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Abstract
Dynamic predication has been proposed to reduce the branch mis-

prediction penalty due to hard-to-predict branch instructions. A re-
cently proposed dynamic predication architecture, the diverge-merge
processor (DMP), provides large performance improvements by dy-
namically predicating a large set of complex control-flow graphs that
result in branch mispredictions. DMP requires significant support
from a profiling compiler to determine which branch instructions and
control-flow structures can be dynamically predicated. However, pre-
vious work on dynamic predication did not extensively examine the
tradeoffs involved in profiling and code generation for dynamic pred-
ication architectures.

This paper describes compiler support for obtaining high perfor-
mance in the diverge-merge processor. We describe new profile-driven
algorithms and heuristics to select branch instructions that are suit-
able and profitable for dynamic predication. We also develop a new
profile-based analytical cost-benefit model to estimate, at compile-
time, the performance benefits of the dynamic predication of differ-
ent types of control-flow structures including complex hammocks and
loops. Our evaluations show that DMP can provide 20.4% average
performance improvement over a conventional processor on SPEC
integer benchmarks with our optimized compiler algorithms, whereas
the average performance improvement of the best-performing alter-
native simple compiler algorithm is 4.5%. We also find that, with the
proposed algorithms, DMP performance is not significantly affected
by the differences in profile- and run-time input data sets.

1. Introduction
Branch misprediction penalty is an important limitation for high-

performance processors, even after significant research in branch pre-
dictors. Predication eliminates branches and therefore avoids the
misprediction penalty, but it requires significant modifications to the
ISA and it can degrade performance when a statically if-converted
branch could have been correctly predicted. Instances of the same
static branch could be easy or hard to predict during different phases
of a program execution. Dynamic predication allows the processor
to predicate instructions without requiring a predicated ISA and to
choose when to predicate at run-time [15]. A processor that supports
dynamic predication executes both paths of a branch until it reaches
the control-flow convergence point of the branch. Instructions on both
paths are executed but only the correct-path instructions update the ar-
chitectural state.

Dynamic hammock predication was proposed for dynamic predi-
cation of simple hammock structures (simple if and if-else struc-
tures with no intervening control flow instructions) [15]. The Diverge-
Merge Processor (DMP) architecture extends the dynamic predication
concept to more complex code structures [12]. The key improvement

of DMP over previous work is its ability to predicate control-flow
shapes that are not simple hammocks statically but that look like sim-
ple hammocks when only frequently-executed control flow paths at
run-time are considered. These control-flow shapes are termed as
frequently-hammocks.

In the DMP architecture, branches that can be dynamically predi-
cated (i.e. diverge branches) and the corresponding control-flow con-
vergence/merge points (CFM-points) are identified by the compiler
and conveyed to the hardware through the ISA. Diverge branches
can be parts of either simple hammocks or frequently-hammocks.
How the compiler selects diverge branches and CFM points and how
the processor chooses when to predicate them at run-time are crit-
ical factors that determine the performance of dynamic predication
in a DMP processor. Previous work did not explore compiler al-
gorithms/heuristics and profiling mechanisms used to select diverge
branches and CFM points. In this paper, we describe the compiler
and profiling algorithms for a DMP processor and explore the trade-
offs involved in the design of these algorithms. We evaluate the im-
pact of these algorithms on the performance of a DMP processor and
provide insights into what is important to consider in the design of
such algorithms.

This paper makes the following contributions:

1. To our knowledge, this is the first paper that develops detailed
code generation algorithms for dynamic predication architec-
tures. We provide insights into the design of a profiler/compiler
targeted for a DMP architecture. We explain and quantitatively
analyze the tradeoffs involved in making the design choices for
the profiler/compiler, a key component of the DMP architecture.

2. We propose an analytical, profile-driven cost-benefit model for
dynamic predication used by the compiler to decide candidate
branches for dynamic predication. The proposed model can also
be used for understanding the behavior of DMP and improving
its microarchitecture.

3. We analyze the sensitivity of a DMP architecture to differences
in profile-time and run-time input sets. We explain and analyze
the issues involved in profiling for the DMP architecture.

2. Background
2.1. Dynamic Predication: Simple Hammocks [15]

Figure 1 shows the control-flow graph (CFG) of a simple ham-
mock branch and the dynamically predicated instructions. Hammock
branches are identified at run-time or marked by the compiler. When
the processor fetches a hammock branch, it estimates whether or not
the branch is hard to predict using a branch confidence estimator [9].
If the branch has low confidence, the processor dynamically pred-
icates instructions on both paths of the branch (i.e. the processor
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Figure 2. Complex CFG example: (a) source code (b) CFG

enters dynamic predication mode (dpred-mode) in Kim et al.’s ter-
minology [12]). The processor generates a predicate id using the
branch condition, and instructions inside the hammock are assigned
the generated predicate id. When the hammock branch is resolved,
the predicate id is also resolved. Instructions on the wrong path (i.e.
predicated-FALSE instructions) become NOPs after the branch is re-
solved, and they do not update the architectural state. When the pro-
cessor reaches a control reconvergence point after fetching both paths
of the branch, the processor inserts c-moves [11] or select-µops [24]
to reconcile the register data values produced on either side of the
hammock. Select-µops are similar to the φ-functions in the static
single-assignment (SSA) form [5].

2.2. Dynamic Predication: DMP [12]
DMP extends dynamic predication to complex CFGs. Figure 2

shows a CFG example to illustrate the key mechanism of DMP. The
processor considers frequently executed paths at run-time, so it can
dynamically predicate blocks B, C, and E. To simplify the hardware,
DMP uses some control-flow information provided by the compiler.
The compiler identifies conditional branches with control flow suit-
able for dynamic predication as diverge branches. A diverge branch is
a branch instruction after which the execution of the program usually
reconverges at a control-independent point in the CFG, a point called
the control-flow merge (CFM) point. In other words, diverge branches
result in hammock-shaped control flow based on frequently executed
paths in the CFG of the program but they are not necessarily simple
hammock branches that require the CFG to be hammock-shaped. The
compiler also identifies at least one CFM point associated with the di-
verge branch. In this example, the compiler marks the branch at block
A as a diverge branch and the entry of block H as a CFM point.

The DMP microarchitecture fetches both paths after a low-
confidence diverge branch and dynamically predicates instructions

between the diverge branch and one of its CFM points during dpred-
mode. On each path, the processor follows the branch predictor out-
comes until it reaches a CFM point. After the processor reaches the
same CFM point on both paths, it exits dpred-mode and starts to fetch
from only one path. When DMP exits dpred-mode, select-µops are in-
serted to reconcile the register data values that are produced on either
side of the “dynamic hammock.”

DMP can also dynamically predicate loop branches. The benefit
of predicating loop branches is that the pipeline does not need to be
flushed if a predicated loop is iterated more times than it should be
because the predicated instructions in the extra loop iterations will
become NOPs. Further explanations about the diverge loop behavior
are provided in Section 5.1 when we discuss compiler heuristics for
choosing diverge loops.

