
Flexible Reference-Counting-Based
Hardware Acceleration for Garbage Collection

José A. Joao† Onur Mutlu§ Yale N. Patt†

†ECE Department
The University of Texas at Austin
{joao, patt}@ece.utexas.edu

§Computer Architecture Laboratory
Carnegie Mellon University

onur@cmu.edu

ABSTRACT

Languages featuring automatic memory management (garbage col-
lection) are increasingly used to write all kinds of applications be-
cause they provide clear software engineering and security advan-
tages. Unfortunately, garbage collection imposes a toll on per-
formance and introduces pause times, making such languages less
attractive for high-performance or real-time applications. Much
progress has been made over the last five decades to reduce the over-
head of garbage collection, but it remains significant.

We propose a cooperative hardware-software technique to reduce
the performance overhead of garbage collection. The key idea is
to reduce the frequency of garbage collection by efficiently de-
tecting and reusing dead memory space in hardware via hardware-
implemented reference counting. Thus, even though software
garbage collections are still eventually needed, they become much
less frequent and have less impact on overall performance. Our tech-
nique is compatible with a variety of software garbage collection al-
gorithms, does not break compatibility with existing software, and
reduces garbage collection time by 31% on average on the Java Da-
Capo benchmarks running on the production build of the Jikes RVM,
which uses a state-of-the-art generational garbage collector.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: Gen-
eral; C.5.3 [Microcomputers]: Microprocessors; D.3.4 [Processors]: Memory
management (garbage collection)

General Terms: Design, Performance.

Keywords: Garbage collection, reference counting.

1. INTRODUCTION
Garbage collection (GC) is a key feature of modern “managed"

languages because it relieves the programmer from the error-prone
task of freeing dynamically allocated memory when memory blocks
are not going to be used anymore. Without this feature that man-
ages memory allocation/deallocation automatically, large software
projects are much more susceptible to memory-leak and dangling-
pointer bugs [27]. These hard-to-find bugs significantly increase the
cost of developing and debugging software and can damage the qual-
ity of software systems if they are overlooked by software testers and
survive into the delivered code. Thus, many recent high-level pro-
gramming languages include garbage collection as a feature [5, 34].
However, garbage collection comes at a cost because it trades mem-
ory space and performance for software engineering convenience.
On the one hand, memory space occupied by dead objects is not re-
claimed until garbage collection is executed. On the other hand, per-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

forming garbage collections too frequently degrades performance un-
acceptably because each garbage collection takes a significant amount
of time to find dead objects. Thus, the memory space required to run
a program in a managed environment with reasonable performance is
usually significantly larger than the space required by an equivalent
program efficiently written with manual memory management.

Garbage collection performs two distinct functions. First, it dis-
tinguishes objects reachable from a valid pointer variable (“live ob-
jects") from unreachable objects (“dead objects"). Algorithms to de-
termine object reachability are variations of either reference count-
ing [15] or pointer tracing [26]. Reference counting keeps track
of the number of references (pointers)1 to every object. When this
number is zero, it means the object is dead. Pointer tracing recur-
sively follows every pointer starting with global, stack and register
variables, scanning every reachable object for pointers and following
them. Any object not reached by this exhaustive tracing is dead. Sec-
ond, after the garbage collector identifies dead objects, it makes their
memory blocks available to the memory allocator. Depending on the
collection and allocation algorithms, preparing memory blocks to be
reused by the memory allocator may require extra memory accesses.

A garbage collector has several sources of overhead. First, it re-
quires processor cycles to perform its operations, which are not part
of the application (mutator in GC terminology) itself. Second, while
it is accessing every live object, even the ones that are not part of
the current working set, it pollutes the caches. Third, it can delay
the application in different ways. Stop-the-world collectors just stop
the application while they are running. Concurrent collectors impose
shorter pause times on the application, but require significant syn-
chronization overhead. When memory space is tight, garbage collec-
tion frequency may increase because every time the application is un-
able to allocate memory for a new object, the garbage collector has to
run to free the memory left by recently dead objects. Consequently,
garbage collection has a potentially significant overhead that limits
the applicability of managed languages when memory is not abun-
dant and performance/responsiveness is important [7]. Examples of
memory-constrained systems are embedded and mobile systems that
are usually memory-constrained for space and power reasons, and
highly consolidated servers that need to efficiently use the available
physical memory for consolidating multiple virtual machines.

Figure 1 shows the fraction of total execution time spent on garbage
collection for the Java DaCapo benchmarks with a production-quality
generational garbage collector for different heap sizes, relative to the
minimum heap size that can run the benchmark.2 The overheads of
garbage collection with tight heap sizes are very significant for sev-
eral benchmarks, in the 15-55% range. For this reason, running a
program with tight heaps is usually avoided, which results in over
provisioning of physical memory, thereby increasing cost and power
consumption. Even with large heap sizes, the overhead of garbage
collection is still significant (6.3% on average for 3x minHeap).

1A reference is a link from one object to another. In this paper we use the terms reference
and pointer interchangeably.
2We run the benchmarks on Jikes RVM with the large input set on an Intel Core2 Quad

1

0

5

10

15

20

25

30

35

40

45

50

55

60

G
C

 t
im

e
(%

 o
f

to
ta

l
ex

ec
u

ti
o
n

 t
im

e) 1x minHeap

1.5x minHeap

2x minHeap

3x minHeap

5x minHeap

10x minHeap

an
tlr

 2
0

bl
oa

t 3
6

ch
ar

t 4
0

ec
lip

se
 8

2

fo
p

28

hs
ql

db
 1

71

jy
th

on
 3

2

lu
in

de
x

18

lu
se

ar
ch

 4
5

pm
d

36

xa
la

n
51

am
ea

n

Figure 1: Garbage collection overheads for DaCapo benchmarks
with different heap sizes (minHeap values in MB shown in labels)

Software garbage collectors provide different trade-offs in terms
of memory space, performance penalty and pause times. Most of
the currently used and best-performing collectors are “generational
collectors” [35]. Generational collectors exploit the generational hy-
pothesis, which states that in many cases young objects are much
more likely to die than old objects. New objects are allocated into
a memory region called “younger generation” or “nursery.” When
the nursery fills up, surviving objects are moved to the “older gener-
ation” or “mature” region.3 Generational collectors usually combine
a bump-pointer allocator [4] that provides fast contiguous allocation
and good locality for new objects, an efficient copying collector for
the nursery [35], and a space-efficient collector for the mature region,
for example mark-sweep [26]. Nursery collections can be frequent
but are usually fast because young objects that die quickly are nei-
ther traced nor copied to the older generation. Full-heap collections
are expensive but infrequent when the heap is reasonably large com-
pared to the working set of the application and the virtual machine.
Even with very efficient multi-generation collectors like the one used
in the .NET framework, the total overhead of garbage collection can
be significant (12% on average for the applications shown in [12]).

Reference counting is an alternative to tracing garbage collection.
Instead of determining reachability by periodically tracing all point-
ers, reference counting can find dead objects as soon as they become
unreachable and their memory blocks can be immediately reused to
allocate other objects, eliminating the need for explicit garbage col-
lections. However, there are two fundamental limitations of refer-
ence counting. First, the overhead of updating the reference counts
on every pointer creation and destruction is very high and makes im-
mediate reference counting unattractive in software. The overhead is
even higher in multithreaded systems, which require synchronization
for all reference count updates. Some research proposals in refer-
ence counting ([16, 24, 9]) skip reference count updates for pointers
in registers and on the stack and offer more competitive overheads,
but require processing the pointers on the stack and registers before
determining that any object is effectively dead. A second basic lim-
itation of reference counting is that it is not complete, i.e. it cannot
easily detect the death of objects that are part of cyclic data structures.
Therefore, running either a cycle detection algorithm or a complete
garbage collection algorithm is eventually required.

Hardware Garbage Collectors. Proposals have been made to im-
plement garbage collection fully in hardware [32, 36, 29, 30, 28, 33].
Unfortunately, fully implementing garbage collection in hardware is
undesirable for general purpose processors due to at least three major
reasons. First, a hardware implementation ties a particular garbage
collection algorithm into the ISA and the microarchitecture. There
is no single memory allocation and collection policy that performs

Q6600 processor.
3More generally, subject to a tenuring threshold (i.e. objects that have survived some
number of nursery collections are promoted to the mature region)

the best for every application and memory configuration [23] and the
hardware implementation has to pick one particular mechanism. A
hardware implementation of a scheme that works well on average
may not be the best memory management platform for many appli-
cations, and the rigid hardware implementation cannot adapt beyond
simple tuning. Second, the cost of developing, verifying and scal-
ing previously proposed full-hardware solutions is very high, because
they introduce major changes to the processor [29, 30, 28, 33] or the
memory [32, 36] architecture. Third, full-hardware collectors miss
opportunities available at the software level, such as taking advantage
of garbage collections to change the memory layout to improve local-
ity [19, 17, 12]. In summary, hardware GC makes a rigid trade-off of
reduced flexibility for higher performance on specific applications,
and this trade-off is not suitable for general purpose systems.

