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NAND �ash memory density continues to scale to keep up
with the increasing storage demands of data-intensive applica-
tions. Unfortunately, as a result of this scaling, the lifetime of
NAND �ash memory has been decreasing. Each cell in NAND
�ash memory can endure only a limited number of writes, due
to the damage caused by each program and erase operation on
the cell. This damage can be partially repaired on its own during
the idle time between program or erase operations (known as
the dwell time), via a phenomenon known as the self-recovery
e�ect. Prior works study the self-recovery e�ect for planar (i.e.,
2D) NAND �ash memory, and propose to exploit it to improve
�ash lifetime, by applying high temperature to accelerate self-
recovery. However, these �ndings may not be directly applicable
to 3D NAND �ash memory, due to signi�cant changes in the
design and manufacturing process that are required to enable
practical 3D stacking for NAND �ash memory.
In this paper, we perform the �rst detailed experimental

characterization of the e�ects of self-recovery and temperature
on real, state-of-the-art 3D NAND �ash memory devices. We
show that these e�ects in�uence two major factors of NAND
�ash memory reliability: (1) retention loss speed (i.e., the
speed at which a �ash cell leaks charge), and (2) program
variation (i.e., the di�erence in programming speed across �ash
cells). We �nd that self-recovery and temperature a�ect 3D
NAND �ash memory quite di�erently than they a�ect planar
NAND �ash memory, rendering prior models of self-recovery
and temperature ine�ective for 3D NAND �ash memory. Using
our characterization results, we develop a new model for 3D
NAND �ash memory reliability, which predicts how retention,
wearout, self-recovery, and temperature a�ect raw bit error
rates and cell threshold voltages. We show that our model is
accurate, with an error of only 4.9%.
Based on our experimental �ndings and our model, we pro-

pose HeatWatch, a new mechanism to improve 3D NAND �ash
memory reliability. The key idea of HeatWatch is to optimize
the read reference voltage, i.e., the voltage applied to the cell
during a read operation, by adapting it to the dwell time of the
workload and the current operating temperature. HeatWatch
(1) e�ciently tracks �ash memory temperature and dwell time
online, (2) sends this information to our reliability model to
predict the current voltages of �ash cells, and (3) predicts the
optimal read reference voltage based on the current cell voltages.
Our detailed experimental evaluations show that HeatWatch
improves �ash lifetime by 3.85× over a baseline that uses a
�xed read reference voltage, averaged across 28 real storage
workload traces, and comes within 0.9% of the lifetime of an
ideal read reference voltage selection mechanism.

1. Introduction
In many modern servers and mobile devices, solid-state

drives (SSDs) containing NAND �ash memory are used as
the primary persistent storage media, due to their low access

latency compared to magnetic disk drives. As applications
become more data intensive, the need for greater NAND �ash
memory density grows, to reduce the cost-per-bit of SSD
storage. In the past decade, planar (i.e., 2D) NAND �ash
memory density has increased by more than 1000×, as a
result of (1) aggressive manufacturing process technology
scaling and (2) multi-level cell technology. Manufacturers
have shrunk the planar NAND �ash memory manufacturing
process technology from 70 nm to 1X-nm (i.e., 15–19 nm) over
the last decade [67], which has greatly decreased the size of
each �ash cell. At the same time, manufacturers use multi-
level cell (MLC) and triple-level cell (TLC) technology to store
more data in each cell [4, 5]. Older single-level cell (SLC)
NAND �ash memory stores a single bit of data per cell, while
MLC and TLC NAND �ash memory store two and three
bits of data, respectively, per cell. Recently, manufacturers
have turned to 3D integration to further increase the den-
sity of NAND �ash memory by stacking �ash memory cells
vertically. State-of-the-art 3D NAND �ash memory chips
integrate 48–96 vertically-stacked layers of NAND �ash me-
mory [23, 34, 36, 54, 61, 66].

This rapid increase in NAND �ash memory density has
come at the cost of reduced reliability [4, 5, 11, 44, 50, 58].
NAND �ash memory has a limited lifetime, which is de�-
ned as the number of program and erase operations (known
as P/E cycles) that can be reliably performed on each �ash
cell while avoiding data loss for a minimum data retention
time as guaranteed by vendors [4, 5, 11]. As the manufac-
turing process technology scales, the lifetime has reduced
from 10,000 P/E cycles for 70 nm planar NAND �ash memory
to only 2,000 P/E cycles for a state-of-the-art 1X-nm planar
NAND �ash memory [67]. While 3D NAND �ash memory
currently has a higher lifetime than state-of-the-art planar
NAND �ash memory (e.g., 35,000 P/E cycles for 24-layer 3D
MLC NAND), thanks to its use of a larger process technology
node, its lifetime is expected to decrease in the future as ma-
nufacturers increase 3D NAND �ash memory density more
aggressively [4, 5, 26, 57].

The limited lifetime is a result of wearout that occurs as
a �ash cell is repeatedly programmed and erased. A �ash
cell consists of a transistor that can hold charge, where the
amount of charge determines the threshold voltage at which
the transistor turns on. The threshold voltage of the tran-
sistor is used to represent the data value stored within the
cell. Unfortunately, after each additional P/E cycle, a gre-
ater number of electrons get inadvertently trapped within
the �ash cell, which changes the threshold voltage of the
transistor [4, 5]. This threshold voltage change introduces
errors and, thus, reduces the �ash lifetime. Some of these
inadvertently-trapped electrons gradually escape during the
idle time between consecutive P/E cycles, i.e., the dwell time.
The escape (i.e., detrapping) of the inadvertently-trapped elec-
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trons is known as the self-recovery e�ect [46], as it partially
undoes (i.e., repairs) the wearout of the cell. Prior works
show that self-recovery can be accelerated by applying a
high temperature to the �ash cell during the dwell time [46],
and propose to use this relationship to improve the lifetime
of planar NAND �ash memory [17, 64, 65].

While these proposals to exploit self-recovery and tempera-
ture e�ects are promising, they have two major shortcomings:
they (1) do not demonstrate whether self-recovery mecha-
nisms can practically reduce the e�ects of wearout on real
NAND �ash devices, (2) do not account for the design and ma-
nufacturing changes made for 3D NAND �ash memory. 3D
NAND �ash memory cells predominantly use a di�erent type
of transistor (charge trap transistor) [5, 16, 22, 62] from pla-
nar NAND �ash memory cells (�oating-gate transistor), and
require new manufacturing process technologies to success-
fully stack multiple dies within a chip [47,54]. As a result, the
observations and conclusions drawn for self-recovery in pla-
nar NAND �ash memory may not be accurate for 3D NAND
�ash memory. Our goal is to (1) perform the �rst detailed
experimental characterization of the e�ects of self-recovery
and temperature on real, state-of-the-art 3D NAND �ash me-
mory devices, and (2) exploit our experimental �ndings by
developing new mechanisms to improve the lifetime of 3D
NAND �ash memory.

We extensively characterize how self-recovery and tempe-
rature a�ect two major aspects of 3D NAND �ash memory
reliability: (1) retention loss and (2) program variation. Reten-
tion loss refers to the leakage of charge from a �ash cell that
contains valid data, which can introduce retention errors into
the data [4,5,8,9,10,40]. As a �ash cell becomes more worn out,
a greater number of electrons that are inadvertently trapped
in the cell cause the cell’s retention loss speed (i.e., the rate at
which charge leaks from the cell) to increase [19,45]. Program
variation refers to random variations that occur when a cell
is being programmed to a target threshold voltage, which can
cause the cell to be set to an incorrect voltage. The resulting
errors are called program variation errors [4,5,12,41,45,53,55].
As a �ash cell becomes more worn out, a greater number of
electrons that get inadvertently trapped in the cell cause the
cell’s programming speed (i.e., the rate at which the threshold
voltage of a cell increases during a programming operation)
to change [63], increasing program variation errors.

We make four key empirical �ndings on retention loss and
program variation from our experimental characterization of
self-recovery and temperature e�ects on real 3D NAND �ash
memory chips from a major manufacturer:
1. Increasing dwell time from 1 min to 137 min slows down

retention loss by 40% (Section 3.2).
2. Lowering the temperature from 70 ◦C to 0 ◦C slows down

retention loss by 58% (Section 3.3).
3. Increasing the temperature from 0 ◦C to 70 ◦C during

programming increases the program variation by 21%
(Section 3.3).