3. Compiler Algorithms for DMP Architectures
The compiler marks the diverge branches and their respective

CFM points in a DMP binary. At run-time, the processor decides
whether or not to enter dpred-mode based on the confidence estima-
tion for a diverge branch. The hardware has relatively more accurate
dynamic information on whether or not a diverge branch is likely to
be mispredicted. However, it is difficult for the hardware to determine
(1) the CFM point of a branch, (2) whether or not dynamically predi-
cating a diverge branch would provide performance benefit.1 The per-
formance benefit of dynamic predication is strongly dependent on the
number of instructions between a diverge branch and its correspond-
ing CFM points (similarly to static predication [19, 17, 23, 18]). In
frequently-hammocks, the probability that both paths after a diverge
branch reach a CFM point could be another factor that determines
whether or not dynamically predicating the diverge branch would be
beneficial for performance. Since the compiler has easy access to
both CFG information and profiling data to estimate frequently exe-
cuted paths, it can estimate which branches and CFM points would be
good candidates to be dynamically predicated. Thus, in this section,
we develop profile-driven compiler algorithms to solve the following
new problems introduced by DMP processors:

1. DMP introduces a new CFG concept: frequently-hammocks.
We develop a compiler algorithm to find frequently-hammocks
and their corresponding CFM points.

2. DMP requires the selection of diverge branches and correspond-
ing CFM points that would improve performance when dynam-
ically predicated. We develop compiler algorithms to deter-
mine which branches should be selected as diverge branches and
which CFM point(s) should be selected as corresponding CFM
point(s). Simple algorithms and heuristics are developed in this
section and a more detailed cost-benefit model is presented in
Section 4.

3.1. Diverge Branch Candidates
We consider four types of diverge branches based on the CFG

types they belong to. Simple hammock (Figure 3a) is an if or
if-else structure that does not have any control-flow instructions

1The hardware could measure the usefulness of dynamic predication for
each branch at run-time, but the previously proposed DMP implementa-
tion [12] does not support such a feedback scheme due to the hardware cost
associated with such a scheme.
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inside the hammock. Nested hammock (Figure 3b) is an if-else
structure that has multiple levels of nested branches. Frequently-
hammock (Figure 3c) is a complex CFG, which is not a simple/nested
hammock, but becomes a simple hammock if we consider only fre-
quently executed paths. Loop (Figure 3d) is a cyclic CFG (for,
do-while, or while structure) with the diverge branch as a loop
exit branch.
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Figure 3. Types of CFGs: (a) simple hammock (b) nested hammock
(c) frequently-hammock (d) loop. The branch at the end of block A
is a possible diverge branch.

We also classify CFM points into two categories: exact and ap-
proximate. Exact CFM points are those that are always reached from
the corresponding diverge branch, independently of the actually exe-
cuted control-flow paths between the branch and the CFM point. In
other words, an exact CFM point is the immediate post-dominator
(IPOSDOM) of the diverge branch. Approximate CFM points are
those that are reached from the corresponding diverge branch only
on the frequently-executed paths. Simple and nested hammocks and
single-exit loops have only exact CFM points. Frequently-hammocks
have approximate CFM points.

3.2. Algorithm to Select Simple/Nested Hammock
Diverge Branches and Exact CFM Points

Algorithm 1 (Alg-exact) describes how to find and select simple
and nested hammock diverge branches that have exact CFM points.
Simple and nested hammocks have strictly one exact CFM point,
which is the IPOSDOM of the branch. We use Cooper et al.’s al-
gorithm [4] to find the IPOSDOM. Our algorithm uses the number
of instructions and the number of conditional branches between the
branch and the CFM point to select diverge branches among the pos-
sible candidates.

Algorithm 1 Finding and selecting simple/nested-hammock
diverge branches and exact CFM points (Alg-exact)

for each conditional branch B do
Compute IPOSDOM(B) of B
num instr←maximum number of static instructions on any
path from B to IPOSDOM(B)
num cbr ← maximum number of conditional branches on
any path from B to IPOSDOM(B)
if (num instr ≤ MAX INSTR) and (num cbr ≤

MAX CBR) then
mark B as a diverge branch candidate with CFM =
IPOSDOM(B)

end if
end for

This algorithm eliminates candidates that can reconverge only af-
ter a large number of instructions (MAX INSTR) on any path.
This is because the benefit of DMP processors comes from fetching
and possibly executing instructions following the CFM point after dy-
namically predicating both paths of a diverge branch. Such control-
independent instructions do not have to be flushed when the diverge
branch is resolved. If either the taken or the not-taken path of the di-
verge branch is too long, the processor’s instruction window is likely
to be filled before reaching the CFM point, thereby reducing the po-
tential benefit of DMP. Additionally, instructions on the wrong path
of the dynamically-predicated branch consume machine resources, in-
creasing the overhead of predication. Therefore, a branch with a po-
tentially long wrong path before the CFM point (i.e. a branch that has
a large number of instructions between itself and its CFM point) is
not a good candidate for dynamic predication and is not selected as a
diverge branch by our algorithm.

Alg-exact also eliminates candidates with a large number of con-
ditional branches (MAX CBR) on any path from the branch to
the CFM point. DMP can enter dpred-mode for only one branch
at a time. Limiting the number of conditional branches that are al-
lowed between a diverge branch and its CFM point reduces the like-
lihood of another low-confidence branch occurring on a predicated
path. Since the number of conditional branches is correlated with
the number of instructions, we conservatively use MAX CBR =

MAX INSTR/10 in all experiments. We experiment with differ-
ent values for MAX INSTR.

3.3. Algorithm to Select Frequently-hammock Di-
verge Branches and Approximate CFM Points

Algorithm 2 (Alg-freq) describes our algorithm for finding and se-
lecting frequently-hammock diverge branches and their approximate
CFM points. The algorithm uses edge profiling information to deter-
mine frequently executed paths.

While traversing the CFG to compute paths after a branch,
only directions (taken/not-taken) that were executed with at least
MIN EXEC PROB during the profiling run are followed. This
threshold (set to 0.001) eliminates the exploration of extremely in-
frequently executed paths during the search for paths that merge at
CFMs, reducing the processing time of the algorithm.

In addition to MAX INSTR and MAX CBR, the algorithm
for selecting frequently-hammocks uses the probability of merging at
each CFM point (MIN MERGE PROB) and the number of CFM
points (MAX CFM ). The CFM point candidates with the highest
probability of being reached on both paths during the profiling run
are selected by our algorithm because dynamic predication provides
more benefit if both paths of a diverge branch reach a correspond-
ing CFM point.2 If the profiled probability of reaching a CFM point
candidate is lower than a threshold (MIN MERGE PROB), the
CFM point candidate is not selected as a CFM point. Selecting mul-
tiple CFM points for a diverge branch increases the likelihood that
the predicated paths after a diverge branch will actually reconverge
and thus increases the likelihood that dynamic predication would pro-
vide performance benefits. Since we found that using three CFM

2If both paths after the dynamically-predicated diverge branch do not
merge at a CFM point, DMP could still provide performance benefit. In that
case, the benefit would be similar to that of dual-path execution [8].
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Algorithm 2 Finding and selecting frequently-hammock di-
verge branches and approximate CFM points (Alg-freq)

1: for each conditional branch B executed during profiling do
2: Compute IPOSDOM(B) of B
3: With a working list algorithm, compute all paths starting

from B, up to reaching IPOSDOM (B) or MAX INSTR
instructions or MAX CBR conditional branches, fol-
lowing only branch directions with profiled frequency ≥
MIN EXEC PROB.