Given the importance of garbage collection in modern languages
and its performance overhead, we hypothesize some form of hard-
ware acceleration for GC that improves performance without elimi-
nating the flexibility of software collection is highly desirable, espe-
cially in future processors with higher levels of resource integration.

Hardware trends. The number of transistors that can be inte-
grated on a chip continues to increase and the current industry trend
is to allocate them to extra cores on a CMP. However, Amdahl’s
law [3] and the difficulty of parallelizing irregular applications to a
high degree are turning the attention of computer architects towards
asymmetric solutions with multiple core configurations and special-
purpose hardware blocks that work as accelerators for commonly
used functionality. Given that garbage collection is an increasingly
common and significant source of overhead in modern languages, it
is important to accelerate it via dedicated hardware support.

Our goal is to provide architectural and hardware acceleration
support that can reduce the overhead of garbage collection without
limiting the flexibility that a software collector can offer. We pro-
pose a hardware-assisted form of reference counting that works as a
complement to any existing garbage collection algorithm to reduce
its overhead. When our low-cost reference counting mechanism can
safely indicate that an object is dead, the object’s memory block can
be reused to allocate another object, delaying the need to garbage
collect. However, since reference counting is not complete, software
GC is still eventually required, but much less frequently. Our pro-
posal gives the memory allocator the choice of either reusing a mem-
ory block from the hardware-managed pool of newly-found dead ob-
jects, or allocating a new block with the default software allocation
algorithm. This approach combines the reduced GC overhead given
by the hardware support with the flexibility of software allocation to
improve locality or adapt to specific characteristics of applications.
Thus, the hardware-software approach can potentially achieve better
performance than a pure-software or pure-hardware approach.

Basic Idea. Our proposal, Hardware-Assisted Automatic Memory
Management (HAMM), has two key components. The first maintains
a reference count field in each object’s header in main memory. The
compiler modifies pointers using new ISA instructions and the hard-
ware processes the resulting reference count updates. These updates
are consolidated in Reference Count Coalescing Buffers (RCCB) both
at the core (L1 RCCB) and at the chip (L2 RCCB) level to reduce
the frequency of reference count updates in memory. Entries evicted
from the L2 RCCB update the reference count in the object header.
The RCCBs are able to filter 96.3% of the reference count updates on
average for our benchmarks, effectively neutralizing the main disad-
vantages of reference counting, i.e. the significant increase in mem-
ory traffic and the need to synchronize on every reference count up-
date. The second component makes memory blocks used by dead
objects promptly available to the software allocator for reuse. It
does so through simple hardware-maintained free-block lists called
Available Block Tables (ABT) in main memory and both at the chip
level and at the core level, which are refilled as memory blocks are

2

reused and objects are found dead. The ABTs allow memory block
reuse without delaying or introducing long-latency cache misses into
the timing-critical memory allocators. We provide new ISA instruc-
tions for the allocator and garbage collector to interact with the pro-
posed hardware support. Our evaluation shows that the combination
of hardware-accelerated reference counting and support for memory
block reuse allows significant reduction in the overhead of GC with-
out significantly affecting the performance of the application itself.

Contributions. This paper makes the following contributions:

1. We propose a cooperative hardware-software mechanism to
allow reuse of memory blocks without garbage collection,
thereby reducing the frequency and overhead of software GC.

2. Unlike previously proposed pure-hardware or pure-software
garbage collection techniques, our proposal accelerates GC
in hardware while letting the software memory allocator and
garbage collector make higher-level decisions, for example
about where to locate objects to improve locality. Our compre-
hensive proposal provides primitives for faster GC in hardware
without limiting the flexibility of software collectors that can
be built on top of the primitives. Our proposal is compatible
with many existing software GC algorithms.

3. Our evaluation shows that our proposal reduces the execution
time spent on garbage collection by 31% on average for a
set of the Java DaCapo benchmarks running on Jikes RVM,
a research virtual machine with a state-of-the-art generational
garbage collector. We show that our proposal saves garbage
collection time in both generations without significantly affect-
ing the execution time spent in the application (mutator).

2. HARDWARE-ASSISTED AUTOMATIC
MEMORY MANAGEMENT (HAMM)

2.1 Basic Concept
We propose HAMM, a hardware-software cooperative reference

counting (RC) mechanism that detects when objects die and enables
reusing their memory blocks to allocate objects, delaying the need for
garbage collection and therefore reducing the overhead of garbage
collection using acceleration support in hardware. The strategic de-
cision about whether to reuse a memory block or to allocate a new
memory block is left to the software memory allocator. Our objec-
tive is not to replace the software garbage collector in hardware, but
to reduce its overhead with simple hardware primitives. Thus, our
reference counting mechanism does not need to accurately track all
objects as long as it accurately indicates that an object is dead, so it
can be designed to keep the required software and hardware support
at reasonable cost. The baseline garbage collection algorithm is even-
tually executed to collect every dead object, but these collections are
needed much less frequently and with less overhead with HAMM.

The hardware support provided by HAMM consists of two compo-
nents: 1) reference count tracking: structures that keep track of ref-
erence counts for objects, 2) memory block reuse handling: struc-
tures that determine and quickly supply available memory blocks to
the software allocator.

Figure 2 shows an overview of the additional hardware required for
HAMM. Each object has a reference count field (RC) in its header.
When instructions that create or destroy pointers commit, they issue
reference count update operations (increment or decrement, respec-
tively) that are cached in an L1 Reference Count Coalescing Buffer
(L1 RCCB) in each processor core. The purpose of the RCCB is to
merge multiple reference count updates for the same object to reduce
the effective number of updates processed beyond each core. A large
fraction (90.6% on average) of all reference count updates are filtered
by the L1 RCCB. A second level L2 Reference Count Coalescing
Buffer (L2 RCCB) merges RC updates (e.g., for shared objects) from
all cores on the chip before effectively applying the RC updates to

...

Core 1

CPU Chip 1

...

Available
Block Table

(ABT)

Blocks available for reuse

RC RC

RC
RC

RC

Block address

(L1 ABT)

(L1 RCCB)

CPU Chip 0

Core 0

LD/ST Unit

RC updates

L2 Available

(L2 ABT)
Block Table

L2 RC

Buffer
Coalescing

(L2 RCCB)

Core N.....

L1 Available Block Table

CPU Chip M

Live objects

Main memory

L1 RC Coalescing Buffer

Reference count tracking (L1 and L2 RCCBs, RC field in each object’s
header): determine dead objects without explicit GC and with low overhead.

Memory block reuse handling (L1, L2, and memory ABTs): enable fast
memory reallocation into available memory blocks found by RC.

Figure 2: Overview of the major hardware structures provided
by HAMM (components are not to scale)

the reference count field in each object’s header. The purpose of the
RCCB hierarchy is twofold: 1) to mitigate the performance impact
of RC updates on the interconnect and memory traffic and 2) to effi-
ciently handle the synchronization of RC updates across cores with
minimum interference on the application.

When an object’s reference count becomes zero, i.e. it does not
have any references to it and therefore has become garbage, its mem-
ory block is added to the Available Block Table (ABT), which is a
data structure stored in main memory. We classify memory blocks
according to their reusable size into one of 64 size classes. Concep-
tually, ABTs are a set of free-block lists, one for each size class. To
avoid introducing unnecessary delays on the allocator, our design in-
cludes a single-entry L1 ABT at the core level and an N-entry L2
ABT at the chip level (assuming there are N cores per chip), which
are refilled as memory blocks are reused.

When the memory allocator requests a block, the L1 ABT is ac-
cessed with the corresponding block size class. If a block large
enough to satisfy the request is present in the L1 ABT, the hardware
supplies its address to the software allocator, and requests another
block from the L2 ABT to refill the corresponding L1 ABT entry.
As with most of the communication traffic and extra processing in-
troduced by our proposal, this request is not time-critical and can be
satisfied with lower priority with respect to other requests. Eventu-
ally, the L2 ABT will also be refilled with either a newly found dead
object or from the lists of available blocks kept in the memory ABT.

