
...

DIVERGE-MERGE PROCESSOR:
GENERALIZED AND ENERGY-EFFICIENT

DYNAMIC PREDICATION
...

THE BRANCH MISPREDICTION PENALTY IS A MAJOR PERFORMANCE LIMITER AND A MAJOR

CAUSE OF WASTED ENERGY IN HIGH-PERFORMANCE PROCESSORS. THE DIVERGE-MERGE

PROCESSOR REDUCES THIS PENALTY BY DYNAMICALLY PREDICATING A WIDE RANGE OF

HARD-TO-PREDICT BRANCHES AT RUNTIME IN AN ENERGY-EFFICIENT WAY THAT DOESN’T

SIGNIFICANTLY INCREASE HARDWARE COMPLEXITY OR REQUIRE MAJOR ISA CHANGES.

......Today’s high-performance proces-

sors use deep pipelines to support high
clock frequencies. Some processing cores in

near-future chip multiprocessors will likely
support a large number of in-flight instruc-
tions1 to extract both memory- and in-

struction-level parallelism for high perfor-
mance and energy efficiency in the serial

(nonparallelizable) portions of applications.2

The performance benefit and energy effi-
ciency of using pipelining and supporting

a large number of in-flight instructions
critically depend on the accuracy of the

processor’s branch predictor. Even after
decades of research in branch prediction,
branch predictors remain imperfect. They

frequently mispredict hard-to-predict
branches, not only limiting performance
but also wasting energy.

To avoid pipeline flushes caused by

branch mispredictions, researchers have
proposed predication, a mechanism that

converts a control dependency to a set of
data dependencies.3 This is done by re-

moving the branch instruction from the

program and adding the branch condition
(that is, predicate) to each of the instruc-

tions on both true and false paths following
the original branch. Thus, the processor
fetches instructions from both sides of the

original branch, but commits results from
only the correct side, as determined by the

branch condition.

However, three major problems have

prevented the wide use of predication in
high-performance processors:

N ISA changes. Predication requires ma-
jor, widespread changes to the in-

struction set architecture—in particu-
lar, the addition of predicate registers

and predicated instructions.

N Lack of adaptivity. Predication is not
adaptive to runtime branch behavior
because a statically if-converted branch

instruction remains if-converted re-
gardless of whether its instances are
hard to predict at runtime. Previous

Hyesoon Kim

José A. Joao

University of Texas at

Austin

Onur Mutlu

Microsoft Research

Yale N. Patt

University of Texas at

Austin

...

94 Published by the IEEE Computer Society 0272-1732/07/$25.00 G 2007 IEEE

research has shown that this lack of
adaptivity can significantly reduce

predicated code’s performance.4,5

N Complex control-flow graphs. Predica-
tion’s performance potential is limited
because, in many cases, compilers
either cannot or usually don’t convert

control-flow graphs to predicated
code. Either these CFGs are too
complex or they contain loops, func-
tion calls, indirect branches, or too

many instructions.3,4 Current compil-
ers usually don’t predicate large and
complex CFGs because doing so
would cause a large performance over-

head.

Researchers have proposed several solu-

tions to these problems. Dynamic hammock
predication6 solves the ISA and adaptivity
problems, but it is applicable to only a small
set of CFGs.6,7 Wish branches solve the

adaptivity problem and partially solve the
complex-CFG problem by enabling the
predication of loops, but they still require

significant ISA support for predication.5

Hyperblock formation partially solves the
complex-CFG problem.8 However, no pre-
vious approach concurrently solves all three

problems. The diverge-merge processor

(DMP) we describe in this article provides
a comprehensive, energy-efficient solution.

