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Abstract

Future many-core processors are likely to concurrently execute a large number of diverse applica-
tions. How these applications are mapped to cores largely determines the interference between these ap-
plications in critical shared resources such as the network-on-chip. In this paper, we propose application-
to-core mapping policies to reduce the contention in network-on-chip and memory controller resources
and hence improve overall system performance. The key ideas of our policies are to: 1) map network-
latency-sensitive applications to separate node clusters in the network from network-bandwidth-intensive
applications such that the former makes fast progress without heavy interference from the latter, 2) map
those applications that benefit more from being closer to the memory controllers close to these resources.
Contrary to the conventional wisdom of balancing network or memory load across the network-on-chip
and controllers, we observe that it is also important to ensure that applications that are more sensitive to
network latency experience little interference from applications that are network-bandwidth-intensive,
even at the cost of load imbalance.

We evaluate the proposed application-to-core mapping policies on a 60-core system with an 8x8 mesh
NoC using a suite of 35 diverse applications. Averaged over 128 randomly generated multiprogrammed
workloads, the final proposed policy improves system throughput by 16.7% in terms of weighted speedup
over a state-of-the-art baseline, while also reducing system unfairness by 22.4% and average interconnect
power consumption by 52.3%.

1 Introduction

Landscape of computing is undergoing a sea change with the advent of multi-core processors. Parallelism is
now all pervasive, from cloud services to laptops to hand-held devices. Unlike high-performance computing
environments, where a single parallel application runs on all cores, a large fraction of future computing
systems are expected to run many diverse applications competing for shared resources. Thus, in the era
of many-core processors, managing shared resources among co-scheduled interfering applications is one of
the most fundamental challenges we face. The Network-on-Chip (NoC) is a critical shared resource and its
effective utilization is essential for improving overall system performance and fairness.

We observe that in a large many-core processor, which processor core is selected to execute an appli-
cation could have a significant impact on system performance. Performance of an application critically
depends how its network packets interfere with other applications’ packets in the interconnect and on how
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far away it is scheduled from shared resources such as memory controllers. Hence, the core selection pol-
icy has to be aware of the spatial geometry of a many-core processor as well as applications’ interference
characteristics.

While prior research [21, 27, 30] has tackled the problem of how to map tasks/threads within an appli-
cation, the interference behavior between applications in the NoC is less well understood. Unfortunately,
current operating systems are unaware of the network topology and application interference characteristics
at any instant of time, and employ naive methods while mapping applications to cores. For instance, Linux
2.6.x [1] assigns a static numbering to cores and chooses the numerically smallest numbered core when
allocating an idle core to an application. This leads to an application-to-core mapping that is oblivious to
application characteristics and inter-application interference. This causes two major problems we aim to
solve in this paper. First, applications that interfere significantly with each other can get mapped to closeby
cores, thereby causing significant interference to each other in both the network-on-chip and the memory
controllers, reducing overall system performance. Second, an application may benefit significantly from
being mapped to a core close to a shared resource (e.g., a memory controller), yet it can be mapped far
away from that resource (while another application that does not benefit from being close to the resource is
mapped closeby to the resource), again reducing system performance. If, on the other hand, the operating
system took into account the interconnect topology and application performance/interference characteristics
when deciding where to map applications in a network-on-chip, it can 1) significantly reduce the destruc-
tive network and memory interference between applications (by mapping them far away from each other),
2) map close to memory controllers those applications that benefit the most from being close to memory
controllers, thereby improving overall system performance.

In this paper, we develop intelligent application-to-core mapping policies to reduce inter-application
interference in the NoC and thus improve system performance. Our policies are built upon two major ob-
servations. First, we observe that some applications are more sensitive to interference than others: network-
latency-sensitive applications slow down more significantly when interfered with than others. Thus, system
performance can be improved by separating network-sensitive applications from aggressive applications
which have high demand for network bandwidth. To allow this separation of applications, we partition
the network into clusters using memory data placement techniques, develop heuristics to estimate each ap-
plication’s network sensitivity, and devise algorithms that use these estimates to distribute applications to
clusters. While partitioning applications between clusters to reduce interference, our algorithms also try to
ensure that network load is balanced among clusters as much as possible.

Second, we observe that some applications benefit significantly more from being placed close to memory
controllers than others: an application that is both memory-intensive and network-latency-sensitive gains
more performance from being close to a memory controller than one that does not have either of these
properties. Thus, system performance can be improved by mapping such applications to cores that are
close to memory controllers. To this end, we develop heuristics to identify such applications dynamically
and devise a new algorithm that maps applications to cores within each cluster based on each application’s
performance sensitivity to distance from the memory controller.

We make the following new contributions in this paper:

• We develop a novel core assignment algorithm for applications in a network-on-chip based many-core
system, which aims to minimize destructive inter-application network interference and thereby maximize
overall system performance. To our knowledge, this is the first work that takes into account interference
characteristics of applications in the on-chip network when assigning cores to applications.

• We develop new insights on application interference in NoC based systems, which form the foundation
of our algorithm. In particular, we demonstrate that 1) mapping network-sensitive applications to parts of
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the network such that they do not interfere with network-intensive applications and 2) mapping memory-
intensive and network-sensitive applications close to the memory controller can significantly improve
performance. Contrary to conventional wisdom [12, 18, 22], we show that sometimes reducing network
load balance to isolate network-sensitive applications can be beneficial.

• We demonstrate that intelligent application-to-core mappings can save network energy significantly. By
separating applications into clusters and placing memory-intensive applications closer to the memory
controllers, our techniques reduce the communication distance and hence communication energy of
applications that are responsible for the highest fraction of overall network load.

• We extensively evaluate the proposed application-to-core mapping policies on a 60-core CMP with an
8x8 mesh NoC using a suite of 35 diverse applications. Averaged over 128 randomly generated mul-
tiprogrammed workloads, our final proposed policy improves system throughput by 16.7% in terms of
weighted speedup over a state-of-the-art baseline, while also reducing application-level unfairness by
22.4% and NoC power consumption by 52.3%. We also show that our policies are complementary
to application-aware network packet prioritization techniques [13] and can be combined with them to
further improve system performance.

2 Background

In this section, we provide a brief background on NoC architectures. For an in-depth introduction to NoCs,
we refer the reader to [12].
Router: A generic NoC router architecture is illustrated in Figure 1. The router has P input and P output
channels/ports; typically P = 5 for a 2D mesh, one from each direction and one from the network interface
(NI). The Routing Computation unit, RC, is responsible for determining the next router and the virtual chan-
nel within the next router for each packet. The Virtual channel Arbitration unit (VA) arbitrates amongst all
packets requesting access to the same VCs and decides on winners. The Switch Arbitration unit (SA) arbi-
trates amongst all VCs requesting access to the crossbar and grants permission to the winning packets/flits.
The winners are then able to traverse the crossbar and are placed on the output links. The baseline packet
scheduling policy we model is round-robin arbitration across all virtual channels [12], but we also show that
our proposal works well with recently proposed application-aware packet scheduling policies [13].
Network Transactions: In the many-core processor architecture we study in this paper, the NoC connects
the core nodes (a CPU core with its private caches) and the on-chip memory controllers. Figure 2 shows
the layout of the many core processor with a 8x8 mesh. All tiles have a router. The memory controllers
(triangles) are placed in the corner tiles. All other tiles have a CPU core, private L1 and private L2 cache.
The core nodes send request packets to on-chip memory controller nodes via the NoC and receive response
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Figure 2: An 8x8 mesh network-on-chip divided into four clusters. Each cluster has a memory controller
(triangle) tile.

data packets from the memory controller, once data has been fetched from off-chip DRAMs.
Interference in NoC: Each packet spends at least 2-4 cycles at each router depending on the number of
stages in the router pipeline. In addition to the router pipeline stages, a packet can spend many cycles waiting
in a router, competing for buffers or switch with other packets. Thus, an application’s packet may be blocked
in the network due to interference from other applications’ packets. While its packets are buffered in remote
routers, the application (running on the core node) stalls waiting for its packets to return.