Our proposal requires support from the compiler, the ISA, and the
hardware for 1) object allocation, 2) tracking references, 3) determin-
ing object death, 4) reallocation of memory blocks, and 5) interacting
with the software garbage collector. We will next explain in more de-
tail how our proposal works in each of these aspects.

2.2 Object Allocation
We introduce two new instructions in the ISA to let the software

memory allocator interact with the supporting hardware. First, the
allocator must be able to query the hardware for the availability of a
reusable memory block of the required size. We provide the instruc-
tion REALLOCMEM for this purpose. If this instruction returns a
non-zero address, which points to an available memory block, al-
location can proceed on that block. Otherwise, the allocator pro-
ceeds with its default allocation policy, for example bump-pointer

3

allocation [4] or free-list allocation [26], commonly used in software
memory allocators. Next, the allocator must inform the hardware
of the existence of a newly allocated memory block using the new
ALLOCMEM instruction. Table 1 describes these new instructions.

Table 1: HAMM ISA instructions for object allocation
Format Description
REALLOCMEM reg1, reg2 Requests a memory block of size reg2 from the

hardware-maintained local Available Block Table
(L1 ABT). It returns in reg1 the starting address
of an available block or zero if no block could be
found, and in reg2 the actual size of the block. Con-
dition codes are set based on reg1.

ALLOCMEM reg1, reg2 Informs the hardware of a newly allocated block for
an object of size reg2 referenced with address reg1,
so that the first reference to the object is created in
the hardware reference counting mechanism. AL-
LOCMEM creates an entry in the local L1 RCCB
with a reference count of one (i.e., reg1), and writes
the 6-bit size class to the object header.

2.3 Reference Counting
Object reuse is provided by hardware-assisted reference counting.

Each object has a reference count field in its object header. Reference
count updates are generated as a side effect of the instructions that
modify pointers and are then consolidated in a hierarchy of Reference
Count Coalescing Buffers, which eventually updates the reference
count field in each object’s header.

Compiler and ISA support are required to properly update the ref-
erence counts. Anytime a pointer P is stored, the program is creating
a new reference to the object at address P. If the instruction storing
the pointer overwrites a previous value Q of the pointer, the program
is also effectively destroying a reference to the object at addressQ. To
keep track of creation and destruction of references during program
execution, a special “store pointer" instruction is used every time a
pointer is written to a register or memory location. Store pointer in-
structions update the reference counts for the pointer that is created
or destroyed, in addition to actually storing the pointer. There are
two variants of the store pointer instruction: one that writes a new
pointer and one that overwrites an existing pointer. When both types
of these instructions commit, they generate an increment reference
count or incRC operation for the stored reference. Additionally, in-
structions that overwrite an existing reference generate a decrement
reference count or decRC operation for the overwritten reference.
Additionally, these instructions can be simple STORE (or MOV to
register/memory), PUSH or POP (similar to MOV, but copying to or
from the top of the stack). Table 2 describes the format and semantics
of the store pointer instructions.

Table 2: HAMM ISA store pointer instructions
Format Description
MOVPTR reg/mem, src_reg Stores a new reference in register src_reg to a

reg or mem and increments the reference count
for src_reg.

MOVPTROVR reg/mem, src_reg Overwrites an existing reference in reg or mem
with a reference in src_reg, increments the ref-
erence count for src_reg and decrements the
reference count for the overwritten reference
originally in reg/mem.

PUSHPTR reg/mem Pushes a reference in reg/mem onto the stack
and increments the reference count.

POPPTR reg/mem Pops a reference from the stack into reg/mem.

POPPTROVR reg/mem Pops a reference from the stack, overwriting
an existing reference in reg/mem, whose refer-
ence count is decremented.

Software reference counting performs basically the same opera-
tions as the store pointer instructions, but it requires synchroniza-
tion to modify a pointer value while reading the previous value of
the pointer, e.g. using a compare-and-swap instruction and the cor-
responding check for success and eventual retry loop. By adding
the RC updates to the semantics of the ISA instruction that actually
stores the pointer, we let the hardware cache coherence mechanism

handle the synchronization without unnecessary overhead.4 When
the cache line holding the pointer is modified, the overwritten value
of the pointer is read5 and propagated down the pipeline until the
instruction commits and performs the RC update operations on the
L1 RCCB: a decRC operation for the old value of the pointer and an
incRC operation for the new value of the pointer.

2.3.1 Handling References in Registers
References in registers can also be destroyed by overwriting the

register with a non-reference value. We extend the register file with
an extra Reference bit. This bit is set when the register is written to
by any of the store pointer instructions. It is cleared when the register
is overwritten by any other instruction. When the bit is cleared, the
original value marked as a reference is carried down the pipeline and
when the instruction commits, a decRC operation is performed on the
overwritten reference.

2.3.2 Handling References on the Stack

References on the stack can be implicitly destroyed by simply go-
ing out of scope, for example by updating the stack pointer on re-
turning from a subroutine. We extend the L1 cache with one extra
Reference bit per word, which is set when a store pointer instruction
writes to the word, and cleared when 1) any other instruction writes
to the word or 2) a POPPTR or POPPTROVR instruction pops the
word from the stack. The processor lazily performs decRC opera-
tions on references left in the invalid region of the stack frame, either
when the word marked as a reference is overwritten because the stack
regrew or when the cache line is evicted from L1.

2.3.3 Reference Count Coalescing Buffers (RCCBs)
The incRC and decRC operations generated by any of the mecha-

nisms previously explained should not directly update the reference
count field in the object header due to two reasons. First, the resulting
increase in memory traffic would be very significant because refer-
ences are frequently created and destroyed, especially in register and
stack variables. Second, many of these frequent RC updates affect
the same set of objects in the current working set of the program and
many cancel each other in a short amount of time. Thus, only the net
value of all RC updates for a certain object matters, not the individual
updates. Consider for example, that while a linked list is being tra-
versed the current pointer changes from one node to the next on each
iteration, incrementing and decrementing the RC for every node in
the list. However, after the traversal finishes without changing the
list, the net effect of all those RC updates is zero.

For these reasons, we consolidate RC update operations in the Ref-
erence Count Coalescing Buffers (RCCBs) before applying them to
the reference count in the object through the memory system. RC-
CBs are set-associative hardware tables. They are indexed and fully-
tagged based on the reference value (virtual address), and each entry
has a signed integer reference count delta field (RCD). The RCD field
in the L1 RCCB on each core is incremented by each incRC opera-
tion and decremented by each decRC operation. When an L1 RCCB
entry is evicted, it updates the corresponding on-chip L2 RCCB. If
there is already an entry in the L2 RCCB for the same reference, the
RCD value coming from the L1 RCCB is simply added up to the
corresponding RCD field in the L2 RCCB entry.

2.4 Object Death
An object can be declared dead anytime after its reference count

becomes zero. We process all RC increments and decrements non-
speculatively and off the critical path, i.e. when instructions com-
mit. RC updates on each core are first consolidated locally on the

4The overhead of writing to the header of heavily shared objects could still be significant,
but is already mitigated by the coalescing of multiple updates in the RCCB hierarchy and
it could be further mitigated —if needed— by disabling HAMM for heavily-shared ob-
jects on a per-page basis, because our reference counting is not required for correctness.
5We assume an allocate-on-write-miss policy on the L1 cache.

4

L1 RCCB, independently of other cores’ L1 RCCBs. In general, en-
tries evicted from an L1 RCCB update the on-chip L2 RCCB, and
entries evicted from an L2 RCCB update the reference count in the
corresponding object header in main memory. When the updated ref-
erence count in the object header is zero, the object may be dead. RC
updates make their way to the object header as they are evicted from
L2 RCCBs. If references to a shared object are created/destroyed by
threads running on different processors, it is possible for a decrement
to reach the object’s reference count field while an increment is still
stored in some other RCCB. To confirm that the object is effectively
dead, all RCCBs in the system are checked for pending RC updates
to that object, and if there is none, the object is declared dead.6

2.5 Memory Block Reuse
When a reference count is confirmed to be zero, the correspond-

ing memory block can be reused. To allow reuse, the block address
has to be made readily available to a processor executing a REAL-
LOCMEM instruction. This is the function of the Available Block
Table (ABT) hierarchy. The ABT, which is stored in main memory,
is conceptually a table of free-block lists, one per size class, imple-
mented as linked lists of available memory blocks. The ABT itself
contains the head pointers of the free lists and is indexed based on
size class. When an object is found dead, the starting address of its
memory block is inserted at the head of the free-list corresponding to
the size class field in the object header. The linkage pointer is written
into the now-useless header of the memory block.

