# Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies for Prefetched Blocks

#### Vivek Seshadri

Samihan Yedkar · Hongyi Xin · Onur Mutlu
Phillip B. Gibbons · Michael A. Kozuch · Todd C. Mowry

SAFARI Carnegie Mellon



### Summary

- Existing caching policies for prefetched blocks result in cache pollution
- 1) Accurate Prefetches (ICP Demotion)
  - 95% of useful prefetched blocks are used only once!
  - Track prefetched blocks in the cache
  - Demote prefetched block on cache hit
- 2) Inaccurate Prefetches (ICP Accuracy Prediction)
  - Existing accuracy prediction mechanisms get stuck in positive feedback
  - Self-tuning Accuracy Predictor
- ICP (combines both mechanisms)
  - Significantly reduces prefetch pollution
  - 6% performance improvement over 157 2-core workloads

# **Caching Policies for Prefetched Blocks**

Problem: Existing caching policies for prefetched blocks result in significant cache pollution



# **Prefetch Usage Experiment**



#### Classify prefetched blocks into three categories

- 1. Blocks that are unused
- 2. Blocks that are used exactly once before evicted from cache
- 3. Blocks that are used more than once before evicted from cache

# **Usage Distribution of Prefetched Blocks**



### **Outline**

- **✓** Introduction
- ICP Mechanism
  - ICP promotion policy
  - ICP insertion policy
  - Prior Works
  - Evaluation
  - Conclusion

# **Shortcoming of Traditional Promotion Policy**

Promote to MRU This is a bad policy. The block is unlikely to be reused in the cache. This problem exists with state-of-the-art replacement policies (e.g., DRRIP, DIP)

# **ICP** Demotion

### **Demote to LRU**

Ensures that the block is evicted from the cache quickly after it is used!

Only requires the cache to distinguish between prefetched blocks and demand-fetched blocks.

**Cache Set** 

### **Outline**

- **✓** Introduction
- ICP Mechanism
  - ICP promotion policy
  - ICP insertion policy
- Prior Works
- Evaluation
- Conclusion

### **Cache Insertion Policy for Prefetched Blocks**

**Good (Accurate prefetch) Bad (Inaccurate prefetch)** 

**Good (Inaccurate prefetch) Bad (accurate prefetch)** 



## **Predicting Usefulness of Prefetch**



# Shortcoming of "Fraction of Useful Prefetches"

Accurate prefetches predicted as inaccurate and evicted before use



The predictor may get stuck in a state where all prefetches are predicted to be inaccurate!

**MRU** 



**Cache Set** 

**LRU** 

# **ICP Accuracy Prediction**



Accurate prefetch mispredicted as inaccurate

## ICP - Summary

- ICP Demotion (ICP-D)
  - Track prefetched blocks in the cache
  - Demote prefetched block to LRU on cache hit
- ICP Accuracy Prediction (ICP-AP)
  - Maintain accuracy counter for each prefetcher entry
  - Evicted Prefetch Filter (EPF): tracks recently-evicted predicted-inaccurate prefetches
  - Bump up accuracy counter on cache miss + EPF hit
- Hardware Cost: only 12KB for a 1MB cache

### **Outline**

- **✓** Introduction
- ✓ ICP Mechanism
  - ICP promotion policy
  - ICP insertion policy
- Prior Works
- Evaluation
- Conclusion

### **Prior Works**

- Feedback Directed Prefetching (FDP) (Srinath+ HPCA-07)
  - Use pollution filter to determine degree of prefetch pollution
  - Insert all prefetches at LRU if pollution is high
  - Can insert accurate prefetches at LRU
- Prefetch-Aware Cache Management (PACMan) (Wu+ MICRO-11)
  - Insert prefetches both into L2 and L3
  - Accesses to L3 filtered by L2 (directly insert at LRU in L3)
  - Does not mitigate pollution at L2!

### **Outline**

- **✓** Introduction
- ✓ ICP Mechanism
  - ICP promotion policy
  - ICP insertion policy
- **✓ Prior Works**
- Evaluation
- Conclusion

## Methodology

- Simulator (released publicly) http://www.ece.cmu.edu/~safari/ tools/memsim.tar.gz
  - 1-8 cores, 4Ghz, In-order/Out-of-order
  - 32KB private L1 cache, 256KB private L2 cache
  - Aggressive stream prefetcher (16-entries/core)
  - Shared L3 cache (1MB/core)
  - DDR3 DRAM Memory
- Workloads
  - SPEC CPU2006, TPCC, TPCH, Apache
  - 157 2-core, 20 4-core, and 20 8-core workloads
- Metrics
  - Prefetch lifetime (measure of prefetch pollution)
  - IPC, Weighted Speedup, Harmonic Speedup, Maximum Slowdown

# Single Core – Prefetch Lifetime



### 2-Core Performance



## Other Results in the Paper

- Sensitivity to cache size and memory latency
- Sensitivity to number of cores
- Sensitivity to cache replacement policy (LRU, DRRIP)
- Performance with out-of-order cores
- Benefits with stride prefetching
- Comparison to other prefetcher configurations

### Conclusion

- Existing caching policies for prefetched blocks result in cache pollution
- 1) Accurate Prefetches (ICP Demotion)
  - 95% of useful prefetched blocks are used only once!
  - Track prefetched blocks in the cache
  - Demote prefetched block on cache hit
- 2) Inaccurate Prefetches (ICP Accuracy Prediction)
  - Existing accuracy prediction mechanisms get stuck in positive feedback
  - Self-tuning Accuracy Predictor
- ICP (combines both mechanisms)
  - Significantly reduces prefetch pollution
  - 6% performance improvement over 157 2-core workloads

# Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies for Prefetched Blocks

#### Vivek Seshadri

Samihan Yedkar · Hongyi Xin · Onur Mutlu Phillip B. Gibbons · Michael A. Kozuch · Todd C. Mowry

SAFARI Carnegie Mellon