The diverge-merge concept
We propose a new processor architecture

that performs predication dynamically on

complex CFGs. The key insight that enables
DMP to predicate complex CFGs is that
most complex control-flow graphs look like
simple hammock (if-else) structures if we

consider only the frequently executed paths
in the graphs. Figure 1 shows a complex-
CFG example that illustrates this. In
conventional software predication, if the

compiler estimates that the branch at block
A is hard to predict, it converts blocks B, C,
D, E, F, and G to predicated code, and all
these blocks will execute together even

though blocks D, F, and G are not
frequently executed at runtime. In contrast,
DMP considers frequently executed paths at
runtime, so it can dynamically predicate

only blocks B, C, and E, thereby incurring
less performance overhead. Moreover, if
program phase changes or input set effects

cause the frequently executed paths in the
complex hammock to change at runtime,
DMP can adapt dynamic predication to the
newly formed frequently executed paths. In

the Figure 1 example, DMP can predicate

Figure 1. Control-flow graph (CFG) example: source code (a), CFG (b), and possible paths (hammocks) that DMP can

predicate (c). CFM: control-flow merge; T: taken; NT: not taken.

..

JANUARY–FEBRUARY 2007 95

many different dynamic hammocks, de-
pending on which paths are frequently
executed at runtime (as Figure 1c shows).

Overview of DMP operation
The compiler identifies conditional

branches with control flow suitable for

dynamic predication as diverge branches. A
diverge branch is a branch instruction after

which program execution usually recon-
verges at a control-independent point in the
CFG called the control-flow merge (CFM)
point. In other words, diverge branches
result in hammock-shaped control flow
based on frequently executed paths in the

program’s CFG, but they are not necessarily
simple hammock branches that require the

CFG to be hammock shaped (that is, they
can form what we call frequently-hammocks).
The compiler also identifies at least one

CFM point associated with the diverge
branch. Diverge branches and CFM points

can be conveyed to the microarchitecture
through relatively simple modifications in
the ISA.7

When the processor fetches a diverge

branch, it estimates whether or not the
branch is hard to predict using a branch
confidence estimator.9 If the diverge

branch has low confidence, the processor
enters dynamic predication (dpred) mode.

In this mode, the processor fetches both
paths after the diverge branch and dynam-
ically predicates instructions between the

diverge branch and the CFM point. On
each path, the processor follows the branch

predictor outcomes until it reaches the
CFM point. After the processor reaches the
CFM point on both paths, it exits dpred

mode and starts to fetch from only one
path. The processor reconciles the register

values produced on the dynamically pred-
icated paths by inserting select-micro-
operations (select-mops) to merge the

register values produced on both sides of
the hammock.10 If the diverge branch is
actually mispredicted, the processor doesn’t

need to flush its pipeline because instruc-
tions on both paths of the branch are

already fetched and instructions on the
wrong path will become NOPs (no opera-
tions) through dynamic predication.

DMP support
Now let’s turn to the hardware changes

required to support DMP. Our previous
publication provides a detailed implementa-
tion and analyzes its complexity.7

Instruction fetch
In dpred mode, the processor fetches

instructions from both directions (taken
and not-taken paths) of a diverge branch,
using two program counter registers and
a round-robin scheme to fetch from the two
paths in alternate cycles. On each path, the
processor follows the branch predictor’s
outcomes. These outcomes favor the fre-
quently executed basic blocks in the CFG.

The processor uses a separate global
branch history register to predict the next
fetch address on each path and checks
whether the predicted next fetch address is
the diverge branch’s CFM point. If the
processor reaches the CFM point on one
path, it stops fetching from that path and
fetches only from the other path. When the
processor reaches the CFM point on both
paths, it exits dpred mode.

Select-mops
Instructions after the CFM point should

have data dependencies on instructions only
from the diverge branch’s correct path.
Before executing the diverge branch, the
processor doesn’t know which path is
correct. Instead of waiting for the diverge
branch’s resolution, the processor inserts
select-mops to continue renaming and
execution after exiting dpred mode. Select-
mops are similar to w-functions in the static
single-assignment form in that they merge
the register values produced on both sides of
the hammock. Select-mops ensure that
instructions dependent on the register
values produced on either side of the
hammock are supplied with the correct data
values, which depend on the diverge
branch’s correct direction.