Efficient memory allocators are designed to avoid delays produced
by memory accesses that miss in the cache or synchronization with
other threads. To keep this efficiency, the execution of the REAL-
LOCMEM instruction by the memory allocator should not introduce
cache misses or synchronization overheads. Thus, we use the L1 and
L2 ABTs to prefetch the addresses of available memory blocks from
the memory ABT, so that the processor executing REALLOCMEM
only accesses its local L1 ABT, and if no block is found there, it
executes the default allocator code without further delay.

Each core has an L1 ABT table with one entry per size class, and
each N-core chip has an L2 ABT with N entries per size class. These
ABTs contain addresses of available blocks that were found dead at
the local L2 RCCB or were previously retrieved from the memory
ABT. After a REALLOCMEM instruction reuses the block in the L1
ABT, a refill request is sent to the L2 ABT, which in turn gets a refill
from the head of the corresponding memory ABT list.

2.6 Garbage Collection
Our proposal does not eliminate the need for garbage collection

but makes garbage collection less frequent. The software garbage
collector makes the software aware of all available blocks, rendering
the information in the ABTs obsolete. Thus, ABTs must be reset
when a software collection starts.

Pending RC updates in the RCCBs have to be applied to the RC
field in the object header before or during software GC for two rea-
sons. First, copying or compacting collectors move objects to another
memory region to free memory space for new objects and adjust all
pointers in the system to point to the new address of the relocated
object. The reference count in the object header is moved with the
rest of the object. So, any RC update left in an RCCB after moving
the object would be lost because the RCCB holds the old address of
the object. Second, after the collection ends, memory blocks used by
dead objects become free space and can be reused in different ways.
If any pending update to one of these blocks is left in an RCCB, it
can eventually update a memory location in the freed memory area
that is not a valid RC field anymore, which would be a serious error.

For these two reasons, when a software collection starts, it trig-
gers a lazy flush of all RCCB entries, which is done in hardware

6All RCCBs are also queried for pending updates if the updated RC in the object header
is negative, meaning that there must be a pending increment in some RCCB.

with low priority as the collection progresses. Meanwhile, a copy-
ing/compacting software GC can concurrently make progress, but it
cannot move an object without confirming that the object does not
have pending RC updates. We add the instruction FLUSHRC for
this purpose. If the lazy flush of all RCCBs is still in progress, the
FLUSHRC instruction proactively flushes all RCCB entries for a spe-
cific object and waits until the object header is effectively updated.
After the lazy RCCB flush is complete, further FLUSHRC instruc-
tions encountered can simply be ignored without even querying the
RCCBs. Table 3 shows the format of the FLUSHRC instruction.

Table 3: HAMM ISA instruction for garbage collection
Format Description
FLUSHRC reg Flush all pending RC updates in RCCBs for the object at address

reg to its reference count in the object header.

3. IMPLEMENTATION
Our proposal requires the extensions to the ISA discussed in the

previous section, which are new instructions that do not break com-
patibility with existing software that does not use our extensions. The
compiler or the interpreter has to be modified to make use of the new
instructions. Similarly, the allocator and the garbage collector (Sec-
tion 2.6) have to be changed to interact with the architectural changes.
In this section we explain in more detail these modifications to the
software stack and the implementation of our hardware mechanisms.
More detailed explanations are provided in a technical report [20].

3.1 Compiler Support
Since the compiler or the interpreter for a managed language like

Java or C# knows exactly when it is writing or overwriting a pointer,
it conveys this information to the hardware using the new store pointer
instructions in the ISA described in Section 2.3. This allows the hard-
ware to efficiently track the creation and destruction of references,
and to keep accurate reference counts for each object of interest.

The memory allocator has to be slightly modified as we show in
Algorithm 1 for a simple bump pointer allocator. First, the alloca-
tor checks if there is a block available for reuse, using the REAL-
LOCMEM instruction. Since REALLOCMEM only checks the local
L1 ABT, it does not introduce any significant overhead that can slow
down the fast path of the allocator. Once the allocation is complete,
either as a reallocation or as a new allocation, the ALLOCMEM in-
struction informs the hardware of the existence of the new block.

Algorithm 1 Modified bump pointer allocator

addr ← REALLOCMEM size
if (addr == 0) then

// ABT does not have a free block, follow software allocation
addr← bump_pointer
bump_pointer← bump_pointer + size
if (bump_pointer overflows local heap chunk) then

Use Slow-path Allocator (synchronized allocation of a new chunk for
local consumption, trigger GC if necessary, etc.)

end if
else

// ABT returns a free block, use address provided by hardware
end if
Initialize block starting at addr

ALLOCMEM object_addr, size

3.2 Reference Fields in Dead Objects
The hardware efficiently keeps track of reference counts for all ob-

jects of interest. As we explained in Section 2.3, incRC and decRC
operations are non-speculatively generated by store pointer instruc-
tions, and additional decRC operations are generated when references
are overwritten in registers or on the stack. These operations even-
tually update the object’s reference count and are not on the critical
path of the store instruction.

Reference counts for pointer fields found in dead objects are also

5

decremented to increase the coverage of HAMM. The processor at-
tempts to scan an object for pointers as soon as it is found dead.
Object scanning requires the knowledge of which words in the ob-
ject layout contain references. Our mechanism uses a 1K-entry Ob-
ject Reference Map (ORM) table in reserved main memory for each
application. This table is indexed and fully tagged with the unique
type identifier used in each object header to determine the class of
each object, which is usually a pointer to the type information in the
runtime system. Each ORM entry has a 1-word bitmap (32 or 64
bits depending on the architecture), where each bit indicates that the
corresponding word in the object layout is a pointer. This table is
updated by the software runtime system for the most commonly used
types. When an object has to be scanned for references, the pro-
cessor reads the type identifier from the object header, accesses the
ORM and gets the reference bitmap,7 which is aligned and applied to
the Reference bits in the L1 cache line containing the object. After
that, the same hardware that issues decRC operations for discarded
stack frames (Section 2.3.2) is used to issue decRC operations for the
references found by object scanning.

Note that correctness does not require reference counts to be timely
decremented as long as no increment is left unprocessed before de-
ciding an object is dead. If some reference counts are not decre-
mented when they should be or are not decremented at all, only the
opportunity to reuse the memory for an object that became garbage
is lost. Dead objects that are missed by our proposal will eventually
be collected by the default software GC.

3.3 Multiple Managed Memory Regions
Up to this point in the paper, we have assumed our scheme is

designed to handle memory reuse for a single memory region in a
single application. We now extend our mechanism to handle mul-
tiple concurrent applications. Also, each managed application can
allocate objects into different memory regions with different alloca-
tion policies, and memory blocks in each of these regions have to be
reused and collected independently. For example, a generational col-
lector uses two separate memory regions —the nursery and the older
generation— and each of them is assigned to specific ranges of the
virtual memory space, contiguous or not. Therefore, HAMM has to
differentiate memory blocks belonging to different memory regions.
We extend the page table entries and the TLBs to include a 2-bit re-
gion ID within the current application (process). ID 0 prevents our
mechanism from tracking references to objects in that page and IDs
1 through 3 can be used to identify valid memory regions. Addi-
tionally, each application that wants to use our mechanism obtains a
6-bit application ID. Together, the application ID and the region ID
define an 8-bit allocation pool ID, which is made part of the tags in
RCCBs and L2 ABTs to avoid aliasing of addresses across different
applications. Table 4 summarizes the extensions to HAMM to han-
dle multiple allocation pools. On process context switches, RCCBs
are flushed to memory for the evicted process and unused L1 and L2
ABT entries are returned to the corresponding memory ABT.

3.4 Hardware Cost
Table 5 shows the storage cost of HAMM assuming a 64-bit base-

line architecture and a 4-core symmetric CMP. Since we are assum-
ing all addresses require the full 64 bits, this is a pessimistic estimate
of the amount of required storage. Additional combinational and se-
quential logic is also required to implement HAMM. However, none
of the structures of our mechanism is on the critical path. HAMM
also allocates data structures in main memory, as detailed in Table 6.

