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Abstract

Main memory is a major shared resource among cores in a multicore system. If the interference
between different applications’ memory requests is not controlled effectively, system performance can
degrade significantly. Previous work aimed to mitigate the problem of interference between applications
by changing the scheduling policy in the memory controller,i.e., by prioritizing memory requests from
applications in a way that benefits system performance.

In this paper, we first present an alternative approach to reducing inter-application interference in
the memory system:application-aware memory channel partitioning (MCP). The idea is to map the data
of applications that are likely to harmfully interfere witheach other to different memory channels. The
key principles are to partition the data of 1) light (memory non-intensive) and heavy (memory intensive)
applications, and of 2) applications with low and high row-buffer locality onto separate channels, re-
spectively. We show that by doing so, averaged over 240 workloads on a 24-core system with 4 memory
channels, MCP improves system throughput by 7.1% over an application-unaware memory scheduler
and by 1% over the best previous scheduler, while avoiding modifications to existing memory schedulers.

Second, we observe that interference can be even further reduced with a combination of MCP and
memory scheduling, which we callintegrated memory partitioning and scheduling (IMPS). The key idea
is to 1) always prioritize very light applications in the memory scheduler since such applications cause
negligible interference to others, 2) use memory channel partitioning to reduce interference between
the remaining applications. Extensive evaluations on a variety of multi-programmed workloads and
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system configurations show that this integrated memory partitioning and scheduling approach provides
better system performance than MCP and four previous memoryscheduling algorithms employed alone.
Averaged over 240 workloads on a 24-core system with 4 memorychannels, IMPS improves system
throughput by 11.1% over an application unaware scheduler and 5% over the current best scheduling
policy, while incurring much lower hardware complexity than the latter.

1. Introduction

Applications executing concurrently on a multicore chip contend with each other to access main mem-
ory, which has limited bandwidth. If the limited memory bandwidth is not managed well, different ap-
plications can harmfully interfere with each other, which can result in significant degradation in both
system performance and individual application performance [10, 11, 15, 16, 17, 19]. Several techniques
to improve system performance by reducing memory interference among applications have been pro-
posed [10, 11, 15, 16, 17, 19, 21]. Fundamentally, these proposals viewed the problem as a memory
access scheduling problem, and consequently focused on developing new memory request scheduling
policies that prioritize the requests of different applications in a way that reduces inter-application in-
terference. However, such application-aware scheduling algorithms require (non-negligible) changes to
the existing memory controllers’ scheduling logic [11, 28].

In this paper, we present and explore a fundamentally-different alternative approach to reducing inter-
application interference in the memory system: controlling the mapping of applications’ data to memory
channels. Our approach is based on the observation that multicore systems have multiple main mem-
ory channels [2, 4, 10] each of which controls a disjoint portion of physical memory and can be ac-
cessed independently without any interference [10]. This reveals an interesting trade-off. On the one
hand, interference between applications could (theoretically) be completely eliminated if each applica-
tion’s accesses were mapped to a different channel, assuming there were enough channels in the system.
But, on the other hand, even if so many channels were available, mapping each application to its own
channel would under utilize memory bandwidth and capacity (some applications may need less band-
width/capacity than they are assigned, while others need more) and would reduce the opportunity for
bank/channel-level parallelism within each application’s memory access stream. Therefore, the main
idea of our approach is to find a sweet spot in this trade-off bymapping the data (i.e., memory pages) of
applications that are likely to cause significant interference/slowdown to each other to different memory
channels.

We make two major contributions. First, we explore the potential of reducing inter-application mem-
ory interference purely with channel partitioning, without modifying the memory scheduler. To this end,
we develop a newApplication-Aware Memory Channel Partitioning (MCP) algorithm that assigns
preferred memory channels to different applications. The goal is to assign any two applications whose
mutual interference would cause significant slowdowns, to different channels. Our algorithm operates
using a set of heuristics which are guided by insight about how applications with different memory
access characteristics interfere with each other. Specifically, we show in Sec3 that, whenever possi-
ble, applications of largely divergent memory-intensity or row-buffer-hit rate should be separated onto
different channels.