4: for each basic block X reached on both the taken and the not-
taken directions of B do

5: pT (X) ← edge-profile-based probability of X being
reached on the taken direction of B

6: pNT (X) ← edge-profile-based probability of X being
reached on the not-taken direction of B

7: probability of merging at X ← pT (X) ∗ pNT (X)
8: if (probability of merging at X ≥

MIN MERGE PROB) then
9: add X as a CFM point candidate for B

10: end if
11: end for
12: select up to MAX CFM CFM point candidates for B, the

ones with the highest probability of merging at X

13: end for

points is enough to get the full benefit of our algorithms, we set
MAX CFM = 3.

3.3.1. A chain of CFM Points Figure 4 shows a possible CFG
with two CFM point candidates, C and D, for the branch at A. The
DMP processor stops fetching from one path when it reaches the first
CFM point in dpred-mode. Since the taken path of the diverge branch
candidate at A always reaches C before it reaches D, even if both C
and D are selected as CFM points, dynamic predication would always
stop at C. D would never be reached by both dynamically-predicated
paths of the branch at A in dpred-mode, and thus choosing D as a
CFM point does not provide any benefit if C is chosen as a CFM
point. Therefore, the compiler should choose either C or D as a CFM
point, but not both. In general, if a CFM point candidate is on any path
to another CFM point candidate, we call these candidates a chain of
CFM points. The compiler identifies chains of CFM point candidates
based on the list of paths from the diverge branch to each CFM point
candidate, generated by Alg-freq. Then, the compiler conservatively
chooses only one CFM point in the chain, the one with the highest
probability of merging.3

3.4. Short Hammocks
Frequently-mispredicted hammock branches with few instructions

before the CFM point are good candidates to be always predicated,
even if the confidence on the branch prediction is high. The reason for
this heuristic is that while the cost of mispredicting a short-hammock

3When there is a chain of CFM points, the probability of merging at X

in Alg-freq has to be modified to compute the probability of both paths
of the diverge branch actually merging at X for the first time, instead
of just reaching X. For the diverge branch candidate A in Figure 4,
probability of merging at C = pT (C) ∗ pNT (C) = 1 ∗ P (BC) =
P (BC), where P(BC) is the edge probability from B to C. In contrast,
probability of merging at D = pT (D) ∗ pNT (D) = P (CD) ∗ P (BE)
because if the not-taken path of the branch at A takes BC, the actual merging
point would be C instead of D.
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Figure 4. Example of a chain of CFM points

branch is high (flushing mostly control-independent instructions that
were fetched after the CFM point), the cost of dynamic predication of
a short-hammock branch is low (useless execution of just the few in-
structions on the wrong-path of the branch). Therefore, always predi-
cating short-hammock diverge branch candidates with very low dy-
namic predication cost is a reasonable trade-off. Our experiments
found that always predicating hammocks that execute fewer than 10
instructions on each path, that have a probability of merging of at least
95%, and that have a branch misprediction rate of at least 5% provides
the best performance.

Note that, with this heuristic, diverge branch-CFM point pairs that
are identified as short hammocks are always predicated, unlike regular
hammocks. Therefore, any other CFM point candidates found for the
same diverge branch that do not qualify as short hammocks are not
selected as CFM points.

3.5. Return CFM points
Some function calls are ended by different return instructions on

the taken and not-taken paths of a diverge branch. In this case, the
CFM point is the instruction executed after the return, whose address
is not known at compile time because it depends on the caller posi-
tion. We introduce a special type of CFM point called return CFM
to handle this case. When a diverge branch includes a return CFM,
the processor does not look for a particular CFM point address to end
dpred-mode, but for the execution of a return instruction.

4. Compile-Time Cost-Benefit Analysis of
Dynamic Predication

In the basic algorithms presented in Section 3 (Alg-exact and
Alg-freq), the compiler uses several simple heuristics to select di-
verge branches and CFM points that are likely to provide perfor-
mance benefit during dynamic predication. These algorithms require
the MAX INSTR, MAX CBR, and MIN MERGE PROB

thresholds to be optimized. Determining an effective combination of
these parameters may require several iterations. In this section, we
present an analytical cost-benefit model to select diverge branches
and CFM points whose dynamic predication is likely to be benefi-
cial for overall performance. The cost-benefit model still uses Alg-
exact and Alg-freq to find diverge branch and CFM point candi-
dates, but instead of filtering candidates with the compile-time fixed
MIN MERGE PROB, MAX INSTR, and MAX CBR pa-
rameters, it performs a profile-driven cost-benefit analysis.4

4In order to use Alg-exact and Alg-freq, the compiler still needs values
for MAX INSTR and MAX CBR because these parameters also decide
the compiler scope for the CFG analysis. In our cost-benefit model, we use
MAX INSTR = 200 and MAX CBR = 20, which we found to be
large enough to enable the analysis of all CFGs that can profit from dynamic
predication.
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4.1. Simple/Nested Hammocks
During dpred-mode, DMP always incurs some performance over-

head in terms of execution cycles. The overhead of dynamic predi-
cation (dpred overhead) is due to the fetch and possible execution
of useless (i.e. wrong-path) instructions. We describe how a profiling
compiler can model the overhead of dynamic predication and make
decisions as to whether or not dynamically predicating a branch in-
struction would be beneficial for performance.

There are two cases for which the cost of dynamic predication
of a branch is different. First, if a diverge branch would actually
have been correctly predicted, entering dpred-mode for that branch
results only in overhead (dpred overhead) without providing any
benefit. Second, if a diverge branch would actually have been mis-
predicted, entering dpred-mode for that branch results in both over-
head (dpred overhead) and performance benefit that is equivalent
to saving the branch misprediction penalty (misp penalty cycles).
Hence, the overall cost of dynamic predication (dpred cost) in terms
of cycles can be computed as:

dpred cost = dpred overhead ∗ P (enter dpred corr pred)

+(dpred overhead − misp penalty) ∗ P (enter dpred misp) (1)

P (enter dpred corr pred) = 1 − Acc Conf (2)

P (enter dpred misp) = Acc Conf (3)

dpred overhead: Overhead of dynamic predication in cycles
P (enter dpred corr pred): Probability of entering dpred-mode when a branch

is correctly predicted
P (enter dpred misp): Probability of entering dpred-mode when a branch is

mispredicted
misp penalty: Machine-specific branch misprediction penalty in cycles
Acc Conf : The accuracy of the confidence estimator (i.e. the fraction of low-

confidence branches that are actually mispredicted)

