der Noot, A. J. Ijspeert, and R. Ronsse, “Bio-inspired controller
achieving forward speed modulation with a 3D bipedal walker,” Intl.
Journal of Robotics Research, vol. 37, no. 1, pp. 168–196, 2018.

[19] D. Zarrouk and R. S. Fearing, “Cost of locomotion of a dynamic
hexapedal robot,” in Proc. of Intl. Conf. on Robotics and Automation
(ICRA), 2013, pp. 2548–2553.

[20] G. Gallego, T. Delbruck, G. M. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis,
and D. Scaramuzza, “Event-based Vision: A Survey,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, pp. 1–1. Early access,
2020.

[21] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A
240x180 130dB 3µs Latency Global Shutter Spatiotemporal Vision
Sensor,” IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp.
2333–2341, 2014.

[22] C. Scheerlinck, N. Barnes, and R. Mahony, “Continuous-time Inten-
sity Estimation Using Event Cameras,” in Asian Conf. Comput. Vis.
(ACCV), 2018, pp. 308–324.

[23] S. A. S. Mohamed, J. N. Yasin, M. H. Haghbayan, A. Miele,
J. Heikkonen, H. Tenhunen, and J. Plosila, “Asynchronous corner
tracking algorithm based on lifetime of events for DAVIS cameras,” in
Proc. of Intl. Symp. on Advances in Visual Computing (ISVC), 2020,
pp. 530–541.

[24] S. A. S. Mohamed, J. N. Yasin, M. H. Haghbayan, A. Miele,
J. Heikkonen, H. Tenhunen, and J. Plosila, “Dynamic Resource-aware
Corner Detection for Bio-inspired Vision Sensors,” in In Proc. Intl.
Conf. of Pattern Recognition, 2020.

[25] S. Fox, “Active inference: Applicability to different types of social
organization explained through reference to industrial engineering and
quality management,” Entropy, vol. 23, no. 2, 2021.

[26] J. Sifakis, “Autonomous Systems – An Architectural Characterization,”
in Models, Languages, and Tools for Concurrent and Distributed
Programming, M. Boreale, F. Corradini, M. Loreti, and R. Pugliese,
Eds. Springer, 2019, pp. 388–410.