Second, we show that MCP and traditional memory scheduling approaches are orthogonal in the sense
that both concepts can beneficially be applied together. Specifically, whereas our MCP algorithm is
agnostic to the memory scheduler (i.e., we assume an unmodified, commonly used row-hit-first memory
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scheduler [22, 30]), we show that additional gains are possible when using MCPin combination with a
minimal-complexity application-aware memory schedulingpolicy. We develop anIntegrated Memory
Partitioning and Scheduling (IMPS) algorithm that seamlessly divides the work of reducing inter-
application interference between the memory scheduler andthe system software’s page mapper based
on what each can do best.

The key insight underlying the design of IMPS is that interference suffered by very low memory-
intensity applications is more easily mitigated by prioritizing them in the memory scheduler, than with
channel partitioning. Since such applications seldom generate requests, prioritizing their requests does
not cause significant interference to other applications, as previous work has also observed [10, 11].
Furthermore, explicitly allocating one or more channels for such applications can result in a waste of
bandwidth. Therefore, IMPS prioritizes requests from suchapplications in the memory scheduler, with-
out assigning them dedicated channels, while reducing interference between all other applications using
channel partitioning.
Overview of Results:We evaluate MCP and IMPS on a wide variety of multi-programmed applications

and systems and in comparison to a variety of pure memory scheduling algorithms. Our first main
finding is that on a 24-core 4-memory controller system with an existing application-unaware memory
scheduler, MCP provides slightly higher performance benefits than the best previous memory scheduling
algorithm, Thread Cluster Memory Scheduling (TCM) [11]: 7.1% performance improvement vs. 6.1%
for TCM. This performance improvement is achieved with no modification to the underlying scheduling
policy. Furthermore, we find that IMPS provides better system performance than current state-of-the-art
memory scheduling policies, pure MCP, as well as combinations of MCP and state-of-the-art scheduling
policies: 5% over the best scheduler, while requiring smaller hardware complexity.

Our main conclusion is thatthe task of reducing harmful inter-application memory interference should
be divided between the memory scheduler and the system software page mapper. Only the respective
contributions of both entities yields the best system performance.

2. Background

We present a brief background about the DRAM main memory system; more details can be found in
[6, 16, 22]. A modern main memory system consists of several channels.Each channel can be accessed
independently, i.e., accesses to different channels can proceed in parallel. A channel, in turn, is organized
as several banks. These banks can be accessed in parallel; however, the data and address buses are shared
among the banks, and data from only one bank can be sent through the channel at any time.

Each DRAM bank has a 2D structure consisting of rows and columns. A column is the smallest
addressable unit of memory, and a large number of columns make up a row. When a unit of data has to
be accessed from a bank, the row containing the data is brought into a small internal buffer called the
row buffer. If subsequent memory access requests are to the same row, they can be serviced faster (2-3
times) than accessing a new row. This is called a row-hit. In order to improve DRAM data throughput,
modern memory controller scheduling algorithms prioritize row-hits over row-misses.
Memory Request Scheduling Policy.FR-FCFS [22, 30] is a commonly used scheduling policy in cur-
rent commodity systems. It prioritizes row-hits over row-misses, and within each category, it prioritizes
older requests. The analyses in this paper assume the FR-FCFS scheduling policy, but our insights are
applicable to other scheduling policies as well. Sec7 describes other memory scheduling policies and
Sec8 qualitatively and quantitatively compares our approach tothem.
OS Page Mapping Policy. The Operating System (OS) maps a virtual address to a physical address.
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The address interleaving policy implemented in the memory controller in turn maps the physical address
to a specific channel/bank in the main memory. Row interleaving and cache line interleaving are two
commonly used interleaving policies. In the row interleaving policy, consecutive rows of memory are
mapped to consecutive memory channels. We assume equal sizes for OS pages and DRAM rows in
this work and use the terms page and row interchangeably without loss of generality.1 Pure cache line
interleaving maps consecutive cache lines in physical address space to consecutive memory channels.
MCP cannot be applied on top of this, as a page has to stay within a channel for MCP. However, we can
potentially apply MCP on top of a restricted version of cacheline interleaving that maps consecutive
cache lines of a page to banks within a channel.