4. The e�ectiveness of self-recovery (i.e., the number of elec-
trons that are successfully detrapped) is correlated with
the dwell time experienced during the 20 most recent P/E
cycles (Section 3.4).
Based on the results from our characterization, we �nd that

prior models and model parameters for planar NAND �ash

memory [46] are not accurate enough for 3D NAND �ash
memory. We use our characterization �ndings to construct a
new uni�ed model of self-recovery, temperature, retention
loss, and wearout for 3D NAND �ash memory, called Uni-
�ed Recovery and Temperature (URT). URT consists of three
components, which model (1) the impact of temperature and
wearout on program variation; (2) the impact of temperature
on data retention and self-recovery; and (3) the impact of time,
wearout, and self-recovery on retention loss. URT combines
these three components to accurately predict how changes
in retention loss speed and program variation a�ect the raw
bit error rate and cell threshold voltages. We �nd that URT is
highly accurate, with a prediction error of only 4.9%.

Using URT, we develop HeatWatch, a new mechanism that
exploits self-recovery and operating temperature information
to improve the reliability of read operations and thus increase
the lifetime of 3D NAND �ash memory. HeatWatch e�ciently
tracks the amount of dwell time experienced (which depends
on the storage access patterns of a workload) by each cell,
the operating temperature of the memory device, and the
retention time of data at runtime, requiring less than 1.6 MB
of storage overhead within the SSD controller. Our mecha-
nism uses the tracked information as inputs to URT, which
accurately predicts and applies the best (i.e., optimal) read
reference voltage to use for each read operation. This pre-
dicted optimal read reference voltage accounts for threshold
voltage changes in the �ash cells, reducing the number of raw
bit errors in the data that is read from NAND �ash memory.
On average across a wide range of workloads, HeatWatch
improves the overall lifetime of 3D NAND �ash memory by
3.85× compared to a baseline that uses a �xed read reference
voltage, and comes within 0.9% of the lifetime provided by
an ideal read reference voltage selection mechanism.

We make the following key contributions:
• Using real, state-of-the-art 3D charge trap NAND �ash

chips from a major vendor, we experimentally characterize
the e�ects of self-recovery and temperature on retention
loss speed and program variation. We show that 3D NAND
�ash memory exhibits di�erent self-recovery and tempera-
ture e�ects than planar NAND �ash memory.

• Based on our experimental characterization data, we con-
struct URT, a uni�ed model for retention loss, wearout,
self-recovery, and temperature in 3D NAND �ash memory.
Our model quanti�es these four e�ects to accurately pre-
dict the raw bit error rate and threshold voltage shift.

• We propose HeatWatch, a mechanism for 3D NAND �ash
memory that improves �ash reliability and lifetime. Heat-
Watch (1) tracks the temperature, dwell time, and retention
time online, and (2) sends this information to URT to accu-
rately predict the optimal read reference voltage. By using
the predicted optimal read reference voltage for �ash read
operations, HeatWatch reduces the raw bit error rate by
93.5%, and improves �ash lifetime by 3.85×, over a baseline
that uses a �xed read reference voltage.

2. Background
In this section, we provide necessary background on 3D

NAND �ash memory, NAND �ash memory errors, and the
self-recovery e�ect. A more detailed background is in [4, 5].
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2.1. NAND Flash Memory Design and Operation

Flash Cell. NAND �ash memory consists of multiple ar-
rays of �ash cells, where each cell stores a unit of data in the
form of electric charge. In the majority of 3D NAND �ash me-
mory devices available today, a �ash cell consists of a charge
trap transistor [16, 22, 62].1 Figure 1a shows the cross-section
of a charge trap transistor in 3D NAND �ash memory. The
cylindrical substrate sits in the middle of the cell. One end of
the substrate acts as the transistor source, and the other end
acts as the transistor drain. There are three layers that wrap
around the substrate: the tunnel oxide, the charge trap layer,
and the gate oxide. The control gate wraps around the center
of the cell, on top of the gate oxide.
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Figure 1: (a) Cross-sectional view of a 3D charge trap NAND
�ash memory cell. (b) Threshold voltage distribution for
MLC NAND �ash memory.

When a cell is programmed, charge is stored within the
charge trap to represent data (see Storing and Reading Data
below). The amount of charge stored within the charge trap
changes the threshold voltage (Vth) of the cell. The �ash cell
turns on only if a voltage higher than the threshold voltage
is applied to the control gate of the cell. When the cell turns
on, current �ows from the source to the drain.
Storing and Reading Data. In this work, we study multi-

level cell (MLC) �ash memory. Each multi-level cell stores
two bits of data. To represent the di�erent two-bit values (i.e.,
00, 01, 10, 11), the range of all possible threshold voltages
for the cell is split into four voltage windows, or states, as
shown in Figure 1b. Before data can be programmed to a cell,
the cell must be in the erased (ER) state. The NAND �ash
memory device programs a cell using incremental step-pulse
programming (ISPP) [4, 5, 9]. During ISPP, the device repea-
tedly pulses a high voltage on the cell’s control gate, which
injects additional charge into the charge trap. The pulses con-
tinue until the cell reaches its target state. Due to variation
across program operations, the amount of charge injected
during each pulse can di�er. As a result, the threshold voltage
of cells programmed to the same state is initially distributed
across the voltage window. We represent the distribution of
�ash cells in each state using probability density functions.

To read the value currently stored within a cell, the NAND
�ash memory device applies a read reference voltage to the
cell’s control gate. Figure 1b shows the three read reference
voltages (Va, Vb, and Vc) used to distinguish between the
four states of an MLC NAND �ash memory cell. The two
bits stored within a cell are referred to as the least signi�cant
bit (LSB) and the most signi�cant bit (MSB). To read the LSB

1Note that this is di�erent from planar (i.e., 2D) NAND �ash memory,
which typically uses a �oating-gate transistor [33] as a �ash cell. We refer the
reader to prior works [4,5,47,54] for detail on the di�erences between NAND
�ash memory based on charge trap transistors and NAND �ash memory
based on �oating-gate transistors.

stored in a cell, the �ash controller applies Vb to the cell
control gate to determine whether the LSB is a 0 (Vth > Vb)
or a 1 (Vth < Vb). To read the MSB stored in a cell, the �ash
controller �rst applies Va, and then applies Vc , to the cell
control gate, to determine whether the MSB is a 0 (Va <
Vth < Vc) or a 1 (Vth < Va or Vth > Vc).
Flash Organization. In a NAND �ash memory chip, the

cells are divided into multiple cell arrays known as�ash blocks.
Each block contains multiple rows of cells, where the control
gates of cells in each row are connected together by a common
wordline. All of the cells belonging to the same wordline are
programmed and read at the same time. Each wordline in
MLC NAND �ash memory contains two �ash pages, where
the LSBs of all cells in the wordline form the LSB page, and
the MSBs of all cells in the wordline form the MSB page. Each
page is typically 4–16 kB in size. Within a block, all cells in
the same column are connected in series to form a bitline.
In 3D NAND �ash memory, each cell on the same bitline
belongs to a di�erent stack layer, and the cells are connected
together by a shared center cylinder (shown in Figure 1a),
which includes the substrate, the charge trap, and oxide. For
more detail on the physical organization of 3D NAND �ash
memory, we refer the reader to prior works [5, 21, 35].

2.2. NAND Flash Memory Errors
Errors can be induced in a NAND �ash memory cell by

several error sources, such as data retention [4,5,6,8,9,10,45],
program or erase variation [4, 5, 12, 41, 45, 55], cell-to-cell
program interference [4, 5, 6, 13, 14], and read disturbance [4,
5, 6, 7, 52, 55]. As shown in Figure 2, these errors can shift
the threshold voltage distributions of each state across the
original boundaries of each voltage window. As a result, the
cells at the tail of each distribution are misread when we
apply the originally-assigned read reference voltages (Va, Vb,
Vc), leading to raw bit errors.
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Figure 2: Shifted threshold voltage distribution leads to raw
bit errors.

To mitigate the impact of raw bit errors and to avoid
data corruption, �ash controllers employ sophisticated error-
correcting codes (ECC). ECC can correct up to a maximum raw
bit error rate (RBER), known as the error correction capabi-
lity. As the NAND �ash memory is used, the RBER increases,
and eventually exceeds the error correction capability, re-
sulting in data loss (i.e., uncorrectable errors). The lifetime
of a NAND �ash memory device is determined by the num-
ber of program and erase (P/E) cycles that can be performed
successfully while avoiding data loss for a minimum retention
guarantee (i.e., the minimum amount of time after data has
been written, that the data can still be read out without data
loss). In this paper, we focus on two major sources of errors,
for which self-recovery (see Section 2.3) can potentially lower
the error rate and, thus, extend the �ash lifetime: (1) retention
errors and (2) program variation errors.
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Retention errors are errors that are induced by charge
leakage from a programmed �ash cell while the cell is idle.
Charge can leak either through the tunnel oxide layer to the
substrate, or through the charge trap layer to a neighboring
cell, as both the tunnel oxide and charge trap are imperfect
insulators. Due to this leakage, the threshold voltage of a
�ash cell decreases over time, shifting the threshold voltage
distributions of high-voltage states (i.e., states P1, P2, and P3)
to lower voltages. Over a longer time period, an increasing
fraction of the left tail of each distribution shifts across the
read reference voltages, leading to more raw bit errors.
Program variation errors are errors that are induced by

the random variations present in the �ash program operation.
In NAND �ash memory, cells in the same page are program-
med together. As we discuss in Section 2.1, during ISPP, a
random amount of charge is injected during each program-
ming pulse, due to variation across programming operations.
When cells are programmed to a certain target state, their
initial threshold voltages are naturally distributed across the
state’s voltage window, as we show in Figure 1b. A number
of factors can increase programming randomness, which can
cause the tail of each threshold voltage distribution to ex-
tend across the read reference voltages, leading to program
variation errors.