3 Motivation

A many-core processor with n cores can run n concurrent applications. Each of these applications can
be mapped to any of n cores. Thus, there can be n! possible mappings. From the interconnect perspec-
tive, a application-to-core mapping can determine the degree of interference of an application with other
applications in the NoC as well as how well the overall network load is balanced. The application-to-core
mapping also determines how the application’s memory accesses are distributed among the memory con-
trollers. These different factors can lead to variation in performance. For example, Figure 3 shows the
system performance for 576 different application-to-core mappings for the same workload (detailed system
configuration is given in Section 6). The workload consists of 10 copies each of applications gcc, barnes,
soplex, lbm, milc and leslie running together. The Y-axis shows the system performance in terms of
weighted speedup of the different mappings (higher is better). Each blue dot represents a different mapping.
It can be seen that the best possible mapping provides 1.6X higher system performance than the worst pos-
sible mapping. Our goal is to devise new policies that can find a application-to-core mapping to maximize
system performance.
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Figure 3: Performance of 576 different application to core mappings for one multiprogrammed workload
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Figure 4: Inter-Cluster Application-to-Core Mapping Examples: (a) Random (RND) (b) Imbal-
anced (IMBL) (c) Balanced (BL) (d) Balanced with Reduce Interference (BLRI)

4 Application-to-Core Mapping Policies

Our goal is to improve system throughput by designing efficient application-to-core mapping policies that
reduce interference in on-chip-network based multi-core systems. To enable this, we partition the cores into
clusters and develop two novel techniques: 1) algorithms to distribute applications between clusters, and 2)
algorithms to map applications to cores within a cluster.

4.1 Cluster Formation

What is a cluster? We define a cluster as a sub-network such that the majority of network traffic originating
in the sub-network can be constrained within the sub-network. Clustering factor is defined as the percentile
of accesses that can be constrained within the cluster. As a first step, we form clusters to partition network
traffic between clusters. Forming clusters ensures that applications mapped to different clusters interfere
minimally with each other. Figure 2 shows a many-core processor with cores organized in an 8x8 mesh
on-chip network. We partition the tiles of the on-chip network such that each cluster has one memory
controller (the home memory controller of that cluster). The dotted lines show the division of the on-chip
network into four clusters. In addition to reducing interference among applications, clustering also improves
communication locality since the applications in the cluster communicate mainly with the memory controller
in the cluster. This has two positive effects: 1) it reduces overall congestion in the network, 2) it reduces the
average distance packets need to traverse (to get to the memory controller), thereby reducing packet latency
and network energy consumed per packet.

How to enforce clustering for memory accesses? Clustering can be achieved by mapping physical
pages requested by cores to memory controllers in an appropriate manner. Typically, physical pages (or
even cache blocks) are interleaved among memory controllers such that adjacent pages (or cache blocks)
are mapped to different memory controllers [37, 32, 25]. To enable clustering, page allocation and replace-
ment policies should be modified such that data requested by a core is opportunistically mapped to the
home memory controller (home MC) of the core. To achieve this, we slightly modify the commonly-used
CLOCK [23] page allocation and replacement algorithm to what we call the cluster-CLOCK algorithm.

When a page fault occurs and free pages exist, the operating system gives preference to free pages
belonging to the home MC of a requesting core when allocating the new page to the requesting core. If
no free pages belonging to the home MC exist, a free page from another MC is allocated. When a page
fault occurs and no free pages exist, preference is given to a page belonging to the home MC, while finding
the replacement page candidate. We look N pages beyond the default candidate found by CLOCK [23]
algorithm to find a page which belongs to home MC1. If unsuccessful to find a replacement candidate
belonging to home MC in N pages beyond the default candidate, the algorithm simply selects the default

1We use N=512 in our experiments, a value empirically determined to maximize the possibility of finding a page in home MC
while minimizing the overhead of searching for one.
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candidate for replacement.
The above modifications ensure that the new page replacement policy does not perturb significantly the

existing replacement order, and at the same time achieves the effect of clustering opportunistically. Note
that these modifications to virtual memory management (for both page allocation and page replacement)
do not enforce a static partitioning of DRAM memory capacity; they only bias the page replacement policy
such that it likely allocates pages to a core from the core’s home memory controller.

How to enforce clustering for cache accesses? Clustering can be enforced for cache accesses for
shared cache architectures by slightly modifying state-of-the-art cooperative caching techniques [7, 34] or
page coloring techniques [9] such that cache accesses of a core remain within the shared cache slices within
the core’s cluster. Such caching techniques have been shown to improve system performance by trading-off
cache capacity for communication locality. Since our focus is to reduce interference for NoCs, for this work
we assume private caches which automatically enforces clustering by restricting the cache accesses from an
application to the private cache co-located in the same tile as the core running the application.

4.2 Mapping Policy between Clusters

In this subsection, we devise clustering algorithms that decide to which cluster an application should be
mapped to. The key idea is to map the network-sensitive applications to a separate cluster such that they
suffer minimum interference. While doing so, we also try to ensure that overall network load is balanced
between clusters as much as possible.

Before we develop our algorithms, we briefly describe two possible inter-cluster mappings, which we
will contrast our algorithms to the baseline. Figure 4 illustrates four different example inter-cluster map-
pings for a particular abstract workload. The former two, (a) and (b), are baseline mappings and the latter
two, (c) and (d), are possible results of our algorithms. Each core tile in the figure is shaded according to
network intensity of the application running on it; a darker tile corresponds to an application with a higher
private cache miss rate, i.e. Misses per Thousand Instructions (MPKI), running on the core in the tile. Fig-
ure 4 (a) shows a possible random mapping of applications to clusters (called RND), which is the baseline
mapping policy in existing general-purpose systems. Figure 4 (b) shows a mapping where applications are
completely imbalanced between clusters (called IMBL). The upper left cluster is heavily loaded while the
lower right cluster has very low load. An imbalanced inter-cluster mapping can severely degrade system
performance because of poor utilization of aggregate available bandwidth in the NoC and in the off-chip
memory channels. We investigate this policy for solely to provide an evaluation of how much performance
can degrade with an undesirable mapping, which can possibly happen with existing policies.

We develop two inter-cluster mapping policies. The goal of the Balanced (BL) policy, an example of
which is shown in Figure 4 (c), is to balance load between clusters. The goal of the Balanced with Reduced
Interference (BLRI) policy, and example of which is shown in Figure 4 (d), is to protect interference-sensitive
applications from other applications by assigning them their own cluster (the top left cluster in the figure)
while trying to keep load balance in the rest of the network as much as possible.

4.2.1 Balanced Mapping (BL): Mapping to Balance Load between Clusters

The first goal of our inter-cluster mapping policy is to balance the load among clusters such that there is
better overall utilization of network and memory bandwidth. To form an application-to-cluster mapping
singularly optimized to balance load, we start with the list of applications sorted with respect to their net-
work intensity: {A0, A1, . . . , An−1} where Ai is ith highest intensity application and n is number of cores
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in the chip. Network intensity is measured in terms of injection rate into the network, which is quantified
by private cache Misses per Thousand Instructions (MPKI), collected periodically at run-time or provided
statically before the application starts. The basic idea is to map consecutively-ranked applications to con-
secutive clusters in a round robin fashion. Hence, applications are mapped to clusters as follows: Ci = {Ai,
Ai+k, Ai+2k, Ai+3k, . . .} where Ci is the set of applications mapped to the ith cluster, and k is the number
of clusters. Figure 4 (c) shows an example mapping after applying the inter-cluster BL mapping algorithm
to a workload mix.