The compiler decides to select a branch as a diverge branch if the
cost of dynamic predication, as determined using Equation (1), is less
than zero (i.e. if the benefit of dynamic predication is positive in terms
of execution cycles):

Select a branch as a diverge branch if dpred cost < 0 (4)

Note that the probability of entering dpred-mode when a branch is
correctly predicted versus when it is mispredicted is a function of the
accuracy of the hardware confidence estimator [9]. Confidence esti-
mator accuracy (defined as the percentage of low-confidence branches
that are actually mispredicted, i.e. PVN [6]) is usually between 15%-
50% and is dependent on confidence estimator parameters such as the
threshold values used in the design [6]. In the calculation of the cost
of dynamic predication, the compiler can use the average accuracy of
the confidence estimator based on the set of profiled benchmarks or it
can obtain the accuracy of the confidence estimator for each individ-
ual application and use that per-application accuracy. In our analysis
the compiler uses one accuracy value (Acc Conf = 40%) for all
applications.5

4.1.1. Estimation of the overhead of dynamic predication
To calculate the overhead of dynamic predication (dpred overhead),
the compiler first estimates the number of instructions fetched be-
tween a diverge branch candidate and the corresponding CFM point

5Note that there is a trade-off between coverage (of mispredicted branches)
and accuracy in confidence estimators. We found that the cost-benefit model
is not sensitive to reasonable variations in Acc Conf values (20%-50%). We
do not present the results of varying Acc Conf due to space limitations.

(N(dpred insts)). The compiler can estimate N(dpred insts) in
three different ways: (1) based on the most frequently-executed two
paths (using profile data), (2) based on the longest path between the
diverge branch candidate and the CFM point, (3) based on the aver-
age number of instructions obtained using edge profile data. Equa-
tions 5-11 show how the compiler calculates N (dpred insts) with
these three different methods using the example presented in Figure 2.
Note that the most frequently executed paths are shaded in Figure 2.
In the equations, N(X) is the number of instructions in block X, and
P(XY) is the edge probability from basic block X to Y.6 In our exper-
iments, we evaluate methods 2 and 3.

N(dpred insts) = N(BH) + N(CH) (5)

N(BH): Estimated number of insts from block B to the beginning of block H
N(CH): Estimated number of insts from block C to the beginning of block H

(Method 1) Based on the most frequently-executed two paths:

N(BH) = N(B) + N(E) (6)

N(CH) = N(C) (7)

(Method 2) Based on the longest possible path:

N(BH) = MAX{N(B) + N(D) + N(F ),

N(B) + N(D) + N(E), N(B) + N(E)} (8)

N(CH) = N(C) + N(G) (9)

(Method 3) Based on the edge profile data (i.e. average number of:

instructions)

N(BH) = N(B) + P (BE) ∗ N(E) + P (BD) ∗ P (DE) ∗ N(E)

+P (BD) ∗ N(D) + P (BD) ∗ P (DF ) ∗ N(F ) (10)

N(CH) = N(C) + P (CG) ∗ N(G) (11)

Because not all of the instructions fetched in dpred-mode are
useless, the compiler also estimates the number of instructions
that are actually useful (i.e. those that are on the correct path).
The number of instructions on the correct path in dpred-mode
(N(useful dpred insts)) is calculated as follows. N(BH) and
N(CH) can be calculated with any of above three methods.

N(useful dpred insts) = P (AB) ∗ N(BH) + P (AC) ∗ N(CH) (12)

Once the compiler has computed N (dpred insts) and
N(useful dpred insts), it can calculate dpred overhead.
We calculate dpred overhead in terms of fetch cycles. The actual
cost of dynamic predication is the sum of its fetch overhead and
execution overhead. Unfortunately, modeling the execution overhead
is very complicated in an out-of-order processor due to the dataflow-
based dynamic execution (which requires an analytical model of
benchmark-dependent data dependence behavior as well as a model
of dynamic events that affect execution). Furthermore, DMP does
not execute predicated-FALSE instructions after the predicate value
is known, so the execution overhead is likely not as high as the fetch
overhead. Therefore, we model only the fetch overhead of dynamic

6Edge profiling assumes that the direction taken by a branch is independent
of the direction taken by a previous branch, which is not always accurate.
However, we use edge profiling due to its simplicity and short run-time.
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predication in our cost-benefit analysis. The overhead of dynamically
predicating a branch in terms of fetch cycles is thus calculated as:

N(useless dpred insts) =N(dpred insts) − N(useful dpred insts) (13)

dpred overhead = N(useless dpred insts)/fw (14)

fw: Machine-specific instruction fetch width
useless dpred insts: Useless instructions fetched during dpred-mode

Combining Equation (14) with Equations (1) and (4) gives us the
final equation used by the compiler to decide whether or not a branch
should be selected as a diverge branch:

Select a branch as a diverge branch if

{N(useless dpred insts)/fw} ∗ P (enter dpred corr pred)

+{(N(useless dpred insts)/fw) − misp penalty}

∗P (enter dpred misp) < 0 (15)

4.2. Frequently-hammocks
The overhead of predicating frequently-hammocks is usually

higher than that of predicating simple or nested hammocks. With a
frequently-hammock, the processor might not reach the correspond-
ing CFM point during dpred-mode. In that case, the processor wastes
half of the fetch bandwidth to fetch useless instructions until the di-
verge branch is resolved. On the other hand, if the processor reaches
the CFM point in dpred-mode, the predication overhead of frequently-
hammocks is the same as that of simple/nested hammocks, as calcu-
lated in Equation (14). Therefore, we use the following equation to
calculate the dynamic predication overhead of a frequently-hammock:

dpred overhead = {1 − P (merge)} ∗ {branch resol cycles/2} +

P (merge) ∗ {N(useless dpred insts)/fw} (16)

P (merge): The probability of both paths after the candidate branch merging at the
CFM point (based on edge profile data)

branch resol cycles: The time (in cycles) between when a branch is fetched and
when it is resolved (i.e. misp penalty)

The resulting dpred overhead is plugged into Equations (1)
and (4) to determine whether or not selecting a frequently-hammock
branch as a diverge branch would be beneficial for performance.

4.3. Diverge Branches with Multiple CFM Points
So far, we have discussed how the compiler selects diverge

branches assuming that there is only one CFM point for each diverge
branch. However, in frequently-hammocks, there are usually multi-
ple CFM point candidates for a branch. After reducing the list of
CFM point candidates according to Section 3.3.1, the overhead of dy-
namically predicating a diverge branch with multiple CFM points is
computed assuming all CFM points (Xi) are independent:

dpred overhead =

{
X

i

N(useless dpred insts(Xi)) ∗ P (merge at Xi)}/fw +

{1 −
X

i

P (merge at Xi)} ∗ {branch resolution cycles/2} (17)

N(useless dpred insts(x)): useless dpred insts assuming x is the only

CFM point of the diverge branch candidate

If the diverge branch candidate satisfies Equations (1) and (4) after
using the dpred overhead developed in Equation (17), the branch is
selected as a diverge branch with its reduced list of CFM points.

