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Abstract
As data privacy and security rapidly become key require-

ments, securely erasing data from a storage system becomes

as important as reliably storing data in the system. Unfor-

tunately, in modern flash-based storage systems, it is chal-

lenging to irrecoverably erase (i.e., sanitize) a file without

large performance or reliability penalties. In this paper, we

propose Evanesco, a new data sanitization technique specif-

ically designed for high-density 3D NAND flash memory.

Unlike existing techniques that physically destroy stored

data, Evanesco provides data sanitization by blocking access

to stored data. By exploiting existing spare flash cells in the

flash memory chip, Evanesco efficiently supports two new

flash lock commands (pLock and bLock) that disable access
to deleted data at both page and block granularities. Since

the locked page (or block) can be unlocked only after its data

is erased, Evanesco provides a strong security guarantee

even against an advanced threat model. To evaluate our tech-

nique, we build SecureSSD, an Evanesco-enabled emulated

flash storage system. Our experimental results show that

SecureSSD can effectively support data sanitization with a

small performance overhead and no reliability degradation.

CCS Concepts. • Hardware → External storage; • Secu-
rity and privacy → Data anonymization and sanitiza-
tion.
Keywords. solid-state drives (SSDs), 3D NAND flash mem-

ory, security, privacy, data sanitization
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1 Introduction
Securely erasing data when necessary is becoming one of the

essential functions in amodern storage system as the amount

of security-sensitive data processed by computer systems

is rapidly increasing. For example, when sensitive personal

data, such as private photos, social-networking-service mes-

sages, or confidential data (e.g., medical records or propri-

etary documents), is intentionally deleted, the deleted data

should never be recoverable. However, modern file systems

delete a file by unlinking it (i.e., changing the metadata to

indicate that the space occupied by the file is empty), but

they do not physically delete the content of the file in the

storage system [1–3]. This is undesirable because, if one by-

passes the file system to access the storage media directly,

such insecurely erased data can be accessed, resulting in

unauthorized disclosure of security-sensitive information.

To prevent such unauthorized information disclosure, this

paper addresses the data-sanitization problem in flash-based

storage systems. Formally, we define that a storage system S
supports data sanitization for a set F of files if the following

two conditions are satisfied for a file f ∈ F : (C1) S does

not store any content of file f after file f is deleted, and

(C2) S does not keep any old content of file f after file f
is updated. Our main goal is to investigate how to design a

flash-based storage system that can efficiently and reliably

support secure data sanitization.

Unlike in a hard disk drive (HDD), data sanitization is

quite difficult to support in a modern flash-based storage

system due to the erase-before-write nature of flash memory.

This property prevents NAND flash memory from support-

ing in-place updates to stored data. For example, in an HDD,

overwrite-based techniques [4, 5] that overwrite the logical
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sectors of a file are sufficient to erase the file in an irrecov-

erable fashion. On the other hand, in a flash-memory-based

storage system, a simple overwrite-based data sanitization

approach does not work. When the host system overwrites

a file, the storage firmware writes the new data of the file in

new physical pages. The old data remains until the storage

firmware erases the block that includes the physical pages

containing the old data of the file.
1
The uncontrolled pres-

ence of old data of deleted or updated files opens up ample

opportunities for improper access to sensitive data. In this

paper, we call this issue the data versioning problem.

As an alternative to the overwrite-based technique, which

is not applicable to flash-based storage systems, prior works

propose physical-sanitization techniques [6–11]. For exam-

ple, erase-based techniques [6, 7] sanitize a file by erasing all

the physical pages (not just the logical pages at the file-system
level) that belong to the file. However, such an approach is

difficult to adopt in practice due to its high performance

overhead. Since an erase operation works at block granular-

ity (which consists of hundreds of pages
1
), to erase a page

of a block, all the valid pages in the same block should be

moved to different block(s) before the entire block is erased,

which incurs significant performance and lifetime overheads

in a flash-based storage system. Moreover, a block of mod-

ern 3D NAND flash memory should be erased lazily due to

reliability issues (see Section 5.4). That is, a block cannot

be erased immediately when one or more of its pages need

to be erased, which makes existing erase-based techniques

difficult to employ in modern 3D NAND flash memory.

Reprogram-based techniques [7–11] aim to overcome the

large performance overhead of erase-based techniques. These

techniques reprogram (i.e., overwrite) the previously-written

page to effectively destroy the old data in the page. Although

reprogram-based techniques enable erase-free data sanitiza-

tion, they have a similar performance problem as erase-based

techniques when used for a flash-based storage system adopt-

ingmulti-level cell (MLC) flash memory. Since multiple pages

share the same physical flash cells (i.e., the same wordline) in

MLC flash memory, when a single page p of a wordlinew is

to be erased, all the other valid pages associated with word-

linew should be moved to a different wordline before page p
is reprogrammed. Moreover, as the MLC technique advances

to support more bits per cell using more advanced man-

ufacturing technology (e.g., triple-level cell (TLC) [12, 13]

or quad-level cell (QLC) [14, 15] flash memory), reprogram

operations quickly degrade the reliability of flash memory

as the cell-to-cell interference caused by them drastically

increases [16–21]. For future MLC flash memory, frequent

reprogram operations may be difficult to use in practice be-

cause their interference with neighboring wordlines cannot

1
In NAND flash memory, a page is the unit of read and write operations

while a block, which consists of hundreds of pages (e.g., 576 pages), is the

unit of erase operations. For more detail, see Section 2.1.

be easily controlled to meet the high-reliability requirement

of flash memory.

In this paper, we advocate a new type of data-sanitization

technique formodern flash-based storage systems.Motivated

by the observation that physically destroying stored data

has undesirable impact on the reliability of MLC flash mem-

ory, we focus on alternative data-sanitization mechanisms

that provide security guarantees equivalent to the ones that

physically erase sanitized data. We propose Evanesco,2 a new
data-sanitization technique that disables access to sanitized

data. Evanesco avoids physically destroying the contents of

sanitized data by implementing a blockingmechanismwithin
a flash chip. This on-chip access control makes Evanesco se-

cure even against a very strong attacker that can directly

access raw flash chips (i.e., bypassing OS- or firmware-level

access control) through all interfaces to access the flash chip.

Evanesco uses two new flash commands to block access to

sanitized data: 1) pageLock (pLock) disables access to a page,
and 2) blockLock (bLock) disables access to an entire block.

With our proposed blocking mechanism, a read request to a

sanitized (i.e., locked) flash page always returns data with

all bits set to ‘0’. Since locked pages cannot be unlocked ex-

cept after the corresponding block (where the locked pages

exist) is physically erased, Evanesco provides security guar-

antees against advanced threat models (see Section 5). By

exploiting spare flash cells that exist in modern NAND flash

memory, Evanesco reliably manages the access permissions

to each page and block inside the flash chip. Our evaluations

using 160 state-of-the-art 3D TLC NAND flash chips show

that Evanesco physically locks a page or a block without

negatively affecting the reliability of other stored data.

To demonstrate the effectiveness of Evanesco, we build
SecureSSD, an emulation-based prototype solid-state drive

(SSD) that implements an extended flashmemorymodel with

pLock and bLock. SecureSSD guarantees that, as soon as a

file is deleted, its data becomes physically locked in the flash

chip such that accessing the deleted file is not possible. To

satisfy the two data-sanitization requirements C1 and C2, the

flash translation layer (FTL) of SecureSSD uses pLock and
bLock when 1) a file is to be securely deleted and 2) when a

flash management task (e.g., garbage collection (GC)) needs

to move a valid page. SecureSSD uses new I/O interfaces to

communicate with the host system so that a user can specify

the security requirements of the stored data. By using pLock
and bLock only for security-sensitive data, SecureSSD keeps

the performance overhead of data sanitization at minimum.