4.2.2 Reduced Interference Mapping (RI): Mapping to Reduce Interference for Sensitive Applica-
tions

We observe that some applications are more sensitive to interference in the network compared to other
applications. In other words, the relative slowdown these applications experience due to the same amount
of interference in the shared NoC is higher than that other applications experience. Our insight is that if we
can separate such sensitive applications from other network-intensive ones by mapping them to their own
cluster, we can improve performance significantly because the slowdowns of the most sensitive applications
can be kept under control. To achieve this, our mechanism: 1) identifies sensitive applications 2) maps the
sensitive applications to their own cluster only if there are enough such applications and the overall load in
the network is high enough to cause congestion.

How to Identify Sensitive Applications We characterize applications to investigate their relative sen-
sitivity. Our studies show that interference-sensitive applications have two main characteristics. First, they
have low memory level parallelism (MLP) [16, 31]: such applications are in general more sensitive to in-
terference because any delay for the application’s network packet likely results in extra stalls, as there is
little or no overlap of packet latencies. Second, they inject enough load into the network for the network
interference to make a difference in their execution time. In other words, applications with very low network
intensity are not sensitive because their performance does not significantly change due to extra delay in the
network.

We use two metrics to identify interference-sensitive applications. We find that Stall Cycles Per Miss
(STPM) metric correlates with memory level parallelism (MLP). STPM is the average number of cycles for
which a core is stalled because it is waiting for a cache miss packet to return from the network. Relative
STPM is an application’s STPM value normalized to the minimum STPM among all applications to be
mapped. Applications with high relative STPM are likely to have relatively low MLP. Such applications
are classified as sensitive only if they inject enough load into network, i.e., if their private cache misses
per thousand instructions (MPKI) is greater than a threshold. Algorithm 1 formally summarizes how our
technique categorizes applications as sensitive.

How to Decide Whether or Not to Allocate a Cluster for Sensitive Applications After identifying
sensitive applications, our technique tests if a separate cluster should be allocated for them. This cluster is
called the RIcluster, which stands for Reduced-Interference Cluster. There are three conditions that need to
be satisfied for this cluster to be formed:

• First, there have to be enough sensitive applications to fill at least R% of the cores in a cluster. This
condition ensures that there are enough sensitive applications such that their separation from others
actually reduces interference significantly. We empirically found R = 75 is a good threshold.

• Second, the entire workload should exert a large amount of pressure on the network. We found that
allocating interference-sensitive applications to their own cluster makes sense only for workloads that
have a mixture of interference-sensitive applications and network-intensive (high-MPKI) applications
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Algorithm 1: Algorithm to identify sensitive applications
Input: Applications = {A0, A1, . . . , An−1} such that

∀ i STPM(Ai) ≥ STPM(Ai+1)
ThreshMPILow, ThreshMPIHigh, ThreshSensitivityRatio

1: begin
2: SensitiveApplications←− ∅

// The STPM of all applications (A0 to An−1) is normalized to MinSTPM
3: MinSTPM ←− minimumofSTPM(Applications)
4: for i← 0 to n− 1 do
5: if NetworkDemand(Ai) > ThreshMPILow and NetworkDemand(Ai) < ThreshMPIHigh and
6: STPM(Ai)/MinSTPM ≥ ThreshSensitivityRatio then
7: SensitiveApplications←− SensitiveApplications ∪Ai

8: end
9: end

10: end

that can cause severe interference by pushing the network towards saturation. Therefore, we consider
forming a separate cluster only for very intensive workloads that are likely to saturate the network. As
a result, our algorithm considers forming an RIcluster if the aggregate bandwidth demand of the entire
workload is higher than 1500 MPKI.2

• Third, the aggregate MPKI of the RIcluster should be small enough so that interference-sensitive appli-
cations mapped to it do not significantly slow down each other. If separating applications to an RIcluster
ends up causing too much interference within the RIcluster, this would defeat the purpose of forming
the RIcluster in the first place. To avoid this problem, our algorithm does not form an RIcluster if the
aggregate MPKI of RIcluster exceeds the bandwidth capacity of any NoC channel.3

If these three criteria are not satisfied, Balanced Load (BL) algorithm is used to perform mapping in all
clusters, without forming a separate RIcluster.

How to Map Sensitive Applications to Their Own Cluster Algorithm 2 (Reduced Interference) il-
lustrates how to form a separate cluster (RIcluster) for sensitive applications. The goal of the Reduced
Interference (RI) algorithm is to fill the RIcluster with as many sensitive applications as possible, as long as
the aggregate MPKI of RIcluster does not exceed the capacity of any NoC channel. The problem of choos-
ing p (p = number of cores in a cluster) sensitive applications that have an aggregate MPKI less than a upper
bound, while maximizing aggregate sensitivity of RIcluster can be easily shown to be equivalent to the 0-1
knapsack problem [10]. We use a simple solution described in [10] to the knapsack problem to choose p
sensitive applications. In case there are fewer sensitive applications than p, we pack the empty cores in the
RIcluster with the insensitive applications that are the least network-intensive.4

Forming More than One RIcluster If the number of sensitive applications identified by Algorithm 1 is
more than 2p, then our technique forms two RIclusters.

2Each memory controller feeds the cores with two outgoing NoC channels (each channel @32 GB/s, total 64GB/s). The off-chip memory
channels are matched to the network channel capacity (4 channels @16 GB/s, total 64GB/s). The total bandwidth demand of 64 GB/s translates
to an MPKI of 500 MPKI (assuming 64 byte cache lines, throughput demand of one memory access per cycle and core frequency of 2 GHz). We
consider forming an RI cluster if the bandwidth demand is R=0.75 times the cluster capacity of 64 GB/s (or 375 MPKI). With 4 clusters, the total
demand of the workload should be 4*375=1500 MPKI. We empirically validated this threshold.

3Each NoC channel has a capacity of 32 GB/s. Assuming 64 byte cache lines and throughput demand of one memory access per cycle at core
frequency of 2 GHz, 32 GB/s translates to 250 MPKI. Thus the aggregate MPKI of RIcluster should be less than 250 MPKI (ThreshMPKIRI

= 250 MPKI).
4Note that this solution does not have high overhead our algorithm is invoked at long time intervals at the granularity of OS time

quantums.
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Algorithm 2: Reduced-Interference (RI) Mapping: Algorithm to form the RIcluster for Sensitive
Applications

Input: SensitiveApplications = {S0, S1, . . . , Sk−1}
FillerApplications = {F0, F1, . . . , Fl−1} such that
∀ i NetworkDemand(Fi) ≤ NetworkDemand(Fi+1) and Fi /∈ SensitiveApplications
ThreshMPKI−RI(= 250MPKI), p = number of cores in a cluster

1: begin
2: RIcluster ←− ∅MaxWeight←− ThreshMPKI−RI

3: for i← 0 to k − 1 do
4: Weighti ←−MPKI(Si)
5: V aluei ←− STPM(Si)/MinSTPM

6: end
7: RIcluster ←− KnapSack(Weight, V alue, k,MaxWeight)
8: for i← 0 to p − |RIcluster| − 1 do
9: RIcluster ←− RIcluster ∪ Fi

10: end
11: end

Once the RIcluster has been formed, the rest of the applications are mapped to the remaining clusters
using the BL algorithm. We call this final inter-cluster mapping algorithm, which combines RI and
BL algorithms, as the BLRI algorithm. Figure 4 (d) shows an example mapping after applying the inter-
cluster BLRI mapping algorithm for a workload mix.

