2D-Profiling
Detecting Input-Dependent Branches
with a Single Input Data Set

Hyesoon Kim

M. Aater Suleman
Onur Mutlu

Yale N. Patt

HPS Research Group
TheUniversity of Texasat Austin

Motivation

Profile-guided code optimization has
necome essential for achieving good

nerformance.
B Run-time behavior O profile-time behavior: Good!

B Run-time behavior # profile-time behavior: Bad!

[SIE=ECE >

Motivation

Profiling with one input set is not enough!

B Because a program can show different behavior with
different input data sets

B Example: Performance of predicated execution is
highly dependent on the input data set

B Because some branches behave differently with
different input sets

[SIE=ECE

Input-dependent Branches

Definition
B A branch is input-dependent if its misprediction

rate differs by more than some A over different
input data sets.

Inp. 1 Inp. 2 Inp.1 - Inp. 2

Misprediction
rate of Br. X

30% 29% 1%

Input-dependent branch

OO0 Input-dependent br. # hard-to-predict br.

[SIE=ECE

An Example Input-dependent Branch

O Example from Gap (SPEC2K):
Type checking branch

TypHandle Sum (A,B)

If ((type(A) == INT) && (type(B) == INT)){ //input-dependent br
Result = A + B;

Return Result;

}
Return SUM(A, B);

B Train input set: A&B are integers 90% of the time
[0 misprediction rate: 10%

B Reference input set: A&B are integers 42% of the time
[0 misprediction rate: 30% (30%-10%)>A

[SIE=ECE

Predicated Execution

(normal branch code) (predicated code)
A
if (cond) { JZ\\ A
So [[s :
} N C
clse{ D D
b=1, .,
} E&aﬁc(r? %T)TA RGET A pl = (cond)
B
mp I "l (Ip1)mov b, 1
CTAR?nEOCb . Ny (pl) mov b, 0

Eliminate hard-to-predict branches
but fetch blocks B and C all the time

[SIE=ECE

Predicated Code Performance vs.
Branch Misprediction Rate

Predicated code perfor ms better

8

’&’? - —e&— predicated code

T —&— normal branch code fmmMMiHhMH MHINNN

a 6 0 Ay o, o, ,

N

g

= 5

5

qg 4

m 3 ‘
o : N i | SRR

6)(789101112131415
Branch misprediction rate (%)

ormal branch code performs better

Converting a branch to predicated code could hurt
performance if run-time misprediction rate is lower
than profile-time misprediction rate

=ECE 7

Predicated Code Performance vs. Input Set

/\
T W run-time: input-A -16%/ \
o - HE run-time: input-B |_
e W run-time: input-C
o non-+predicated
=l
D
c
2
08
&
c
9 TN al

Predicated execution loses perfor mance because of input-dependent branches

g
i

o
o

Exec. time normali
o
|

gzip vpr gcc \mcf/ crafty parserperlomk gap vortex p?2 twolf

Measured on an Itanium-II machine

[SIE=ECE s

If We Know a Branch is Input-Dependent

May not convert it to predicated code.

May convert it to a wish branch.
[Kim et al. Micro’05]

May not perform other compiler optimizations

or may perform them less aggressively.

B Hot-path/trace/superblock-based optimizations
[Fisher’81, Pettis’90, Hwu’93, Merten'99]

[SIE=ECE 9

Our Goal

Identify input-dependent branches by
using a single input set for profiling

[SIE=ECE 10

Talk Outline

Motivation

2D-profiling Mechanism

Experimental Results

Conclusion

[SIE=ECE

11

Key Insight of 2D-profiling

Phase behavior in prediction accuracy
IS @ good indicator of input dependence

o phase 2
s 1
& 08 — input-dependent
2 .61 phase 1 phase 3
é Py
& 04 .]
5 = input-independent
g 0.2
m
0 ‘ ‘ ‘
0 500 1000 1500

Time (in terms of number of executed instructions x 100M)

[SIE=ECE 12

Traditional Profiling

EA
br A a\/\/\/\/\ MEAN pr.Acc(brA)

fime”

MEAN pr.Acc(brB)

time

MEAN pr.Acc(brA) 0O MEAN pr.Acc(brB)
behavior of brA [behavior of brB

[SIE=ECE 13

2D-profiling

r. Acc

brA = MEAN pr.Acc(brA)
o STD pr.Acc(brA)
. time’
<
brB = MEAN pr.Acc(brB)
o STD pr.Acc(brB)