After inserting select-mops, the processor
can continue fetching and renaming in-
structions. If an instruction fetched after the
CFM point is dependent on a register
produced on either side of the hammock, it
sources a select-mop’s output. The processor
will execute such an instruction after the

...

TOP PICKS

...

96 IEEE MICRO

diverge branch resolves. However, the pro-
cessor executes instructions that are not
dependent on select-mops as soon as their
sources are ready, without waiting for
resolution of the diverge branch. Figure 2
shows an example of the dynamic predica-
tion process. Note that the processor
executes instructions in blocks C, B, and
E, fetched during dpred mode, without
waiting for the diverge branch’s resolution.

Loop branches
DMP can dynamically predicate loop

branches. The benefit of this is very similar
to the benefit of wish loops, another type of
wish branch which is used for handling
loops.5 The key to predicating a loop-type
diverge branch is that the processor must
predicate each loop iteration separately. It
does this by using a different predicate
register for each iteration and inserting
select-mops after each iteration. Select-mops
choose between live-out register values
before and after execution of a loop itera-
tion; the choice is based on the outcome of
each dynamic instance of the loop branch.
Instructions executed in later iterations and
dependent on live-outs of previous predi-
cated iterations source the outputs of select-
mops. Similarly, instructions fetched after
the processor exits the loop and dependent
on registers produced within the loop
source the select-mop outputs so that they
receive the correct source values even
though the loop branch might be mispre-
dicted. The pipeline need not be flushed if
a predicated loop iterates more times than it
should, because the predicated instructions
in the extra loop iterations will become
NOPs, and the live-out values from the
correct last iteration will propagate to
dependent instructions via select-mops.

Instruction execution and retirement
DMP executes dynamically predicated

instructions just as it does other instructions
(except store-load forwarding). Because
these instructions depend on the predicate
value only for retirement purposes, the
processor can execute them before the
predicate value (the diverge branch) is
resolved. If the predicate value is known
to be false, the processor need not execute

the instructions or allocate resources for
them. Nonetheless, all predicated instruc-
tions consume retirement bandwidth.
When a predicated-false instruction is ready
to retire, the processor simply frees the
physical register (along with other re-
sources) allocated for that instruction and
doesn’t update the architectural state with
its results. The predicate register associated
with dpred mode is released when the last
predicated instruction retires.

Load and store instructions
DMP executes dynamically predicated

load instructions in the same manner as
normal load instructions. It sends dynam-
ically predicated store instructions to the
store buffer with their predicate register
IDs. However, a predicated store instruc-
tion is not written into the memory system
(into the caches) until it is known to be
predicated-true. The processor drops all
predicated-false store requests. Thus, it
requires the store buffer logic to check the
predicate register value before sending
a store request to the memory system.

DMP requires support in the store-load
forwarding logic, which should check not
only addresses but also predicate register
IDs. The logic can forward from three kinds
of stores:

Figure 2. Dynamic predication of the instruction stream in Figure 1b:

fetched blocks (a), fetched assembly instructions (b), and instructions after

register renaming (c).

..

JANUARY–FEBRUARY 2007 97

N a nonpredicated store to any later load,

N a predicated store whose predicate
register value is known to be true to
any later load, or

N a predicated store whose predicate
register is not ready to a later load
with the same predicate register ID
(that is, on the same dynamically
predicated path).

If forwarding is not possible, the load waits.

This mechanism and its supporting
structures are also required in an out-of-
order processor that implements any variant
of predication (software predication, dy-
namic hammock predication, or wish
branches).

ISA support
Two bits in the ISA’s branch instruction

format distinguish diverge branches. The
first bit indicates whether or not the branch
is a diverge branch. The second bit indicates
whether or not the branch is a loop branch.
The ISA also provides support for encoding
the CFM points in the program binary.
However, there is no need for ISA support
for predicate registers or predicated instruc-
tions.