HAMM uses one byte in the object header for the reference count,
which works as a special kind of unsigned saturated counter, i.e. once
it reaches its maximum value it cannot be further incremented or
decremented. We also use an extra 6-bit size class field in the header,

7Most objects are smaller than the 128 or 512 bytes we can map with this bitmap, and
we only do partial scanning on larger objects.

written by the ALLOCMEM instruction. It is not difficult to find
spare bits in the object layouts of most managed runtime systems,
especially in 64-bit architectures, because most header fields can be
significantly compressed [1]. Many runtime systems also reserve an
extra word in each object header for garbage collection information
(e.g. mark bits) or dynamic profiling, where our extra fields could
also fit. Our evaluation makes this assumption, but if the object
header cannot accommodate the extra fields, we consider adding 2
bytes per object. If we assume the average object size is 48 bytes [6],
the overhead would be 4.1% of the allocated memory.

3.5 Limitations
The effectiveness of our proposal is limited by its ability to dis-

cover dead objects and reuse their space. Any cyclic data structure
cannot be reference-counted correctly without an additional algo-
rithm to handle circular references. Thus, any object that is part of a
cyclic data structure or that is referenced from an object in a cyclic
data structure will not be found dead by HAMM.

The limitation on the size of the reference count field to 8 bits
excludes the most heavily connected objects from benefiting from
HAMM, after the reference count reaches saturation.

Our ABT hierarchy is basically a set of segregated free-block lists,
which is well suited for free-list allocators. However, bump-pointer
allocators are not limited to predetermined block sizes and they avoid
internal fragmentation. If a block of arbitrary size is allocated, our
mechanism assigns it to the next smaller size class, which produces
some internal fragmentation on block reuse. If REALLOCMEM is
called with an arbitrary size, the L1 ABT entry for the immediately
larger size is used, also introducing internal fragmentation.
Weak references are used in many managed languages as refer-

ences that do not make an object reachable, i.e. they do not pre-
vent an object that is not referenced otherwise from being collected.
Our proposal does not currently differentiate between weak refer-
ences and regular references, which can limit the ability to find some
dead objects that would be considered dead by the software GC.

Objects of classes with a finalizer method cannot be reused imme-
diately after being found dead because the finalizer has to be run on
them before their memory space is reused or overwritten.8

4. EXPERIMENTAL METHODOLOGY
We evaluate our proposal on the DaCapo [6] benchmark suite ver-

sion 2006-10-MR2 with the large input set. We run the benchmarks
twice and report results for the second run because dynamic compila-
tion significantly impacts the results of the first run [8]. We report re-
sults for all benchmarks in the suite except for chart and hsqldb,
which could not run on our simulation infrastructure.

We use the production configuration of Jikes RVM [2] 2.9.3 run-
ning on Simics [25] 3.0.29. The production configuration of Jikes
RVM uses its best performing [7] generational collector with a copy-
ing collector for the nursery and a mark-sweep collector for the older
generation, which we call GenMS. We implement the functionality
of our proposed hardware structures, as well as the new ISA instruc-
tions described in Section 2, in a Simics module. Simics is a func-
tional simulator and does not provide accurate execution times. Eval-
uating hardware support for garbage collection is very challenging.
To accurately determine the reduction in GC time with HAMM, we
should run each benchmark to completion on a cycle accurate simu-
lator. However, it is infeasible to perform these detailed microarchi-
tectural simulations because they would run for a very large number
of instructions (several hundred billions for some benchmarks). We
divide the execution time of the program into two components: (1)
the garbage collector, and (2) the application itself, or mutator. We
then apply different simulation approaches for each component.

8We can easily prevent specific objects from being found dead with our mechanism by
initializing the reference count field in the object header to its maximum saturating value.

6

Table 4: Extensions for Multiple Managed Memory Regions
Structure Description of changes

L1 and L2 RCCB Extended with the allocation pool ID, which becomes part of the tag field along with the reference virtual address.
Page table and TLBs Each entry extended with the 2-bit region ID, which allows every incRC or decRC operation to determine the region (and allocation pool) ID before

accessing the L1 RCCB.
Memory ABT Each allocation pool has its own memory ABT because memory blocks belonging to different applications and memory regions cannot be intermixed.
L1 ABT Exclusively used by the application that is currently running on the core and is allocating into a particular region, since in each phase of an application

most of the allocations are to a specific memory region, e.g. the nursery or the older generation.
L2 ABT Each L2 ABT entry must also be extended with the corresponding allocation pool ID.

Table 5: Storage Cost of Hardware Structures for HAMM
Structure Description Cost

L1 RCCB One table per core, indexed and fully-tagged with the object reference (virtual address). Each RCCB entry contains a VALID
bit, the reference value (8-byte virtual address), a reference count delta (RCD, 4 bits, 2’s complement), and the allocation
pool ID (8 bits, also part of the tag). Each RCCB entry uses 77 bits, plus 2 extra bits per set for pseudo-LRU replacement.
The L1 RCCB on each processing core is a 512-entry, 4-way set associative table.

4.8 KB per core

L2 RCCB Similar to L1 RCCB, but is a 4K-entry, 4-way set-associative table, at the CMP level. 38.75 KB
L1 ABT 64-entry table, indexed by size class. Each entry has the block virtual address (8 bytes) and a VALID bit. 520 B per core
L2 ABT 256-entry, 4-way set-associative table, indexed by size class and tagged by allocation pool ID. Each entry has the block virtual

address (8 bytes), the allocation pool ID (8 bits) and a VALID bit.
2.3 KB

General Purpose Registers Extended with 1 Reference bit per register. Our machine configuration uses 128 physical registers. 128 bits per core
L1 Data Cache Extended with 1 Reference bit per L1 data cache word. 1 KB per core

Total for a 4-core CMP 66.5 KB

Table 6: HAMM Data Structures in Main Memory
Usage Description

Memory ABT 64-entry pointer table per application and memory region. Assuming a typical generational heap with two regions (generations), the
ABTs would require 1KB per running managed application.

Object Reference Map (ORM) 1K-entry table with 16 bytes per entry, totaling 16KB, per running managed application.
Configuration of each allocation pool Table with constants required by HAMM: 1) offset of the reference count field in the object header, 2) offset of the size class field in

the object header, 3) offset of the type identification field in the object header, 4) offset of the block starting address, all with respect to
the address used in all references to the object, and 5) 64-entry table with the object size for each size class used in the memory region.

Table 7: Baseline processor configuration
Front End 64KB, 2-way, 2-cycle I-cache; fetch ends at the first predicted-taken branch; fetch up to 3 conditional branches or 1 indirect branch
Branch Predictors 16KB (31-bit history, 511-entry) perceptron branch predictor; 1K-entry, 4-way BTB with pseudo-LRU replacement; 512-entry tagged target cache

indirect branch predictor; 64-entry return address stack; min. branch misprediction penalty is 20 cycles
Execution Core 4-wide fetch/issue/execute/retire; 128-entry reorder buffer; 128 physical registers; 64-entry LD-ST queue; 4-cycle pipelined wake-up and selection logic;

scheduling window is partitioned into 4 sub-windows of 32 entries each
On-chip Caches L1 D-cache: 64KB, 4-way, 2-cycle, 2 ld/st ports; L2 unified cache: 4MB, 8-way, 8 banks, 16-cycle latency; All caches: LRU repl. and 64B lines
Buses and Memory 150-cycle minimum memory latency; 32 DRAM banks; 8B-wide core-to-memory bus at 4:1 frequency ratio
Prefetcher Stream prefetcher (32 streams and 4 cacheline prefetch distance)

To evaluate the effect of our mechanism on GC time, we need to
determine the time spent on GC during the whole benchmark execu-
tion, because our proposal is aimed at eliminating a substantial num-
ber of software GC instances and also substantially changes the work
done in each remaining software GC instance. Sampled simulation is
not useful because we cannot infer the whole program GC time from
microarchitectural results for a number of GC slices. The elimina-
tion of GC work is much more significant than the microarchitectural
side effects of our proposal on the execution of the garbage collec-
tor, namely locality changes. Thus, we rely on the observation from
Buytaert et al. [10] that GC time is an approximately linear function
of the surviving objects. This first-order approximation is accurate at
the system level because in the copying nursery collector, the work
performed by the collector is roughly proportional to the surviving
memory space, which has to be copied to the older generation. In
the older-generation (mark-sweep collector with lazy sweep used in
Jikes RVM), the work performed by the collector is proportional to
the number of surviving objects because the collector actively per-
forms the marking phase by tracing the survivors and the allocator
sweeps blocks on demand.