4.4. Limitations of the Model
Note that we make the following assumptions to simplify the con-

struction of the cost-benefit analysis model:

1. The processor can fetch fw (fetchwidth) number of instruc-
tions all the time. There are no I-cache misses or fetch breaks.

2. During dpred-mode, the processor does not encounter another
diverge branch or a branch misprediction.

3. When the two predicated paths of a diverge branch do not merge,
half of the fetched instructions are useful. This is not always true
because the processor may reach the CFM point on one path. In
that case, the processor would fetch instructions only from the
path that did not reach the CFM point, which may or may not be
the useful path.

4. The overhead of the select-µops is not included in the model.
We found that this overhead is negligible; on average less than
0.5 fetch cycles per entry into dpred-mode.

Especially the first three assumptions do not always hold and
therefore limit the accuracy of the model. However, accurate
modeling of these limitations requires fine-grain microarchitecture-
dependent, application-dependent, and dynamic-event-dependent in-
formation to be incorporated into the model, which would signifi-
cantly complicate the model.

5. Diverge Loop Branches
DMP dynamically predicates low-confidence loop-type diverge

branches to reduce the branch misprediction penalty in loops. If a
mispredicted forward (i.e. non-loop) branch is successfully dynam-
ically predicated, performance will likely improve. However, this is
not necessarily true for loop branches. With dynamically-predicated
loop branches, there are three misprediction cases (early-exit, late-exit
and no-exit; similarly to wish loops [13]). Only the late-exit case pro-
vides performance benefit (see below). Hence, the cost-benefit analy-
sis of loops needs to consider these different misprediction cases. In
this section, we provide a cost-benefit model for the dynamic predica-
tion of diverge loop branches and describe simple heuristics to select
diverge loop branches.

5.1. Cost-Benefit Analysis of Loops
The overhead of correctly-predicted case: Entering dpred-mode

when a diverge loop branch is correctly predicted has performance
overhead due to the select-µops inserted after each dynamically-
predicated iteration. We model the cost of select-µops based on the
number of fetch cycles they consume as shown below:

dpred overhead = N(select uops) ∗ dpred iter/fw (18)

N(select uops): The number of select-µops inserted after each iteration
dpred iter: The number of loop iterations during dpred-mode

Misprediction case 1 (Early-exit): During dpred-mode, if the
loop is iterated fewer times than it should be, the processor needs
to execute the loop at least one more time, so it flushes its pipeline.
Hence, the early-exit case has only the overhead of select-µops and
no performance benefit. The overhead is calculated the same way as
in the correctly predicted case (Equation (18)).

Misprediction case 2 (Late-exit): During dpred-mode, if the loop
is iterated a few times more than it should be, the misprediction case
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is called late-exit. Late exit is the only case for which the dynamic
predication of a loop branch provides performance benefit because the
processor is able to fetch useful control-independent instructions after
the loop exit. In this case, the overhead is due to the cost of select-
µops and extra loop iterations (that will become NOPs). However,
instructions fetched after the processor exits the loop are useful and
therefore not included in the overhead. The overhead of the late-exit
case is thus calculated as follows:

dpred overhead = N(loop body) ∗ dpred extra iter/fw +

N(select uops) ∗ dpred iter/fw (19)

N(loop body): The number of instructions in the loop body
dpred extra iter: The number of extra loop iterations in dpred-mode

Misprediction case 3 (No-exit): If the processor has not exited a
dynamically-predicated loop until the loop branch is resolved, the pro-
cessor flushes the pipeline just like in the case of a normal loop branch
misprediction. Hence, the no-exit case has only overhead, which is the
cost of select-µops as calculated in Equation (18).

Thus, the total cost of dynamically predicating a loop is:

dpred cost = dpred overhead(corr pred) ∗ P (enter dpred corr pred)

+dpred overhead(early exit) ∗ P (early exit)

+dpred overhead(late exit) ∗ P (late exit)

+dpred overhead(no exit) ∗ P (no exit)

−misp penalty ∗ P (late exit) (20)

dpred overhead(X): dpred overhead of case X

5.2. Heuristics to Select Diverge Loop Branches
According to the cost-benefit model presented in Section 5.1, the

cost of a diverge loop branch increases with (1) the number of instruc-
tions in the loop body, (2) the number of select-µops (We found this
is strongly correlated with the loop body size), (3) the average num-
ber of dynamically-predicated loop iterations (dpred iter), (4) the
average number of extra loop iterations (dpred extra iter) in the
late-exit case, and (5) the probability of a dynamic predication case
other than late-exit. Unfortunately, a detailed cost-benefit analysis of
each dynamic predication case requires the collection of per-branch
profiling data obtained by emulating the behavior of a DMP proces-
sor. In particular, determining the probability of each misprediction
case, the number of dynamically predicated iterations, and the num-
ber of extra iterations in the late-exit case requires either profiling on
a DMP processor (with specialized hardware support for profiling) or
emulating a DMP processor’s behavior in the profiler. Since such a
profiling scheme is impractical due to its cost, we use simple heuris-
tics that take into account the insights developed in the cost-benefit
model to select diverge loop branches. These heuristics do not select
a loop branch as a diverge branch if any of the following is true:

1. If the number of instructions in the loop body is greater than
STATIC LOOP SIZE.

2. If the average number of executed instructions from the loop
entrance to the loop exit (i.e. the average number of instructions
in the loop body times the average loop iteration count) based
on profile data is greater than DY NAMIC LOOP SIZE.
We found that there is a strong correlation between the average
number of loop iterations and dpred extra iter. Hence, this
heuristic filters branches with relatively high dpred overhead

for the late-exit case based on Equation (19).

3. If the average number of loop iterations (obtained through pro-
filing) is greater than LOOP ITER. We found that when a
branch has high average number of loop iterations, it has high
P (no exit).

In our experiments, we use STATIC LOOP SIZE = 30,
DY NAMIC LOOP SIZE = 80, and LOOP ITER = 15,
which we empirically determined to provide the best performance.

6. Methodology
6.1. Control-flow Analysis and Selection of Diverge

Branch Candidates
We developed a binary analysis toolset to analyze the control-

flow graphs, implement the selection algorithms presented in Sec-
tion 3, and evaluate the diverge branch candidates using the cost-
benefit model developed in Sections 4 and 5. The result of our analy-
sis is a list of diverge branches and CFM points that is attached to the
binary and passed to a cycle-accurate execution-driven performance
simulator that implements a diverge-merge processor.

A limitation of our toolset is that the possible targets of indirect
branches/calls are not available because our tool does not perform data
flow analysis. Therefore, we cannot exploit possible diverge branches
whose taken/not-taken paths encounter indirect branches/calls before
reaching a CFM point. Implementing our techniques in an actual com-
piler can overcome this limitation because a compiler has source-level
information about the targets of indirect branches/calls.