4.3 Mapping Policy within a Cluster

After mapping each application to a cluster, a question remains: which core within a cluster should an
application be mapped to? Figure 5 shows different possible intra-cluster mappings for a single cluster.
Figure 5 (a) depicts a random intra-cluster mapping; this is not the best intra-cluster mapping as it is ag-
nostic to application characteristics. We observe that 1) a memory-intensive application benefits more from
being placed closer to memory controller than other applications because it demands faster communication
with the memory controller (See Figure 6), 2) an interference-sensitive application benefits more from being
placed closer to memory controller (especially if it is memory intensive) than other applications, 3) mapping
a memory-intensive application close to the memory controller reduces the network interference it causes
to less network-intensive applications due to its frequent communication with the controller because its net-
work packets travel much shorter distances. Figure 6 empirically supports the first observation by showing
that applications with higher MPKI (shown in graphs to the left) gain more in terms of IPC performance
when mapped closer to the memory controller than applications with lower MPKI (shown in graphs to the
right).

Our intra-cluster mapping exploits these insights. It differentiates applications based on both their 1)
network/memory demand (i.e. rate of injection of packets) measured as MPKI, and 2) sensitivity to network
latency measured as Stall Time per Miss (STPM) at the core. It then computes a metric, stall time per
thousand instructions, STPKI = MPKI ∗ STPM for each application, and sorts applications based
on the value of this metric. Applications with higher STPKI are assigned to cores closer to the memory
controller. To achieve this, the algorithm maps applications radially in concentric circles around the memory
controller in sorted order, starting from the application with the highest STPKI , Algorithm 3 shows this
process. Figure 5 (c) shows an example resulting mapping within a cluster. Darker (inner and closer)
tiles represent heavy and sensitive applications and lighter (outer and farther) tiles represent lower intensity
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Figure 5: Intra-Cluster Application-to-Core Mapping Examples: (a) Random (b) Inverse Radial (c) Radial

applications with low sensitivity. As an example of a contrasting policy which we will evaluate, Figure 5 (b)
shows the resulting mapping if we perform inverse-radial mapping based on the sorted application order.

Algorithm 3: Intra-Cluster Mapping: Radial Mapping Algorithm
Input: Applications = {A0, A1, . . . , Ac−1} such that

∀ i MPKI(Ai) ∗ STPM(Ai) ≥MPKI(Ai+1) ∗ STPM(Ai+1)
Cores = {N0, N1, . . . , Nc−1} such that
∀ i Distance(Ni,HomeMemoryController) ≤ Distance(Ni+1,HomeMemoryController)

1: for i← 0 to c− 1 do
2: ApplicationMap(Ni)←− Ai

3: end

4.4 Putting It All Together: Our Application-to-Core (A2C) Mapping Algorithm

Our final algorithm consists of three steps combining the above algorithms. First, cores are clustered into
subnetworks using the cluster-CLOCK page mapping algorithm (Section 4.1). Second, the BLRI algorithm
is invoked to map applications to clusters (Section 4.2.2). In other words, the algorithm attempts to allo-
cate a separate cluster to interference-sensitive applications (Section 4.2.2), if possible, and distributes the
applications to remaining clusters to balance load (Section 4.2.1). Third, after applications are assigned to
clusters, the applications are mapped to cores within the clusters by invoking the intra-cluster radial map-
ping algorithm (Section 4.3). We call this final algorithm, which combines clustering, BLRI and radial
algorithms, as the A2C mapping.

4.5 Enforcing System-Level Priorities in the NoC

So far, our mechanisms were targeted to improve system throughput and energy efficiency. We implicitly
assumed that all applications have equal system-level priority. In a real system, the system software (the OS
or virtual machine monitor) may want to assign priorities (or, weights) to applications in order to convey
that some applications are more/less important than others. We seamlessly modify our mapping policies
to incorporate system-assigned application weights. First the load balancing algorithm (Section 4.2.1) is
invoked to distribute applications between clusters as we already described. When performing intra-cluster
mapping, the system software takes into account system-level weights of applications to sort the applications
instead of purely using the STPKI metric to do the sorting. This can be done by sorting the applications
based on 1) purely their system-level weights or 2) their STPKI scaled with weights. The applications are
mapped radially around the memory controllers within the clusters, with higher ranked ones placed closer
to the memory controller.
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Figure 6: Application performance with distance from memory controller (MC) when running alone. Each figure has
four benchmarks each with (a) MPKI range from 25.4 to 29.6 (b) MPKI range from 8.5 to 10.6 (c) MPKI range from
3.2 to 7.2 (d) MPKI range from 0.26 to 0.40. The figures show 1) speedups of higher-MPKI applications are higher if
placed closer to MC and 2) some applications with similar or lower MPKI, show high speedups when placed closer to
MC because they are more sensitive to network latency.

5 Enforcement of Application-to-Core Mapping

5.1 Profiling

The proposed mapping policies assume knowledge of two metrics: a) network demand in terms of MPKI
and b) sensitivity in terms of stall cycles per miss (STPM). These metrics can be either, pre-computed for
applications a priori, or measured online during a profiling phase. We evaluate both scenarios, where met-
rics are known a priori (static A2C) and when metrics are measured online (dynamic A2C). For dynamic
A2C, we profile the workload for 10 million instructions (profiling phase) and then compute mappings that
are enforced for 300 million instructions (enforcement phase). The profiling phase and enforcement phases
are repeated periodically. The profiling to determine MPKI requires two hardware counters in the core: 1)
instruction counter and 2) L2 miss counter. The profiling to determine STPM requires one additional hard-
ware counter at the core which is incremented every cycle the oldest instruction cannot be retired because it
is waiting for an L2 miss. Note that the A2C technique requires only a relative ordering among applications
and hence quantizing applications to classes based on the above metrics is sufficient.

5.2 Operating System and Firmware Support

Our proposal requires support from the operating system. First, the operating system page allocation and re-
placement routine is modified to enforce clustering, as described in Section 4.1. Second, the A2C algorithm
can be integrated as part of the operating system task scheduler. If this is the case, the OS scheduler allocates
cores to applications based on the optimized mapping computed by the A2C algorithm. The complexity of
the algorithm is relatively modest and we found its time overhead is negligible since the algorithm needs
to be invoked very infrequently (e.g., every OS time quantum). Alternatively, the A2C algorithm can be
implemented as part of the firmware of a multi-core processor. There is already thrust towards firmware
support for multi-core processors to manage power [35, 20] and thermal issues [17, 11], support applica-
tion migration, and provide fault tolerance [2]. If integrated into the firmware, our techniques can be either
exposed to the operating system or completely managed by the hardware.

5.3 Adapting to Dynamic Runtime Environment

The runtime environment of a manycore processor will be dynamic with continuous flow of incoming pro-
grams (process creation), outgoing programs (process completion), and context switches. Thus, it is hard to
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predict a priori which set of applications will run simultaneously as a workload on the manycore processor.
Our application-to-core mapping techniques have the capability to adapt to such dynamic scenarios via two
key elements. First, the ability to determine online the application characteristics (Section 5.1). Second,
since application-to-core mapping of an application can change between different execution phases, we mi-
grate the applications between cores to enforce new mappings. We discuss the costs of application migration
in the next subsection.