Application behavior is affected by HAMM mainly in two ways.
First, HAMM accesses main memory to update reference counts,
scan objects, and update the ABTs. Even though these extra memory
accesses are not on the critical path of execution and do not directly
delay any instructions, they can delay the application by consuming
memory bandwidth and possibly causing cache pollution. Second,
reuse of memory blocks significantly changes the memory access
pattern because objects are located at different addresses with respect
to the memory layout of the baseline. That is, HAMM changes mem-
ory locality. To evaluate the effects of HAMM on application (mu-

tator) performance, we use a cycle-accurate x86 simulator with the
machine configuration shown in Table 7. We simulate slices of 200M
instructions taken at the same algorithmic point from the application9

in the baseline and with HAMM and compare their performance.

5. RESULTS

5.1 Garbage Collection Time
Figure 3 shows the normalized execution time spent in garbage

collection in the baseline (baseline-GenMS) and with our proposal
(GenMS + HAMM), computed with the GC time model explained
in Section 4. The x-axis is the heap size relative to the minimum
size (minHeap) that allows full execution of the benchmark on the
baseline Generational Mark-Sweep collector (GenMS). Our proposal
significantly reduces GC time for most benchmarks and heap sizes.
The best improvement is 61% for antlr with heap size 1.5x min-
Heap. HAMM eliminates the need for software garbage collection
in fop with 4x minHeap. The worst result is for lusearch at 1.2
minHeap, where HAMM slightly increases GC time by 0.6%.10

Figure 4 shows the estimated reduction in GC time for 1.5x min-
Heap to 3x minHeap, which are heap sizes that provide a reasonable
trade-off between garbage collection overhead and memory require-
ments for most applications. On average, HAMM reduces GC time
by 29% for 1.5x minHeap and 31% for 2.5 minHeap. The reduc-
tion in GC time is at least 10% for each benchmark in the 1.5x to 3x
minHeap range.

9We make sure no garbage collection happens during the simulated slice.
10Even though HAMM reduces the number of nursery collections, the total space copied
to the older generation —i.e. the actual work done by the nursery collector— increases
by 6% in this case.

7

 0

 2

 4

 6

 8

 10

 1 1.5 2 2.5 3 3.5 4

N
o

rm
a

liz
e

d
 G

C
 T

im
e

Heap size relative to minimum heap size

baseline-GenMS
GenMS + HAMM

(a) antlr

 0

 2

 4

 6

 8

 10

 12

 1 1.5 2 2.5 3 3.5 4

N
o

rm
a

liz
e

d
 G

C
 T

im
e

Heap size relative to minimum heap size

baseline-GenMS
GenMS + HAMM

(b) bloat

 0

 5

 10

 15

 20

 1 1.5 2 2.5 3 3.5 4

N
o

rm
a

liz
e

d
 G

C
 T

im
e

Heap size relative to minimum heap size

baseline-GenMS
GenMS + HAMM

(c) eclipse

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

N
o

rm
a

liz
e

d
 G

C
 T

im
e

Heap size relative to minimum heap size

baseline-GenMS
GenMS + HAMM

(d) fop

 0

 5

 10

 15

 20

 1 1.5 2 2.5 3 3.5 4

N
o

rm
a

liz
e

d
 G

C
 T

im
e

Heap size relative to minimum heap size

baseline-GenMS
GenMS + HAMM

(e) jython

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 1.5 2 2.5 3 3.5 4

N
o

rm
a

liz
e

d
 G

C
 T

im
e

Heap size relative to minimum heap size

baseline-GenMS
GenMS + HAMM

(f) luindex

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 1.5 2 2.5 3 3.5 4

N
o

rm
a

liz
e

d
 G

C
 T

im
e

Heap size relative to minimum heap size

baseline-GenMS
GenMS + HAMM

(g) lusearch

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 1.5 2 2.5 3 3.5 4

N
o

rm
a

liz
e

d
 G

C
 T

im
e

Heap size relative to minimum heap size

baseline-GenMS
GenMS + HAMM

(h) pmd

 0

 2

 4

 6

 8

 10

 12

 1 1.5 2 2.5 3 3.5 4

N
o

rm
a

liz
e

d
 G

C
 T

im
e

Heap size relative to minimum heap size

baseline-GenMS
GenMS + HAMM

(i) xalan

Figure 3: Estimated garbage collection time with HAMM compared to the baseline Generational Mark-Sweep collector.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

G
C

 t
im

e
re

d
u

ct
io

n
 (

%
)

1.5x minHeap

2x minHeap

2.5x minHeap

3x minHeap

an
tlr

bl
oa

t

ec
lip

se
fo

p
jy

th
on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n

hm
ea

n

Figure 4: Reduction in GC time for different heap sizes

5.2 Where are the Benefits Coming from?
Memory Block Reuse Facilitated by HAMM

To provide insight into the effects of our mechanism on GC time
we analyze the memory block reuse enabled by HAMM. Figure 5
shows the number of nursery-allocated objects with HAMM for 1.5x
minHeap, normalized to the baseline GenMS. The bar shows objects
allocated by our mechanism and is split into the number of objects
allocated to new space (via software) and reallocated to reused mem-
ory blocks (via HAMM). On average, 69% of the new objects reuse

memory blocks in the nursery. It is worth noting that the reuse of
nursery space does not directly translate into total GC time reduction
because: (1) short-lived nursery objects are easily reused but they do
not significantly increase the cost of nursery collections in the base-
line because many of the nursery collections eliminated by HAMM
are relatively fast, as long as there are not many surviving objects in
the nursery, and (2) even though HAMM eliminates 52% of nursery
collections on average (Figure 6), the remaining collections have to
do more work, i.e. a larger fraction of the nursery is alive when it is
collected and thus, more live objects are copied to the older genera-
tion. As we show in Figure 7, HAMM reduces bytes copied to the
older generation by only 21% on average.

Figure 8 shows the number of objects allocated to the older genera-
tion with HAMM for 1.5x minHeap, normalized to the same number
in the baseline GenMS. In general, HAMM reduces the total num-
ber of objects that are allocated into the older generation (by 21%
on average) because by significantly delaying nursery collections, it
gives more time to objects to die before they have to be promoted
to the older generation. The bar in Figure 8 is split into objects al-
located to new space and reallocated to reused memory blocks and
shows great variation in memory block reuse in the older genera-
tion, ranging from 10% for fop to 70% for xalan, with an average
of 38%. The number of full-heap collections, shown in Figure 9,
is reduced (by 50% on average) with HAMM because the reuse of
memory blocks —both in the nursery and in the older generation—
delays filling up the heap. The space occupied by objects surviving

8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
u

m
b

er
 o

f
O

b
je

ct
s

(n
o

rm
.

to
 G

en
M

S
)

Reallocated

Allocated

an
tlr

bl
oa

t

ec
lip

se
fo

p
jy

th
on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n

am
ea

n

Figure 5: Objects newly allocated and
reallocated in the nursery

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
u

m
b

er
 o

f
C

o
ll

ec
ti

o
n

s
(n

o
rm

.
to

 G
en

M
S

)

an
tlr

bl
oa

t

ec
lip

se
fo

p
jy

th
on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n

am
ea

n

Figure 6: Number of nursery collec-
tions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
p

a
ce

 C
o

ll
ec

te
d

 (
n

o
rm

.
to

 G
en

M
S

)

an
tlr

bl
oa

t

ec
lip

se
fo

p
jy

th
on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n

am
ea

n

Figure 7: Total surviving space copied
during nursery collections

full-heap collections is shown in Figure 10.11 On average, full-heap
collections with HAMM find 49% less surviving space compared to
the baseline GenMS, which reduces the amount of time spent in each
full-heap collection. By reducing both the number and time of full-
heap collections, HAMM reduces GC overhead.

We conclude that HAMM significantly reduces GC time because
1) it reduces the number of nursery collections by 52% and even
though each collection does more work, the total space copied to the
older generation is reduced by 21%, 2) it reduces both the number (by
50%) and total surviving space (by 49%) of full-heap collections.