6.2. Simulation Methodology
We use an execution-driven simulator of a processor that imple-

ments the Alpha ISA. The parameters of the baseline processor and
the additional support needed for DMP are shown in Table 1. The ex-
periments are run using the 12 SPEC CPU2000 integer benchmarks
and 5 SPEC 95 integer benchmarks.7 Table 2 shows the relevant char-
acteristics of the benchmarks. All binaries are compiled for the Alpha
ISA with the -fast optimizations. The benchmarks are run to com-
pletion with a reduced input set [16] to reduce simulation time. Sec-
tion 7.3 presents results obtained when the train input sets are used for
profiling. All other sections present results with the reduced input set
used for profiling.

7. Results
7.1. Diverge Branch Selection Algorithms

Figure 5 shows the performance improvement of DMP with dif-
ferent diverge branch selection algorithms. The left graph in Figure 5
shows the performance impact of adding the results of each selec-
tion algorithm one by one cumulatively: Alg-exact (exact), Alg-freq
(exact+freq), short hammocks (exact+freq+short), return CFM points
(exact+freq+short+ret), and loops (exact+freq+short+ret+loop).8 All
algorithms use thresholds that are empirically determined to provide
the best performance.

According to Figure 5 (left) the performance benefit of DMP in-
creases as we cumulatively employ our diverge branch selection tech-

7Gcc, vortex, and perl in SPEC 95 are not included because later versions
of these benchmarks are included in SPEC CPU2000.

8exact+freq+short+ret+loop is called All-best-heur in the rest of the paper,
standing for “all techniques, with the best empirically-determined thresholds,
and using heuristics to select diverge branches.”
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Table 1. Baseline processor configuration and additional support needed for DMP
Front End 64KB, 2-way, 2-cycle I-cache; fetches up to 3 conditional not-taken branches

16KB (64-bit history, 256-entry) perceptron branch predictor [10]; 4K-entry BTBBranch Predictors
64-entry return address stack; minimum branch misprediction penalty is 25 cycles
8-wide fetch/issue/execute/retire; 512-entry reorder buffer; 128-entry load-store queue; 512 physical registersExecution Core
scheduling window is partitioned into 8 sub-windows of 64 entries each; 4-cycle pipelined wake-up and selection logic
L1 D-cache: 64KB, 4-way, 2-cycle, 2 ld/st ports

Memory System L2 unified cache: 1MB, 8-way, 8 banks, 10-cycle, 1 port; All caches: LRU replacement and 64B line size
300-cycle minimum memory latency; 32 memory banks; bus latency: 40-cycle round-trip

DMP Support [12] 2KB (12-bit history, threshold 14) enhanced JRS confidence estimator [9, 6]; 32 predicate registers; 3 CFM registers

Table 2. Characteristics of the benchmarks: baseline IPC, mispredictions per kilo-instructions (MPKI), number of retired instructions (Insts), number of
all static branches (All br.), number of static diverge branches (Diverge br.), and average of number of CFM points per diverge branch (Avg. # CFM). Diverge
branches and CFM points are selected based on All-best-heur evaluated in Section 7.

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf compress go ijpeg li m88ksim
Base IPC 2.10 1.58 1.09 0.45 2.24 1.30 3.17 1.91 1.94 3.26 1.42 2.17 2.29 0.86 2.88 2.07 2.27

MPKI 5.1 9.4 12.6 5.4 5.5 8.3 1.7 3.6 1.0 1.0 7.7 6.0 5.2 23.0 4.5 5.9 1.3
Insts (M) 249 76 83 111 190 255 129 99 404 284 316 101 150 137 346 248 145

All br. (K) 1.6 4.2 29.5 1.4 5.1 3.7 4.9 9.4 4.6 13 1.4 4.7 0.6 7.7 2 1.2 1.7
Diverge br. 175 272 2364 86 643 167 205 513 286 319 97 358 24 1286 117 21 136

Avg. # CFM 1.02 1.02 1.03 1 1.07 1.02 1.05 1.03 1.03 1.03 1.01 1.02 1.04 1.04 1.02 1 1.04
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Figure 5. Performance improvement of DMP with different selection algorithms: (left) Alg-exact and Alg-freq (right) cost-benefit analysis

niques. Using just Alg-exact, DMP provides a performance improve-
ment of 4.5%. However, when all our techniques are used, the per-
formance improvement of DMP increases to 20.4%. Figure 6 pro-
vides insight into the performance increases by showing the number
of pipeline flushes in the baseline processor and in DMP. As we em-
ploy more and more of the proposed branch selection algorithms, the
number of pipeline flushes due to branch mispredictions decreases.
These results demonstrate that the proposed mechanisms are effective
at selecting diverge branches that provide performance benefits when
dynamically predicated.

As shown in Figure 5 (left), selecting frequently-hammocks (Alg-
freq) improves average performance by 10% on top of Alg-exact.
Hence, the selection of frequently-hammocks is the largest contrib-
utor to the performance of dynamic predication. Always predicating
short hammocks improves performance by 2.2% on average and by
more than 4% in vpr (12%), mcf (14%) and twolf (4%). Vpr and
twolf have many short hammocks that are highly mispredicted and,
thus, always predicating them provides significant improvements. In
mcf, the most highly mispredicted branch is a short hammock branch
whose predication provides a 14% performance benefit. Including re-
turn CFM points improves performance by 0.8% on average and by

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Pi
pe

lin
e 

flu
sh

es
 p

er
 1

00
0 

in
st

ru
ct

io
ns

base
exact
exact+freq
exact+freq+short
exact+freq+short+ret
exact+freq+short+ret+loop

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf
co

mp
go ijp

eg li
m88

ks
im

am
ea

n

19
 

24
  

Figure 6. Pipeline flushes due to branch mispredictions in the base-
line and DMP

more than 3% in twolf (8%) and go (3.5%). Twolf and go have many
hammocks inside function calls that merge at different return instruc-
tions. Those hammocks cannot be diverge branches without the return
CFM point mechanism. Finally, selecting diverge loop branches using
the heuristics described in Section 5 provides an additional 1.7% av-
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erage performance improvement, especially in gzip (6%) and parser
(14%). Parser has a frequently-executed small loop in which an in-
put word is compared to a word in the dictionary. The exit branch
of this loop is frequently mispredicted (because the lengths of the in-
put words are not predictable), and therefore its dynamic predication
results in a large performance benefit.

The right graph in Figure 5 shows the performance improvement
of DMP if we use the cost-benefit analysis developed in Section 4
to select diverge branches. The compiler uses two different methods
to calculate the overhead of dynamic predication: longest path (cost-
long), method 2 in Section 4.1.1, and edge-profile-based average path
(cost-edge), method 3 in Section 4.1.1. The cost-edge method pro-
vides slightly higher performance than the cost-long method because
cost-edge calculates the overhead of dynamic predication more pre-
cisely. Figure 5 (right) also shows the performance impact of adding
each algorithm in sequence with the edge-profiling based cost-benefit
analysis: always predicating short hammocks (cost-edge+short), re-
turn CFM points (cost-edge+short+ret), and diverge loops (cost-
edge+short+ret+loop).9 Using all these optimizations in conjunction
with cost-edge results in 20.2% performance improvement over the
baseline processor. Therefore, we conclude that using cost-benefit
analysis (which does not require the optimization of any thresholds)
to determine diverge branches can provide the same performance pro-
vided by using optimized threshold-based heuristics in conjunction
with Alg-exact and Alg-freq.