We evaluate SecureSSD using four workloads collected

from enterprise servers and mobile systems. Our experimen-

tal results show that SecureSSD meets the data-sanitization

requirements while achieving high SSD efficiency. Over ex-

isting reprogram-based techniques, SecureSSD increases the

2Evanesco is a transfiguration spell used to vanish an object in the

novel series Harry Potter [22].
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input/output operations per second (IOPS) performance by

up to 4.8× (2.9× on average) and reduces the number of

block erasures by up to 79% (62% on average).

This paper makes the following key contributions:

• We propose Evanesco, a new low-cost data-sanitization

technique for modern 3D NAND flash memory. Evanesco
effectively sanitizes security-sensitive data by disabling

access to the sanitized data until the corresponding block

is physically erased. By using spare flash cells, Evanesco
reliably manages the data-access permission inside a flash

chip without negative effect on the performance and relia-

bility of a storage system.

• We introduce SecureSSD, an Evanesco-enabled storage

system that implements Evanesco at low performance

overhead. By allowing a user to set the security require-

ments of written data with extended I/O interfaces, Se-
cureSSD selectively sanitizes only security-sensitive data.

• We experimentally evaluate the reliability, performance,

and lifetime of SecureSSD using 160 state-of-the art 3D

TLC NAND flash chips. Our evaluations show that Se-
cureSSD quickly sanitizes a page or a block without neg-

atively affecting the reliability of the storage system. We

compare SecureSSD to existing physical-sanitization tech-

niques and show that SecureSSD significantly reduces the

performance and lifetime overheads of data sanitization.

2 Background
To provide the necessary background for understanding how

Evanesco works, we describe the basics of NAND flash mem-

ory, and we give an overview of flash-based storage systems.

2.1 Basics of NAND Flash Memory
NAND flash memory consists of flash cells, which store data,

and peripheral circuits, which support flash commands such

as read and write. A group of flash cells (typically 8K-16K

cells) form a wordline (WL) and multiple WLs (typically 128-

256 WLs) form a block. Figure 1 illustrates a typical flash

block organization. In this block, there are n WLs and each

WL consists of m flash cells. The flash cells on the same

WLk , which share the common WLk signal from the row

decoder module, are read or programmed together as a unit.

AWL stores as many pages as the number of bits represented

by a single flash cell (up to four pages with state-of-the-art

QLC technology). All flash cells along the same column are

connected in series to form a bitline (BL). BLs, which are

shared by all the blocks in a flash chip, are connected to the

page buffer, which is used for off-chip data transfer through

the data-in/out circuitry. Two select transistors at the top

and bottom of a BL comprise the source select line (SSL)

and the ground select line (GSL) of a block, respectively. By

applying proper voltages to the SSL and GSL of a block, we

can activate the block to perform flash operations.

Although the flash cell, shown in Figure 1, is structurally

similar to a normal MOS transistor, it is unique in that its
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Figure 1. Organizational overview of a NAND flash block.

threshold voltage Vth can be adjusted by injecting (ejecting)

electrons into (out of) the floating gate. Depending on the

number of electrons in the floating gate, the flash cell works

as an off or on switch under a given control gate voltage,

thereby effectively storing data (encoded by Vth ). For exam-

ple, in single-level cell (SLC) flash memory, we can assign ‘0’

state (i.e., data value ‘0’) to high Vth in the flash cell, and ‘1’

state (i.e., data value ‘1’) to low Vth in the flash cell.

Flash Operations. The program operation changes the data

value of a flash cell by increasing the cell’sVth (i.e., program

operation can only change the data value from ‘1’ to ‘0’,

assuming the SLC encoding just described). To increase the

Vth of a flash cell, the program operation transfers electrons

from the substrate into the floating gate of the cell via FN

tunneling [23] by applying a high voltage (> 20V) to the WL.

The erase operation sets the data value of a flash cell back to

‘1’. The erase operation applies a high voltage (> 20V) to the

substrate (while all the WLs in the block are set to 0V) to

remove electrons from the floating gate, which decreases the

Vth of all flash cells in a block. Since the program operation

can change the data value of a flash cell only from ‘1’ to ‘0’,

all the flash cells of a page should be erased first to program

data on the page (called erase-before-program). The erase

operation works at block granularity because a high voltage

is applied to the substrate that underlies the entire block.

To read the stored data from a page, the Vth levels of

the flash cells on the WL are probed using a read reference

voltage Vr ef . In Figure 1, when WLk is selected for read,
3
if

the Vth of the i-th flash cell in WLk is higher than Vr ef , the
i-th flash cell turns off, so the cell current of BLi is blocked

(i.e., the flash cell is identified as ‘0’). On the other hand, if

the Vth of the i-th flash cell is lower than Vr ef , the i-th flash

cell turns on, so the cell current can flow through BLi (i.e.,

the flash cell is identified as ‘1’). By sensing BLs from the

selected WLk , the stored data in the entire WL is read into

the page buffer. Note that, if we can prevent the page buffer

from buffering the data of a flash cell, or prevent the data in

the page buffer from being transferred out of the flash chip

3
Since no other WL in the same block (e.g., WLk−1 or WLk+1) should

affect the read operation on WLk , the flash cells in all other WLs should

behave like pass transistors. Their gate voltages are set to VREAD (> 6V),

which is much higher than the highest Vth value of any flash cell [24].
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via the data-out path, we would prevent access to the stored

data in any WL.

Multi-level Cell Flash Memory. To improve the storage

density of flash memory, the multi-level cell (MLC) tech-

nique is widely used. MLC technology was initially devel-

oped to store 2 bits per cell [25, 26], then extended to sup-

port 3 bits/cell (called TLC) [12, 13] and 4 bits/cell (called

QLC) [14, 15]. Figure 2 illustrates Vth distributions for 2
m
-

state NAND flash memory that storesm bits within a single

flash cell by using 2
m
distinct Vth states, form = 2 (MLC)

andm = 3 (TLC). Asm increases to store more bits in a flash

cell, more Vth states should be squeezed into a limited Vth
window, which is fixed at flash design time. Therefore, more

careful management (e.g., smaller ISPP voltage steps [27])

is required for multi-level flash memory to form finer Vth
states. Furthermore, asm increases, the Vth margin (i.e., the

gap between two neighboringVth states) inevitably becomes

smaller, as shown in Figures 2(a) and 2(b). When the Vth
margin is smaller, the Vth distributions of two neighbor-

ing states are more likely to overlap under various noise

conditions (e.g., long retention times [28–31], cell-to-cell

interference [16–21], and read disturbance [24, 32]), which

degrades the reliability of NAND flash memory. For example,

MLC NAND flash memory can tolerate up to 3,000 program

and erase (P/E) cycles, while TLC NAND flash memory can

tolerate only about 1,000 P/E cycles [33]. As a result, asm
increases, many optimization techniques that are effective

for smallerm’s become less effective or even inapplicable due

to the lower flash reliability. For a detailed review of NAND

flash reliability and management techniques, we refer the

reader to Cai et al. [34–36].
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2.2 Overview of Flash-Based Storage Systems
A flash-based storage system employs special embedded

firmware, called flash translation layer (FTL), which plays a

key role in managing unique features and characteristics of

flash memory and providing backward compatibility with

traditional HDDs (which support overwrites). The FTL han-

dles host writes in an append-only fashion (i.e., it always

stores the new data of a logical page using a new physical

page) to avoid a long-latency erase operation before a pro-

gram operation on a page (due to the erase-before-program

nature of flash memory). In order to link logical pages (from

the operating system) to physical pages of the flash-based

storage system, the FTL maintains a logical-to-physical (L2P)

mapping table. Figure 3 shows an example of how the FTL

manages a page write from the host system. When the file

system overwrites logical page address (LPA) 0x00 whose

current value is A ( 1 ), the FTL stores A’ at free physical page
address (PPA) 0x03 ( 2 ). The FTL then updates the L2P map-

ping table as well as the page status table: the L2P mapping

of LPA 0x00 to PPA 0x03 and the valid status for PPA 0x03
( 3 ). Finally, the FTL invalidates the old PPA 0x00 that used

to be mapped to LPA 0x00 ( 4 ).