Compiler support
DMP uses a combination of compile-

time CFG analysis and profiling to de-
termine diverge branches and CFM points.
We describe the compiler heuristics and
profiling support for generating DMP
executables in another publication.11

DMP versus other branch-processing
paradigms

Five previously proposed paradigms for
handling hard-to-predict branch instructions
are dynamic hammock predication,6 software
predication,3 wish branches,5 selective dual-
path execution,12 and selective multipath
execution.13 To illustrate the differences
between these mechanisms and compare
them with DMP, we classify control-flow
graphs into the following categories:

N simple hammock (Figure 3a)—an if or
if-else structure that has no nested
branches inside the hammock;

N nested hammock (Figure 3b)—an if-
else structure that has multiple levels
of nested branches;

N frequently-hammock (Figure 3c)—
a CFG that becomes a simple ham-
mock if we consider only frequently
executed paths;

Figure 3. Control-flow graphs: simple hammock (a), nested hammock (b), frequently-hammock (c), loop (d), and

nonmerging (e).

...

TOP PICKS

...

98 IEEE MICRO

N loop (Figure 3d)—a cyclic CFG (for,
do-while, or while structure); and

N nonmerging (Figure 3e)—a CFG that
has no CFM point even if we consider
only frequently executed paths.

Figure 3 depicts these five types of CFGs.
Table 1 summarizes the blocks fetched and
predicated in five different processing models
for each CFG type, assuming that the branch
in block A is hard to predict. Figure 4 shows
the frequency of branch mispredictions for
each CFG type in executing SPEC integer
benchmark applications.

Dynamic hammock predication can
predicate only simple hammocks, which
account for 12 percent of all mispredicted
branches. Simple hammocks alone account
for a significant percentage of mispredic-
tions in only two benchmarks: vpr (40
percent) and twolf (36 percent). Dynamic
hammock predication significantly im-
proves the performance of these two bench-
marks.

Software predication can predicate both
simple and nested hammocks, which in
total account for 16 percent of all mis-
predicted branches. Software predication

Table 1. Fetched instructions in various processing models for each CFG type (after the branch at A is

estimated to be low-confidence). We assume that the loop branch in block A in Figure 3d is predicted as taken

twice after it is estimated to be low-confidence.

Processing

model

Simple

hammock

Nested

hammock

Frequently-

hammock

Loop Nonmerging

DMP B, C, D, E, F B, C, D, G, H, I B, C, D, E, H A, A, B, C Can’t predicate

Dynamic hammock

predication

B, C, D, E, F Can’t predicate Can’t predicate Can’t predicate Can’t predicate

Software predication B, C, D, E, F B, C, D, E, F, G, H, I Usually doesn’t or

can’t predicate

Can’t predicate Can’t predicate

Wish branches B, C, D, E, F B, C, D, E, F, G, H, I Usually doesn’t or

can’t predicate

A, A, B, C Can’t predicate

Dual-path Path 1: B, D, E, F Path 1: B, D, H, I Path 1: B, D, E, H Path 1: A, A, B, C Path 1: B …

Path 2: C, D, E, F Path 2: C, G, H, I Path 2: C, E, H Path 2: B, C Path 2: C …

Figure 4. Distribution of mispredicted branches for each CFG type.

..

JANUARY–FEBRUARY 2007 99

fetches all basic blocks between an if-
converted branch and the corresponding
CFM point. For example, in the nested-
hammock case (Figure 3b), software pred-
ication fetches blocks B, C, D, E, F, G, H,
and I, whereas DMP fetches blocks B, C, D,
G, H, and I. Current compilers usually
don’t predicate frequently-hammocks be-
cause the predicated code’s overhead would
be too high if these CFGs include function
calls, cyclic control-flow, too many exit
points, or too many instructions.3,4,14 Hy-
perblock formation can predicate frequent-
ly-hammocks at the cost of increased code
size, but it is not an adaptive technique
because frequently executed basic blocks
change at runtime.8 Even if we unrealisti-
cally assume that software predication can
predicate all frequently-hammocks, it would
predicate up to 56 percent of all mispre-
dicted branches.