Commonly used OS page mapping and address interleaving policies are application-unaware and map
applications’ pages across different channels. The OS doesnot consider inter-application interference
and channel information while mapping a virtual page to a physical page. It simply uses the next physical
page to allocate/replace based on recency of use. We build our discussions, insights and mechanisms
assuming such an interference-unaware OS page mapping policy and a row interleaved address mapping
policy. However, we also evaluate MCP on top of cache line interleaving across banks in Sec9.4.
Memory Related Application Characteristics. We characterize memory access behavior of applica-
tions using two attributes.Memory Access Intensityis defined as the rate at which an application misses
in the last level on-chip cache and accesses memory – calculated asMisses per Kilo Instructions(MPKI).
Row Buffer Localityis defined as the fraction of an application’s accesses that hit in the row buffer (i.e.,
access to an open row). This is calculated as the averageRow-Buffer Hit Rate(RBH) across all banks.

3. Motivation

In this section, we motivate our partitioning approach by showing how applications with certain char-
acteristics cause more interference to other applications, and how careful mapping of application pages
to memory channels can ameliorate this problem.
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Figure 1. Conceptual example showing benefits of mapping data of low and high memory-intensity applications
to separate channels.

In Figure1, we present a conceptual example showing the performance benefits of mapping the pages
of applications with largely different memory-intensities to separate channels. ApplicationA on Core 0
has high memory-intensity, generating memory requests at ahigh rate; ApplicationB on Core 1 has low
memory-intensity and generates requests at a much lower rate. Figures1(a)and1(b)show characteristic
examples of what can happen with conventional page mapping (where the pages ofA andB are mapped
to the same channels) and with application-aware channel partitioning (whereA andB’s pages are
mapped to separate channels), respectively. In the first case,B’s single request is queued up behind 3 of

1Our mechanism works as long as the row size is greater than theOS page size, as is the case in typical systems.
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A’s requests in a bank of Channel 0 (see Fig1(a)). As a result, ApplicationB stalls for a long period of
time (4 DRAM bank access latencies, in this example) until the 3 previously scheduled requests fromA
to the same bank get serviced. In contrast, if the two applications’ data are mapped to separate channels
as shown in Figure1(b), B’s request is not queued and can be serviced immediately, leading toB’s
fast progress (1 access latency vs 4 access latencies). Furthermore, even ApplicationA’s access latency
improves (4 vs. 5 time units) because the interference caused to it byB’s single request is eliminated.
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Figure 2. Application slowdowns
due to interference between high and
low memory-intensity applications.

To determine to what extent such effects occur in practice, we
ran a large number of simulation experiments2 with applications
of vastly different memory-intensities and present a representative
result: We run four copies each ofmilc andh264(from the SPEC
CPU2006 suite [1]) on an eight-core, two-channel system. Fig-
ure2 shows the effects of conventional channel sharing:h264, the
application with lower memory-intensity, is slowed down by2.7x
when sharing memory channels withmilc. On the other hand, if
milc’s andh264’s data are partitioned and mapped to Channels 0
and 1, respectively,h264’s slowdown reduces to 1.5x. Further-
more,milc’s slowdown also drops from 2.3x to 2.1x, as its queue-
ing delays reduce due to reduced interference fromh264. This substantiates our intuition from the ex-
ample:Separating the data of low memory-intensity applications from that of the high memory-intensity
applications can largely improve the performance of both the low memory-intensity applications and the
overall system.

Memory-intensity is not the only characteristic that determines the relative harmfulness of applica-
tions. In Figure3, we show potential benefits of mapping memory-intensive applications with signifi-
cantly different row-buffer localities onto separate channels. In the example, ApplicationA accesses the
same row, Row 5, repeatedly and hence has much higher row-buffer locality than ApplicationB, whose
accesses are to different rows, incurring many row misses.
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Figure 3. Conceptual example showing benefits of mapping data of low and high row-buffer hit rate memory-
intensive applications to separate channels. In both (a) and (b), the top part shows the request arrival order and the
bottom part shows the order in which the requests are serviced.

2Our simulation methodology is described in Sec8.
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Figure3(a)shows a conventional page mapping approach, while Figure3(b) shows a channel parti-
tioning approach. With conventional mapping, the commonlyused row-hit-first memory scheduling
policy prioritizesA’s requests overB’s requests to Rows 7 and 3, even thoughB’s requests had arrived
earlier (Figure3(a)). This leads to increased queueing delays ofB’s requests causingB to slow down.
On the other hand, if the pages ofA andB are mapped to separate channels (Figure3(b)), the inter-
ference received byB is reduced and consequently the queueing delays experienced by B’s requests
reduced (by 2 time units). This improves ApplicationB’s performance without affecting Application
A’s.
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Figure 4. Application slowdowns
due to interference between high
and low row-buffer hit rate memory-
intensive applications.