To maintain a sufficient number of free pages for future

host writes, the FTL invokes a garbage collection (GC) pro-

cess when the storage system is close to running out of free

pages. The GC process reclaims free pages by erasing vic-
tim blocks. If a victim block contains valid pages, these valid

pages should be moved to other block(s) and remapped in the

L2P table before the victim block is erased. To reduce such

live-data-copy overheads in the GC process, the host system

uses a new block I/O command, called trim or discard [37].

Figure 3 shows an example of how a block is deleted. When

the file system deletes LPA 0x01, it issues a trim request to

inform the storage device that the LPA’s data is no longer

necessary ( 1 ). The FTL then changes the related L2P map-

ping and page status ( 2 ) so that the GC process becomes

aware that PPA 0x01 is no longer valid. When Block 0 is

selected as a victim block for GC, only A’ at PPA 0x03 needs
to be copied to some other block (e.g., Block 1 in Figure 3).

The append-only strategy is an inevitable choice for an

FTL to efficiently manage the underlying flash chips, but it

renders a flash-based storage system vulnerable to potentially-

malicious access to deleted or stale data. As shown in Figure 3,

when the file system updates ( 1∼ 4 ) or deletes ( 1∼ 2 ) a file,

the FTL logically invalidates the corresponding pages while

leaving the physical data of the invalidated pages intact. Only

the GC process physically erases the invalid pages.
4
Thus, a

security vulnerability in a flash-based storage system arises

from the temporal gap between when a page is logically
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4
Note that, the host system cannot control either which block will be

erased or when the block will be erased, with standard I/O interfaces.
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invalidated and when the page is physically erased. An ad-

versary that accesses raw flash chips before the invalidated

page is physically erased can recover deleted or stale file

data with a proper forensic tool [38].

3 Data Versioning: An Empirical Study
When a file system deletes or updates a file, multiple versions

of old data of the file can remain in the storage system as the

FTL always writes new data of the file in new physical pages.

In this paper, we call this issue the data versioning problem.

To better understand the data versioning problem in a flash-

based storage system, we empirically measure how many

invalid versions of a file exist in a flash-based storage system

throughout the lifetime of the file under varying storage

workload characteristics.

Version Trace Tool.We use a custom I/O tracing environ-

ment, VerTrace, that integrates an existing I/O profiling tool,

IOPro [39], and an open storage emulation platform, Flash-

Bench [40]. VerTrace annotates each physical page with 1)

the name of the file to which it belongs and 2) the creation

time of the file. VerTrace uses the MD5 hash function [41] to

efficiently manage per-page annotation information, which

is passed to the emulated storage model of FlashBench via

an extended block I/O interface. We extend the emulated

storage model of FlashBench to support a logger module

that keeps track of the number N
paдe
valid (f , t) of valid pages

and the number N
paдe
invalid (f , t) of invalid pages for a file f at

time t . VerTrace works with the ext4 file system [42].

BenchmarkTraces and Settings.Weuse three benchmark

traces, Mobile, MailServer, and DBServer, each of which

mimics the I/O activity in an Android smartphone, a mail

server, and a database server, respectively.
5
For faster evalua-

tion, we limit the maximum capacity of the emulated storage

to 16 GiB. To avoid potential start-up bias of simulations and

focus on steady-state behavior, each evaluation runs until

the total written data size exceeds 64 GiB after we initially

fill 75% of the storage capacity.

Metrics. The main goal of our evaluation is to identify 1)

how many invalid versions of a file exist, and 2) for how

long these invalid versions remain inside the storage device.

To evaluate the impact of the file access pattern on data

versioning, we classify files into two types depending on

their write patterns. We call a file f a uni-version (UV) file
if the snapshot (i.e., contents) of f at time t is a subset of
the snapshot of f at time (t + 1). For example, if f is an

append-only file or a write-once file, f is a UV file. If f is not

a UV file, we call f a multi-version (MV) file. For example, if

the file system deletes or overwrites f , f is not a UV file.

To quantize the data versioning behavior of a file, we use

two metrics. First, we define the version amplification factor
(VAF) of a file f as follows:

VAF (f ) = max

t ∈I
{N

paдe
invalid (f , t)}/max

t ∈I
{N

paдe
valid (f , t)}

5
See Section 7 for a detailed description of each trace.

where I represents the entire execution time of the workload.

The higher the VAF (f ) of a file f , the higher the number of

invalid versions are present in the flash chips, which makes

the storage system more vulnerable to malicious access. In-

tuitively, the VAF (f ) of a UV file f would be ‘0’. If f is an

MV file, its VAF (f ) significantly varies depending on the

access pattern of f , which reveals the amount of updated or

deleted data of f remaining stale inside flash chips.

Second, we measure the total length Tinsecure (f ) of in-
secure time intervals of a file f . We define that a file f
is insecure at time t , if N

paдe
invalid (f , t) > 0. The longer the

Tinsecure (f ) of a file f , the more likely an adversary can re-

cover an old version of file f . In a real system, Tinsecure (f )
highly depends not only on the access pattern of f , but also
on the system idle time. For example, Tinsecure (f ) may be

extremely long if there is a huge time gap between when

a user deletes file f and when the user issues a sufficient

number of writes to invoke GC (which physically erases the

deleted data). Since the system idle time significantly varies

depending on the user, which is difficult to model, we use

logical time that increments by 1 for each 4-KiB host write.

Analysis Results. Table 1 summarizes three interesting ob-

servations about the data versioning behavior of the three

benchmark traces. We calculate the average and maximum

VAF andTinsecure values of all the created files in each trace

execution. Tinsecure values are normalized to the total num-

ber of writes needed to fill the entire capacity of an SSD.
6

First, the VAF (f ) of a file f can be quite high (e.g., 7.8)

when file f is heavily updated, as seen for MV files in DB-
Server. Even if a file is not deleted, such files with high VAF
values can pose security vulnerabilities unless their old ver-

sions are properly sanitized.

Second, even uni-version files with no updates can have

a large number of invalid versions as seen for Mobile (1.5
VAF value) andMailServer (1.0 VAF value). Since UV files

do not update their own data, these invalid versions are the

result of the extra copy operations during GC invocations.
7

Third,Tinsecure values are quite large in UV files as well as

MV files. For example, the average and maximum Tinsecure

Table 1. A summary of our data versioning evaluations.

Workload

Uni-version (UV) files Multi-version (MV) files

VAF (f ) Tinsecure (f ) VAF (f ) Tinsecure (f )
avg. max. avg. max. avg. max. avg. max

Mobile 0.24 1.5 2.0×10−2 0.43 1.0 2.0 0.41 2.3

MailServer 0.22 1.0 2.1×10−2 1.7 0.93 2.4 0.50 2.5

DBServer 4.8 ×10−3 0.24 0.52 2.6 3.2 7.8 3.5 3.5

6
If Tinsecure (f ) = 1.0, it indicates that invalid pages of a file f exist

while the total capacity of a disk is written.

7
As explained in Section 2.2, the GC process invalidates all the valid

pages in a victim block, after copying these valid pages’ data to other free

pages. Until the victim block is erased, a UV file can have invalid pages

stored in the victim block. Since a block is erased lazily (to minimize the

negative reliability impact of erase operations; see Section 5.4), it may take

a long time for invalid pages of the victim block to be physically erased.