7.1.1. Effect of Optimizing Branch Selection Thresh-
olds Figure 7 shows the performance improvement for different
MIN MERGE PROB and MAX INSTR thresholds when the
compiler uses only Alg-exact and Alg-freq. The results show that
it is better to choose lower MIN MERGE PROB when the
number of instructions between a diverge branch and the CFM is
less than 50, since the overhead of entering dpred-mode for these
small hammocks is relatively low. When MAX INSTR is 100 or
200, MIN MERGE PROB=5% results in the best average per-
formance. On average, MAX INSTR=50, MAX CBR=5, and
MIN MERGE PROB=1% provides the best performance, so we
used these thresholds for all other experiments that do not use the
cost-benefit model to select diverge branches. Using a too small (e.g.
10) or too large (e.g. 200) threshold value for MAX INSTR hurts
performance. A too small MAX INSTR value prevents many mis-
predicted relatively large hammocks from being dynamically pred-
icated, thereby reducing the performance potential. A too large
MAX INSTR value causes the selection of very large hammocks
that fill the instruction window in dpred-mode, which significantly
reduces the benefit of dynamic predication.

Note that not selecting the best thresholds results in an average per-
formance loss of as much as 3%. Therefore, optimizing the thresholds
used in our heuristic-based selection algorithms is important to obtain
the best performance. This observation also argues for the use of the
analytical cost-benefit model that does not require the optimization of
any thresholds to provide equivalent performance.

Another conclusion from Figure 7 is that selecting
only those CFM points with a large merging probability
(MIN MERGE PROB = 90%) provides most of the per-

9cost-edge+short+ret+loop is called All-best-cost in the rest of the paper.
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Figure 7. Performance improvement of DMP with different
MAX INSTR and MIN MERGE PROB heuristics

formance benefit in DMP. Adding CFM point candidates with smaller
merge probabilities incrementally improves average performance
by at most 3%, but selecting candidates with a merge probability
lower than 30% provides only negligible (less than 0.1%) benefit.
Thus, DMP gains most of its performance from the frequently
executed paths in which control-flow is very likely to merge at a
control-independent point. This result can be used to optimize (i.e.
reduce) the number of CFM points supported by the DMP ISA, but
a thorough discussion of the tradeoffs in the DMP ISA is out of the
scope of this paper.

7.2. Comparisons with Other Diverge Branch Selec-
tion Algorithms

Since there is no previous work on compilation for DMP proces-
sors, we compare our algorithms with several simple algorithms to
select diverge branches. Figure 8 compares the performance of six
different algorithms: (1) Every-br: This is the extreme case where
all branches in the program are selected as diverge branches, (2)
Random-50: 50% of all branches are randomly selected, (3) High-BP-
5: All branches that have higher than 5% misprediction rate during
the profiling run are selected, (4) Immediate: All branches that have
an IPOSDOM are selected. (5) If-else: Only if and if-else branches
with no intervening control-flow are selected, (6) All-best-heur: Our
best-performing algorithm. Note that for the simple algorithms (1),
(2) and (3), not all branches have corresponding CFM points.10 If
there is no CFM point for a low-confidence diverge branch, then the
processor stays in dpred-mode until the branch is resolved, and any
performance benefit would come from dual-path execution.

Figure 8 shows that Every-br, High-BP-5, and Immediate are
the best-performing simple algorithms for selecting diverge branches
with average performance improvements of 4.4%, 4.3% 4.5% respec-
tively. However, none of these other algorithms provide as large per-
formance improvements as our technique, which improves average
performance by 20.4%. We conclude that our algorithms are very
effective at identifying good diverge branch candidates.

Note that Every-br, High-BP-5, and Immediate show relatively
large performance improvements in benchmarks where a large per-
centage of the mispredicted branches are simple hammock branches
(e.g. eon, perlbmk, and li). Only in gcc does one simple algorithm

10If a branch has an IPOSDOM, the IPOSDOM is selected as the CFM point
in the explored simple algorithms.
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Figure 8. Performance improvement of DMP with alternative simple
algorithms for selecting diverge branches

(Every-br) perform almost as well as our scheme. Gcc has very com-
plex CFGs (that usually do not result in frequently-hammocks), so
there are few diverge branch candidates. Gcc also has a very high
branch misprediction rate (7%). Every-br allows the processor to en-
ter dpred-mode for all low-confidence branches, which covers 62% of
all mispredicted branches. Therefore, Every-br provides a similar per-
formance improvement as that of entering dpred-mode for only care-
fully selected branches, which covers only 30% of all mispredicted
branches.

7.3. Input Set Effects
We developed the algorithms and heuristics in previous sections

by profiling and evaluating with the same input set to exclude the ef-
fects of input-set variations on the evaluation. In this experiment, we
use the same algorithms and the same heuristic values developed in
the previous sections, but we profile with the train input set to select
diverge branches and CFM points. Figure 9 shows the DMP perfor-
mance when the profiling input set is the same as the run-time in-
put set (same) versus when the profiling input set is different from
the run-time input set (diff). The compiler uses the best performing
heuristic-based optimizations (All-best-heur-same, All-best-heur-diff)
and the cost-benefit model with all optimizations (All-best-cost-same,
All-best-cost-diff).

Figure 9 shows that the performance improvement provided by
DMP is 19.8% (both All-best-heur-diff and All-best-cost-diff) when
different input sets are used for profiling and actual runs. These im-
provements are only very slightly (0.5%) lower than when the same
input set is used for profiling and actual runs. Only in gzip does pro-
filing with the same input set significantly outperform profiling with
a different input set (by 6%) when the compiler uses All-best-heur to
select diverge branches. Hence, we find that DMP performance is not
significantly sensitive to differences in the profile-time and run-time
input sets.

Figure 10 shows whether or not the compiler finds the same set
of diverge branches across input sets. We classify diverge branches
into three groups: (1) Only-run: branches that are selected only when
the compiler uses the run-time input set (MinneSPEC’s reduced input
set [16]) for profiling, (2) Only-train: branches that are selected only
when the compiler uses a different input set (SPEC’s train input set)
for profiling, (3) Either-run-train: branches that are selected when the
compiler uses either input set for profiling. The bars in Figure 10 show
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Figure 9. Performance improvement of DMP when a different input
set is used for profiling
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Figure 10. Dynamic diverge branches selected by different input
sets (only run-time, only train, or either input). Left bar: profiling
with run-time input, Right bar: profiling with train input

the classification of diverge branches when respectively the run-time
(left) and train (right) input sets are used for profiling.