In addition to what software predication
can do, wish branches can also predicate
loops, which account for another 10 percent
of all mispredicted branches. The main
difference between wish branches and
software predication is that the wish branch
mechanism selectively predicates at runtime
each dynamic instance of a branch. The
wish branch mechanism predicates a branch
only if it is hard to predict at runtime,

whereas software predication predicates
a branch for all its dynamic instances. Thus,
wish branches reduce the overhead of
software predication. However, even with
wish branches, all basic blocks between an
if-converted branch and the corresponding
CFM point are fetched. Therefore, wish
branches also have higher performance
overhead for nested hammocks than DMP
has.

Software predication (and wish branches)
can eliminate a branch misprediction caused
by a branch that is control-dependent on
another hard-to-predict branch (for exam-
ple, the branch at B is control-dependent on
the branch at A in Figure 3b), because it
predicates all the basic blocks within a nested
hammock. This benefit is not possible with
any of the other paradigms except multi-
path, but we found that it provides
a significant performance benefit only in
two benchmarks (3 percent in twolf and 2
percent in go).

Selective dual-path execution fetches
from two paths after a hard-to-predict
branch. Instructions on the wrong path are
selectively flushed when the branch is
resolved. Dual-path execution is applicable
to any kind of CFG because the control-
flow need not reconverge. Hence, dual-path
can potentially eliminate the branch mis-

Figure 5. DMP performance when different CFG types are dynamically predicated. IPC:

instructions per cycle.

...

TOP PICKS

...

100 IEEE MICRO

prediction penalty for all five CFG types.
However, the dual-path mechanism re-
quires fetching more instructions than any
of the other mechanisms (except multipath)
because the processor continues fetching
from two paths until the hard-to-predict
branch is resolved, even though the pro-
cessor might already have reached a control-
independent point in the CFG. For exam-
ple, in the simple-hammock case (Fig-
ure 3a), DMP fetches blocks D, E, and F
only once, but dual-path fetches D, E, and
F twice (once for each path). Therefore,
dual-path’s overhead is much higher than
DMP’s.

Multipath execution is a generalized form
of dual-path execution in that the processor
fetches both paths after every low-confi-
dence branch and therefore can execute
along more than two different paths at the
same time. This increases the probability
that the correct path is in the processor’s
instruction window. However, only one of
the outstanding paths is the correct path,
and instructions on every other path must
be flushed. Furthermore, instructions after
a control-flow-independent point must be
fetched (and perhaps executed) separately
for each path (like dual-path, but unlike
DMP), wasting processing resources for
instructions on all paths but one. For
example, if the number of outstanding
paths is eight, a multipath processor wastes
87.5 percent of its fetch and execution
resources for wrong-path or useless instruc-
tions even after a control-independent
point. Hence, multipath’s overhead is far
greater than that of DMP. For the example
in Figure 3, multipath’s behavior is the
same as that of dual-path because, for
simplicity, the example assumes only one
hard-to-predict branch.

DMP can predicate simple hammocks,
nested hammocks, frequently-hammocks,
and loops. On average, these four CFG
types account for 66 percent of all branch
mispredictions. As Table 1 shows, the
number of fetched instructions for DMP
is less than or equal to the number for the
other mechanisms for all CFG types.
Hence, DMP eliminates branch mispredic-
tions more efficiently (with less overhead)
than the other processing paradigms. Our

earlier article on DMP provides detailed
comparisons of overhead, performance,
hardware complexity, and energy consump-
tion of the different branch-processing
paradigms.7

Performance evaluation and results
To analyze and evaluate DMP’s perfor-

mance and energy consumption, we used an
execution-driven simulator of a processor
that implements the Alpha ISA. We
modeled an aggressive high-performance
eight-wide processor (with a 30-stage pipe-
line and a 512-entry instruction window)
and a less aggressive four-wide processor
(with a 20-stage pipeline and a 128-entry
instruction window). Our baseline branch
predictor is a very aggressive 64-Kbyte
perceptron predictor. DMP uses a 2-Kbyte
enhanced JRS confidence estimator to de-
tect hard-to-predict branches.9 We used
different input sets for profiling to generate
DMP binaries and for performance evalu-
ation. Our earlier article on DMP describes
our performance and power simulation and
compilation methodology in detail.7 All of
our evaluations quantitatively compare
DMP to the five other branch-processing
paradigms on all the SPEC CPU2000 and
CPU95 integer benchmarks.