A representative case study from among our experiments is
shown in Figure4. We ran four copies each ofmcf and libquan-
tum, two memory-intensive applications on an eight-core two-
channel system.Mcf has a low row-buffer hit rate of 42% and
suffers a slow down of 20.7x when sharing memory channels with
libquantum, which is a streaming application with 99% row-buffer
hit rate. On the other hand, if the data ofmcf is isolated from
libquantum’s data and given a separate channel, mcf’s slowdown
drops significantly, to 6.5x from 20.7x.Libquantum’s small per-
formance loss of 4% shows the trade-off involved in channel par-
titioning: The drop is due to the loss in bank-level parallelism
resulting from assigning only one channel to libquantum. Interms
of system performance, however, this drop is far outweighedby
the reduction in slowdown ofmcf. We therefore conclude thatisolating applications with low row-buffer
locality from applications with high row-buffer locality by means of channel partitioning improves the
performance of applications with low row-buffer locality and the overall system.

Based on these insights, we next develop MCP, an OS-level mechanism to partition the main memory
bandwidth across the different applications running on a system. Then, we examine how to best combine
memory partitioning and scheduling to minimize inter-application interference and obtain better system
performance.

4. Memory Channel Partitioning Mechanism (MCP)

Our MCP mechanism consists of three components: 1) profilingof application behavior during run
time, 2) assignment of preferred channels to applications,3) allocation of pages to the preferred chan-
nel. The mechanism proceeds in periodic intervals. During each interval, application behavior is profiled
(Sec4.1). At the end of an interval, the applications are categorized into groups based on the charac-
teristics collected during the interval, and each application is accordingly assigned apreferred channel
(Sec4.2). In the subsequent interval, these preferred channel assignments are applied. That is, when
an application accesses a new page that is either not currently in DRAM or not in the application’s pre-
ferred channel, MCP uses thepreferred channel assignmentfor that application: The requested page is
allocated in the preferred channel, or migrated to the preferred channel (see Sec4.3).

In summary, during theXth interval, MCP applies the preferred channel assignment which was com-
puted at the end of the (X−1)st interval, and also collects statistics, which will thenbe used to compute
the new preferred channel assignment to be applied during the (X + 1)st execution interval.3 Note that

3The very first interval is used for profiling only. We envisionit to be shorter than the subsequent execution intervals,
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MCP does not constrain the memory usage of applications. It provides a preferred channel assignment
in order to reduce interference. Therefore, applications can use the entire DRAM capacity, if needed.

4.1. Profiling of Application Characteristics

As shown in Sec3, memory access intensity and row-buffer locality are key factors determining the
level of harm caused by interference between applications.Therefore, during every execution interval,
each application’s Misses Per Kilo Instruction (MPKI) and Row-Buffer Hit Rate (RBH) statistics are
collected. To compute an application’s inherent row-buffer hit rate, we use a per-core shadow row-
buffer index for each bank, as in previous work [8, 11, 16], which keeps track of the row that would have
been present in the row-buffer had the application been running alone.

4.2. Preferred Channel Assignment

At the end of every execution interval, each application is assigned a preferred channel. The assign-
ment algorithm is based on the insights derived in Sec3. The goal is to separate as much as possible 1)
the data of low memory-intensity applications from that of high memory-intensity applications, and, 2)
among the memory-intensive applications, the data of low row-buffer locality applications from that of
high row-buffer locality applications. To do so, MCP executes the following steps in order:
1. Categorize applications into low and high memory-intensity groups based on their MPKI. (Sec4.2.1)
2. Further categorize the high memory-intensity applications, based on their row-buffer hit rate (RBH)
values into low and high row-buffer hit rate groups. (Sec4.2.2)
3. Partition the available memory channels among the three application groups. (Sec4.2.3)
4. For each application group, partition the set of channels allocated to this group between all the
applications in that group, and assign a preferred channel to each application. (Sec4.3)

4.2.1 Intensity Based Grouping

   Low Row               High Row    
Buffer Locality       Buffer Locality

MPKI > MPKI

 High Intensity  Low  Intensity

No Yes

No Yes

RBH > RBHt

t

Figure 5. MCP: Application
Grouping.