5



values of MV files in DBServer are 3.5, which indicates that

most of the MV files have one or more invalid versions for

a very long time (while the host system performs 3.5 disk

writes). Note that even UV files are insecure for a significant

amount of time (e.g., inMailServer and DBServer) because
GC victim blocks are erased lazily as explained in Section 5.4.

To highlight different data versioning patterns, we select

two files, fmb (fromMobile) and fdb (from DBServer), and
compare their N

paдe
valid (f , t) and N

paдe
invalid (f , t) timeplots. Fig-

ure 4(a) shows the timeplot for the append-only file fmb .

Even though fmb is a UV file with no updates, there are a

fair number of invalid pages (up to 800 pages) due to GC

invocations. Figure 4(b) shows the data versioning pattern

of the heavily-updated MV file fdb . Before the GC process

is invoked at time t0, N
paдe
invalid (fdb , t) rapidly increases due

to frequent updates while N
paдe
valid (fdb , t) remains constant.

Although N
paдe
invalid (fdb , t) tends to decrease after t0 because

invalid pages are erased by subsequent GC invocations, the

rate of decrease in N
paдe
invalid (fdb , t) is quite slow because 1)

invalid pages of fdb are scattered to many blocks and 2) more

invalid pages are generated from continuous updates to fdb .
Based on our empirical study, we identify two key require-

ments that a desired data sanitization technique should meet.

First, the technique should support per-page sanitization. As
mentioned above, the invalid pages of a file (e.g., fdb of DB-
Server) can be stored in the same block with other files’ valid

pages. If it is not possible to individually sanitize an invalid

page, all the valid pages stored in the same block should be

copied to other block(s) to sanitize the invalid page, which

incurs significant performance and lifetime overheads.

Second, the effect of the page-level sanitization technique

should be immediate. Our study shows that a single file may

have a large number of invalid pages for a long time, even

when the host system does not delete the file. If the storage

system does not support immediate sanitization of invalid

data (i.e., if it sanitizes a file only when the host system

deletes the file), the storage system should keep track of

all the physical pages used for each file because the FTL

uses multiple physical pages to store the data of a single

logical page when the file system updates the logical page or

the GC process moves the data. Doing so not only requires

additional I/O interfaces to send file-system information, but

also significantly increases the metadata maintained inside

the storage system.

(a) fmb : a UV file inMobile. (b) fdb : an MV file in DBServer.

Figure 4. Data versioning under different write patterns.

4 Reprogram-Based Data Sanitization
Most existing data-sanitization techniques (e.g., [6–11]) de-

stroy the stored data by intentionally changing the Vth of

flash cells. For example, the scrubbing technique [10] in-

creases the Vth of all flash cells in a WL so that the Vth
distributions of different states are mixed together, which

makes it impossible to identify the original data. However,

in MLC NAND flash memory, this technique is not easy to

adopt because it incurs a significant performance overhead

to move valid pages out of the WL to be scrubbed. For ex-

ample, consider TLC NAND flash memory that stores three

pages (i.e., LSB (least-significant bit), CSB (central-significant

bit), and MSB (most-significant bit) pages) in each WL. To

sanitize one of the three pages, other valid page(s) should

be moved to other free page(s). To do so, two extra read

operations and two extra write operations may be needed.

To overcome the performance overhead of the scrubbing

technique, prior work proposes a more efficient reprogram-

based sanitization technique for MLC NAND flash mem-

ory [8]. Unlike scrubbing, this technique uses the one-shot

programming scheme. The key claim of the one-shot repro-

gramming (OSR) technique is that, even in MLC NAND flash

memory, a page can be safely destroyed by using a low pro-

gram voltage, while the other page in the same WL does

not suffer a critical reliability damage. Since no page copy

is required during the reprogram process, OSR can achieve

zero-copy overhead. Figure 5(a) illustrates an example case

where OSR works as intended. In this example, the LSB page

is to be sanitized while the MSB page is to remain as a valid

page. To destroy the LSB page, OSR moves the Vth levels

of the E-state cells (i.e., ‘11’) to the right so that they are

overlapped with the Vth levels of the P1-state cells (i.e., ‘10’).

By doing so, the original LSB page cannot be correctly read

with V R1
r ef , which effectively sanitizes the LSB page. Note

that, in this example, the MSB page is not affected at all, and

can be reliably read with V R2
r ef .

Although many flash cells would behave as shown in Fig-

ure 5(a), a significant number of flash cells may misbehave

under OSR due to over-programming [17, 32, 35, 43]. Fig-

ure 5(b) shows such a case where OSRmoves theVth levels of
the E-state cells too far (to the right) such that some of them

overlap with the P2-state cells (i.e., ‘00’). When such over-

programming errors occur, the MSB page cannot be reliably

read withV R2
r ef , because the MSB values of over-programmed

cells (which should be ‘1’) are recognized as ‘0’.
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(a) Intended operation. (b) Overprogramming.

Figure 5. Two cases under the OSR technique.
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To identify how the reliability of multi-level cell NAND

flash memory is affected by over-programming errors, we

measure how raw bit-error rate (RBER) changes under OSR
in real 3D MLC NAND flash memory and 3D TLC NAND

flash memory chips. Figures 6(a) and 6(b) show RBER per

8,192 of flash cells on MSB pages i MLC and TLC NAND

flash memory, respectively, under three different conditions:

1) right after (i.e., zero retention time) programming all the

pages on a WL (left-most box plot), 2) right after sanitizing

the other page(s) on the same WL using OSR (middle box

plot), and 3) after a 1-year retention time (right-most box

plot).
8
In MLC NAND flash memory, as shown in Figure 6(a),

after the LSB page is sanitized by the OSR, 7.4% of the RBER

values in MSB pages exceed the ECC limit, making these

valid MSB pages unreadable. As explained in Figure 5(b), a

large portion of the extra bit errors on MSB pages are over-

programming errors due to an excessive Vth shift during

OSR. To minimize over-programming errors, one solution

might be to fine-tune the OSR parameters separately for

eachWL. However, since the exact amount ofVth shift under

OSR can significantly vary depending on each WL’s process-

variation related characteristics (e.g., the physical location

of each WL on the chip) [28, 30, 31, 44, 45], customizing the

OSR parameters separately for eachWL is extremely difficult.

Figure 6(b) shows that the impact of OSR on the reliability

of TLC NAND flash memory is even higher than that in

MLC because TLC NAND flash memory has a narrower Vth
margin between adjacentVth states. For example, when both

the LSB page and the CSB page are sanitized, all of the MSB

pages become unreadable due to their high RBER values.

We also observe that the RBER value of a valid page after

sanitizing other pages on the same WL greatly increases if

the valid page experiences a long retention time. When we

measure RBER with the industry standard requirement (i.e.,

1-year retention requirement at 30
◦
C [46]), most of the MSB

pages in 3D MLC NAND flash memory and all of the MSB

pages in 3D TLC NAND flash memory, cannot be reliably

read. As shown in the right-most box plots in Figures 6(a) and

(b), such valid pages’ RBER values can be more than 1.5 times

over the ECC limit (correction capability). Our evaluation

results, therefore, clearly show that OSR is not a reliable

solution for data sanitization in modern flash-based storage
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8
All measurements are normalized to the maximum RBER value below

which an ECC module can correct errors.

systems, since it leads to destruction of valid data that is not

supposed to be sanitized.

5 Evanesco: Lock-Based Sanitization
We propose Evanesco, a new technique to sanitize a physical

page immediately without negatively affecting the reliability

of other stored data. In this section, we present our threat

model and introduce two new flash commands, pLock and
bLock, which enable Evanesco to sanitize a page and a block,
respectively, at low cost.