As more program and erase operations are performed to
a �ash cell, the number of retention and program variation
errors increases due to wearout. Wearout is mainly caused
by the electrical stress on the tunnel oxide when a �ash cell
is repeatedly programmed and erased. Due to this stress, a
greater amount of charge is inadvertently trapped within the
tunnel oxide. The inadvertently-trapped charge leads to two
problems. First, it can form pathways for the charge stored in
the charge trap layer to leak [8], which increases the speed
of retention loss. Second, the NAND �ash memory device
cannot reliably erase a �ash cell with inadvertently-trapped
charge [41], and the cell may not always be in the ER state as
a result, which increases program variation.

2.3. Self-Recovery
The self-recovery e�ect repairs the damage caused by �ash

wearout during the time between two P/E cycles, by detrap-
ping some of the inadvertently-trapped charge [17, 37, 46, 48,
64, 65]. In this paper, we refer to the delay between conse-
cutive program operations as the dwell time. The amount
of repair done by self-recovery is a�ected by two factors:
(1) dwell time and (2) operating temperature.

During the dwell time of a �ash cell, a fraction of the charge
that was inadvertently trapped in the tunnel oxide is slo-
wly detrapped [46]. The reduction of inadvertently-trapped
charge in a cell reduces the number of retention and program
variation errors, and thus can extend the NAND �ash me-
mory lifetime. For a �xed retention time, a larger dwell time
reduces the number of retention errors [46]. A recovery cycle
refers to a P/E cycle where the program operation is followed
by an extended dwell time. Since 3D NAND �ash memory
errors are dominated by retention errors [18,47,66], reducing
the retention error rate by performing recovery cycles can
increase �ash lifetime signi�cantly.

A higher operating temperature for NAND �ash memory
increases electron mobility [8, 46]. As a result, a short reten-

tion time at high temperature has the same retention loss
e�ect as a longer retention time at room temperature [8],
which we call the e�ective retention time. Similarly, a short
dwell time at high temperature has the same self-recovery
e�ect as a longer dwell time at room temperature [46], called
the e�ective dwell time. The equivalence between time elap-
sed at a certain temperature and the corresponding e�ective
time at room temperature can be modeled using Arrhenius’
Law [1, 8, 28, 46]:

AF (T1, T2) = t1
t2

= exp
(
Ea
kB
·
(

1
T1

– 1
T2

))
(1)

In Equation 1, AF is the acceleration factor between t1 and
t2, where t1 is the retention or dwell time under temperature
T1, and t2 is the retention or dwell time under temperature T2.
kB is the Boltzmann constant, which is 8.62× 10–5 eV/K. Ea
is the activation energy, which is a manufacturing-process-
dependent constant. For a planar NAND �ash memory device,
Ea = 1.1 eV [29]. To our knowledge, there is no public litera-
ture that reports the value of Ea for 3D NAND �ash memory.

3. Characterizing the Self-Recovery E�ect
To understand the behavior of the self-recovery e�ect in

3D NAND �ash memory, we perform an extensive charac-
terization of the e�ect using real, state-of-the-art 3D NAND
�ash memory chips. Our goal in this characterization is to
answer the following research questions:
• How does the dwell time a�ect retention and program

variation errors?
• What is the correlation between dwell time and the mag-

nitude of the self-recovery e�ect?
• How does the operating temperature a�ect the number of

retention and program variation errors?
• How do the bene�ts of self-recovery change based on the

number of performed recovery cycles?
We make all of our characterization data, including results
not shown in this paper for brevity, available in an extended
report [42] and online [56].

We use the observations and analysis from our characteri-
zation to drive the design of a new model of 3D NAND �ash
memory reliability, as described in Section 4.

3.1. Characterization Methodology
To answer the above research questions, we design new ex-

periments to test how �ash reliability changes with di�erent
dwell times and temperatures. In these experiments, we use
state-of-the-art 30- to 40-layer 3D charge trap NAND �ash
chips from a major vendor.2 We use a NAND �ash memory
characterization platform that �ts in the SSD form factor, and
contains a special version of the �rmware in the SSD con-
troller. We use a server machine to issue remote procedure
calls (RPC) [3] to the �rmware over a Serial ATA (SATA) [60]
connection. These RPCs trigger commands to be sent directly
to the �ash chips, and can transfer the raw data (i.e., data
with raw bit errors) directly from the �ash chips to the server
without applying error correction (ECC). This allows us to

2We do not disclose the exact number of stacked layers in the chips, to
protect the anonymity of the �ash vendor, and we cannot disclose the exact
voltage values, as this is proprietary information.
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observe the e�ect of dwell time and operating temperature
on the raw bit error rate of each �ash chip.

We use two metrics to evaluate �ash reliability. First, we
measure the raw bit error rate (RBER), which is the rate at
which errors occur in the data before error correction. To cal-
culate RBER, we read data from a NAND �ash memory chip
using the default read reference voltage, and compare the data
using a pristine server-side copy of the data that was origi-
nally written to the chip. Second, we show the statistical mean
of the threshold voltage distribution of each high-voltage state
(i.e., P1, P2, P3). As we mention in Section 2.2, retention loss
and program variation cause the threshold voltages of cells
to shift, which leads to the raw bit errors.3 To obtain the
threshold voltage distribution of a �ash page, we perform
multiple read operations to sweep the range of all positive
read reference voltages, using the read-retry command on
the NAND �ash memory chip [8, 12, 24].4 Read-retry allows
us to �ne-tune the read reference voltage used for each read
operation. The smallest amount by which we can change the
read reference voltage is called a voltage step. We normalize
each threshold voltage value to the number of voltage steps
needed to reach that particular voltage value.2

Limitations. In our experiments, we characterize 3D
NAND �ash memory chips of the same model from one ma-
jor vendor. Our approach ensures that any variation that we
observe in our characterization is the result of only manufac-
turing process variation, and not a result of di�erences in �ash
chip architecture or di�erent manufacturing techniques used
by di�erent vendors. While we do not take vendor-related
variation into account, we believe that our general qualitative
�ndings on the e�ects of self-recovery and temperature can
be generalized to 3D charge trap NAND �ash memory ma-
nufactured by other vendors. This is because the underlying
structure of 3D charge trap cells (see Section 2.1) is similar
across di�erent vendors [18, 47, 54]. Thus, while the exact
numbers reported in this work may di�er from vendor to
vendor, our qualitative �ndings, which are a result of charge
detrapping from the tunnel oxide (see Section 2.3), should be
similar across vendors.

We are unable to perform repeated runs of our test pro-
cedures on the same block, as each run of a test procedure
induces further wearout on a block. The amount of wearout
a�ects the error rate of NAND �ash memory [4,5,12,41,45,55].
To ensure an accurate comparison between multiple test pro-
cedure runs, we use eight target wordlines in the same stack
layer from eight randomly-selected �ash blocks that are set
to the same level of wearout for the same test procedure.
By selecting wordlines in the same layer, we eliminate the
potential impact of cross-layer process variation. Note that
we do not characterize chip-to-chip process variation, as an
accurate study of such variation requires a large-scale study
of a large number (e.g., hundreds) of 3D NAND �ash memory
chips, which we do not have access to. Hence, we leave such
a large-scale study for future work.

3We are unable to show the full threshold voltage distribution for the
ER state, because the ER state threshold voltages are negative, and our
platform cannot measure negative voltage values. This is similar to prior
works [4, 7, 8, 12].

4Due to space limitations, we refer the reader to prior works [41, 55] for
a detailed methodology on how to obtain the threshold voltage distribution.

3.2. Characterizing the Dwell Time E�ect
To measure the e�ect of dwell time on �ash reliability (see

Section 2.3), we characterize the RBER and the threshold
voltage distribution. We wear out each of our target blocks
by repeatedly writing pseudorandom data until the block
reaches 3,000 P/E cycles. For the last 300 P/E cycles, we use
a di�erent dwell time for each block, spanning a range of
64–8192 s. Prior work shows that the magnitude of the self-
recovery e�ect is correlated with the dwell time for only the
last 10% of P/E cycles performed on a block [46]. We show in
Section 3.4 that the dwell time used during only the last 20
P/E cycles a�ects self-recovery.