MCP categorizes applications into low and high memory-intensity
groups based on a threshold parameter,MPKIt. MPKIt is deter-
mined by averaging the last level cache MPKI of all applications and
multiplying it by a scaling factor. For every applicationi, if its MPKI,
MPKIi is less thanMPKIt, the application is categorized as low
memory-intensity, else high memory-intensity. The average value of
MPKI provides a threshold that adapts to the workload’s memory in-
tensity and acts as a separation point in the middle of the workload’s
memory-intensity range. The scaling factor further helps to move this
point up or down the range, regulating the number of applications in
the low memory-intensity group. We empirically found that ascaling
factor of 1 provides an effective separation point and good system
performance (Sec9).

and its length is a trade off between minimizing the number ofpages that get allocated before the first set of channel prefer-
ences are established and letting the application’s memoryaccess behavior stabilize before collecting statistics. (Empirical
evaluation in Sec9.6)
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4.2.2 Row-Buffer Locality Based Grouping

MCP further classifies the high memory-intensity applications into either low or high row-buffer locality
groups based on a threshold parameter,RBHt. For every applicationi, if its RBHi is less thanRBHt,
then it is classified as a low row-buffer locality application. In this case, we do not take an average or use
a scaling factor, as we observe that inter-application interference due to row-buffer locality differences
are more pronounced between applications with very low and high row-buffer localities, unlike memory-
intensity where there is interference across the continuum. We empirically observe that anRBHt value
of 50% provides effective interference reduction and good performance (Sec9).

4.2.3 Partitioning of Channels between Application Groups

After thus categorizing applications into 3 groups, MCP partitions the available memory channels be-
tween the groups. It is important to note that at this stage ofthe algorithm, memory channels are assigned
to application groups andnot to individual applications. MCP handles the preferred channel assignment
to individual applications in the next step (Sec4.2.4). Channels are first partitioned between low and
high memory-intensity groups. The main question is how manychannels should be assigned to each
group. One possibility is to allocate channels proportional to the total bandwidth demand (sum of appli-
cations’ MPKI) of each group (bandwidth proportional allocation). This amounts to balancing the total
bandwidth demand across channels. Alternatively, channels could be allocated proportional to the num-
ber of applications in that group (application count proportional allocation). In the former case, the low
memory-intensity applications which constitute a very lowproportion of total bandwidth demand might
be assigned no channels. This fails to achieve their isolation from high memory-intensity applications,
leading to low system performance. In contrast, if the latter is used, it results in bandwidth wastage as the
low memory-intensity applications seldom generate requests and the bandwidth of the channels they are
assigned to would have been better utilized by the high memory-intensity applications. We found that the
isolation benefits of application-count-proportional allocation outweighs the bandwidth wastage caused
by potentially allocating low-intensity applications to one or more channels.4 Therefore, we use the ap-
plication count proportional channel allocation strategyfor MCP. However, bandwidth wastage caused
by potentially allocating very low intensity applicationsdedicated channels remains, and we will show
that eliminating this wastage by handling these applications in the scheduler in an integrated scheduling
and partitioning mechanism is beneficial (Sec5). The channels allocated to the high memory-intensity
group are further partitioned between the low and high row-buffer locality groups. The applications in
the high memory-intensity group are bandwidth sensitive, meaning they each need a fair share of band-
width to make progress. To ensure this, MCP assigns a number of channels to each of these two groups
proportionally to the bandwidth demand (sum of MPKIs) of thegroup.

4.2.4 Preferred Channel Assignment within an Application Group

As a final step, MCP determines which applications within a group are mapped to which channels,
when more than one channel is allocated to a group. Within each group, we balance the total band-
width demand across the allocated channels. For each group,we maintain a ranking of applications by
memory-intensity. We start with the least intensive application in the group and map applications to

4We found that bandwidth proportional allocation results ina 4% performance loss over the baseline since it increases
memory interference.
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the group’s first allocated channel until the bandwidth demand allocated to it (approximated by sum of
MPKIi of every applicationi allocated to it) isSum of MPKIs of applications in the group

Number of channels allocated to the group. We then move on to the
next channel and allocate applications to it. This is repeated for every application group. At the end of
this procedure, each application is assigned apreferred channel.

