
1

Operating System Scheduling for Efficient

Online Self-Test in Robust Systems

Yanjing Li
Stanford University

Onur Mutlu
Carnegie Mellon University

Subhasish Mitra
Stanford University

2

Why Online Self-Test & Diagnostics?

Wearout Early-life failures
(ELF)

Lifetime Time

Failure
rate

Burn-in difficult
Iddq
ineffective

Transistor aging
Guardbands
expensive

Online Self-Test + Diagnostics

Soft errors
Built-In Soft Error

Resilience (BISER)

  Application: Failure prediction & detection

  Global optimization software-orchestrated

3

Key Message

Efficiency

Test
coverage

Higher coverage
Lower cost

CASP-aware
OS scheduling

Minimize
system performance

 impact
Hardware-only

CASP

Logic BIST

4

Results from Actual Xeon System

PARSEC performance impact

CASP-aware
OS scheduling

Hardware-only
CASP

28%

0.5%

Text editor “vi” response time

100%

No visible
delay

15%
(perceptible

delay)

CASP runs for 1 sec every 10 sec.

Hardware-only CASP

CASP-aware OS scheduling

E
xe

c.
 t

im
e

ov
er

he
ad

5

  [Li DATE 08]

  Concurrent with normal operation

% No system downtime

  Autonomous: on-chip test controller

  Stored Patterns: off-chip FLASH

  Comparable or better than production tests

  Test compression: X-Compact

CASP Idea

Major Technology Trends Favor CASP

6

CASP Study: SUN OpenSPARC T1

  Test coverage

  Stuck-at: 99.5%

  Transition: 96%

  True-time: 93.5%

  Test power

  ≈ normal operation

  0.01% area impact

8 cores

with
CASP

support

cross-
bar

switch

with
CASP

support

L2

Jbus
Interface

on-chip
buffer

(7.5KB)

CASP control

off-chip
Flash

48 MB
compressed

test
patterns

(6MB/core)

~ 8K Verilog LOC modified (out of 100K+)

7

Hardware-only CASP Limitations

  Hardware-only

 No software interaction (e.g., OS)

 Visible performance impact

  Core unavailable during CASP task stalled

  Scan chains for high test coverage

 Comprehensive diagnostics

 Required for acceptable reliability

Pick next highest priority task

8

CASP-Aware OS Scheduling
  Key idea: make OS aware of CASP

 Tasks scheduled / migrated around CASP
Migrate all Migrate smart

core i under test?

yes
migrate core i tasks to

core tested latest

 pick top priority task in core i & core-in-test

in core i?
yes

run task

no

migrate?
cost analysis

migrate and
run task

no

yes

  Scheduling for interactive / real-time tasks: see paper

9

  Platform

  2.5GHz dual quad-core Xeon

  Linux 2.6.25.9 (scheduler modified)