5.1 Threat Model
We assume a very capable attacker who possesses all the

required skills to recover deleted information from a modern

flash-based storage system by reading flash cells through

the interfaces to the NAND flash chip. The attacker can

gain physical access to a full system, including a processor,

DRAM, and a flash-based storage device. The attacker can

deconstruct the storage device (e.g., de-soldering flash chips)

without any damage on stored data, and directly access the

raw flash chips through all known flash interface commands

while bypassing the file system and the FTL.

If the storage system is encrypted, the attacker can ob-

tain any necessary passwords and encryption keys to de-

crypt stored data. The attacker has comprehensive knowl-

edge about the implemented encryption scheme, and can

perform sophisticated attacks (e.g., a cold boot attack [47])

to retrieve the secret keys. The attacker can issue a court

order or legal subpoena that obliges a user to reveal the used

password.

We assume that the attacker cannot directly probe raw

flash memory cells to retrieve stored data using highly-

sophisticated tools such as a scanning electron microscope

(SEM) [48]. Although such attempts were successful in very

early 2D SLC NAND flash memory (with 350-nm technol-

ogy node) [48], to our knowledge, they are very difficult in

practice for modern 3D NAND flash memory due to several

reasons. First, in order to have visual access to flash memory

cells, the attacker needs to deprocess several tens of layers

of flash chips. Since memory cells are organized in a cubic

form in 3D NAND flash memory, it likely requires extreme

effort to expose individual cells without damaging their elec-

trical status (i.e., stored data). Second, the technology node

of modern 3D NAND flash memory already has reached 20

nm [49], and manufacturers employ aggressive multi-level

cell techniques (e.g., TLC and QLC NAND flash memory) to

maximize storage density. To directly read stored data from

such memory cells, an SEM should support an extremely

high resolution to distinguish the contrast between cells

with different values. We are not aware of any demonstra-

tion that allows an attacker to directly probe raw memory

cells in modern 3D NAND flash memory. We speculate that,

if such techniques exist, they require extremely expensive

equipment and infrastructure.
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5.2 Approach Overview
The key insight of Evanesco is that if we could block access

to a flash page by controlling the on-chip access permission

(AP) flag of the page, we could achieve the same effect of data

sanitization without physically destroying the data stored

in the page. In Evanesco, we support two types of AP flags

inside a flash chip, a page-level AP (pAP) flag and a block-

level AP (bAP) flag, controlled by two new flash commands,

pageLock (pLock) and blockLock (bLock), respectively. The
pLock <ppn> command locks physical page number ppn by

setting the pAP flag of ppn to the disabled state. The bLock
<pbn> command locks physical block number pbn by setting

the bAP flag of pbn to the disabled state. When a page or a

block of a flash chip is locked by pLock or bLock, respectively,
the flash chip blocks any access to it. Since the pAP flag (or

bAP flag) of the locked page (or locked block) can be reset to

its default enabled state only after the block with the locked

page (or the locked block itself) is erased (i.e., no unlock
command exists for locked pages or blocks), once a page or

a block is locked, its data becomes permanently inaccessible.

When the locked page or block is re-enabled, its data already

has been destroyed by an erase operation.

Figures 7(a) and 7(b) illustrate an operational overview

of pLock and bLock, respectively. To sanitize physical page

0x22 (denoted as PP#0x22), the pLock <0x22> command ( 1 )

sets the pAP flag of PP#0x22 to disabled (‘D’ in 2 ). Future

reads to PP#0x22 ( 3 ) fail because the Evanesco-enhanced
logic inside the flash chip checks if the pAP flag is enabled ( 4 )

before transferring the page data out from a flash chip ( 5 ).

If a target page’s pAP flag is enabled (e.g., as for PP#0x20), a
read request to the page operates as a normal read operation.

Similarly, as shown in Figure 7(b), when physical block 0x08
(denoted as PB#0x08) needs to be sanitized, the bLock <0x08>
command ( 1 ) sets the bAP flag of PB#0x08 to disabled (‘D’

in 2 ). When the bAP flag is disabled, a read to any of the

pages in PB#0x08 fails, including a read to PP#0x20 ( 3 ),

because the Evanesco-enhanced logic first checks the bAP

flag ( 4 ) before the pAP flag and prevents reading out page
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Figure 7. Operational overview of pLock and bLock.

data from a disabled block ( 5 ), regardless of the pAP flag of

the target page.

5.3 PLock: Page-Level Data Sanitization
Organizational Overview. Figure 8(a) shows an organiza-

tional overview of our pLock implementation. In order to

exploit the existing flash organization as much as possible,

per-page pAP flags are implemented using flash cells avail-

able in the spare area
9
(i.e., the OOB (out-of-band) area) of

each WL. For example, in the TLC flash memory illustrated

in Figure 8(a), three pAP flags are placed in the spare area

for the LSB, CSB, and MSB pages of each WL, respectively.

Since the spare area is read concurrently with the main data

area (i.e., a page), no special command is needed to read a

pAP flag. If the pAP flag of a page is set to disabled , the

bridge transistor, which connects the page buffer to data-out

pins as shown in Figure 8(a), is turned off so that the flash

chip outputs all-zero data. Otherwise, the flash chip outputs

the requested data from the page.

To implement the pAP flags with spare flash cells, it should

be possible to selectively program flash cells on the same WL

because 1) the pAP flag of a page is set to disabled after the
page is programmed on the main data area and 2) the pAP

flag of each page on the same WL is set to disabled at differ-

ent times. To support such selective cell programming, we

exploit the SBPI (self-boost program inhibit) technique [27],

which allows flash cells on the sameWL to be selectively pro-

grammed by choosing different voltage settings for different

BLs.
10
For example, when programming PP#0x19, we inhibit

all three pAP flags on WL8 with the SBPI technique so that

the pAP flags are not programmed, and thus they stay in the

default enabled state. When PP#0x19 needs to be sanitized,
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Figure 8. Our pLock implementation.

9
A flash page consists of a main data area for storing data and a spare

area for storing page-specific information such as the logical page address

and error-correcting code (ECC) [50] values. A typical 16-KiB page has up

to 1 KiB as spare area.

10
When a page in WLk is programmed, its i-th cell within the page is

selectively programmed depending on the value of BLi . If BLi is set to ‘0’

(i.e., 0V), the i-th cell is programmed. If BLi is set to ‘1’ (i.e., VCC ), the i-th
cell is not programmed (i.e., it is inhibited) because there is an insufficient

voltage difference between the cell’s floating gate and the substrate due to

the channel boosting effect [27, 32, 43, 51]
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pLock sets only the pAP flag of PP#0x19 to disabled by

inhibiting all the data cells on WL8 as well as the pAP flags

of PP#0x18 and PP#0x1A.
Implementation. To support pLock with the organization

shown in Figure 8(a), there are two main implementation

challenges. First, programming a pAP flag should not cause

reliability issues (e.g., due to interference) in the main data

area and the spare area of the WL. Although the SBPI tech-

nique supports selective programming of flash cells on a WL,

inhibited cells might be affected by a high program voltage

applied to theWL. Second, a pAP flag should be programmed

fast and read reliably. In particular, it should be guaranteed

that there is no error in pAP flags under all flash operating

conditions (e.g., long retention times, high P/E cycles, and

process variability [28]). For example, if a disabled pAP flag

value is mistakenly re-enabled after a long retention time,

the associated locked page can be accessed again, which is

unacceptable.