We measure how the dwell time a�ects retention loss speed
and program variation, by performing a retention test on each
target wordline immediately after the block containing the
wordline reaches 3,000 P/E cycles. In this test, we program
pseudorandom data to the target wordline, and repeatedly
measure the threshold voltage distribution using the metho-
dology described in Section 3.1 for up to 71 min (i.e., 4260 s)
after the data was written. We conduct this experiment at
an environmental temperature of 70 ◦C, which accelerates
both self-recovery and retention loss to reduce the experi-
ment duration to a reasonable length [46].5 We later repeat
a small portion of the test under room temperature (20 ◦C),
and verify that all of our observed trends remain the same.
E�ect on RBER. First, we study how self-recovery a�ects

the raw bit error rate. Figure 3 shows the RBER as retention
time (ts) increases, for di�erent dwell times (td ) used for the
last 300 P/E cycles. We use a color gradient for the curves,
where the reddest (topmost) curve has the shortest dwell time,
and the blackest (bottommost) curve has the longest dwell
time. Note that the x-axis and y-axis are both in log scale.
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Figure 3: Change in RBER over retention time for �ash pages
that were programmed using di�erent dwell times.

We make two observations from Figure 3. First, when the
retention time is short (i.e., tr < 10 s), the RBER is similar
across di�erent dwell times. During this time, the RBER is
dominated by program variation errors [11,41,45]. Recall that
a longer dwell time increases the amount of detrapped charge
during self-recovery. However, since the RBER is similar
across di�erent curves regardless of the dwell time, this means
that self-recovery does not mitigate program variation errors.
Therefore, unlike previous works [17, 48, 65], we conclude
that self-recovery does not repair all of the errors that occur
due to wearout in 3D NAND �ash memory. Second, when

5Based on Arrhenius’ Law [1], the same experiment would take more
than 11 years to �nish had we performed it at room temperature (20 ◦C).
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the retention time is large (i.e., tr > 10 s), there is a strong
correlation between a longer dwell time and a lower RBER.
During this time, the RBER is dominated by retention errors
(hence the growth in RBER as the retention time increases).
We conclude that a longer dwell time after an erase operation
mitigates retention errors, but not program variation errors,
in 3D NAND �ash memory.
E�ect on Threshold Voltage. Next, we study the thres-

hold voltage distribution of the �ash pages under test, to
understand how self-recovery a�ects the threshold voltage
shift (and thus the RBER) due to retention loss. Figure 4
shows the threshold voltage distribution before (black dots,
tr = 1 min) and after (red dots, tr = 71 min) a large retention
time elapses, for a �ash page programmed using a 64 s dwell
time (top plot), and for a �ash page programmed using a
8192 s dwell time (bottom plot). We observe from the �gure
that when the dwell time is higher, the threshold voltage
distribution shift due to retention loss is signi�cantly smaller.
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Figure 4: Threshold voltage distribution before and after a
long retention time, for di�erent dwell times.

To quantify the threshold voltage shift as a function of
the dwell time, we plot the statistical means of the threshold
voltage distributions of cells programmed to the P1, P2, and
P3 states in Figure 5. We use the same color gradient that we
used in Figure 3 to represent the di�erent dwell times. Note
that for these experiments, the smallest retention time that we
show on the x-axis (tr = 64 s) is much larger than the smallest
retention time shown in Figure 3 (tr = 0.5 s), because it takes
signi�cantly longer for us to sweep the threshold voltage of
the cells in a wordline (as in Figure 5), compared to simply
measuring the RBER of the wordline (as in Figure 3). We make
two observations from the �gure. First, for all three states,
the mean threshold voltage changes by a smaller amount
when the dwell time is higher, corroborating the threshold
voltage distribution shifts shown in Figure 4. Second, for a
�xed dwell time, the change in voltage is linearly related with
the log of retention time.6 We use this relationship to develop
a simple model that can quantify how retention loss speed
changes with dwell time (see below).

6A similar linear relationship between the change in threshold voltage
and the log of the retention time is observed for planar NAND �ash memory
in past works [29, 46].
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Figure 5: Threshold voltage distribution mean vs. retention
time for di�erent dwell times.

We also calculate how the width of the distribution changes
due to retention loss for di�erent dwell times (not plotted). We
observe that the change in the distribution width is relatively
small, and thus choose to ignore it to simplify the analysis.
E�ect on Retention Loss Speed and Program Varia-

tion. To quantify how self-recovery changes (1) retention
loss speed and (2) program variation, we construct a simple
model of how the threshold voltage and RBER change due
to these two factors. As we observe in Figure 5, the thres-
hold voltage distribution mean is linearly correlated with the
logarithm of the retention time (tr ). Thus, we �t our mea-
surements to the following linear model, for a given dwell
time:

Y (tr ) = α · ln(tr ) + β (2)

In this model, Y can represent either (1) the mean of the
threshold voltage distribution of each high-voltage state (i.e.,
P1/P2/P3); or (2) the logarithm of the RBER, i.e., log(RBER);7
based on the values chosen for α and β. α represents the
retention loss speed. β represents the program o�set, which
is the initial value of Y immediately after programming.

We use the absolute value of the program o�set (i.e., |β|) to
quantify the impact of program variation. For the threshold
voltage distribution mean of each high-voltage state, Y and
β are positive, and a more positive program o�set results in a
higher initial mean. As we observe under E�ect on Threshold
Voltage in Section 3.3, when the mean voltages of neighboring
distributions increase, the overlap between the distributions
decreases, which in turn reduces the number of program
variation errors. For log(RBER), Y and β are negative, because
the RBER is always less than 1. A more negative program
o�set (i.e., a greater |β|) corresponds to a more negative initial
value of log(RBER) (i.e., fewer errors).

For each dwell time, we �t Equation 2 to our experimen-
tal characterization data in order to calculate the values of

7We model the logarithm of the RBER, because when retention loss
linearly shifts the threshold voltage distribution, which roughly follows a
Gaussian distribution [41], the linear distribution shift results in a logarithmic
change in RBER, which is quanti�ed as the overlapping area between two
neighboring distributions.
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α and |β| when Y represents (1) the mean voltage of each
higher-voltage state, or (2) log(RBER). Figure 6 (left) illustra-
tes the relation between dwell time and retention loss speed
(α), normalized to the greatest observed retention loss speed.
Figure 6 (right) illustrates the relation between dwell time
and program o�set (|β|), normalized to the greatest observed
program o�set. Note that the x-axis (i.e., the dwell time) is in
log scale. In both �gures, the markers represent our measu-
red data points from real NAND �ash memory chips, and the
dashed lines show a linear trend line for the data.
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Figure 6: Retention loss speed (left) and program o�set
(right), for di�erent dwell times.

We make two key observations from Figure 6. First, the
self-recovery e�ect reduces the retention loss speed linearly
with the logarithm of dwell time. We observe, however, that
the change in retention loss speed is di�erent for each state. As
Figure 6 (left) shows, our data points follow the linear trend
line closely (with an R2 value larger than 90% for each state
and for the RBER). Second, as we concluded from Figure 3,
self-recovery has little e�ect on program variation within the
tested dwell time range. As Figure 6 (right) shows, the max-
imum di�erence in program o�set for any of our threshold
voltage states is less than 2.1%. Note that our second �nding
is new, and it shows that, unlike previous �ndings for planar
NAND �ash memory [17, 48, 64, 65], self-recovery does not
reduce the number of program variation errors, and hence
the amount of wear, in 3D NAND �ash memory.

3.3. Characterizing the Temperature E�ect
Next, we measure the e�ect of temperature on self-recovery

and �ash reliability (see Section 2.3). Similar to the experi-
ment in Section 3.2, we use eight target wordlines in the same
stack layer from randomly-selected �ash blocks. First, for
each block, we wear out the block in 1,000 P/E cycle inter-
vals up to a total of 10,000 P/E cycles, writing pseudorandom
data and using a �xed dwell time of 0.5 s. We then put the
test chip in a temperature-controlled box, and set a target
temperature. After the temperature of the test chip settles
to the target temperature, we perform 20 more P/E cycles
to each target wordline at the target temperature, using a
0.5 s dwell time. Though these P/E cycles are performed at
di�erent temperatures for each test, the dwell time we use is
small, and thus we assume that the di�erence between the
equivalent dwell times at room temperature are small across
our tests. Then, we perform the retention test described in
Section 3.2 for all target wordlines up to a retention time of
71 min. We repeat the retention test under a range of target
temperatures in each round: 0, 10, 20, 28, 35, 50, 60, and 70 ◦C.