5.4 Migration Costs

A new application-to-core mapping may require migration of an application from one core to another. We
can split the cost associated with application migration into four parts: 1) A constant cost due to operating
system bookkeeping to facilitate migration. This cost is negligible because both the cores are managed by a
single unified operating system. Thus, unlike process migration in MP systems where a process is migrated
between processors managed by different operating systems, in this case, minimal system state needs to be
accounted for. For example, the file handling, memory management, IO, network socket state, etc are shared
between the cores due to the single operating system image and need not be saved or restored; 2) A constant
cost (in terms of bytes) of transferring the application’s architectural context (including registers) to the
new core; 3) A variable cache warmup cost due to cache misses incurred after transferring the application
to a new core. We quantify this cost and show that averaged over the entire execution phase, this cost is
negligibly small across all benchmarks (see Section 7.7); and 4) A variable cost due to potential reduction
in clustering factor5. This cost is incurred only when we migrate applications between clusters and, after
migration, the application continues to access pages mapped to its old cluster. We quantify this cost as well
in our performance evaluation for all our workloads (see Section 7.7). Our evaluations faithfully account for
all of these four types of migration costs.

Processor Pipeline 2 GHz processor, 128-entry instruction window
Fetch/Exec/Commit width 2 instructions per cycle in each core; only 1 can be a memory operation
Memory Management 4KB physical and virtual pages, 512 entry TLBs, CLOCK page allocation and replacement
L1 Caches 32KB per-core (private), 4-way set associative, 64B block size, 2-cycle latency, write-back,

split I/D caches, 32 MSHRs
L2 Caches 256KB per core (private), 16-way set associative, 64B block size, 6-cycle bank latency, 32 MSHRs
Main Memory 4GB DRAM,up to 16 outstanding requests per-core, 160 cycle access, 4 DDR Channels at 16GB/s

4 on-chip Memory Controllers.
Network Router 2-stage wormhole switched, virtual channel flow control, 4 VC’s per Port,

4 flit buffer depth, 4 flits per data packet, 1 flit per address packet.
Network Interface 16 FIFO buffer queues with 4 flit depth
Network Topology 8x8 mesh, 128 bit bi-directional links (32GB/s).

Table 1: Baseline Processor, Cache, Memory, and Network Configuration

6 Methodology

6.1 Experimental Setup

We evaluate our techniques using an instruction-trace-driven, cycle-level x86 CMP simulator. The functional
frontend of the simulator is based on Pin dynamic binary instrumentation tool [29], which is used to collect
instruction traces from applications, which are then fed to the core models that model the execution and
timing of each instruction.

5Clustering factor is defined as the percentile of accesses that are constrained within the cluster.
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Functional Simulations for Page Fault Rates: We run 500 million instructions per core (totally 30 billion
instructions across 60 cores) from the simulation fast forward point obtained from [33] to evaluate cluster-CLOCK
and CLOCK page replacement algorithms.
Performance Simulations for Static A2C mapping: To have tractable simulation time, we choose a smaller representative window
of instructions, obtained by profiling each benchmark, from the representative execution phase obtained from [33]. All our
experiments study multi-programmed workloads, where each core runs a separate benchmark. We simulate 10 million instructions per core,
corresponding to at least 600 million instructions across 60 cores.
Performance Simulations for Dynamic A2C mapping: To evaluate the dynamic application-to-core mapping faithfully, we need longer
simulations that model at least one dynamic profiling phase and one enforcement phase (as explained in Section 5.1). We
simulate an entire profiling+enforcement phase (300 million instructions) per benchmark per core, corresponding to at least 18.6
billion instructions across 60 cores.

Table 2: Simulation Methodology

Table 1 provides the configuration of our baseline, which consists of 60 cores and 4 memory controllers
connected by a 2D, 8x8 Mesh NoC. Each core is modeled as an out-of-order execution core with a limited
instruction window and limited buffers. The memory hierarchy uses a two-level directory-based MESI cache
coherence protocol. Each core has a private write-back L1 cache and private L2 cache. The network connects
the core tiles and memory controller tiles. The system we model is self-throttling as real systems are: if the
miss buffers are full the core cannot inject more packets into the network. Each router uses a state-of-the-
art two-stage microarchitecture. We use the deterministic X-Y routing algorithm, finite input buffering,
wormhole switching, and virtual-channel flow control. We use the Orion power model for estimating the
router power [36].

We also implemented a detailed functional model for virtual memory management to study page ac-
cess and page fault behavior of our workloads. The baseline page allocation and replacement policy is
CLOCK [23]. The modified page replacement and allocation policy, cluster-CLOCK, looks ahead 512 pages
beyond the first replacement candidate to potentially find a replacement page belonging to home memory
controller.

The parameters used for our A2C algorithm are: ThreshMPILow = 5 MPKI, and ThreshMPIHigh =
25 MPKI, ThreshSensitivyRatio = 5 and ThreshMPKI−RI = 250 MPKI. These parameters are empirically
determined but not tuned. The constant cost for OS book keeping while migrating applications is assumed
to be 50K cycles. The migrating applications write and read 128 bytes to/from the memory to save and
restore their register contexts.

6.2 Evaluation Metrics

Our evaluation uses several metrics. We measure system performance in terms of average weighted
speedup [14], a commonly used multi-program performance metric, which is the average of the sum of
slowdowns of each application compared to when it is run alone on the same system. We measure system
fairness in terms of the maximum slowdown any application experiences in the system.

(Average) Weighted Speedup =
1

NumThreads
×

NumThreads∑
i=1

IPCshared
i

IPCalone
i

(1)

UnfairnessIndex = max
i

IPCshared
i

IPCalone
i

(2)

IPCalone is the IPC of the application when run alone on our baseline system. We also report IPC through-
put.

IPC Throughput =

NumThreads∑
i=1

IPCi (3)
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6.3 Workloads and Simulation Methodology

Table 2 describes the three different types of simulations we run to evaluate our mechanisms. Due to
simulation time limitations, we evaluate the execution time effects of our static and dynamic mechanisms
without taking into account the effect on page faults. We evaluate the effect of our proposal on page fault
rate separately using functional simulation, showing that our proposal reduces page fault rate (Sec. 7.2).

We use a diverse set of multiprogrammed application workloads comprising scientific, commercial, and
desktop applications. In total, we study 35 applications, including SPEC CPU2006 benchmarks, appli-
cations from SPLASH-2 and SpecOMP benchmark suites, and four commercial workloads traces (sap,
tpcw,sjbb, sjas). We choose representative execution phases using PinPoints [33] for all our workloads
except commercial traces, which were collected over Intel servers. Figure 12 (b) lists each application and
includes results showing the MPKI of each application on our baseline system.

Multiprogrammed Workloads and Categories: All our results are across 128 randomly generated
workloads. Each workload consists of 10 copies each of 6 applications randomly picked from our suite of
35 applications. The 128 workloads are divided into four subcategories of 32 workloads each: 1) MPKI500:
relatively less network-intensive workloads with aggregate MPKI less than 500, 2) MPKI1000: aggregate
MPKI is between 500-1000, 3) MPKI1500: aggregate MPKI is between 1000-1500, 4) MPKI2000: rela-
tively more network-intensive workloads with aggregate MPKI between 1500-2000.

7 Performance Evaluation

7.1 Overall Results for A2C Algorithm

We first show the overall results of our final Application-to-Core Mapping algorithm (A2C). We evaluate
three systems: 1) the baseline system with random mapping of applications to cores (BASE), which is repre-
sentative of existing systems, 2) our enhanced system which uses our clustering and modified CLOCK algo-
rithm (described in Section 4.1) but still uses random mapping of applications to cores (CLUSTER+RND),
3) our final system which uses our combined A2C algorithm (summarized in Section 4.4), which consists of
clustering, inter-cluster BLRI mapping, and intra-cluster radial mapping algorithms (A2C).