In our current design, we meet the first requirement by

programming a pAP flag using the one-shot programming

scheme with a lower program voltage, in addition to the SBPI

scheme. Since flash cells for pAP flags need to distinguish

between only two discrete states enabled and disabled, we
treat flash cells for pAP flags as SLC cells. Unlike typical TLC

data cells which need to store eight different states, SLC flash

cells with two states can be reliably programmed with a low

program voltage, avoiding a reliability degradation due to

the over-programming problem (Section 4). Furthermore, the

one-shot programming scheme reduces the frequency and

duration of applying a program voltage to a WL. Therefore,

using the SBPI scheme with a low-voltage one-shot program-

ming scheme minimizes the impact of programming a pAP

flag on the reliability of the inhibited flash cells. Note that

using the one-shot programming scheme also has the benefit

of having a relatively short latency.

To guarantee error-free management of pAP flags, we em-

ploy a simple k-modular redundancy scheme that allocates

k flash cells for each pAP flag. As shown in Figure 8(b), the

k-bit majority circuit computes the pAP flag value of each

page from k flash cells. As we show in the following subsec-

tion, with a sufficiently high k , we can manage pAP flags

reliably without requiring a complicated ECC module.

Design Space Exploration. To determine good design pa-

rameters for our proposed pLock implementation in Figure 8,

we conduct comprehensive reliability and performance eval-

uations using 160 state-of-the-art (48-layer) 3D NAND flash

chips. To minimize the potential distortions in the evalua-

tion results, for each test scenario, we evenly select 120 test

blocks from each chip at different physical block locations,

and test all the WLs in each selected block. We test a total

of 3,686,400 WLs (11,059,200 pages) to obtain statistically

significant experimental results. Using an in-house custom

test board, we evaluate various performance and reliability

metrics while varying the number of P/E cycles (from 0 to

1,000) and retention-time requirements (from 0 to 5 year).

Due to the page limit, we discuss only the key results under

worst-case reliability conditions.
11

In the design shown in Figure 8, there are three key de-

sign parameters that we need to decide: 1) program voltage

V
pLock
proд and 2) program latency tpLock used for programming

the flag cells, and 3) k , the number of flash cells per pAP flag.

To find the best combination of (V
pLock
proд , tpLock ), as shown in

Figure 9(a), we start from an initial design space Ψ ×T where

Ψ = {V
p
1
,V

p
2
,V

p
3
,V

p
4
,V

p
5
} (V

p
i+1 −V

p
i = 0.5V ) and T = {100µs,

150µs, 200µs}. We define the initial design space Ψ ×T via a

preliminary evaluation on the performance and reliability of

the pLock implementation in Figure 8.

First, we evaluate how the reliability of data cells is af-

fected by a different combination of (V
pLock
proд , tpLock ) ∈ Ψ × T

for the pLock implementation. Although the SBPI technique

enables pLock to inhibit data cells while programming flag

cells, the RBER of data cells can increase due to program dis-
turbance.12 As shown in Figure 9(b), the higher the program

voltage or the longer the program latency, the higher the

RBER of data cells due to program disturbance during pLock.
Based on the result shown in Figure 9(b), we exclude four

combinations in Region I (Figure 9(a)) from further consider-

ation because they increase the RBER of data cells.

Second, we evaluate if a flag cell can be reliably pro-

grammed for a (V
pLock
proд , tpLock ) combination of the remaining

design space (i.e., Ψ × T− Region I). As shown in Figure 9(c),

several combinations cannot reliably program a flag flash

cell due to low program voltage or short program time. For

example, with combination (V
p
1
, 100µs), pLock can program

0.9
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Figure 9. Design space exploration results for pLock.

11
Our test procedure follows the JEDEC standard [46] recommended

for commercial-grade flash products.

12
Even if all the data cells in a WL are inhibited during pLock, the high

program voltage applied to the WL can affect theVth levels of the data cells.

This undesired phenomenon is called program disturbance [32, 43, 52].
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only 47.3% of flag cells successfully. Based on the result in Fig-

ure 9(c), we exclude five combinations in Region II, leaving

six candidate combinations, (i) ∼ (vi), as shown in Figure 9(a).

As the last step in our design space exploration, we eval-

uate how the number of retention errors changes when k
flag cells are grouped to represent a single pAP flag. We test

two retention-time requirements at 30
◦
C after 1K P/E cycles,

1-year and 5-year retention times, while varying k from 5

to 11. Figure 9(d) shows the evaluation results when k = 9

(which we use as the final k value). The number of reten-

tion errors is significantly affected by which (V
pLock
proд , tpLock )

combination we use. For example, for the 5-year retention-

time requirement, combination (vi), (V
p
2
, 200 µs), leads to 5

retention errors in 9 flag cells, while combination (i), (V
p
4
, 150

µs), leads to at most 2 errors. When combined with the 9-bit

majority circuit, combination (vi) cannot guarantee that a

pAP flag is correctly managed throughout the required reten-

tion time. Out of the six candidate combinations, we select

combination (ii), (V
p
4
, 100 µs), which meets a high retention-

time requirement with the shortest tpLock , as the final design
parameter along with 9 flag cells to represent a pAP flag.

5.4 BLock: Block-Level Data Sanitization
Need for Block-Level Sanitization. The pLock command

enables per-page sanitization at low cost, but its performance

overhead may become nontrivial if a large number of pages

need to be sanitized at the same time. For example, if a user

wants to securely delete a 1-GiB file (e.g., a video file) from

a flash-based storage system with 16-KiB page size, 65,536

consecutive pLock commands are needed, which can intro-

duce significant delay in the flash-based storage system. A

block-level data sanitization mechanism could mitigate the

performance overhead of a large number of pLock com-

mands: a single bLock command can sanitize all the pages

in a block at once with low latency.

There is an even more fundamental reason to support such

a bLock command in modern 3D NAND flash memory. In

recent 3D NAND flash memory, due to structural characteris-

tics, the reliability of data stored in a block strongly depends

on the time gap between when the block is erased and when

data is programmed to the block [53, 54]. This time gap is

called an open interval. The shorter the open interval, the

more reliable the storage of data. Figure 10 illustrates how

RBER increases as the length of an open interval increases.

When the open interval is the largest we tracked, RBER is

30% larger than when the open interval is zero. To avoid the
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Figure 10. RBER vs. open interval length.

reliability problem of an open interval, a block should be

erased lazily, i.e., the erase of the block should happen just

before programming data on the block. Therefore, bLock
is essential to effectively sanitize data in an entire block

without reliability issues.

Implementation. We implement bLock by leveraging a

new feature of 3D flash organization. We allocate per-block

bAP flags in the SSL of each flash block. As explained in

Section 2.1, there is an SSL at the top of each block, which

is used to select the active block during flash operations.

Unlike 2D flash memory where normal transistors are used

for SSL transistors, 3D flash memory uses normal flash cells

as SSL transistors [25, 55], which allows us to program (and

erase) the SSL of a block as a normal WL.
13
Therefore, by

sufficiently increasing the Vth levels of SSL cells (i.e., pro-
gramming the SSL just like programming a normal WL), we

can turn the SSL cells of a block into off switches, which
effectively inhibit all read requests to the block. Since there

is no way to erase only SSL cells using the standard flash

interfaces, bLock can efficiently sanitize an entire block.

Figure 11(a) shows the operational overview of our bLock
implementation. To disable a block (i.e., to set its bAP to

disabled ), bLock shifts theVth levels of SSL cells to higher

than VREAD , which effectively disconnects all the flash cells

below such SSL cells from the page buffer. Since no current

can flow through BLs, the page buffer data for all the flash

pages in a block is fixed to ‘0’ irrespective of the actual page

data. As shown in Figure 11(b), we find that when the center

Vth level of an SSL exceeds 3V, a read operation to any of the

pages in the corresponding block fails due to the introduction

of enough bit errors beyond the correction capability of ECC.
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Figure 11. Our bLock implementation.

