2D-Profiling

Detecting Input-Dependent Branches with a Single Input Data Set

Hyesoon Kim

M. Aater Suleman Onur Mutlu Yale N. Patt

HPS Research Group
The University of Texas at Austin

Motivation

- Profile-guided code optimization has become essential for achieving good performance.
 - Run-time behavior ≅ profile-time behavior: Good!
 - Run-time behavior # profile-time behavior: Bad!

Motivation

- Profiling with one input set is not enough!
 - Because a program can show different behavior with different input data sets
 - Example: Performance of predicated execution is highly dependent on the input data set
 - Because some branches behave differently with different input sets

Input-dependent Branches

Definition

A branch is input-dependent if its misprediction rate differs by more than some Δ over different input data sets.

	Inp. 1	Inp. 2	Inp.1 - Inp. 2
Misprediction rate of Br. X	30%	29%	1%
Misprediction rate of Br. Y	30%	5%	25%

Input-dependent branch

□ Input-dependent br. ≠ hard-to-predict br.

An Example Input-dependent Branch

☐ Example from Gap (SPEC2K):

Type checking branch

- Train input set: A&B are integers 90% of the time
 - misprediction rate: 10%
- Reference input set: A&B are integers 42% of the time
 - \square misprediction rate: 30% (30%-10%)> \triangle

Predicated Execution

(predicated code)

Eliminate hard-to-predict branches but fetch blocks B and C all the time

Predicated Code Performance vs. Branch Misprediction Rate

Branch misprediction rate (%)

Normal branch code performs better

Converting a branch to predicated code could hurt performance if run-time misprediction rate is lower than profile-time misprediction rate

Predicated Code Performance vs. Input Set

If We Know a Branch is Input-Dependent

- May not convert it to predicated code.
- May convert it to a wish branch.
 [Kim et al. Micro'05]
- May not perform other compiler optimizations or may perform them less aggressively.
 - Hot-path/trace/superblock-based optimizations [Fisher'81, Pettis'90, Hwu'93, Merten'99]

Our Goal

Identify input-dependent branches by using a single input set for profiling

Talk Outline

- Motivation
- □ 2D-profiling Mechanism
- Experimental Results
- Conclusion

Key Insight of 2D-profiling

Phase behavior in prediction accuracy is a good indicator of input dependence

Traditional Profiling

MEAN pr.Acc(brA) \cong MEAN pr.Acc(brB) behavior of brA \cong behavior of brB

2D-profiling

2D-profiling Mechanism

□ The profiler collects branch prediction accuracy information for every static branch over time

slice size = M instructions

Input-dependence Tests

- □ STD&PAM-test: Identify branches that have large variations in accuracy over time (phase behavior)
 - STD-test (STD > threshold): Identify branches that have large variations in the prediction accuracy over time
 - PAM-test (PAM > threshold): Filter out branches that pass STDtest due to a few outlier samples
- MEAN&PAM-test: Identify branches that have low prediction accuracy and some time-variation in accuracy
 - MEAN-test (MEAN < threshold): Identify branches that have low prediction accuracy</p>
 - PAM-test (PAM > threshold): Identify branches that have some variation in the prediction accuracy over time
- □ A branch is classified as input-dependent if it passes either STD&PAM-test or MEAN&PAM-test

Talk Outline

- Motivation
- 2D-profiling Mechanism
- Experimental Results
- Conclusion

Experimental Methodology

- Profiler: PIN-binary instrumentation tool
- Benchmarks: SPEC 2K INT
- Input sets
 - Profiler: Train input set
 - Input-dependent Branches: Reference input set and train/other extra input sets
- Input-dependent branch: misprediction rate of the branch changes more than $\Delta = 5\%$ when input data set changes
 - Different Δ are examined in our TechReport [reference 11].
- Branch predictors
 - Profiler: 4KB Gshare, Machine: 4KB Gshare
 - Profiler: 4KB Gshare, Machine: 16KB Perceptron (in paper)

Evaluation Metrics

Coverage and Accuracy for input-dependent branches

Correctly Predicted Input-dependent br.

Predicted Input-dependent br. (2D-profiler)

$$COV = \frac{A \cap B}{A} = \frac{Correctly Predicted}{Actual Input - dependent}$$

Actual Input-dependent br.

$$ACC = \frac{A \cap B}{B} = \frac{Correctly Predicted}{Predicted Input - dependent}$$

Input-dependent Branches

2D-profiling Results

Phase behavior and input-dependence are strongly correlated!

The Cost of 2D-profiling?

- □ 2D-profiling adds only 1% overhead over modeling the branch predictor in software
 - Using a H/W branch predictor [Conte'96]

Conclusion

- □ 2D-profiling is a new profiling technique to find inputdependent characteristics by using a single input data set for profiling
- □ 2D-profiling uses time-varying information instead of just average data
- □ Phase behavior in prediction accuracy in a profile run → input-dependent
- □ 2D-profiling accurately identifies input-dependent branches with very little overhead (1% more than modeling the branch predictor in the profiler)
- Applications of 2D-profiling are an open research topic
 - Better predicated code/wish branch generation algorithms
 - Detecting other input-dependent program characteristics