During the retention test, data is both programmed and read
under the target temperature.
E�ect on RBER. First, we study how the RBER changes

with retention time under di�erent temperatures, as shown
in Figure 7 for a wordline with 10,000 P/E cycles. Each curve
represents the RBER under a di�erent programming tempe-
rature. We use a color gradient to indicate the temperature:
the reddest color represents the highest temperature (70 ◦C)
and the blackest represents the lowest temperature (0 ◦C).
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Figure 7: RBERover retention time at 10,000 P/E cycles under
di�erent programming temperatures.

We make two key observations from the �gure. First, when
the retention time is small (i.e., tr < 2 · 102), the RBER is
lower for higher temperatures (i.e., the red curves). Recall
that when the retention time is small, the RBER is dominated
by program variation errors [11, 41, 45]. Thus, we expect that
the RBER decreases with higher temperatures because higher
programming temperatures decrease the number of program
variation errors (we discuss this in more detail under E�ect
on Threshold Voltage below). Second, when the retention
time is larger (i.e., tr > 2 · 102), the RBER becomes higher
for higher programming temperatures. This is because as
the temperature increases, the retention errors increase at a
faster rate. Due to this faster growth, the RBER for a higher
temperature overtakes the RBER for a lower temperature at
a retention time between 102–103 s. This indicates that the
threshold voltage shift due to high-temperature retention is
faster than that for low-temperature retention, which is in
line with Arrhenius’ Law [1] (see Section 2.3).
E�ect on Threshold Voltage. Next, we study how the

programming temperature a�ects the threshold voltage of
a �ash cell. We begin by studying how the initial threshold
voltage (i.e., the threshold voltage immediately after program-
ming) changes with temperature. We measure the threshold
voltage distribution under di�erent programming temperatu-
res, and then �t our data to Equation 2 to compensate for any
retention loss that occurs during the measurements. Figure 8
shows the resulting threshold voltage distribution for each
state, at 0 ◦C (the black dotted curves) and at 70 ◦C (the red
curves). Note that the ER state distribution at 70 ◦C comple-
tely falls below the lowest voltage that we can measure, and
hence is not shown.

We make two observations from Figure 8. First, the higher
programming temperature shifts the P1, P2, and P3 states to
higher threshold voltages, and the ER state to lower threshold
voltages. The threshold voltage shifts are likely due to the
increased electron mobility under high temperature, which
improves the speed of the program operation (and likely the
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Figure 8: Threshold voltage distribution right after program-
ming at di�erent programming temperatures, predicted by
our retention loss model (Equation 2).

erase operation as well [46, 63]). As a result, each program-
ming pulse adds a greater amount of charge. Second, due
to the threshold voltage distribution shifts, the amount of
overlap between the P1 and P2 distributions, and between the
P2 and P3 distributions, decreases at a higher programming
temperature. This is because while the distribution means
shift to higher voltages at a higher programming tempera-
ture, the distribution widths do not change. Because of the
smaller amount of overlap between two neighboring distri-
butions, there are fewer program variation errors at higher
temperatures, as we have shown in Figure 7.

Next, we study how threshold voltage shifts due to reten-
tion loss change with the programming temperature. For
brevity, we do not plot these results. We observe that when
the retention time is large (tr > 2 · 102), the retention loss
speed increases due to high temperature, which is similar in
nature to the e�ect of programming temperature on RBER.

E�ect on Retention Loss Speed and Program Varia-
tion. We use our model from Equation 2 to calculate the re-
tention loss speed and program o�set for each programming
temperature, based on our characterization data. Figure 9 il-
lustrates how the programming temperature a�ects retention
loss speed (left) and program o�set (right). We �t a quadratic
trend line for retention loss speed, and a linear trend line for
program o�set (shown as dashed lines).

" $& &" ("
���������������������

"�&

"�'

"�(

"�)

"�*

#�"

�
��
�
��
��
��

	�
��
��
��
��
��
��
�

��

��
��α

�

���

����	��	�
�#�����
�$�����
�%�����

" $& &" ("
���������������������

"�&

"�'

"�(

"�)

"�*

#�"

�
��
�
��
��
��

��
��
��
�
��
��
��
���

|β
|�

��

�#�����
�$�����
�%�����
����	��	�

Figure 9: Retention loss speed (left) and program o�set
(right) across di�erent programming temperatures.

We make two observations from Figure 9. First, a higher
temperature accelerates retention loss at a superlinear rate.
We show in Section 4 that this trend complies with Arrhenius’
Law [1]. Second, we �nd that the programming temperature
a�ects program variation. This e�ect has not been accounted
for in prior work, which usually assumes that program ope-
rations are performed at room temperature [29]. In Figure 9
(right), we �nd that the program o�set is higher at higher

programming temperatures. As already shown in Figure 8,
the higher initial threshold voltage at higher programming
temperatures reduces the amount of overlap between neig-
hboring threshold voltage distributions, which in turn reduces
the number of program variation errors. We conclude that
higher temperature increases retention errors but reduces pro-
gram variation errors.

3.4. Characterizing the Recovery Cycle E�ect
We measure the e�ect of recovery cycles, i.e., P/E cycles

performed with a long dwell time, on self-recovery and �ash
reliability. We measure how the number of recovery cycles
a�ects retention loss speed. We focus on retention loss speed
in this experiment because, as we saw in Section 3.2, the
dwell time does not a�ect program variation. We �rst wear
out each block by repeatedly writing pseudorandom data
with a dwell time of 0.5 s, until the block reaches 3,000 P/E
cycles. Then, we start self-recovery, performing recovery
cycles using a 6-hour dwell time. During the idle time of
each recovery cycle, we perform our 71-minute retention
test at an operating temperature of 70 ◦C to measure the
current retention loss speed. We keep performing recovery
cycles until the change in retention loss speed is less than 1%,
which indicates that an additional recovery cycle does not
signi�cantly increase the e�ect of self-recovery.
E�ect on Retention Loss Speed. Based on our characte-

rization data, we calculate the retention loss speed (α) after
each recovery cycle. We use Equation 2 to calculate α, as we
did in Figures 6 and 9. Figure 10 shows how the retention
loss speed changes as a function of the number of recovery
cycles performed. We �t power law trend lines to the data,
shown as a dashed line in the �gure.
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Figure 10: Retention loss speed vs. recovery cycles.

We make two key observations from Figure 10. First, to
our surprise, the reduction in retention loss speed due to
self-recovery becomes insigni�cant very quickly. We �nd
that, for wordlines that have endured 3,000 P/E cycles, most
of the bene�ts of self-recovery occur within 22 recovery cy-
cles for 3D NAND �ash memory. This is much smaller than
the number of cycles required according to prior work [46],
which �nds that most of the bene�ts of self-recovery occur
only when the number of recovery cycles is 10% of the total
P/E cycle count. In other words, according to prior work,
it should have taken at least 300 recovery cycles to achieve
most of the bene�ts of self-recovery. Importantly, this im-
plies that we can reap the bene�ts of self-recovery with a
much lower overhead (i.e., signi�cantly fewer recovery cy-
cles) than previously-proposed mechanisms [20,30,46]. Thus,
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we can improve the overall performance of NAND �ash me-
mory devices that perform self-recovery. Second, the RBER
does not change signi�cantly until after the �rst three re-
covery cycles. To reduce the latency of self-recovery, prior
works [17, 48, 64, 65] distribute recovery cycles throughout
the �ash lifetime, and periodically perform only a single re-
covery cycle. Based on our observation, performing only one
recovery cycle may not change the RBER signi�cantly, and
these mechanisms may not signi�cantly improve the �ash
lifetime as currently designed.

3.5. Summary of Key Observations
We conclude that (1) the self-recovery e�ect reduces re-

tention loss speed linearly with the logarithm of dwell time,
and has little e�ect on program variation; (2) the temperature
e�ect increases retention loss speed at a superlinear rate, and
increases program variation; and (3) the reduction in reten-
tion loss speed due to self-recovery becomes insigni�cant
after 20 recovery cycles.

4. Self-Recovery E�ect Modeling
We use our observations from Section 3 to constructUni�ed

Recovery and Temperature (URT), a comprehensive analytical
model of the impact of retention, wearout, self-recovery, and
temperature on two output parameters: (1) the threshold
voltage of a �ash cell, and (2) the raw bit error rate (RBER) of
a �ash page. URT calculates each output parameter Y as:

Y = Y0 + ∆Y (tr · AF , td · AF , PEC) (3)

In the equation, Y0 is the initial value of the output parameter
immediately after a cell is programmed, and ∆Y is the change
in the output parameter due to retention loss. ∆Y is a function
of the (1) retention time (tr ) and (2) the dwell time (td ), both
of which are scaled by an acceleration factor AF (see below),
and (3) the P/E cycle count (PEC).

