
Massively Parallel Mapping of Next Generation Sequence Reads Using GPUs
Azita Nouri, Reha Oguz Selvitopi, Ozcan Ozturk, Onur Mutlu, and Can Alkan

azita@bilkent.edu.tr, reha@bilkent.edu.tr, ozturk@cs.bilkent.edu.tr onur@cmu.edu, calkan@cs.bilkent.edu.tr

Categories and Subject Descriptions: Parallel Processing
Keywords: GPGPU programming, CUDA, read alignment

1. Introduction and Motivation
DNA sequence alignment problem can be broadly defined as the
character-level comparison of DNA sequences obtained from one
or more samples against a database of reference (i.e., consensus)
genome sequence of the same or a similar species. High throughput
sequencing (HTS) technologies were introduced in 2006 [6], and the
latest iterations of HTS technologies are able to read the genome of a
human individual in just three days for a cost of ∼ $1,000. However,
they also present a computational problem since the analysis of the
HTS data requires the comparison of >1 billion short (100 characters,
or base pairs) “reads” against a very long (3 billion base pairs)
reference genome. Since DNA molecules are composed of two
opposing strands (i.e. two complementary strings), the number of
required comparisons are doubled.

Instead of local alignment of short vs long sequences, heuris-
tics are applied to speed up the process. First, partial sequence
matches, called “seeds”, are quickly found using either Burrows
Wheeler Transform (BWT) [1] followed with Ferragina-Manzini In-
dex (FM) [2], or a simple hash table [8]. Next, the candidate locations
are verified using a dynamic programming alignment algorithm that
calculates Levenshtein edit distance [3], which runs in quadratic time.
Although these heuristics are substantially faster than local align-
ment, because of the repetitive nature of the human genome, they
often require hundreds of verification runs per read, imposing a heavy
computational burden. However, all of these billions of alignments
are independent from each other, thus the read mapping problem
presents itself as embarrassingly parallel.

Our goal in this project is to develop and implement a GPGPU-
friendly algorithm based on Levenshtein’s algorithm [3] that can com-
pute millions of dynamic programming matrices concurrently. We
implement our algorithms using the CUDA (Compute Unified Device
Architecture) platform, and test them using the NVIDIA Tesla K20
GPGPU processors. In this work, we propose a massively parallel,
fast, memory-aware Levenshtein edit distance algorithm model for
graphics processing units, together with Ukkonen’s approximation
algorithm [7] to prevent redundant calculations in matrices. Con-
sidering the memory limitations and very high number of available
threads, our algorithm ensures maximum occupancy on GPGPUs.

2. Background
Most of the available algorithms for read mapping are CPU-based,
and they require very long running times (30-100 CPU days per
genome). There are few works on read mapping algorithms that uti-
lize GPUs for parallelism, but they either have different approaches
for DNA alignment [4], and are limited in performance gains; or
they are developed for slightly different problems such as protein
alignment [5]. Some GPGPU-based aligners, such as CUSHAW [4],
utilize BWT-FM [1, 2], which is not suitable for GPGPUs, since the
core of the BWT-FM alignments is binary search that causes many
divergent branch operations. Even if BWT-FM is used only on the
CPU-side to find seed locations quickly instead of hash tables, this
often results in a non-uniform sequence length for the verification
step, which in turn causes non-uniform thread utilization and signif-
icant branch divergence. Thus, it will be better use hash tables to
identify short seeds, followed with millions of concurrent alignments
of the same size in GPGPUs that enable full thread synchronization.

3. Our Approach
Basically, our approach is to move the compute-intense but embar-
rassingly parallel verification step to the GPGPUs. We perform the
hash table lookups for seed location on the CPU in O(1) time per seed.
We collect the seeds in a buffer, which we then pass to the GPGPU
for millions of simultaneous alignments. The number of alignments
is automatically determined by considering the characteristics of the
GPGPU such as available shared memory, which has an effect on the

number of threads, blocks, grid and other variables in GPUs. The
number of threads used per alignment is adjusted dynamically based
on the maximum allowed error threshold set by the user.

There are several characteristics of our approach that makes our
new mapping mechanism beneficial in multiple ways. First, we map a
time-consuming application to massively parallel GPU architectures,
providing a significant speed-up that will dramatically decrease the
time required for DNA sequence analysis. Second, our approach
easily can be merged with any existing and future hash-table based
read mapping applications. Third, our algorithms can be used for
various configurations like different read sizes, reference genome
size and error allowance. This provides a high flexibility of pro-
cessing the outputs of different sequencing instruments since each
generates various read sizes and error probability. Fourth, we reduce
host to GPU transfer time significantly by placing all relevant data
to the GPU global memory in the initialization step. This helps us
eliminate the need to re-transfer the same reads for different seed lo-
cations, and reference genome segments for different reads. Fifth, we
also develop dynamic programming backtracking in GPU, bypassing
CPU-based postprocessing all together, except for I/O operations.
Finally, by making use of recent CUDA improvements such as dy-
namic parallelism and Hyper-Q technologies, we are able to re-use
early-termination threads and multiple GPUs on the same host more
effectively.

We integrated our approach with a popular hash-table based read
mapping algorithm, mrFAST [8]. Our initial test results indicate
∼300-400-fold speed up in the verification step of read mapping on
a single NVIDIA Tesla K20 GPGPU (Figure 1). When fully imple-
mented, we believe our methods will help substantially ameliorate the
computational burden of HTS data analysis, a much needed improve-
ment over current methods, especially in the light of the estimations
that 1 million human genomes will be sequenced by the end of 2016.1

Figure 1: Verification speedup vs. number of threads using 1 million reads under edit
distance 3.

References
[1] Michael Burrows and David J. Wheeler. A block sorting lossless data compression

algorithm. Technical report, Digital Equipment Corporation, 1994.
[2] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In

Proc. FOCS, pages 390–398, 2000.
[3] Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics Doklady, 10(8):707–710, 1966.
[4] Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. CUSHAW: a CUDA com-

patible short read aligner to large genomes based on the burrows-wheeler transform.
Bioinformatics, 28(14):1830–1837, Jul 2012.

[5] Svetlin A Manavski and Giorgio Valle. CUDA compatible GPU cards as efficient
hardware accelerators for smith-waterman sequence alignment. BMC Bioinformat-
ics, 9 Suppl 2:S10, 2008.

[6] Michael L. Metzker. Sequencing technologies - the next generation. Nat Rev Genet,
11(1):31–46, Jan 2010.

[7] Esko Ukkonen. On approximate string matching. In Proceedings of the Interna-
tional FCT-Conference on Fundamentals of Computation Theory, pages 487–495,
1983.

[8] Hongyi Xin, Donghyuk Lee, Farhad Hormozdiari, Samihan Yedkar, Onur Mutlu,
and Can Alkan. Accelerating read mapping with FastHASH. BMC Genomics, 14
Suppl 1:S13, 2013.

1http://www.economist.com/news/21631808-so-much-genetic-data-so-
many-uses-genes-unzipped

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

	Introduction and Motivation
	Background
	Our Approach