5.3 Analysis of Garbage Collection Results
We analyze the behavior of some representative benchmarks, based

on the data from the previous sections.
Antlr is a parser that does not accumulate many long-lived ob-

jects over its execution [6], making it a very good candidate for the
baseline generational collector. With smaller heaps, e.g. 1.5x min-
Heap, HAMM reduces GC time by 61% because it allows the alloca-
tor to reuse space for 77% of the new objects in the nursery, eliminat-
ing 76% of the nursery collections and all of the full heap collections.
With larger heaps (e.g. 3x minHeap), the nursery also proportionally
grows, increasing the time between nursery collections and giving
enough time to more objects to die. Thus, the overhead of the soft-
ware GC is reduced because fewer objects survive nursery collections
and have to be copied to the older generation. Even though the base-
line GenMS collector is very efficient with larger heaps, HAMM still
reduces GC time by 32% with 3x minHeap.
Fop accumulates long-lived objects, almost linearly increasing the

required heap space over time, but it does not require full-heap col-
lections for 1.5x minHeap or larger. Most objects die very young,
making the baseline generational collector very efficient. However,
HAMM still eliminates 22% of the GC overhead for 1.5x minHeap,
because it reuses 65% of the memory blocks in the nursery and elim-
inates 56% of nursery collections. With 4x minHeap, HAMM com-
pletely eliminates the need for software GC because block reuse pre-
vents the nursery from growing up to the size that triggers GC.
Xalan iterates over allocating a significant number of objects and

releasing most of them all together. As heap size increases from 1.5x
to 3x minHeap, HAMM’s GC time reduction also increases from
36% to 48% because memory block reuse is very significant (81%
for the nursery and 70% for the older generation, for 1.5x minHeap).

5.4 Effect on Mutator Performance
Figure 11 shows the impact of HAMM on the performance of the

mutator. The average performance degradation is 0.38%, mainly due
to the modified memory behavior. Our proposal changes the mem-

11Figures 9 and 10 do not include fop because it does not require any full-heap collection
even with the baseline GenMS collector. Also, the bars for antlr are zero because
HAMM actually eliminates all full-heap collections.

ory behavior of the mutator in two ways. First, it introduces extra
memory accesses to (1) update the reference counts in object head-
ers, (2) scan dead objects for pointers to recursively decrement their
reference counts, and (3) update the ABT and handle the linked lists
of free blocks. Second, by reusing memory blocks instead of using
the default allocation algorithm, HAMM changes the memory access
pattern of the application in difficult-to-predict ways. For the nursery,
the changes in locality introduced by our memory reuse mechanism
are similar to hybridizing the default bump-pointer allocator with a
free-list allocator.

Our experiments show that spatial locality in the mutator is slightly
degraded for most benchmarks, i.e. HAMM increases L1 cache
misses by up to 4% (Figure 12), which in turn increases the pres-
sure on the L2 cache. The exceptions are jython and luindex,
where L1 cache misses are reduced by 78% and 58%, respectively.
In these benchmarks, HAMM improves spatial locality because the
quick reuse of memory blocks for new objects allows better utiliza-
tion of the available cache space. However, this effect does not ap-
pear at the L2 cache level (Figure 12), where cache misses increase
for all benchmarks by up to 3.4%, leaving only luindex with a
0.3% performance improvement. Even though only 0.3% to 5% of
the additional memory accesses introduced by HAMM become main
memory accesses, HAMM itself is responsible for 0.6% to 6.8% of
L2 cache misses (Figure 13). These extra cache misses do not have a
significant impact on performance because they are not on the critical
path of execution and do not directly delay any instruction.

We conclude that the effect of HAMM on the mutator is negligible.
Hence, HAMM significantly improves overall performance because
it reduces GC time while keeping mutator time nearly constant. The
reduction of GC overhead with HAMM also enables running appli-
cations with smaller heap sizes with a reasonable overhead, which is
a significant advantage on memory-constrained systems.

6. RELATED WORK
We describe relevant related work in software-based reference

counting, hardware-based garbage collection, and compiler analyses
and optimizations. In contrast to most previous work, we provide
flexible hardware support for garbage collection, rather than fully im-
plementing garbage collection in hardware.

6.1 Software-Based Reference Counting
Software approaches have been proposed to reduce the overhead

of updating reference counters. Deutsch and Bobrow [16] first pro-
posed deferred reference counting, i.e. ignoring RC updates on reg-
ister and stack variables and examining them later. Levanoni and Pe-
trank [24] proposed coalescing multiple updates to the same pointer
slot between reference counting collections. Blackburn and McKin-
ley [9] proposed a hybrid generational collector using RC only for
the older generation and updating references from the nursery only

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
u

m
b

er
 o

f
O

b
je

ct
s

(n
o

rm
.

to
 G

en
M

S
)

Reallocated

Allocated

an
tlr

bl
oa

t

ec
lip

se
fo

p
jy

th
on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n

am
ea

n

Figure 8: Objects allocated and reallo-
cated in the older generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
u

m
b

er
 o

f
C

o
ll

ec
ti

o
n

s
(n

o
rm

.
to

 G
en

M
S

)

an
tlr

bl
oa

t

ec
lip

se

jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n

am
ea

n

Figure 9: Number of full-heap collec-
tions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
p

a
ce

 C
o

ll
ec

te
d

 (
n

o
rm

.
to

 G
en

M
S

)

an
tlr

bl
oa

t

ec
lip

se

jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n

am
ea

n

Figure 10: Total surviving space dur-
ing full-heap collections

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.4

IP
C

 d
el

ta
 (

%
)

an
tlr

bl
oa

t

ec
lip

se
fo

p
jy

th
on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n

hm
ea

n

Figure 11: Mutator performance

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
a

ch
e

m
is

s
d

el
ta

 (
%

)

L1 Dcache misses

L2 cache misses

-78.5 -58.2 -39.2

an
tlr

bl
oa

t

ec
lip

se
fo

p
jy

th
on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n

hm
ea

n

Figure 12: L1D and L2 cache misses

0

1

2

3

4

5

6

7

F
ra

ct
io

n
 o

f
L

2
 c

a
ch

e
m

is
se

s
(%

)

an
tlr

bl
oa

t

ec
lip

se
fo

p
jy

th
on

lu
in

de
x

lu
se

ar
ch

pm
d

xa
la

n

hm
ea

n

Figure 13: L2 misses due to HAMM

when it is collected. In general, these approaches give up immediate
reclamation of dead objects and require an explicit garbage collec-
tion phase to process pending RC updates and find dead objects. In
contrast to these approaches we propose a hardware accelerator that
uses reference counting to reduce the need for software GC. Our pro-
posed flexible hardware and architectural support can be extended
to be used by these software approaches to reduce the overhead of
reference counting even more.

6.2 Hardware-Based Garbage Collection
Schmidt and Nielsen [32] proposed a hardware-based GC mecha-

nism based on garbage-collected memory modules (GCMM), which
include both RAM and a microprocessor capable of running a real-
time copying collection algorithm locally on the GCMM. Wise et
al. [36] proposed a hardware self-managing heap memory using ref-
erence counting memory modules that include reference counters,
logic to generate RC increments and decrements when pointers are
overwritten and logic to perform GC. Both of these designs require
the whole heap to be allocated to custom memory modules and pre-
vent the software from implementing different allocation and collec-
tion policies. In contrast, our proposal works with a general-purpose
architecture using standard memory modules and does not tie the
hardware to a particular allocator and GC implementation.

Peng and Sohi [31] first proposed in-cache reference counting to
assist GC. Chang and Gehringer [11] proposed a reference counted
cache managed by a coprocessor, which handles object allocation
and in-cache collection for one memory region at a time. Memory
space used by objects that are allocated and spend all their lifetime
in the object cache can be reused. In contrast, HAMM is not limited
to objects in the cache, can handle multiple memory regions, and can
be used in multiprocessor systems.

Meyer [29, 30, 28] and Stanchina and Meyer [33] proposed con-
current garbage collection algorithms based on a full hardware co-

processor implementation targeting embedded systems. Objects are
known to the hardware and pointers are a native data type. The
garbage collection coprocessor is microprogrammed to perform a
single algorithm, while our proposal can support different general-
purpose garbage collection algorithms. Pure hardware GC imple-
mentations limit the flexibility of software GC algorithms. Our key
difference is that we provide acceleration support for software GC
rather than using only a rigid hardware GC implementation. As a
result, our proposal is (1) more flexible, (2) less costly and complex
in terms of hardware since it does not require a full GC implemen-
tation or custom memory, and (3) is fully-compatible with and does
not change the performance of applications that use pure-software
collection instead of our architectural support.