Figure 7 (a) and (b) respectively show system performance (higher is better) and system unfairness
(lower is better) of the three systems. Solely using clustering (CLUSTER+RND) improves weighted speedup
by 9.3% over the baseline (BASE). A2C improves weighted speedup by 16.7% over the baseline, while also
reducing unfairness by 22%.6
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Figure 7: (a) System performance (b) system unfairness and (c) interconnect power of the A2C algorithm
for 128 workloads

6We do not show graphs for instruction throughput due to space limitations. Clustering alone (CLUSTER+RND) improves IPC
throughput by 7.0% over the baseline, while A2C improves IPC by 14.0%.
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Figure 9: Page access behavior across 128 multiprogrammed workloads (a) Clustering factor (b) Page Faults
(c) A Case Study

Interconnect Power Figure 7 (c) shows the normalized interconnect average power consumption (lower
is better). Clustering only reduces power consumption by 31.2%; A2C mapping reduces power consumption
by 52.3% over baseline (BASE). The clustering of applications to memory controllers reduces the average
hop count significantly, reducing the energy spent in moving data over the interconnect. Using inter-cluster
and intra-cluster mapping further reduces hop count and power consumption by ensuring that network-
intensive applications get mapped close to the memory controllers and network load is balanced across
controllers after clustering.

In the next three sections, we analyze the benefits and tradeoffs of each component of A2C.
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Figure 10: (a) Case study analyzing BL mapping (b) Average results for different inter-cluster mappings
across 128 workloads (c) Average results for BLRI mapping for the MPKI2000 workload category

7.2 Analysis of Clustering and Cluster-CLOCK

The goal of clustering is to reduce interference between applications mapped to different clusters. Averaged
across 128 workloads, clustering improves system throughput by 9.3% in terms of weighted speedup and
8.0% in terms of IPC throughput.

Figure 8 (a) and (b) plot the gains in weighted speedup and IPC throughput due to clustering for each
workload against the baseline weighted speedup of the workload. A lower baseline weighted speedup indi-
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cates that average slowdown of applications are higher and hence contention/interference is high between
applications in the baseline. The figures show that performance gains due to clustering are significantly
higher for workloads with lower weighted speedup (i.e., higher slowdowns due to interference). This is
intuitive because the main goal of clustering is to reduce interference between applications. We conclude
that the benefits of clustering are higher when interference is higher in the network.

To provide detailed insight, we zoom in on one workload as a case study in Figure 8 (c). This workload
consists of 10 copies each of applications gcc, sjeng, deal, astar, art, and leslie running together
on the many-core processor. The Y-axis measures the slowdowns (lower is better) of individual applications
compared to when run alone. We observe that clustering 1) reduces slowdown of all applications because it
reduces interference and reduces their latency of access to the memory controller, 2) provides larger benefits
to more network-intensive (higher MPKI) applications because they have significantly higher slowdown in
the baseline system and separating these applications’ accesses via clustering reduces this large slowdown
they cause to each other.

Analysis of the cluster-CLOCK page replacement algorithm: To enforce clustering, we have devel-
oped the cluster-CLOCK algorithm (Sec. 4.1) which modifies the default page allocation and page replace-
ment policies. The results in Figure 9 quantify the effect of cluster-CLOCK across 128 workloads. Figure 9
(a) plots the clustering factor with the baseline policy (CLOCK) and our new policy (cluster-CLOCK).
Recall that the clustering factor is the percentage of all accesses that are serviced by the home memory con-
troller. On average, cluster-CLOCK improves the clustering factor from 26.0% to 97.4%, thereby reducing
interference among applications.

Figure 9 (b) shows the normalized page fault rate of cluster-CLOCK for each workload (Y axis) versus
the memory footprint of the workload (X axis). A lower relative page fault rate indicates that cluster-CLOCK
reduces the page fault rate compared to the baseline. We observe that cluster-CLOCK 1) does not affect the
page fault rate for workloads with small memory footprint, 2) in general reduces the page fault rate for
workloads with large memory footprint. On average, cluster-CLOCK reduces the page fault rate by 4.1%
over 128 workloads. This is a side effect of cluster-CLOCK since the algorithm is not designed to reduce
page faults. Yet, it reduces page faults because it happens to make better page replacement decisions than
CLOCK (i.e., replace pages that are less likely to be reused soon) by reducing the interference between
applications in physical memory space: by biasing replacement decisions to be made within each memory
controller as much as possible, applications mapped to different controllers interfere less with each other
in the physical memory space. As a result, applications with lower page locality disturb applications with
higher page locality less, improving page fault rate. Note that our execution time results do not include this
effect of reduced page faults due to simulation speed limitations.

To illustrate this behavior, we focus on one workload as a case study in Figure 9 (c), which depicts the
page fault rate in terms of page faults incurred per unique page accessed by each application with CLOCK
and cluster-CLOCK. Applications art and leslie have higher page fault rate but we found that they
have good locality in page access. On the other hand, astar also has high footprint but low locality in
page access. When these applications run together using the CLOCK algorithm, astar’s pages contend
with art and leslie’s pages in the entire physical memory space, causing those pages to be evicted from
physical memory. On the other hand, if cluster-CLOCK is used, and astar is mapped to a different cluster
from art and leslie, the likelihood that astar’s pages replace art and leslie’s pages reduces
significantly because cluster-CLOCK attempts to replace a page from the home memory controller astar is
assigned to instead of any page in the physical memory space. Hence, cluster-CLOCK can reduce page fault
rates by likely localizing page replacement and thereby limiting as much as possible page-level interference
among applications to pages assigned to a single memory controller.
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7.3 Analysis of Inter-Cluster Mapping

We study the effect of inter-cluster load balancing algorithms described in Section 4.2. For these evaluations,
all other parts of the A2C algorithm is kept the same: we employ clustering and radial intra-cluster mapping.
We first show the benefits of balanced mapping (BL), then show when and why imbalanced mapping (IMBL)
can be beneficial, and later evaluate our BLRI algorithm, which aims to achieve the benefits of both balance
and imbalance.

BL Mapping Figure 10 (a) shows application slowdowns in an example workload consisting of 10
copies each of h264ref, gromacs, barnes, libquantum, milc and leslie applications running
together. The former three are very network-insensitive and exert very low load and the latter three are
both network-intensive and network-sensitive. A completely imbalanced (IMBL) inter-cluster mapping
(described in Section 4.2) severely slows down the latter three network-intensive and network-sensitive
applications because they get mapped to the same clusters, causing significant interference to each other,
whereas the former three applications do not utilize the bandwidth available in their clusters. A random
(RND) mapping (which is our baseline) still slows down the same applications, albeit less, by providing
better balance in interference. Our balanced (BL) mapping algorithm, which distributes load in a balanced
way among all clusters provides the best speedup (19.7% over IMBL and 5.9% over RND) by reducing the
slowdown of all applications because it does not overload any single cluster.

IMBL Mapping Figure 10 (b) shows average weighted speedups across 128 workloads, categorized by
the overall intensity of the workloads. When the overall workload intensity is not too high (i.e., less than
1500 MPKI), balanced mapping (BL) provides significantly higher performance than IMBL and RND by
reducing and balancing interference. However, when the workload intensity is very high (i.e., greater than
1500 MPKI), BL performs worse than IMBL mapping. The reason is that IMBL mapping isolates network-
non-intensive (low MPKI) applications from network-intensive (high MPKI) ones by placing them into
separate clusters. When the network load is very high, such isolation significantly improves the performance
of network-non-intensive applications without significantly degrading the performance of intensive ones by
reducing interference between the two types of applications.