Figure 5 shows DMP’s performance
improvement over the baseline processor
when we allowed DMP to dynamically
predicate

N simple hammocks only;
N simple and nested hammocks;
N simple, nested, and frequently-

hammocks; and
N simple, nested, and frequently-

hammocks, plus loops.

Predication of frequently-hammocks pro-
vides the largest performance improvement
because frequently-hammocks are the single
largest cause of branch mispredictions.
Hence, DMP provides large performance
improvements by enabling the predication
of a wide range of complex CFGs.

Figure 6 summarizes the performance,
power, and energy comparison of DMP
with the other branch-handling paradigms.
For all the benchmarks, the average retired

..

JANUARY–FEBRUARY 2007 101

instructions per cycle (IPC) performance
improvement over the baseline processor is
3.5 percent for dynamic hammock predica-
tion,6 4.8 percent for dual-path,12 8.8
percent for multipath,13 and 19.3 percent
for DMP. Conventional software predica-
tion reduces execution time by 3.8 percent,
wish branches by 6.4 percent, and DMP by
13.0 percent. DMP provides the best energy
efficiency and energy-delay product (EDP)
among all paradigms, reducing energy
consumption by 9 percent and improving
EDP by 22.3 percent. It reduces energy
consumption because it reduces the number
of pipeline flushes by 38 percent, which
results in the fetch of 23 percent fewer
instructions (not shown). Even on the less
aggressive baseline processor, with a short
pipeline and a small instruction window,
DMP improves performance by 7.8 per-
cent, reduces energy consumption by 5.6
percent, and improves EDP by 9.7 percent
(Figure 6b).

We also evaluated DMP on a baseline
with the recently proposed O-Geometric
History Length (O-GEHL) branch pre-
dictor.15 Our results show that even on
a processor that employs a complex yet
very accurate 64-Kbyte O-GEHL predictor,
diverge-merge processing improves perfor-
mance by 13.3 percent. Our earlier article
provides insights into the performance and
energy improvement of DMP by analyzing
pipeline flushes, overhead of predicated

instructions, performance impact of differ-
ent DMP design choices, the confidence
estimator’s behavior, and the number of
fetched and executed instructions.7

DMP contributions
DMP provides a novel way to solve the

branch-handling problem by dynamically
predicating a wide range of hard-to-predict
branches at runtime in an energy-efficient
way that does not significantly increase the
hardware complexity. To enable this solu-
tion, the DMP concept makes the following
contributions:

N It enables dynamic predication of
branches in complex control-flow
graphs rather than limiting dynamic
predication only to simple hammock
branches. It introduces frequently-
hammocks. With frequently-ham-
mocks, DMP can eliminate branch
mispredictions caused by a much larg-
er set of branches than previous
branch-processing techniques can.

N It overcomes the three major limita-
tions of software predication we de-
scribed earlier, thus offering a compre-
hensive solution that provides runtime
adaptivity to predication and gener-
alizes predication so that it can be
applied to a wide range of CFGs
without requiring major ISA changes.

Figure 6. Performance, power, energy, and energy-delay product (EDP) comparison of DMP with other branch-processing

paradigms running on aggressive (30-stage, 512-window, eight-wide) (a) and less aggressive (20-stage, 128-window, four-

wide) (b) baseline processors. Performance improvements are in terms of instructions per cycle for DMP, dynamic

hammock predication, dual-path, and multipath, and in terms of execution time for software predication and wish branches.

...

TOP PICKS

...