  CASP test program: idle test thread

  Sufficient for performance studies

 CASP configuration

  Runs 1 sec every 10 sec

  More parameters in paper

Evaluation Setup

10

Results: Computation-Intensive Applications

Workload: 4-threaded PARSEC

Hardware-only CASP: > 50%
CASP-aware

OS scheduling:
0.48%

Hardware-only CASP Migrate all

Load balance with self-test Migrate smart

E
xe

c.
 t

im
e

ov
er

he
ad

20%

40%

60%

11

Results: Interactive Applications

> 200ms, <500ms < 200ms > 500ms

Hardware-only
CASP

 No Effect UNACCEPTABLE

Response time

%

CASP-aware OS scheduling

Workload: firefox

HCI literature classification

C
um

ul
at

iv
e

 d
is

tri
bu

tio
n

12

Results: Soft Real-Time Applications

Workload: h.265 encoder

Hardware-only
CASP

CASP-aware
OS scheduling

core 1

core 1

core 2

Deadline

task stalled

Migration
Deadline
missed

Deadline

met

time

time

1 sec 11%
overhead

Task CASP

Conclusions

  CASP: efficient, effective, practical

  Hardware-only CASP inadequate

  Visible performance impact

  Shown in real system

  CASP-aware OS scheduling

  Minimal performance impact

  Wide variety of workloads

  Shown in real system
13

Backup Slides

14

15

Hardware-only CASP Test Flow

Core N
normal

operation

Select a
core for

online self-
test

Core 4
resume

operation

Core N
normal

operation

Core 4
temporarily

isolated

Core N
normal

operation

Prepare
core for

online self-
test

Core 4
selected
for test

Core 4

under test

Core N
normal

operation

Thorough
testing &

diagnostics

Test Scheduling Pre-processing

Test Application Post-processing

Bring core
from online
self-test to

normal
operation

16

Test Scheduling

Test Flow with CASP-Aware OS Scheduling

Pre-processing

Test Application Post-processing

1. Informs OS
test begins by
interrupted

2. OS performs
scheduling
around tests

Informs OS test
completes by
interrupt

CASP-Aware OS Scheduling Starts

CASP-Aware OS
Scheduling Ends

17

  Migrate_all

  Migrate all tasks from test core to be tested

  Load_balance_with_self_test

  Workload balancing considering self-test

  Migrate_smart

  Migrate tasks based on cost-benefit analysis

Algorithms for Tasks in Run Queues

18

  Migrate_all

  Migrate all tasks from core-under-test

  Except for non-migratable tasks

  e.g., certain kernel threads

  Destination

  core that will be tested furthest in the future

Scheduling for Run Queues: Scheme 1

19

  Load_balance_with_self_test

  Online self-test modeled as highest priority task

  weight of workload ~90X of normal tasks

  Load balancer automatically migrates other tasks

  Bound load balance interval

  smaller than interval between two consecutive tests

  Adapt to the abrupt change in workload with test

Scheduling for Run Queues: Scheme 2

20

  Migrate_smart: migrate based on cost-benefit analysis

  Cost: wait time remaining + cache effects

  When test beings

  Migrate all tasks to idle core (if exists)

  During context switch for cores not under test

  Worthwhile to “pull” task from core(s) under test?

  Yes: migrate and run task from core under test

  No: don’t migrate

Scheduling for Run Queues: Scheme 3

21

  Task woken up: moved from wait queue to run queue

  Run queue selection required

  Follow original run queue selection

  If queue selected is not on a core under test

  O/W pick a core tested furthest in the future

  Quick response for interactive applications

  Used with all three run queue scheduling schemes

Scheduling for Wait Queues

22

  Separate scheduling class for real-time applications

  Higher priority than all non real-time apps

  More likely to meet real-time deadlines

  Migrate real-time tasks from core to be tested to

  core that has lower-priority tasks

 and

  core that will be tested furthest in the future

  Used with all three run queue scheduling schemes

Scheduling for Soft Real-Time Applications

23

CASP-Aware OS Scheduling Summary

core i

core tested
furthest in
time

All tasks migrated

core i

core with
fewest
workloads

Tasks migrated for
load balance

core i

core picked
by cost
analysis

Migrate tasks based
on cost analysis

Migrate all

Load balance with self-test

Migrate smart

Computation-Intensive Tasks
Interactive Tasks

Soft Real-Time (RT) Tasks

core tested
furthest in
time with no
RT tasks of
higher priority

Migrate

core i

time

CASP

core not
being
tested

Wake up

wait queue

24

  Computation-intensive (PARSEC)

  Tasks in run queues

  Interactive (vi, evince, firefox)

  Tasks in wait queues

  Soft real-time (h.264 encoder)

  x264 from PARSEC with RT scheduling policy

Workloads Evaluated

25

Results: 4-threaded PARSEC Applications

TP=10 sec, TL= 1 sec, 4 threads

 Hardware_only: significant performance impact

  Migrate_smart: best approach

  0.48% overhead on average; ~5% max

  Migrate_all: comparable results

-10%
10%
30%
50%
70% hardware_only migrate_all load_balance_with_self_test migrate_smart

26

Results: 8-threaded PARSEC Applications

TP=10 sec, TL= 1 sec, 8 threads

 hardware-only: significant performance impact

  Our schemes

  ~ 11% (i.e. TL/(TP-TL))

  Inevitable due to constraints in resources

-50%
0%

50%
100%
150%

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

fa
ce

si
m

fe
rr

et

flu
id

an
im

at
e

fre
qm

in
e

sw
ap

tio
ns

vi
ps

x2
64

ca
nn

ea
l

de
du

p

st
re

am
cl

us
te

r av
g

hardware_only migrate_all load_balance_with_self_test migrate_smart

27

Results: Interactive Applications
Workload: vi

0%

20%

40%

60%

80%

100%

> 200ms, <500ms < 200ms > 500ms
 No Effect UNACCEPTABLE %

28

Workload: evince

Results: Interactive Applications (2)

0%

20%

40%

60%

80%

100%

> 200ms, <500ms < 200ms > 500ms
 No Effect UNACCEPTABLE %

29

Results: Soft Real-Time Applications

TP=10 sec, TL= 1 sec
Configuration hardware-only Our schemes

Not fully loaded 11% for 7 apps. No penalty for 7 apps.
Fully loaded 11% for all 8 apps. 0% 7 higher-priority apps.

87% for low-priority app.

  8 single-threaded h.264 encoder

  7 high priority: real-time priority level 99

  1 low priority: real-time priority level 98

 hardware-only: deadlines missed

  Our schemes: Deadlines met