4.3. Allocation of Pages to Preferred Channel

Once each application is assigned a preferred channel, MCP allocates a page to the preferred channel
in case it is not already there. There are two possibilities.First, a page fault: the accessed page is not
present in any channel. In this case, the page fault handler attempts to allocate the page in the preferred
channel. If there is a free page in the preferred channel, thenew page is allocated there. Otherwise, a
modified version of the CLOCK replacement policy, as described in [7] is used. The baseline CLOCK
policy keeps a circular list of pages in memory, with the hand(iterator) pointing to the oldest allocated
page in the list. There is a Referenced (R) bit for each page, that is set to ’1’ when the page is referenced.
The R bits of all pages are cleared periodically by the operating system. When a page fault occurs and
there are no free pages, the hand moves over the circular listuntil an unreferenced page (a page with R
bit set to ’0’) is found. The goal is to choose the first unreferenced page as the replacement. To allocate
a page in the preferred channel, the modified CLOCK algorithmlooks ahead N pages beyond the first
replacement candidate to potentially find an unreferenced page in the preferred channel. If there is no
unreferenced page within N, the first unreferenced page in the list across all channels is chosen as the
replacement candidate. We use an N value of 512.

Second, the accessed page is present in a channel other than the preferred channel, which we observe
to be very rare in our workloads, since application behavioris relatively constant within an interval.
In this case, dynamically migrating the page to the preferred channel could be beneficial. However,
dynamic page migration incurs TLB and cache block invalidation overheads as discussed in [3]. We
find that less than 12% of pages in all our workloads go to non-preferred channels and hence migration
does not gain much performance over allowing some pages of anapplication to potentially remain in the
non-preferred channels. Thus, our default implementationof MCP does not do migrations. However, if
needed, migration can of course be seamlessly incorporatedinto MCP and IMPS.

5. Integrated Memory Partitioning and Scheduling (IMPS)

MCP aims to solve the inter-application memory interference problem entirely with the system soft-
ware’s page mapper (with the support of additional hardwarecounters to collect MPKI and RBH metrics
for each application). It does not require any changes to thememory scheduling policy. This approach
is in stark contrast to the various existing proposals, which try to solve the problem “from the opposite
side”. These proposals aim to reduce memory interference entirely in the memory controller hardware
using sophisticated scheduling policies (e.g., [10, 11, 16, 17]) The question is whether either extreme
alone (i.e., page mapping alone and memory scheduling alone) can really provide the best possible
interference reduction. Based on our observations, the answer is negative. Specifically, we devise an in-
tegrated memory partitioning and scheduling (IMPS) mechanism that aims to combine the interference
reduction benefits of both.

The key observation underlying IMPS is that applications with very low memory-intensity, when pri-
oritized over other applications in the memory scheduler, do not cause significant slowdowns to other
applications. This observation was also made in previous work [10, 11]. These applications seldom
generate memory requests; prioritizing these requests enables the applications to quickly continue with



SAFARI Technical Report No. 2011-002 (June 3, 2011)

long computation periods and utilize their cores better, thereby significantly improving system through-
put [10, 11]. As such, scheduling can very efficiently reduce interference that affects very low memory-
intensity applications. In contrast, reducing the interference against such applications purely using the
page mapper is inefficient. The mapper would have to dedicateone or more channels to such low-
memory-intensity applications, wasting memory bandwidth, since these applications do not require sig-
nificant memory bandwidth (yet high-intensity applications would likely need the wasted bandwidth, but
cannot use it). If the mapper cannot dedicate a channel to such applications, they would share channels
with high-intensity applications and experience high interference with an unmodified memory scheduler.

The basic idea and operation of IMPS is therefore simple. First, identify at the end of an execution
interval very low memory-intensity applications (i.e., applications whose MPKI is smaller than a very
low threshold, 1.5 in most of our experiments (Sec9.6)), prioritize them in the memory scheduler over
all other applications in the next interval, and allow the mapping of the pages of such applications to
any memory channel. Second, reduce interference between all other applications by using memory
channel partitioning (MCP), exactly as described in Sec4. The modification to the memory scheduler is
minimal: the scheduler only distinguishes the requests of very low memory-intensity applications over
those of others, but does not distinguish between requests of individual applications in either group.
The memory scheduling policy consists of three prioritization rules: 1) prioritize requests of very low
memory-intensity applications, 2) prioritize row-hit-first requests, 3) prioritize older requests.

Note that MCP is still used to classify the remaining applications as low and high memory-intensity, as
only the very low memory-intensity applications are filtered out and prioritized in the scheduler. MCP’s
channel partitioning still reduces interference and consequent slowdowns of the remaining applications.

