LightTx:

A Lightweight Transactional Design in Flash-based SSDs to Support Flexible Transactions

Youyou Lu¹, Jiwu Shu¹, Jia Guo¹, Shuai Li¹, Onur Mutlu²

¹Tsinghua University ²Carnegie Mellon University

Data updated in a single operation should be performed atomically and durably, and this is called a transaction.

Software Transactions

High overhead:

Duplicated writes

Synchronization for ordering

Software

Flash pages are update in an out-of-place way, but this property is transparent from the software by the Flash Translation Layer (FTL) in SSDs.

Hardware Supported Transactions

Problem:

- ✓ How to support different isolations? (Flexible transaction requirement from software)
- ✓ How to cluster pages for each transaction?
 (Internal Parallelism of SSDs)

Software

Design Issues:

Flexibility: support tx with flexible requirements

Lightweight: low overhead on the device

Observations and Key Ideas:

Simultaneous updates can be written to different physical pages, and the FTL mapping table determines the ordering

=> (Flexibility) make commit protocol page-independent Transactions have birth and death, and the near-logged update way enables efficient tracking

=> (Lightweight) track recently updated flash blocks, and retire the dead transactions

Results:

20.6% throughput improvement (flexibility)
Stable garbage collection overhead
Fast recovery with negligible persistence overhead

Today 1:15pm

CSA-2: Memory Systems

LightTx:

A Lightweight Transactional Design in Flash-based SSDs to Support Flexible Transactions

Youyou Lu¹, Jiwu Shu¹, Jia Guo¹, Shuai Li¹, Onur Mutlu²

¹Tsinghua University ²Carnegie Mellon University

Carnegie Mellon