The main takeaway is that when network load is very high, relatively less intensive applications’ progress
gets slowed down too significantly because other applications keep injecting interfering requests. On the
other hand, when the network load is not as high, less-intensive applications can still make fast progress
because interference in the network is less. As a result, if network load is very high, it is more beneficial
to separate the accesses of non-intensive applications from others by placing them into separate clusters,
thereby allowing their fast progress. However, such separation is not beneficial for non-intensive applica-
tions and harmful for performance if the network load is not high: it causes wasted bandwidth in some
clusters and too much interference in others. This observation motivates our BLRI algorithm (which creates
a separate cluster for non-intensive applications only when the network load is high), which we analyze
next.
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Figure 11: (a) Average results for radial mapping across 128 workloads (b) Performance comparison of A2C
mapping and application-aware prioritization (STC) for 128 workloads
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Cache Size 256KB 512KB 1MB
Performance Gain 16.7% 13.6% 12.1%

Number of MCs 4 MC 8 MC
Performance Gain 16.7% 17.9%

Table 3: Sensitivity to last level per-core cache size and number of memory controllers

BLRI Mapping Figure 10 (c) shows the speedup achieved by BLRI mapping over BL for all 32 work-
loads in MPKI2000 category (recall that BLRI is not invoked for workloads with aggregate MPKI of less
than 1500) on the Y axis against the speedup achieved for the same workload by IMBL over BL. We make
two observations. First, for workloads where imbalanced mapping (IMBL) improves performance over bal-
anced mapping (BL), shown in the right half of the plot, BLRI also significantly improves performance over
BL. Second, for workloads where imbalance reduces performance (left half of the plot), BLRI either im-
proves performance or does not affect performance. We conclude that BLRI achieves the best of both worlds
(load balance and imbalance) by isolating those applications that would most benefit from imbalance and
performing load balancing for the remaining ones.

7.4 Effect of Intra-Cluster Mapping

We analyze the effect of intra-cluster mapping policy, after applications are assigned to clusters using the
BLRI inter-cluster policy. We examine three different intra-cluster mapping algorithms: 1) Radial: our
proposed radial mapping described in Section 4.2, 2) RND: Cores in a cluster are assigned randomly to
applications, 3) RadialINV: This is the inverse of our radial algorithm; those applications that would benefit
least from being close to the memory controller (i.e., those with low STPKI) are mapped closest to the
memory controller. Figure 11 (a) shows the average weighted speedup of 128 workloads with BLRI inter-
cluster mapping and different intra-cluster mappings. The radial intra-cluster mapping provides 0.4%, 3.0%,
6.8%, 7.3% for MPKI500, MPKI1000, MPKI1500, MPKI2000 category workloads over RND intra-cluster
mapping. Radial mapping is the best mapping for all workloads; RadialINV is the worst. We conclude
that our metric and algorithm for identifying and deciding which workloads to map close to the memory
controller is effective.

0%

5%

10%

15%

20%

25%

MPKI500 MPKI1000MPKI1500MPKI2000 Avg

%
 g

a
in

 i
n

 w
e

ig
h

te
d

 s
p

e
e

d
u

p Static Dynamic

0

10

20

30

40

50

60

70

80

90

0

2

4

6

8

10

12

14

16

18

p
o
v
ra
y

to
n
to

c
a
lc
u
lix

p
e
rl
b
e
n
c
h

n
a
m
d

d
e
a
l

g
c
c

a
p
p
lu

w
rf

s
je
n
g

b
a
rn
e
s

g
o
b
m
k

h
2
6
4
re
f

g
ro
m
a
c
s

h
m
m
e
r

c
a
c
tu
s

a
s
ta
r

b
z
ip
2

o
c
e
a
n

s
ja
s

s
a
p

tp
c
w

s
jb
b

s
p
h
in
x

a
rt

m
ilc

le
s
lie

o
m
n
e
t

x
a
la
n

G
e
m
s

lib
q
u
a
n
tu
m

lb
m

s
o
p
le
x

s
w
im

m
c
f

M
P
K
I

N
o
rm
a
liz
e
d
 i
n
c
re
a
s
e
 i
n
 M
P
K
I

MPKI increase (10M-20M) MPKI increase (10M-300M)

MPKI-10M MPKI-300M

0%

20%

40%

60%

80%

100%

%
 o

f 
a

cc
e

se
s 

w
it

h
in

 c
lu

st
e

r

Base Static Dynamic

Figure 12: (a) Performance of static and dynamic A2C for 8 workloads (b) Increase in MPKI due to migra-
tion for individual applications (c) Clustering factor for 128 workloads

7.5 A2C vs Application-Aware Prioritization

We compare the benefits of A2C mapping to application-aware prioritization in the network to show that
our interference-aware mapping mechanisms are orthogonal to interference-aware packet scheduling in the
NoC.

Das et al. [13] proposed an application-aware arbitration policy (called STC) to accelerate network-
sensitive applications. The key idea is to rank applications at regular intervals based on their network in-
tensity (outermost private cache MPKI), and prioritize packets of non-intensive applications over packets of
intensive applications. We compare Application-to-Core mapping policies to application-aware prioritiza-
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tion policies because both techniques have similar goals: to effectively handle inter-application interference
in NoC. However, both techniques take different approaches towards the same goal. STC tries to make the
best decision when interference happens in the NoC by efficient packet scheduling in routers while A2C
tries to reduce interference by mapping applications to separate clusters and controllers.

Figure 11 (b) shows that STC7 is orthogonal to our proposed A2C technique and its benefits are addi-
tive to A2C. STC prioritization improves performance by 5.5% over the baseline whereas A2C mapping
improves performance by 16.7% over the baseline. When STC and A2C are combined together, overall per-
formance improvement is 21.9% over the baseline, greater than the improvement provided by either alone.
STC improves performance when used with A2C mapping because it prioritizes non-intensive applications
(shorter jobs) within a cluster in a coordinated manner, ensuring all the routers act in tandem. In contrast,
the baseline round-robin arbitration policy is uncoordinated: it causes one application to be prioritized in
one router only to be delayed in the next, resulting in a slowdown for all applications. This coordinated
packet scheduling effect of STC is orthogonal to the benefits of A2C. Hence, we conclude that our mapping
mechanisms interact synergistically with application-aware packet scheduling.

7.6 Sensitivity Studies

We evaluated the sensitivity of A2C to last-level cache size and number of memory controllers. Table 3
shows A2C’s performance improvement over baseline on 128 multiprogrammed workloads. As cache size
increases, performance benefit of A2C decreases because traffic and hence interference in the NoC reduces.
However, A2C still provides 12.1% performance improvement even when total on-chip cache size is 60MB
(i.e., 1MB/core). As we vary the number of memory controllers from 4-8, A2C’s performance benefit
stays similar because more controllers 1) on the one hand enable more fine-grained clustering, improving
communication locality and reducing interference, 2) on the other hand can reduce clustering factor when
application behavior changes. We conclude that our proposed techniques provide consistent performance
improvements when we vary major relevant system parameters.

7.7 Effect of Dynamic A2C Mapping

Our evaluation assumed so far static mapping is formed with pre-runtime knowledge of application char-
acteristics. We now evaluate the dynamic A2C scheme, described in Section 5.1. We use a profiling phase
of 10 million instructions, after which the operating system forms a new application-to-core mapping and
enforces it for the whole phase (300 million instructions). An application can migrate at the end of the
dynamic profiling interval after each phase.