URT consists of three components. The program varia-
tion component (PVM; Section 4.1) predicts Y0 based on the
amount of program variation that took place. The e�ective
retention/dwell time component (RDTM; Section 4.2) computes
AF , which scales the retention or dwell time at the current
temperature of the NAND �ash memory to the e�ective time
at room temperature that has the same impact on Y . The
self-recovery and retention component (SRRM; Section 4.3),
predicts ∆Y based on the e�ective retention/dwell time and
the P/E cycle count. We show how URT can be used to im-
prove �ash reliability in Section 5.

4.1. Program Variation Component
First, we build a program variation model (PVM) to predict

the initial values (Y0 in Equation 3) of the threshold voltage
and RBER immediately after a cell is programmed. The ini-
tial values are determined by (1) the target programming
voltage, which is �xed for each state, and (2) the program
o�set (Section 3). Recall that program o�set is a�ected by the
programming temperature (Section 3.3). Prior work shows
that the P/E cycle count signi�cantly a�ects program o�set
as well [12, 13, 41, 45].

To account for both variables (i.e., programming tempe-
rature and P/E cycle count), we use a multivariate linear
regression model to model program variation:

Y0 = A · Tp · PEC + B · Tp + C · PEC + D (4)
In PVM, Y0 is a function of the P/E cycle count of the �ash
cell (PEC) and the programming temperature (Tp), which are
input parameters. A, B, C, and D are model constants that
change based on which value we model (e.g., initial threshold
voltage, initial log of RBER). We �t PVM to our characteri-
zation data using the ordinary least squares implemented in
Statsmodels [59], and conclude that the model �ts well, with
an R2 value of 91.7%. We provide the values of all the �tted
model parameters online [42].

4.2. E�ective Retention/Dwell Time Component
Next, we build an e�ective retention/dwell time model

(RDTM) to calculate the acceleration factor (AF in Equation 3),
which scales the retention time or dwell time under any tem-
perature (treal) to the e�ective time under room tempera-
ture (troom). Arrhenius’ Law [1] (see Section 2.3) is com-
monly used by prior works to scale the retention time and
dwell time of �ash memory across di�erent temperatures
(e.g., [8, 9, 10, 28, 46]). RDTM uses the same general equation
as Arrhenius’ Law (Equation 1):

AF = treal
troom

= exp
(
Ea
kB
·
(

1
Treal

– 1
Troom

))
(5)

In RDTM, AF is a function of the room temperature (Troom),
the current temperature of the NAND �ash memory (Treal),
and the activation energy (Ea). kB is the Boltzmann constant.
To accurately model the ampli�cation factor, we (1) experi-
mentally calculate a new value of Ea that we can use for 3D
NAND �ash memory; and (2) verify the accuracy of Arrhe-
nius’ Law through experimental characterization, which no
previous work has done for 3D NAND �ash memory.

While Ea is commonly accepted to be 1.1 eV for planar
NAND �ash memory [8,28], we cannot use the same value of
Ea for 3D NAND �ash memory, due to changes in materials
and manufacturing process. Fortunately, we have extensive
real device characterization data on retention loss at di�erent
temperatures (Section 3.3), which enables us to determine the
correct Ea for 3D NAND �ash memory. We de�ne t1 as the
time required for a 3D NAND �ash memory device to expe-
rience a �xed amount of retention loss, ∆Y , at temperature
T1. We de�ne t2 as the time required for the same amount of
retention loss to occur at temperature T2. Using Equation 1,
the activation energy (Ea) can be calculated as:

Ea =
kB · ln

(
t1
t2

)
· T1T2

T2 – T1
(6)

We de�ne t1 as the time required for 3D NAND �ash memory
to experience a �xed amount of retention loss, ∆Y , at tem-
perature T1. We de�ne t2 as the time required for the same
amount of retention loss to occur at temperature T2.

We choose T2 = 343.15 K (70 ◦C) as the reference tempera-
ture, and t2 = 3600 s as the reference retention time, as our
model is more resilient to noise at a larger retention time.
Using our characterization data from Section 3.3, we �nd the
equivalent t1 for di�erent temperature values of T1, spanning
20–70 ◦C, and for di�erent P/E cycle counts, spanning 1,000–
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10,000 P/E cycles. We use ordinary least squares estimates
to �t Equation 6 to these data points. From the �t, we deter-
mine that for the best �t, Ea = 1.04 eV for the 3D NAND �ash
memory chips that we test. The 95% con�dence interval for
Ea is 1.01–1.08 eV. The value of Ea is based on the materials
used for the cell, and should be similar for 3D charge trap
cells manufactured by other vendors [18, 31, 47].

Next, we verify that Arrhenius’ Law holds for 3D NAND
�ash memory, by calculating the coe�cient of determination
(R2) of the �t to the equation for Arrhenius’ Law. We �nd
that R2 = 0.76. This means that Arrhenius’ Law explains 76%
of the variations due to temperature. This is a good �t given
that we use a single value for Ea (best �t) across all of our data
points, because it is known that activation energy changes
across di�erent temperatures and P/E cycle counts [2, 43].
We use a single value of Ea regardless of temperature and
P/E cycle count to simplify RDTM. We leave more accurate
activation energy modeling for future work.

4.3. Self-Recovery and Retention Component
We build a self-recovery and retention model (SRRM) to

accurately predict the threshold voltage shift and change in
RBER (∆Y in Equation 3) due to retention loss. SRRM pre-
dicts the e�ect of (1) e�ective retention time, (2) e�ective
dwell time, and (3) P/E cycle count, which all directly a�ect
retention loss speed (see Section 3.2).

To construct SRRM, we repeat our dwell time experiments
from Section 3.2 at room temperature. We cover a slightly
larger dwell time range than our previous experiments, tes-
ting from 32 s to 4.6 h. To include the e�ect of the P/E cycle
count, we perform the retention test described in Section 3.2
for up to a 24-day retention time under room temperature,
using eight randomly-selected �ash blocks, and spanning a
range between 1,000 and 10,000 P/E cycles at 1,000-P/E-cycle
intervals. We observe similar trends in terms of retention
time, dwell time, and temperature sensitivity as the �ndings
we observe at a higher temperature in Section 3. For brevity,
we do not plot these results, but we provide them online [42].

From an analysis of the results of these experiments, we
�nd that the threshold voltage shift in 3D NAND �ash me-
mory is much less sensitive to the P/E cycle count than planar
NAND �ash memory. Thus, we develop a new model that pre-
dicts the impact of retention and self-recovery on 3D NAND
�ash memory, instead of relying on prior models for planar
NAND �ash memory. Our SRRM model is as follows:

∆Y (ter , ted , PEC) = b · (PEC + c) · ln
(

1 + ter
t0 + a · ted

)
(7)

In SRRM, ∆Y is a function of three input parameters: (1) the
e�ective retention time of the data stored in the cell (ter ),
(2) the e�ective dwell time (ted ), and (3) the P/E cycle count
for a �ash cell (PEC). The model has four constants, whose
values change depending on which output parameter (∆Y )
we are evaluating: b and c control the impact of P/E cycle
count on retention loss speed, and t0 and a control the impact
of dwell time on retention loss speed. To determine the va-
lues for these constants, we use the non-linear least squares
algorithm implemented in SciPy [32, 39] to �t SRRM to the
characterization data we collected.

Figure 11 illustrates how predictions from SRRM compare
with our measured characterization data. Figure 11a compa-
res the SRRM predictions and measured values of the thres-
hold voltage shift for cells in state P1, P2, or P3. Figure 11b
compares the SRRM predictions and measured values of the
change in the log of RBER. Each cross (‘x’) in the �gure repre-
sents a data point, where the x-coordinate of each data point
is the value predicted by SRRM, and the y-coordinate of each
data point is the value measured during our characterization.
The dashed line shows the perfect �t (i.e., where the predicted
and measured values are equal). We observe that for both
the threshold voltage shift and the change in RBER, all of
the data points are very close to the perfect �t line. Thus,
SRRM accurately predicts both output parameters. Overall,
the percentage root mean square error (%RMSE) for SRRM is
4.9%. As a comparison, if we were to predict these two output
parameters using UDM [46], a previously-proposed model
for retention loss in planar NAND �ash memory, the average
%RMSE of the predictions would be 17.8%, which is much less
accurate than the predictions from our model. We conclude
that SRRM is highly accurate for predicting the change in
RBER and the threshold voltage shift at room temperature in
3D NAND �ash memory.
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Figure 11: SRRM prediction accuracy.

5. Improving 3D NAND Reliability
Our goal in this section is to improve �ash reliability and

lifetime by developing a new mechanism that makes use of
our �ndings (Section 3) and our new model (Section 4). Our
new mechanism is called HeatWatch.