Design Space Exploration. To implement bLock in prac-

tice, two requirements should be satisfied. First, bLock should
move the Vth levels of SSL cells sufficiently so that all SSL

cells are completely turned off during a read operation. Sec-

ond, before physically erasing a flash block, SSL cells should

reliably keep their high Vth levels during the entire lifetime.

13
Using a normal flash cell to implement an SSL transistor is inevitable

in 3D NAND flash memory because inserting a normal transistor in a

vertically-stacked 3D flash organization is more difficult than inserting a

flash cell.
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Note that, in bLock, we do not need to consider the inter-

ference between an SSL and other WLs in the same block

because an SSL is already physically separated from other

WLs in the same block via a dummy WL (which is inserted

between an SSL and WLs) to prevent potential unintentional

programming of an SSL during a normal flash operation.

In our bLock implementation, we consider two design

parameters related to bAP flags: program voltageV bLock
proд and

program latency tbLock which are used for programming bAP

flags (i.e., SSL cells). To minimize latency, we use the one-

shot program scheme for bLock. To find a good combination

of (V bLock
proд , tbLock ), we start from an initial design space Ψ×T

where Ψ = {V b
1
,V b

2
, ...,V b

6
} (V b

i+1−V
b
i = 1.0V ) andT = {200µs,

300µs, 400µs}, as shown in Figure 12(a).

First, we evaluate if each combination can reliably pro-

gram an SSL so that the center Vth level of the SSL is main-

tained above 3V with the one-shot programming technique.

Based on our evaluation, we exclude the candidate combina-

tions in Region I (in Figure 12(a)) from further consideration

because they cannot move the center Vth level of SSL tran-

sistors to higher than 3V with a desired latency.

Second, we evaluate how theVth levels of SSL cells change
under a given retention-time requirement. We test two

retention-time requirements at 30
◦
C after 1K P/E cycles,

1-year and 5- year retention times. Figure 12(b) shows that

the center Vth level of an SSL significantly vary depending

on different (V
pLock
proд , tpLock ) combinations. For example, the

center Vth level of an SSL programmed with combination

(i), (V
b
6
, 400µs), is predicted to be more than 4V even after

5 years, while the center Vth level of an SSL programmed

with combination (vi), (V
b
5
, 200µs), is predicted to be lower

than 3V before 1 year. Thus, combination (vi) is not reliable

(and neither are combinations (iv) and (v)). Considering both

tbLock and retention reliability, we select combination (ii),

(V
b
6
, 300µs), as our final design parameters.
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Figure 12. Design space exploration results for bLock.

5.5 Implementation Overhead
Area Overhead. The proposed pLock implementation re-

quires one 9-bit majority circuit per flash chip in addition

to 27 flag cells per each WL. Since we implement the flag

cells using the unused flash cells in the spare area of a WL,

no space overhead exists for supporting the pAP flags. For

the 9-bit majority circuit, approximately 200 transistors are

needed [56]. Considering the size of the typical peripheral

circuit area in modern flash memory, the area impact of this

majority circuit is insignificant. The area overhead of the

bridge transistors is also negligible because only one bridge

transistor is needed for each data-out path. For example, only

8 bridge transistors are needed for a typical ×8 I/O NAND

flash chip.

LatencyOverhead. In our implementation, tpLock and tbLock
are 100µs and 300µs, respectively. Compared to the page-

program latency (tPROG ) and block-erasure latency (tBERS ),
the latency overhead of pLock and bLock is very small. For

3D TLC NAND flash memory, tpLock is less than 14.3% of

tPROG (700µs), and tbLock is less than 8.6% of tBERS (3.5ms) [13].

6 SecureSSD: System Integration
In order to take full advantage of pLock and bLock at the

system level, we design an Evanesco-enabled flash-based

storage system, called SecureSSD, which efficiently supports

data sanitization at low cost by interacting with a host com-

puting system. Although pLock and bLock provide low-cost

data sanitization at the flash-chip level, it would unneces-

sarily degrade both SSD and system performance if they are

used for sanitizing security-insensitive data. To avoid this,

SecureSSD allows the user to specify the security require-
ments of written data through an extended I/O interface, so

that the Evanesco-aware FTL in SecureSSD uses pLock and

bLock only when invalidating security-sensitive data.

Figure 13 shows how SecureSSD manages written data

according to the data’s security requirements. To support

data sanitization for Evanesco-unaware systems in a back-

ward compatible manner, SecureSSD, by default, treats all

written data as security sensitive. When an Evanesco-aware
application does not require high security for a file (e.g., bar
in Figure 13), it opens the file with a new access mode flag

O_INSEC. Opening a file with O_INSEC indicates that the file

data can have multiple versions in the SSD and deletion is not

secure. For a write request to a file opened with the O_INSEC
flag, a block I/O request to SecureSSD is flagged with a new
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operation flag REQ_OP_INSEC_WRITE so that SecureSSD is

aware that the written data is security insensitive.

To keep track of the security requirement of each page,

the Evanesco-aware FTL in SecureSSD employs an extended

page status table and a lock manager. A page in SecureSSD
can be in one of four states: free, valid, invalid, or secured .
For a default write (e.g., a write to LPA 0x32 of foo in Fig-

ure 13), the FTL updates the L2P mapping for the requested

LPA with a free PPA (e.g., 0x61), and sets the page status to

secured. In contrast, for a security-insensitive write (e.g., a

write to LPA 0x33 of bar), the FTL sets the page status of the
corresponding PPA (e.g., 0x62) to valid instead of secured.
When a PPA needs to be invalidated, e.g., due to a file

update/deletion from the host or a copy operation in the GC

process ( 1 in Figure 13), the lock manager first retrieves the

status of the PPA from the extended page status table ( 2 ). If

the status of the PPA is not secured, the FTL only updates

the status to invalid ( 3 ) as a regular Evanesco-unaware FTL
would do. If the status of the PPA is secured, the lockmanager

immediately invokes a pLock or bLock command depending

on the status of the other pages in the same block ( 4 ). For

example, when sanitizing a single secured page, the lock

manager issues a pLock command. On the other hand, when

1) all the remaining pages in a block need to be sanitized (e.g.,

during GC or due to a trim request to contiguous secured

pages) and 2) the estimated latency for sanitizing the pages

with pLock is longer than tbLock , the lock manager issues a

bLock command to minimize the performance overhead due

to data sanitization. After that, the FTL updates the status of

the securely-invalidated page(s) to invalid ( 5 ).

7 System-Level Evaluation
Methodology.We implement SecureSSD on FlashBench [40]

with an Evanesco-enabled emulated flash model. Although

FlashBench supports up to 512-GiB capacity, we limit its

SSD capacity to 32 GiB for fast evaluation. We configure

SecureSSD with two channels, each of which has four 3D

TLC NAND flash chips. Each chip has 428 blocks and each

block has 576 16-KiB pages (i.e., 192 WLs). We set flash op-

eration timing parameters for tREAD , tPROG , and tBERS to

80µs, 700µs, and 3.5ms, respectively. Based on our design

space exploration results, we set tpLock and tbLock to 100µs
and 300µs, respectively.
We use four different benchmark traces. Three traces,

MailServer, DBServer, and FileServer, are generated with

the Filebench benchmark tool [57]. One trace, Mobile, is
collected from an Android smartphone (Samsung Galaxy

S2 [58]). Table 2 summarizes three main I/O characteristics

of the evaluated benchmarks: 1) read to write ratio, 2) write

pattern, and 3) write size. We use a custom trace replayer

that sends each write request to an SSD with its security

requirements and aligns the data boundary of each write

request to multiples of 16 KiB (i.e., the physical page size).

Table 2. I/O characteristics of our four benchmarks.