MEAN pr.Acc(brA) 0O MEAN pr.Acc(brB)
STD pr.Acc(brA) = STD pr.Acc(brB)
behavior of brA + behavior of brB
A: input-dependent br, B: input-independent br

[SIE=ECE 14

2D-profiling Mechanism

[0 The profiler collects branch prediction accuracy information

for every static branch over time
dicesze= M instructions

Slice 1 Slice 2 Slice N
| | | | g
_ AN Y, time
' '
mean Pr.Acc(brA,sl) mean Pr.Acc(brA,s2) ... mean Pr.Acc(brA,sN)
mean Pr.Acc(brB,s1) mean Pr.Acc(brB,s2) ... mean Pr.Acc(brB,sN)

Calculate MEAN (brA, brB, ...

Standard deviation (brA, brB, ...

PAM:Points Above Mean (brA, brB, ...)
mean _brB

Ev=ECE 15

O

O

Input-dependence Tests

STD&PAM-test: Identify branches that have large variations
in accuracy over time (phase behavior)

B STD-test (STD > threshold): Identify branches that have large
variations in the prediction accuracy over time

B PAM-test (PAM > threshold): Filter out branches that pass STD-
test due to a few outlier samples

MEAN&PAM-test: Identify branches that have low prediction
accuracy and some time-variation in accuracy

B MEAN-test (MEAN < threshold): Identify branches that have low
prediction accuracy

B PAM-test (PAM > threshold): Identify branches that have some
variation in the prediction accuracy over time

A branch is classified as input-dependent if it passes either
STD&PAM-test or MEAN&PAM-test

[SIE=ECE 16

Talk Outline

Motivation
2D-profiling Mechanism

Experimental Results

Conclusion

[SIE=ECE

17

O O O

Experimental Methodology

Profiler: PIN-binary instrumentation tool
Benchmarks: SPEC 2K INT

Input sets
B Profiler: Train input set

B Input-dependent Branches: Reference input set and
train/other extra input sets

Input-dependent branch: misprediction rate of the branch
changes more than A = 5% when input data set changes

m Different A are examined in our TechReport [reference 11].
Branch predictors

B Profiler: 4KB Gshare, Machine: 4KB Gshare

B Profiler: 4KB Gshare, Machine: 16KB Perceptron (in paper)

E¥=ECE 18

Evaluation Metrics

Coverage and Accuracy for input-dependent
branches

Correctly Predicted Input-dependent br.

Predicted Input-dependent br. (2D-profiler)

B COV = ANB _ Correctly Predicted
A Actual Input - dependent
ACC= A(B _ CorrectlyPredicted

B Predicted |nput - dependent

[SIE=ECE 19

Input-dependent Branches

é 100% B 2 input sets

c o O 3 input sets

L R0 B 4 input sets

L 80% B 5 input sets

o O 6 input sets
0/ _

= 0 O 7 input sets

£ 60% - M 8 input sets

(6]

c 50% -

8 40%

o 30%

S 20%

-

S 10%

O

S 0%

§

bzip2 gzip twolf gap crafty gcc

[SIE=ECE

2D-profiling Results

. 93%
0070
0.9 50/
e MW 2 input sets
S O 3 input sets
5 99 7 B 4 input sets
g el O 5 input sets
- gi B 6 input sets
99 B 7 input sets
0.1 - M 8 input sets

O |
coverage accuracy coverage accuracy
nput-dependent branches | input-independent branches

Phase behavior and input-dependence are strongly correlated!

[SIE=ECE 21

The Cost of 2D-profiling?

Normalized execution time

bzip2 gzip twolf gap crafty gcc AVG

O 2D-profiling adds only 1% overhead over modeling the branch
predictor in software
B Using a H/W branch predictor [Conte’'96]

[SIE=ECE

22

Conclusion

0 2D-profiling is a new profiling technique to find input-
dependent characteristics by using a single input data set
for profiling

0 2D-profiling uses time-varying information instead of just
average data

[0 Phase behavior in prediction accuracy in a profile run >
input-dependent

0 2D-profiling accurately identifies input-dependent branches
with very little overhead (1% more than modeling the
branch predictor in the profiler)

[0 Applications of 2D-profiling are an open research topic
B Better predicated code/wish branch generation algorithms
B Detecting other input-dependent program characteristics

E¥=ECE 23