5.1. Observations
We make three key observations from the following three

experiments that lead to the design of HeatWatch. First, we
observe that SSD write intensity and the SSD environmental
temperature signi�cantly impact �ash lifetime. The write in-
tensity of an SSD is measured as the number of full drive
writes per day. Given a �xed SSD size, the write intensity
is inversely proportional to the average dwell time, thus af-
fecting �ash lifetime (Section 3.2). This is because modern
SSDs use wear-leveling techniques to keep all �ash blocks in
the SSD at a similar P/E cycle count [4, 5, 15, 25]. The envi-
ronmental temperature a�ects the �ash lifetime (Section 3.3),
because it changes the temperature of the underlying NAND
�ash memory.

Figure 12 shows the �ash lifetime under di�erent write
intensities and environmental temperatures, assuming that
the vendor guarantees a three-month retention time for the
data, which is typical for enterprise SSDs [4, 5, 8, 9, 51]. The
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SSD write intensity is shown on the x-axis in log scale. We
plot the results by using separate curves for each temperature
that we evaluate, which ranges from 0 ◦C to 70 ◦C.
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Figure 12: Change in �ash lifetime due to write intensity and
environmental temperature (tr = 3 months).

From the �gure, we see that the �ash lifetime initially de-
creases as SSD write intensity increases, but stops decreasing
at around 5,000 P/E cycles. When the write intensity is low
(< 104 drive writes/day, which covers the range of write
intensities of most contemporary workloads [9]), a higher
temperature is desirable, as it improves both the e�ective
dwell time and program variation and thus leads to a lon-
ger lifetime. In contrast, when the write intensity is high,
a lower temperature is better due to an improved e�ective
retention time. Note that these curves drastically shift (not
shown) (1) with di�erent assumptions about retention time,
or (2) when the temperature is not constant. Thus, we �nd
that no single temperature or temperature range is ideal.

Second, we observe that the choice of the read reference
voltage (Vref ) signi�cantly a�ects RBER and �ash lifetime. The
voltage at which the lowest RBER can be achieved is called
the optimal read reference voltage (Vopt ). Vopt changes based
on conditions such as retention time and P/E cycle count.
Adapting the optimal read reference voltage to these changing
conditions signi�cantly increases �ash lifetime [4, 5, 8, 12, 13,
41, 55]. Based on our experiments under room temperature,
Figure 13 shows how the RBER increases as the applied read
reference voltage becomes further away from the optimal
read reference voltage (which we refer to as the |Vref – Vopt |
distance). We �nd that the RBER increases exponentially as
the |Vref – Vopt | distance increases. We conclude, as prior
works have [4, 5, 8, 13, 41], that it is important to accurately
predict the optimal read reference voltage, as even a small
|Vref – Vopt | distance can greatly increase the error rate (and
thus hurt the �ash lifetime).
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Figure 13: RBER vs. |Vref – Vopt | distance.

Third, we observe that the optimal read reference voltage
in 3D NAND �ash memory changes over time, and can be
accurately predicted as the value that falls in the middle of two

neighboring threshold voltage distributions. Figure 14 shows
the measured Vopt from our characterization (blue dots in the
�gure), and the value of Vopt calculated by using our URT
model to predict the threshold voltage distributions of each
state (orange curve), for read reference voltages Vb and Vc
(see Section 2.1). The x-axis shows the retention time of the
data in log scale. We see that after 4000 s of retention time,
the measured optimal read reference voltages for Vb and Vc
change by 8 and 11 voltage steps, respectively.8 Comparing
the blue dots with the orange curves, we �nd that our URT-
based Vopt prediction is always within 1 voltage step of the
empirical optimal read reference voltage. We conclude that
URT accurately predicts the optimal read reference voltage.
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Figure 14: Measured and URT-predicted Vopt .

5.2. HeatWatch Mechanism
Motivated by our observations in Section 5.1, we propose

HeatWatch, a mechanism that improves �ash reliability and
lifetime by predicting and applying the optimal read reference
voltage using our URT model from Section 4. HeatWatch
consists of (1) three tracking components, which monitor and
e�ciently record the SSD temperature, dwell time, retention
time, and P/E cycle count; and (2) two prediction components,
which compute the URT model using this tracked information
to accurately predict the optimal read reference voltage for
each read operation.
Tracking Component 1: SSD Temperature. Modern

SSDs already contain multiple temperature sensors to prevent
overheating [38, 44]. HeatWatch e�ciently logs the readings
from these sensors, which the RDTM component of URT (see
Section 4.2) uses to scale the dwell time and retention time.
HeatWatch records the temperature every second, and pre-
computes the acceleration factors (AFi) for every logarithmic
time interval i. HeatWatch uses logarithmic intervals because
the e�ects of dwell time and retention time are logarithmic
with respect to their duration (see Section 3.2). HeatWatch
uses RDTM to calculate AF0. For all other intervals, AFi is
calculated as a piecewise integral, by summing up the two
most recent values of AFi–1, since interval i covers double the
amount of time as interval i – 1. Therefore, for each interval,
HeatWatch stores the current and previous values of AFi , in
an acceleration factor log.
Tracking Component 2: Dwell Time. The self-

recovery e�ect is dependent on the average dwell time across
multiple P/E cycles (Section 5.1). The average dwell time is

8Our characterization shows that Va does not change signi�cantly based
on retention time, so we do not plot it. We �nd that URT accurately predicts
the lack of change in Va .
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determined by the workload write intensity. Thus, we use
the SSD controller to (1) monitor the workload write inten-
sity online, and (2) calculate the average dwell time for each
�ash block. HeatWatch does not need to track the variation
in dwell time across di�erent �ash pages within the same
block, as we �nd from our experimental characterization that
the e�ect of page-to-page dwell time variation is negligible
(Section 5.1).

HeatWatch approximates the e�ective dwell time by ta-
king the average unscaled dwell time across the last 20 P/E
cycles, and scaling it using RDTM. The SSD controller keeps
a counter that tracks the amount of data written to the SSD,
and logs the timestamps of the last 20 full drive writes. When
a �ash block is programmed during drive write n, the SSD
controller calculates the average unscaled dwell time as the
di�erence between the current time and the timestamp of
drive write n – 20. Then, the SSD controller computes and
stores the e�ective room temperature dwell time by scaling
it using the aforementioned acceleration factor log.
Tracking Component 3: P/E Cycles and Retention

Time. The SSD controller already records the P/E cycle count
of each block to use in wear-leveling algorithms [4, 5, 15, 25].
To track the retention time of each �ash block, HeatWatch
simply logs the timestamp when the block is selected for
programming. Then, HeatWatch calculates the e�ective re-
tention time for each read operation as the di�erence between
the program time and read time, scaled by RDTM.
Prediction Component 1: Optimizing the Read Re-

ference Voltage. The optimal read reference voltage bet-
ween two states can be predicted accurately by averaging the
means of the threshold voltage distributions for each state
(Section 5.1). As HeatWatch knows the P/E cycle count, pro-
gramming temperature, e�ective dwell time, and e�ective
retention time, it can use the URT model from Section 4 to
predict the means of the threshold voltage distributions for
each state, and thus the optimal read reference voltage. For
each read operation, the SSD controller simply gathers all
the metadata for the �ash block that is to be read, and then
predicts and applies the optimal read reference voltage. The
information gathering and prediction happen after the FTL
translates the logical address of the read to a physical address
(see [4, 5] for detail), since the information for the �ash block
is indexed using the physical address.
Prediction Component 2: Fine-Tuning URT Model