Benchmark read:write File write pattern Write size

MailServer 1:1 create/append/delete e-mails 16–32 KiB

DBServer 1:10 overwrite data files and log files 16–256 KiB

FileServer 3:4 create/append/delete files 32–128 KiB

Mobile 1:50 create/delete pictures 0.5–8 MiB

We compare SecureSSD (secSSD) with two baseline SSDs,

erSSD and scrSSD, which exploit existing physical-

sanitization techniques to support immediate data saniti-

zation.
14
As with secSSD, erSSD and scrSSD manage write

requests in a secure fashion, only if the requests have a

high security requirement. When a secured page needs to

be invalidated, erSSD erases the entire block that contains

the secured page
15
while scrSSD performs scrubbing on the

WL that contains the secured page. When the target block

or the target WL has other valid pages, erSSD and scrSSD
copy the valid pages to other free pages. In scrSSD, we set
the scrubbing latency to 100µs assuming that the one-shot

programming scheme is used to minimize performance over-

head. To understand the benefits of pLock and bLock, we
also evaluate secSSDnobLock which works in the same fash-

ion as secSSD but without bLock.
Evaluation Results. To evaluate the performance of Se-
cureSSD, we measure input/output operations per second

(IOPS) performance and write amplification factor (WAF) val-

ues for each SSD. All values are normalized to ones from an

SSD with no data sanitization support. Figure 14(a) compares

IOPS values of different SSDs under each workload. SecSSD
significantly outperforms erSSD and scrSSD under every

workload. erSSD performs poorly, achieving less than 4% of

the IOPS level of the baseline SSD. Although scrSSD signifi-

cantly outperforms erSSD, it achieves only 34% of the per-

formance of the baseline SSD. In contrast, secSSD achieves
94.5% of the performance of the baseline SSD.

The performance gap between secSSD versus erSSD/
scrSSD is mainly due to the large number of additional

copy operations present in erSSD and scrSSD. As shown
in Figure 14(b), the WAF values of erSSD and scrSSD are

substantially higher, by up to 320× and 4.41× (251× and 2.6×
on average) over the baseline SSD, respectively. In contrast,

secSSD achieves almost equivalent WAF as the baseline SSD.

Note that the amplified writes in erSSD and scrSSD can

greatly degrade the SSD lifetime as well as the IOPS perfor-

mance due to more frequent GC invocations.

Even though both secSSDnobLock and secSSD can san-

itize a page without copying other valid pages stored in

the same wordline, secSSDnobLock has lower performance

14
All three SSDs we evaluate guarantee that ∀t : N paдe

invalid (f , t ) = 0,

for a file f with a high security requirement.

15
Since we are interested in comparing the I/O performance of erSSD

and secSSD, we assume that there is no reliability issue due to the open

block problem (see Section 5.4) in erSSD, i.e., erSSD can immediately erase

a block without any reliability issue.
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Figure 14. Performance of SecureSSD under four different workloads.

than secSSD, in particular, under workloads with large-size

writes (as in FileServer and Mobile). This is because the

more pages are invalidated at the same time, the more op-

portunities for secSSD to sanitize an entire block by using

bLock. We compare the number of pLock operations per-

formed in secSSD and secSSDnobLock under each workload:

the results show that the use of bLock operations reduces

the number of pLock operations by up to 57% (28% on aver-

age) in secSSD. As a result, secSSD further improves the

IOPS performance by up to 5.4% (3.1% on average) over

secSSDnobLock , as shown in Figure 14(a).

Finally, we measure the IOPS performance of secSSD un-

der each workload while varying the fraction of securely-

managed data, as shown in Figure 14(c). The fewer the se-

cured pages, the higher the performance secSSD could achieve
by using pLock and bLock only when invalidating security-

sensitive data. When managing 60% of total written data in

a secure fashion, the performance of secSSD is only up to

6.2% (2.8% on average) lower than that of the baseline SSD.

Although selective sanitization has a higher performance

impact under write-intensive workloads, DBServer and Mo-
bile, secSSD exhibits the lowest performance in DBServer.
This is because DBServer issues a large number of small

updates to securely managed files such that secSSD has little
opportunity to perform bLock and to exploit the internal

parallelism of the SSD for pLock operations.

8 Related Work
To our knowledge, Evanesco is the first mechanism that

supports low-cost data sanitization by disabling access to

data within the flash chip. We briefly discuss closely-related

prior work that aims to support data sanitization in flash-

based storage systems by destroying or encrypting data.

Physical Destruction of Stored Data. The most funda-

mental approach to sanitizing data is to physically destroy

the data in the storage medium. Diesburg et al. [6] propose
a framework that enables a file system to notify an SSD to

immediately erase blocks containing security-sensitive data.

However, such an erase-based approach can significantly

degrade the performance and lifetime of SSDs, introducing

a large number of data copies. To sanitize data without re-

quiring block erasure, several studies [7, 9–11] propose tech-

niques based on scrubbing, which destroys the Vth values of

cells in a target page in a WL. Scrubbing a WL in SLC flash

memory is relatively simple as there is only one page in a

WL. However, for MLC flash memory, scrubbing techniques

need to copy other valid pages in the sameWL to some other

WLs before destroying the Vth values of the target page in

a WL. To mitigate the performance overhead of scrubbing

in MLC flash memory, Lin et al. [8] propose the one-shot
reprogramming technique that enables the destruction of

the Vth values of individual pages in a WL separately from

each other. However, as shown in Section 4, the one-shot

reprogramming technique is not easily applicable to modern

3D NAND flash storage systems, since it cannot meet the re-

liability requirements due to significant over-programming

errors.

Data Encryption. Multiple works use data encryption to

implement low-overhead data sanitization techniques for

flash-based storage systems [3, 59–61]. The schemes encrypt

security-sensitive data with a cryptographic algorithm, such

as AES [62], and delete the encryption key when the data

needs to be sanitized. Since it is almost impossible to ob-

tain original data without the encryption key, the encrypted

data can be effectively destroyed just by deleting the encryp-

tion key. However, encryption may not always be desirable

due to performance overheads or resource constraints, and

it also requires a complicated key management to satisfy

stringent security requirements. If the encryption key is

compromised [47, 63], this solution becomes ineffective.

Evanesco does not suffer from encryption overheads. It

can also be used as a technique that is complementary to

data encryption. For example, when encryption keys are

mistakenly leaked, Evanesco can still guarantee that security-
sensitive data is sanitized.

9 Conclusions
We introduce Evanesco, a new chip-level data sanitization

technique for modern flash-based storage systems. Evanesco
supports immediate per-page sanitization at low cost with

two new flash commands, pLock and bLock, that disable ac-
cess to a page or a block, respectively, using access control

mechanisms implemented on the flash chip. By leveraging

spare cells in existing flash memory organization, Evanesco
effectively makes sanitized data in a flash chip inaccessible,

with only a small resource overhead. Using state-of-the-art
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3D NAND flash chips, we validate that pLock and bLock
can quickly disable a target page and block without compro-

mising reliability of stored data. To fully exploit pLock and
bLock, we design an Evanesco-enabled flash storage system,

SecureSSD, which efficiently and securely manages security-

sensitive data by interacting with a host system using ex-

tended I/O interfaces. Our experimental results show that

SecureSSD can delete security-sensitive files immediately

and irrecoverablywhile providing a comparable performance

to an SSD with no data sanitization support.

Based on both chip-level and system-level evaluations, we

conclude that Evanesco is an effective low overhead data

sanitization mechanism for modern flash memory based

SSDs. We believe the basic ideas of Evanesco are applica-

ble to other memory technologies (e.g., PCM [64–68], STT-

MRAM [69, 70], RRAM [71]) and encourage future work to

explore similar mechanisms in emerging memories.
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