Click et al. [14] described Pauseless GC, a concurrent GC with par-
tial compaction supported by efficient hardware read barriers. There
are two major differences between Pauseless GC and HAMM. First,
HAMM and Pauseless GC target different design points. HAMM tar-
gets reducing GC time and resources required by GC in the general-
purpose domain, complementing a wide spectrum of software GC
algorithms. Pauseless GC includes hardware tightly coupled to their
software GC, and is part of a custom platform (from processor to
OS and JVM) specifically designed for high throughput and short
pause times on servers, with hundreds of cores and huge heaps. Sec-
ond, Azul’s hardware (read barrier and GC traps) does not reduce
software GC work as HAMM does, but only mitigates overheads on
application threads. Click et al. does not mention their GC cost in
terms of processor/memory resources, which is our main interest.
We note that both approaches can be complementary. For example,
if HAMM is used to reduce resource requirements of Pauseless GC,
more cores/cycles will be available to the server application.

6.3 Compiler Analyses and Optimizations
Joisha [21] presented a static analysis and optimization technique

10

called RC subsumption that reduces the number of RC updates for
stack references on a non-deferred RC collector. Joisha [22] gener-
alized several optimizations under the idea of overlooking roots and
provided a flow-sensitive intraprocedural analysis technique that al-
lows non-deferred RC to perform close to deferred RC in most bench-
marks. These compiler optimizations can be combined with HAMM
to significantly reduce the number of RC update operations due to
stack references, reducing the pressure on the RCCB hierarchy.

Stack allocation [13] places objects that the compiler knows will
only live inside a function on the stack instead of on the heap. These
objects are automatically “collected” without any overhead when the
stack frame is invalidated, i.e. when the object goes out of scope.
Stack allocation requires accurate escape analysis to decide for each
allocation site that no reference to an object can remain live after the
function ends. Also, stack-allocated objects must go out of scope to
reclaim their memory. HAMM does not require any compiler anal-
yses and is able to reclaim the space of any object —not just local
objects— as soon as there are no more live references to it.

Guyer et al. [18] proposed Free-Me, a static analysis technique
that safely includes explicit object reclamation function calls (free) in
managed code, when the compiler can be sure an object is dead. Un-
like HAMM, compiler analyses are limited by the accuracy and scope
of pointer analysis and can typically reclaim only very short-lived
objects. Free-Me could be synergistically combined with HAMM
because it can discover dead objects before all their references go out
of scope or are overwritten, enabling earlier memory block reuse.

7. CONCLUSION
We introduced HAMM, a cooperative hardware-software tech-

nique that allows quick reallocation of memory blocks by finding
dead objects with hardware-assisted reference counting. HAMM
provides new primitives for faster garbage collection in hardware
without limiting the flexibility of software collectors that can be built
on top of the primitives. Our evaluation shows that HAMM reduces
the execution time spent on garbage collection by 31% on average
for a set of the Java DaCapo benchmarks running on Jikes RVM, a
state-of-the-art research virtual machine with a state-of-the-art gen-
erational garbage collector. In addition to significantly reducing the
performance overhead of GC for heap sizes appropriate for a state-
of-the-art software GC, HAMM allows applications to run with much
smaller heap sizes with a reasonable overhead, which is a signifi-
cant advantage on memory-constrained systems. We believe HAMM
opens up possibilities to explore new garbage collection algorithms
that can take better advantage of the proposed architectural support.

Acknowledgments

We thank Cliff Click, Hyesoon Kim, Kathryn McKinley, Erez Pe-
trank, Bjarne Steensgaard, Greg Wright, Ben Zorn, Chang Joo Lee,
Eiman Ebrahimi, Rustam Miftakhutdinov, Veynu Narasiman, Aater
Suleman, other members of the HPS research group, and the anony-
mous reviewers for their comments and suggestions. We gratefully
acknowledge the support of the Cockrell Foundation, Microsoft Re-
search and Intel Corporation. Part of this work was done while José
Joao and Onur Mutlu were at Microsoft Research. We also acknowl-
edge the Texas Advanced Computing Center (TACC) at The Univer-
sity of Texas at Austin for providing HPC resources.

REFERENCES

[1] A.-R. Adl-Tabatabai et al. Improving 64-bit Java IPF performance by
compressing heap references. In CGO’04.

[2] B. Alpern et al. The Jalapeño virtual machine. IBM Systems Journal,
39(1):211–238, 2000.

[3] G. M. Amdahl. Validity of the single-processor approach to achieving
large scale computing capabilities. In AFIPS Conference Proceedings,
pages 483–485, 1967.

[4] A. W. Appel. Simple generational garbage collection and fast
allocation. SPE, 19(2):171–183, 1989.

[5] K. Arnold and J. Gosling. The Java Programming Language.
Addison-Wesley, 1996.

[6] S. Blackburn et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA’06.

[7] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
the performance impact of garbage collection. SIGMETRICS Perform.
Eval. Rev., 32(1):25–36, 2004.

[8] S. M. Blackburn et al. Wake up and smell the coffee: evaluation
methodology for the 21st century. Commun. ACM, 51(8):83–89, 2008.

[9] S. M. Blackburn and K. S. McKinley. Ulterior reference counting: fast
garbage collection without a long wait. In OOPSLA’03.

[10] D. Buytaert, K. Venstermans, L. Eeckhout, and K. D. Bosschere.
Garbage collection hints. In HIPEAC’05.

[11] J. M. Chang and E. F. Gehringer. Evaluation of an object-caching
coprocessor design for object-oriented systems. In ICCD’93.

[12] W. Chen, S. Bhansali, T. Chilimbi, X. Gao, and W. Chuang.
Profile-guided proactive garbage collection for locality optimization. In
PLDI’06.

[13] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff.
Escape analysis for Java. In OOPSLA’99.

[14] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm. In
VEE’05.

[15] G. E. Collins. A method for overlapping and erasure of lists. Commun.
ACM, 3(12):655–657, 1960.

[16] L. P. Deutsch and D. G. Bobrow. An efficient, incremental, automatic
garbage collector. Communications of the ACM, 19(9):522–526, 1976.

[17] S. Z. Guyer and K. S. McKinley. Finding your cronies: static analysis
for dynamic object colocation. In OOPSLA’04.

[18] S. Z. Guyer, K. S. McKinley, and D. Frampton. Free-Me: a static
analysis for automatic individual object reclamation. In PLDI’06.

[19] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: improving program
locality. In OOPSLA’04.

[20] J. A. Joao, O. Mutlu, and Y. N. Patt. Flexible reference-counting-based
hardware acceleration for garbage collection. Technical Report
TR-HPS-2009-001, The University of Texas at Austin, Apr. 2009.

[21] P. G. Joisha. Compiler optimizations for nondeferred
reference-counting garbage collection. In ISMM’06.

[22] P. G. Joisha. Overlooking roots: a framework for making nondeferred
reference-counting garbage collection fast. In ISMM’07.

[23] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, 1996.

[24] Y. Levanoni and E. Petrank. An on-the-fly reference counting collector
for Java. In OOPSLA’01.

[25] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full
system simulation platform. IEEE Computer, 35(2):50–58, Feb. 2002.

[26] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part I. Commun. ACM, 3(4):184–195, 1960.

[27] J. McCarthy. History of LISP. In History of programming languages I,
pages 173–185. ACM, 1981.

[28] M. Meyer. A true hardware read barrier. In ISMM’06.

[29] M. Meyer. A novel processor architecture with exact tag-free pointers.
IEEE Micro, 24(3):46–55, 2004.

[30] M. Meyer. An on-chip garbage collection coprocessor for embedded
real-time systems. RTCSA, 00:517–524, 2005.

[31] C. Peng and G. S. Sohi. Cache memory design considerations to
support languages with dynamic heap allocation. Technical Report 860,
CS Dept., University of Wisconsin-Madison, 1989.

[32] W. J. Schmidt and K. D. Nilsen. Performance of a hardware-assisted
real-time garbage collector. In ASPLOS’94.

[33] S. Stanchina and M. Meyer. Mark-sweep or copying?: a “best of both
worlds” algorithm and a hardware-supported real-time implementation.
In ISMM’07.

[34] D. Syme, A. Granicz, and A. Cisternino. Expert F#. Apress, 2007.

[35] D. Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. SIGPLAN Not., 19(5):157–167, 1984.

[36] D. S. Wise, B. C. Heck, C. Hess, W. Hunt, and E. Ost. Research
demonstration of a hardware reference-counting heap. Lisp and
Symbolic Computation, 10(2):159–181, 1997.

11