Parameters Online. To accommodate for chip-to-chip vari-
ation, URT learns its model parameters online. We initialize
the URT model parameters using a set of parameters that
have been learned o�ine, which the vendor can provide at
manufacture time. Over time, URT �ne-tunes its model pa-
rameters by (1) sampling a number of �ash wordlines in the
chip (10 in our evaluations), which are selected at random
from blocks that span a range of di�erent P/E cycles, e�ective
dwell/retention time, and programming temperatures; (2) le-
arning the optimal read reference voltages for the sampled
�ash wordlines online, using a technique similar to Retention
Optimized Reading (ROR) [8]; and (3) using the sampled data
to �t the �ne-tuned URT model parameters for each chip,
which can be done relatively easily in the �rmware with
little overhead [41]. The overall latency for online training

is dominated by the latency to predict the optimal read re-
ference voltage for each wordline. In the worst case, ROR
performs 300 read operations per wordline, using a di�erent
voltage step for each read. For the 10 wordlines sampled by
URT model tuning, assuming a read latency of 100 µs, the
total worst-case latency of URT model tuning is 0.3 s. Note
that this tuning procedure needs to be performed only infre-
quently (e.g., every 1,000 P/E cycles), and can be performed
in the background (i.e., when the chip is idle), thus incurring
negligible performance overhead.
Storage Overhead. HeatWatch needs to store three sets

of information. (1) HeatWatch stores the acceleration factor
for only logarithmic time intervals from 0.5 s to 1 year (26
intervals in total). HeatWatch stores the current and previous
value of each acceleration factor, as described in Tracking SSD
Temperature above. Assuming that each acceleration factor
is stored as a 4 B �oating-point number, the total log requires
208 B of storage. (2) HeatWatch stores the programming tem-
perature, dwell time, and program time for each �ash block.
Assuming that each piece of information uses 4 B, for a 1 TB
SSD with an 8 MB �ash block size, HeatWatch uses 1.5 MB
of storage in total to store this information. (3) HeatWatch
needs a 32-bit counter, and must store the timestamps for the
last 20 full disk writes (Section 3.4), which requires 84 B of
storage. In total, the three sets of information require less
than 1.6 MB of storage. To minimize the performance over-
head of accessing this data, HeatWatch bu�ers the data in
the on-board DRAM in the SSD controller [4, 5]. The storage
overhead is very small, as a 1 TB SSD typically contains 1 GB
of DRAM for caching [4, 5].
Latency Overhead. HeatWatch performs two operations

that contribute to its latency. (1) Every second, HeatWatch
updates the acceleration factor log with the latest temperature
reading. This update can be done in the background, and,
thus, its performance overhead is negligible. (2) HeatWatch
computes the URT model during each read operation, which
involves performing only 16 arithmetic computations in the
SSD controller (Section 4). The model computation latency is
negligible compared to the �ash read latency (>25 µs [27]).

5.3. Evaluation
To evaluate HeatWatch, we examine the raw bit error rate

(RBER) and lifetime of four di�erent con�gurations:
• Fixed Vref , which always uses the default read reference

voltage to read the data.
• Retention-Only, which predicts the optimal read reference

voltage based on a model that considers only P/E cycle
count and retention time [8, 12, 13, 41, 53, 55]. Note that
this model always assumes a �xed retention loss speed,
regardless of the dwell time and temperature.

• HeatWatch, our proposed mechanism to accurately predict
the optimal read reference voltage by tracking dwell time
and temperature and using our URT model.

• Oracle, which always ideally uses the measured optimal
read reference voltage, and does not incur any performance
overhead. Note that this is not implementable.
We evaluate these four con�gurations using 28 commonly-

used real storage traces [49], which have varying write inten-
sities. Each trace represents seven days of workload data, and
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contains timestamps we can use to calculate the dwell time
and retention time of each access. We simulate temperature
variation over the course of a day as the superposition of a
sinusoidal function and some Gaussian noise. The sinusoidal
model has a mean of 35 ◦C, an amplitude of 15 ◦C, and a 1-day
period, representing how the temperature changes during
a daily cycle. The Gaussian noise model that we use has a
standard deviation of 3 ◦C.

Figure 15 shows how the RBER increases with P/E cycle
count for our four evaluated con�gurations, using a workload
that appends all 28 disk traces together to mimic an SSD
that runs multiple workloads back-to-back. The dotted line
shows an error correction capability (see Section 2.2) of 2 ·
10–3 errors per bit [4, 5]. We determine the lifetime for each
con�guration using the point at which the RBER intersects
the error correction capability. We use Fixed Vref , which has
the highest RBER, as our baseline. From the �gure, we see that
Retention-Only reduces the RBER by 83.1%, on average across
all P/E cycles, compared to the baseline, HeatWatch reduces
the RBER by 93.5% compared to the baseline. This is very
close to the average RBER improvement under Oracle (93.9%).
HeatWatch signi�cantly improves lifetime due to its RBER
improvement. The lifetime with HeatWatch is 21,065 P/E
cycles, which is 3.19× and 1.29× the lifetime with Fixed Vref
and Retention-Only, respectively. HeatWatch comes within
only 200 P/E cycles of the Oracle lifetime.
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Figure 15: RBER vs. P/E cycle count.

We repeat the same experiment for each workload indivi-
dually, and determine the lifetime for each workload under
the four con�gurations, as shown in Figure 16. On average
across all of our workloads, The lifetime under Retention-Only
is 3.11× the lifetime of the Fixed Vref baseline. HeatWatch
improves the lifetime further, with a lifetime that is 3.85×
the baseline lifetime. Again, this is very close to the lifetime
improvement of Oracle (3.89×).
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Figure 16: P/E cycle lifetime for each workload.

We conclude that by incorporating dwell time and tempera-
ture information to predict the optimal read reference voltage,
HeatWatch improves the lifetime of 3D NAND �ash memory

devices over a state-of-the-art mechanism [53], and appro-
aches the lifetime of an ideal mechanism that has perfect
knowledge of the optimal read reference voltage.

6. Related Work

To our knowledge, this paper is the �rst to (1) experimen-
tally characterize and accurately model the self-recovery and
temperature e�ects in 3D NAND �ash memory; and (2) de-
vise a mechanism that improves 3D NAND �ash memory
lifetime by comprehensively taking into account retention
time, wearout, self-recovery, and temperature. We discuss
the closely-related works.
Data Retention in NAND Flash Memory. Many prior

works focus on �ash memory retention loss and retention er-
rors, and show that retention loss is the most dominant source
of errors in modern NAND �ash memory [4,5,8,9,19,45,51,53].
These works do not consider the e�ects of self-recovery and
temperature on retention loss. Our work investigates these ef-
fects through an extensive characterization of state-of-the-art
3D NAND �ash memory chips.
3D NAND Flash Memory Characterization. Recent

works study the error characteristics of 3D NAND �ash me-
mory, and identify di�erences between 3D and planar NAND
�ash memory due to memory cell design and architectural
changes [4,5,18,47,54]. None of these works provide a detailed
characterization of the impact of self-recovery, retention, P/E
cycle count, and temperature on real 3D NAND �ash memory.
Retention Loss Models. Our URT model is inspired by

and improves upon the Uni�ed Detrapping Metric (UDM)
model [46]. There are three reasons why prior models de-
veloped for planar NAND �ash memory, such as UDM, are
insu�cient for 3D NAND �ash memory. First, 3D charge
trap cells are more resilient to P/E cycling than the �oating-
gate cells used by planar NAND �ash memory [18, 47, 54].
Thus, the PEC component in our model (Equation 7) is dif-
ferent from the equivalent component in UDM. Second, 3D
NAND �ash memory has a di�erent activation energy than
planar NAND �ash memory, as we experimentally show in
Section 4.2. Third, 3D NAND �ash memory reliability is
a�ected by the programming temperature, as we show in
Section 4.1. Because UDM does not accurately capture these
changes, its error rate for 3D NAND �ash memory is 3.6×
greater than the error rate for the SRRM component of our
new URT model, as we show in Section 4.3.
Improving Flash Reliability. Many prior works propose

mechanisms to improve �ash lifetime and reduce raw bit er-
rors (see [4,5] for a detailed survey). For example, �ash refresh
techniques limit the number of retention errors to achieve
higher P/E cycle lifetime [9, 10, 40, 51]. Prior work also ad-
justs the read reference voltage according to P/E cycle count
and retention time to reduce the RBER [8, 12, 13, 41, 53, 55].
Di�erent from prior work, we develop a new mechanism that
tracks workload write intensity and SSD temperature online
and adjusts read reference voltage accordingly to improve
�ash lifetime. We compare our mechanism to prior mecha-
nisms that are agnostic to these factors and show that it can
signi�cantly reduce RBER and improve �ash lifetime.
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7. Conclusion
We perform the �rst detailed experimental characteriza-

tion of the impact of self-recovery and temperature on the
reliability of 3D NAND �ash memory. We �nd that due to
signi�cant changes in the memory design and manufacturing
process, prior �ndings and models for planar NAND �ash
memory are not accurate for 3D NAND �ash memory. We
use key �ndings from our characterization to develop URT,
a uni�ed and accurate cell threshold voltage and raw bit er-
ror rate model that takes into account the combined e�ects
of self-recovery, temperature, retention loss, and wearout.
We develop a new mechanism, HeatWatch, that uses URT
to dynamically adapt the read reference voltage to the data
retention time, dwell time, SSD temperature, and wearout.
We show that HeatWatch greatly reduces the raw bit error
rate and improves �ash lifetime. We conclude that the e�ects
of self-recovery and temperature in 3D NAND �ash memory
can be accurately modeled and successfully used to improve
�ash reliability. We hope that our data, model, and new me-
chanism inspire others to develop other new mechanisms that
take advantage of the self-recovery and temperature e�ects
in 3D NAND �ash memory.
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