More than 74% of all dynamic diverge branches in all benchmarks
are selected when either input set is used for profiling. Thus, most of
the diverge branches identified by profiling with different input sets
are the same. Only gap (26%) has more than 20% and mcf (14%),
crafty (13%), vortex (13%), bzip2 (16%) and ijpeg (18%) have more
than 10% of all dynamic diverge branches that are classifed as either
only-run or only-train. However, even with differences of 10-20%
in the dynamic diverge branches selected by profiling with different
input sets, only mcf (1%) and crafty (1.6%) show more than 1% IPC
degradation when a different input set is used for profiling. This is
due to two major reasons: (1) programs have similar sets of highly
mispredicted static branches across different input sets [3], (2) even
though a branch may be marked as a diverge branch by the compiler,
only low-confidence diverge branches are actually predicated at run-
time; therefore the selection of a slightly different set of branches with
different profiling input sets does not necessarily mean that the set of
dynamically predicated branches will be significantly different.

We can make the following conclusions based on our results:

1. Our diverge branch selection algorithms are not significantly
sensitive to differences in the profiling input set.

2. The dynamic nature of predication in the DMP architecture mit-
igates the effects of changing the profiling input set by selec-
tively entering dpred-mode and dynamically choosing which
CFM points to use at run-time.
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8. Related Work
8.1. Branch Selection for Dynamic Predication

The most relevant work to ours is Klauser et al. [15], which briefly
describes how they select branches for a processor that can dynam-
ically predicate very simple control flow hammocks (i.e. hammocks
with no intervening control-flow inside). They used two compile-time
methods, size-based selection and profile-based selection, to select
branch candidates for dynamic predication. The size-based method
uses the number of instructions between a branch and the join point
(i.e. CFM-point in DMP) of the branch to select suitable simple ham-
mocks. The profile-based method uses a cost-benefit model, similar to
our cost-benefit model but applicable to only simple hammocks. Their
cost-benefit model took into account the branch misprediction rates,
but they did not consider the accuracy of the confidence estimator.
Our work includes both size-based heuristics and cost-benefit analy-
sis using profile data. Our compiler algorithms provide more general-
ized selection mechanisms and cost-benefit analysis for not only sim-
ple hammocks, but also more complex control-flow structures (nested
hammocks, frequently-hammocks, and loops) to support DMP.

8.2. Branch Selection for Static Predication
Less relevant to our work is the body of literature on branch se-

lection algorithms for static if-conversion [1, 19] for predicated in-
struction set architectures. Static predicated code generation algo-
rithms use edge profiling and/or the number of instructions in a region
that is considered for static predication to decide whether or not to if-
convert a branch instruction. Both Pnevmatikatos and Sohi [20] and
Tyson [23] used the number of instructions in a region to determine
whether a short forward branch should be if-converted. Chang et al.
converted highly mispredicted branches to predicated code [3].

Mantripragada and Nicolau [18] developed compiler algorithms
to select static if-conversion candidates based on basic block sizes (in
terms of the number of instructions) and branch misprediction profile
data. Our cost-benefit model presented in Section 4 is conceptually
similar to Mantripragada and Nicolau’s cost-benefit model for static
predication in that both models try to select branches for which pred-
ication would provide performance benefits. However, as dynamic
predication is different from static predication, we consider dynamic
effects such as the accuracy of the confidence estimator and merge
probability. Furthermore, we provide a new analytical model to se-
lect candidates for frequently-hammocks and loops, which cannot be
predicated by conventional if-conversion.

Hyperblock formation [17] uses path execution frequencies, ba-
sic block sizes, and basic block characteristics to decide which
blocks should be included in a hyperblock. Hyperblocks enhance
the compiler’s scope for code optimization by increasing basic block
sizes. Hence, identifying hot-paths is more important than identify-
ing highly mispredicted branches. August et al. [2] proposed a frame-
work that considers branch misprediction rate and instruction schedul-
ing effects due to predication in an EPIC processor to decide which
branches would not benefit from if-conversion and should be reverse
if-converted [25]. They also proposed a cost-benefit model for stati-
cally predicated code.

8.3. Input Set Differences in Profiling for Predication
Chang et al. [3] compared the set of frequently mispredicted

branches between different input sets of SPEC 95 applications. They

found that if an input set resulted in the execution of most of the static
branches in an application, then the set of frequently mispredicted
branches (i.e. branches that are if-conversion candidates in their if-
conversion algorithms) would be similar across different input sets.

Sias et al. [22, 21] evaluated the performance variation in
hyperblock-based code optimizations due to variations in the input
set used for profiling. They found that among SPEC CPU2000 bench-
marks, crafty, perlbmk and gap showed more than 3% performance
difference when profiled with the train input set versus the reference
input set. In hyperblocks, the processor does not have the ability to
change the statically optimized code. Thus, if the profiling input set
is not similar to the run-time input set, there can be significant perfor-
mance variations as the hardware cannot override a possibly wrong
decision made by the compiler based on the profiling input set. In
contrast to hyperblocks (and static predication), DMP has the abil-
ity to dynamically choose which dynamic instances of each branch to
predicate. Hence, DMP is less sensitive to differences between input
sets used for profiling and actual execution.

Hazelwood and Conte [7] discussed the performance problems
associated with statically predicated code when the input set of the
program changes. They used dynamic profiling to identify hard-to-
predict branches and dynamically re-optimized the code based on the
run-time behavior of branches. Both software-based dynamic opti-
mization and hardware-based dynamic predication reduce the depen-
dence of predication performance on the profile-time input set.

Kim et al. [14] evaluated the extent of variations in branch mis-
prediction rate across input sets. They proposed a profiling algorithm
(2D-profiling) that can detect input-dependent branches (i.e. branches
whose misprediction rates change significantly across input sets) us-
ing a single profiling run. Our work can be further improved by incor-
porating the 2D-profiling scheme to our algorithms to select only pos-
sibly mispredicted branches as diverge branches. Excluding always
easy-to-predict branches from selection as diverge branches would
reduce the static code size and also reduce the potential for aliasing in
the confidence estimator.

9. Conclusion and Future Work
This paper presented and evaluated new code generation algo-

rithms for dynamic predication in the diverge-merge processor (DMP)
architecture. The proposed algorithms select branches that are suit-
able and profitable for dynamic predication based on profiling in-
formation. We explored diverse heuristics to select hammock and
loop diverge branches and corresponding control-flow merge (CFM)
points, and some optimizations based on program characteristics:
always-predicating short hammocks and return CFM points. We also
proposed a new profile-driven analytical cost-benefit model to select
branches that are profitable for dynamic predication.

Our results show that, with the proposed branch selection algo-
rithms, a DMP processor outperforms an aggressive baseline proces-
sor by 20.4%. In contrast, the best-performing alternative branch se-
lection algorithm results in a performance increase of only 4.5% over
the baseline.

Our future work includes the exploration of more accurate cost-
benefit models. In particular, the proposed cost model for loop diverge
branches requires the profiler to collect DMP-specific information.
We intend to examine techniques that can make the cost model for
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selecting loop branches implementable. Exploration of dynamic pro-
filing mechanisms that collect feedback on the usefulness of dynamic
predication at run-time and accordingly enable/disable dynamic pred-
ication is another promising avenue for future research.
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