102 IEEE MICRO

N Our comprehensive evaluations of
different branch-processing paradigms
on both the hardware side (dynamic
hammock predication, dual and mul-
tipath execution) and the software side
(predication and wish branches) show
that DMP provides both the best
performance and the highest energy-
efficiency.7

The proposed DMP mechanism still
requires some ISA support. A cost-

efficient hardware mechanism to detect
diverge branches and CFM points at
runtime would eliminate the need to change
the ISA. Developing such mechanisms is
a promising area of future work. The results
we presented are based on our initial
implementation of DMP using relatively
simple compiler and hardware heuristics
and algorithms. DMP’s effectiveness can be
further increased by future research aimed at
improving these techniques. On the com-
piler side, better heuristics and profiling
techniques can be developed to select
diverge branches and CFM points.11 On
the hardware side, better confidence esti-
mators could critically affect the perfor-
mance of dynamic predication. Finally, an
energy-efficient solution that would reduce
the misprediction penalty of branches in
nonmerging control flow is a difficult but
exciting area of future research. MICRO

Acknowledgments
We thank Chang Joo Lee, Paul Racunas,

Veynu Narasiman, Nhon Quach, Derek
Chiou, Eric Sprangle, Jared Stark, and the
members of the HPS research group. We
gratefully acknowledge the support of the
Cockrell Foundation, Intel Corporation,
and the Advanced Technology Program of
the Texas Higher Education Coordinating
Board.

..

References
1. O. Mutlu et al., ‘‘Runahead Execution: An

Alternative to Very Large Instruction Win-

dows for Out-of-Order Processors,’’ Proc.

9th Int’l Symp. High-Performance Comput-

er Architecture (HPCA 03), IEEE CS Press,

2003, pp. 129-140.

2. T.Y. Morad et al., ‘‘Performance, Power

Efficiency and Scalability of Asymmetric

Cluster Chip Multiprocessors,’’ Computer

Architecture Letters, vol. 4, no. 1, July

2005.

3. J.R. Allen et al., ‘‘Conversion of Control

Dependence to Data Dependence,’’ Proc.

10th Ann. Symp. Principles of Program-

ming Languages (POPL 83), ACM Press,

1983, pp. 177-189.

4. Y. Choi et al., ‘‘The Impact of If-Conversion

and Branch Prediction on Program Execu-

tion on the Intel Itanium Processor,’’ Proc.

34th Ann. Int’l Symp. Microarchitecture

(Micro 01), IEEE CS Press, 2001,

pp. 182-191.

5. H. Kim et al., ‘‘Wish Branches: Combining

Conditional Branching and Predication for

Adaptive Predicated Execution,’’ Proc. 38th

Ann. IEEE/ACM Int’l Symp. Microarchitec-

ture (Micro 05), IEEE CS Press, 2005,

pp. 43-54.

6. A. Klauser et al., ‘‘Dynamic Hammock

Predication for Nonpredicated Instruction

Set Architectures,’’ Proc. 7th Int’l Conf.

Parallel Architectures and Compilation

Techniques (PACT 98), IEEE CS Press,

1998, pp. 278-285.

7. H. Kim et al., ‘‘Diverge-Merge Processor

(DMP): Dynamic Predicated Execution of

Complex Control-Flow Graphs Based on

Frequently Executed Paths,’’ Proc. 39th

Ann. IEEE/ACM Int’l Symp. Microarchitec-

ture (Micro 06), IEEE CS Press, 2006,

pp. 53-64.

8. S.A. Mahlke et al., ‘‘Effective Compiler

Support for Predicated Execution Using

the Hyperblock,’’ Proc. 25th Ann. Int’l

Symp. Microarchitecture (Micro 92), IEEE

Press, 1992, pp. 45-54.

9. E. Jacobsen, E. Rotenberg, and J.E. Smith,

‘‘Assigning Confidence to Conditional

Branch Predictions,’’ Proc. 29th Ann.

IEEE/ACM Int’l Symp. Microarchitecture

(Micro 96), IEEE Press, 1996, pp. 142-152.

10. P.H. Wang et al., ‘‘Register Renaming and

Scheduling for Dynamic Execution of Pred-

icated Code,’’ Proc. 7th Int’l Symp. High-

Performance Computer Architecture

(HPCA 01), IEEE CS Press, 2001,

pp. 15-26.