Figure 12 (c) compares the performance improvement achieved by static and dynamic A2C schemes for
eight workloads, which consist of two workloads from each MPKI category, over a baseline that employs
clustering but uses random application-to-core mapping.8 The performance of dynamic A2C is close to that
of static A2C (within 1% on average) for these eight workloads. However, static A2C performs better for
the two MPKI2000 workloads. We found this is because the BLRI scheme (which determines sensitive ap-
plications online and forms a separate cluster for them) requires re-mapping at more fine-grained execution

7The default parameters used for STC [13] are: 1) ranking levels R = 8, 2) batching levels B = 8, 3) ranking interval = 350,000
cycles, 4) batching interval = 16,000 cycles, 5) BCIP packet sent every U = 4000 cycles.

8We show only eight workloads because we were severely limited by simulation time for evaluation and analysis of dynamic
scenarios. The performance simulations for dynamic mapping took us more than a month for different workloads because the
minimum length of cycle-level simulation had to be a whole phase of 300 million instructions per application (totally 18 billion
instructions).
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phases. Unfortunately, given the simulation time constraints we could not fully explore the best thresh-
olds for the dynamic scheme. We conclude that the dynamic A2C scheme provides significant performance
improvements, even with untuned parameters.

Analysis In Section 5, we qualitatively discussed the overheads of application migration. In this section,
we first quantify the increases in cache misses when an application migrates from one core to another. We
then quantify the reduction in clustering factor due to migrations. Overall, these results provide quantitative
insight into why the dynamic A2C algorithm works.

Figure 12 (b) analyzes the MPKI of the 35 applications during the profiling phase (MPKI-10M) and the
enforcement phase (MPKI-300M). It also analyzes the the increase in the MPKI due to migration to another
core right during the 10M instruction interval right after the migration happens (MPKI increase (10-20M))
and during the entire enforcement phase (MPKI increase (300M)). The left Y-axis is the normalized MPKI
of the application when it is migrated to another core compared to the MPKI when it is running alone (a
value of 1 means the MPKI of the application does not change after migration). Benchmarks on the X axis
are sorted from lightest (lowest baseline MPKI) to heaviest (highest baseline MPKI) from left to right. We
make several key observations:
• The MPKI in the profiling phase (MPKI-10M) correlates well with the MPKI in the enforcement phase

(MPKI-300M), indicating why dynamic profiling can be effective.
•MPKI increase within 10M instructions after migration is negligible for high-intensity workloads, but

significant for low-intensity workloads. However, since these benchmarks have very low MPKI to begin
with, their execution time is not significantly affected.
• MPKI increase during the entire phase after migration is negligible for almost all workloads. This

increase is 3% on average and again observed mainly in applications with low intensity. These results show
that cache migration cost of migrating an application to another core is minimal over the enforcement phase
of the new mapping.

The clustering factor (i.e., the ratio of memory accesses that are serviced by the home memory controller)
is also affected by application migration. The clustering factor may potentially decrease, if, after migration,
an application continues to access the pages mapped to its old cluster. Our dynamic algorithm minimizes
the number of inter-cluster application migrations by placing applications with similar MPKI in equivalence
classes for A2C mapping computation (we omit the detailed explanation of this optimization due to space
limitations).

Figure 12 (c) shows the clustering factor for our 128 workloads with 1) baseline RND mapping, 2)
static A2C mapping, and 3) dynamic A2C mapping. The clustering factor reduces from 97.4% with static
A2C to 89.0% with dynamic A2C due to inter-cluster application migrations. However, dynamic A2C
mapping still provides a very large improvement in clustering factor compared to the baseline mapping.
We conclude that both dynamic and static versions of A2C are effective: static A2C is desirable when
application information is profiled before runtime, but dynamic A2C does not cause significant overhead
and achieves similar performance.

8 Related Work

To our knowledge, this is the first work that tackles the problem of how to map applications to cores in
a network-on-chip to minimize inter-application interference. We briefly describe the most closely related
previous work in this section.
Thread-to-Core Mapping: Prior works have proposed thread-to-core mapping to improve locality of com-
munication by placing frequently communicating threads/tasks closer to each other [27, 30] in parallel ap-
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plications and for shared cache management [8]. As such, their goal was to reduce inter-thread or inter-task
communication. Our techniques solve a different problem: inter-application interference. As such, our
goals are to 1) reduce interference in the network between different independent applications and 2) reduce
contention at the memory controllers.
Reducing Interference in NoCs: Recent works [26, 19, 13] propose prioritization and packet scheduling
policies to provide quality of service or improve application-level throughput in the NoC. These works
are orthogonal to our mechanism since they perform packet scheduling. We have already shown that our
proposal works synergistically with application-aware prioritization [13].
Memory Controllers and Page Allocation: Awasthi et al. [4] have explored page allocation and page mi-
gration in the context of multiple memory controllers in a multi-core processor with the goal of balancing
load between memory controllers and improving DRAM row buffer locality. The problem we solve is dif-
ferent and our techniques are complementary to theirs. First, our goal is to reduce interference between
applications in the interconnect and the memory controllers. Second, our mechanism solves the problem
of mapping applications to the cores; [4] does not solve this problem. We believe the page migration tech-
niques proposed in [4] can be employed to reduce the costs of migration in our dynamic application-to-core
mapping policies.

Page allocation and migration has been explored extensively to improve locality of access within a
single application executing on a NUMA multiprocessor (e.g., [6, 15]). These works do not aim to reduce
interference between multiple applications sharing the memory system, and hence do not solve the problem
we are aiming to solve. In addition, these works do not consider how to map applications to cores in a
network-on-chip based system. Page coloring techniques have been employed in caches to reduce cache
conflict misses [24, 5] and to improve cache locality in shared caches (e.g., [9]). These works solve and
orthogonal problem and can be combined with our techniques.

Abts et al. [3] recently explore placement of memory controllers in a multi-core processor to minimize
channel load. Memory controller placement is orthogonal to our mechanisms.
Thread Migration: Thread migration has been explored to manage power [35, 20], thermal hotspots [17,
11] or to exploit heterogeneity in multi-core processors [28]. We use thread migration to enable dynamic
application-to-core mappings to reduce interference in NoCs.

9 Conclusion

We presented application-to-core mapping policies that largely reduce inter-application interference in network-
on-chip based multi-core systems. We have shown that by intelligently mapping applications to cores in a
manner that is aware of applications’ characteristics, significant increases in system performance, fairness,
and energy-efficiency can be achieved at the same time. Our proposed algorithm, A2C, achieves this by
using two key principles: 1) mapping network-latency-sensitive applications to separate node clusters in the
network from network-bandwidth-intensive applications such that the former makes fast progress without
heavy interference from the latter, 2) mapping those applications that benefit more from being closer to the
memory controllers close to these resources.

We have extensively evaluated our mechanism and compared it both qualitatively and quantitatively to
different application mapping and packet prioritization policies. Our main results show that: 1) averaged
over 128 multiprogrammed workload mixes on a 60-core 8x8-mesh system, our proposed A2C improves
system throughput by 16.7%, while also reducing system unfairness by 22.4% and interconnect power con-
sumption by 52.3%, 2) A2C is orthogonal to application-aware packet prioritization techniques. We con-
clude that the proposed approach can be an effective way of improving overall system throughput, fairness,
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and power-efficiency and therefore can be a promising way to exploit the non-uniform structure of network-
on-chip-based multi-core systems.
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