..

JANUARY–FEBRUARY 2007 103

11. H. Kim et al., ‘‘Profile-Assisted Compiler

Support for Dynamic Predication in Di-

verge-Merge Processors,’’ to be published

in Proc. IEEE/ACM Int’l Symp. Code

Generation and Optimization (CGO 07),

IEEE CS Press, 2007.

12. T. Heil and J.E. Smith. Selective Dual Path

Execution, tech. report, Dept. of Electrical

and Computer Engineering, Univ. of Wis-

consin-Madison, 1996.

13. A. Klauser, A. Paithankar, and D. Grunwald,

‘‘Selective Eager Execution on the Poly-

Path Architecture,’’ Proc. 25th Ann. Int’l

Symp. Computer Architecture (ISCA 98),

IEEE CS Press, 1998, pp. 250-271.

14. S.A. Mahlke et al., ‘‘Characterizing the

Impact of Predicated Execution on Branch

Prediction,’’ Proc. 27th Ann. Int’l Symp.

Microarchitecture (Micro 94), IEEE Press,

1994, pp. 217-227.

15. A. Seznec, ‘‘Analysis of the O-Geometric

History Length Branch Predictor,’’ Proc.

32nd Ann. Int’l Symp. Computer Architec-

ture (ISCA 05), IEEE CS Press, 2005,

pp. 394-405.

Hyesoon Kim is a PhD candidate in the
Electrical and Computer Engineering De-
partment of the University of Texas at
Austin. Her research interests include high-
performance energy-efficient computer ar-
chitectures and programmer-compiler-ar-
chitecture interaction. Kim has a BS in
mechanical engineering from Korea Ad-
vanced Institute of Science and Technology,
an MS in mechanical engineering from
Seoul National University, and an MS in
computer engineering from the University
of Texas at Austin. She is a student member
of the IEEE and the ACM.

José A. Joao is a PhD student in the
Electrical and Computer Engineering De-
partment of the University of Texas at
Austin. His research interests include high-
performance microarchitectures and com-
piler-architecture interaction. Joao has an
MS in computer engineering from the
University of Texas at Austin and a BS in
electronics engineering from Universidad

Nacional de la Patagonia San Juan Bosco,
Argentina, where he is an assistant professor
(on leave). He was a recipient of the
Microelectronics and Computer Develop-
ment Fellowship from the University of
Texas at Austin during 2003-2005. He is
a student member of the IEEE and the
ACM.

Onur Mutlu is a researcher at Microsoft
Research. His research interests include
computer architecture, especially the inter-
actions between software and microarchi-
tecture. Mutlu has BS degrees in computer
engineering and psychology from the Uni-
versity of Michigan, Ann Arbor, and PhD
and MS degrees in electrical and computer
engineering from the University of Texas
at Austin. He was a recipient of the Intel
PhD fellowship in 2004 and the University
of Texas George H. Mitchell Award for
Excellence in Graduate Research in 2005.
He is a member of the IEEE and the ACM.

Yale N. Patt is the Ernest Cockrell, Jr.,
Centennial Chair in Engineering at the
University of Texas at Austin. His research
interests include harnessing the expected
benefits of future process technology to
create more effective microarchitectures for
future microprocessors. He is coauthor of
Introduction to Computing Systems: From Bits
and Gates to C and Beyond (McGraw-Hill,
2nd edition, 2004). His honors include the
1996 IEEE/ACM Eckert-Mauchly Award
and the 2000 ACM Karl V. Karlstrom
Award. He is a fellow of both the IEEE and
the ACM.

Direct questions and comments about
this article to Hyesoon Kim, Dept. of
Electrical and Computer Engineering, Uni-
versity of Texas, 1 University Station
C0803, Austin, TX 78712; hyesoon@ece.
utexas.edu.

For further information on this or any

other computing topic, visit our Digital

Library at http://www.computer.org/

publications/dlib.

...

TOP PICKS

...

104 IEEE MICRO