6. Implementation

Hardware support. MCP requires hardware support to estimate MPKI and row-buffer hit rate of
each application, as described in Sec4.1. These counters are readable by the system software via special
instructions. Table1 shows the storage cost incurred for this purpose. For a 24-core system with 4 mem-
ory controllers (each controlling 4 memory banks and 16384 rows per bank), the hardware overhead is
12K bits. IMPS requires an additional bit per each request (called low-intensity bit) to distinguish very
low-memory-intensity applications’ requests over others, which is an additional overhead of only 512
bits for a request queue size of 128 per MC. IMPS also requiressmall modifications to the memory
scheduler to take into account thelow-intensity bitsin prioritization decisions. Note that, unlike pre-
vious application-aware memory request scheduling policies, IMPS (or MCP) 1) does not require each
main memory request to be tagged with a thread/application ID since it does not distinguish between
individual applications’ requests, 2) adds only a single new bit per request for the memory scheduler to
consider, 3) does not require application ranking as in [10, 11, 17] – ranking and prioritization require
hardware logic for sorting and performing comparisons. As such, the complexity of IMPS is much lower
than previous application-aware memory scheduling policies.

System software support.MCP and IMPS require support from system software to 1) read the coun-
ters provided by the hardware, 2) perform the preferred channel assignment, at the end of each execution
interval, as already described. Each application’s preferred channel is stored as part of the system soft-
ware’s data structures, leading to a very modest memory overhead ofNAppsInSystem ×NMemoryChannels.
The page fault handler and the page replacement policy are modified slightly, as described in Sec4.3.
Our experiments show that the execution time overheads of the required tasks are negligible. Note that
our proposed mechanisms do not require changes to the page table.



SAFARI Technical Report No. 2011-002 (June 3, 2011)

Storage Description Size

Storage Overhead for MCP - per-core registers
MPKI-counter A cores last level cache misses per kilo instruction Ncore × log2MPKImax = 240

Storage Overhead for MCP - per-core registers in each controller
Shadow row-buffers Row address of a core’s last accessed row Ncore ×Nbanks × log2Nrows = 1344

Shadow row-buffer hit counters Number of row-hits if the application were running alone Ncore ×Nbanks × log2Countmax = 1536

Additional Storage Overhead for IMPS - per request register in each controller
Very low memory-intensity indicator To identify requests from very low memory-intensity applications 1×Queuemax = 128

Table 1. Hardware storage required for MCP and IMPS

7. Related Work and Qualitative Comparisons to Previous Work

To our knowledge, this paper is the first to propose and explore memory page mapping mechanisms as
a solution to mitigate inter-application memory interference and thereby improve system performance.

Memory Scheduling. The problem of mitigating interference has been extensively addressed using
application-aware memory request scheduling. We briefly describe the two approaches we compare
our mechanisms to in Section9. ATLAS [10] is a memory scheduling algorithm that improves system
throughput by prioritizing applications based on their attained memory service. Applications that have
smaller attained memory service are prioritized over others because such threads are more likely to return
to long compute periods and keep their cores utilized. Thread cluster memory scheduling (TCM) [11]
improves both system performance and fairness. System performance is improved by allocating a share
of the main memory bandwidth for latency-sensitive applications. Fairness is achieved by shuffling
scheduling priorities of memory-intensive applications at regular intervals to prevent starvation of any
application. These works and other application-aware memory scheduler works [15, 16, 17, 19, 21]
attempt to reduce inter-application memory interference purely through memory scheduling. As a re-
sult, they require significant modifications to the memory controller’s design. In contrast, we propose 1)
an alternative approach to reduce memory interference which does not require changes to the schedul-
ing algorithm when employed alone, 2) combining our channelpartitioning mechanism with memory
scheduling to gain better performance than either can achieve alone. Our quantitative comparisons in
Section9 show that our proposed mechanisms perform better than the current state-of-the-art scheduling
policies, with no change or minimal changes to the memory scheduling algorithm.

Application-unaware memory schedulers [9, 18, 22, 30], including the commonly-employed FR-
FCFS policy [22, 30], aim to maximize DRAM throughput, and therefore, lead to low system per-
formance in multi-core systems, as shown in previous work [10, 11, 15, 16, 17, 19].

OS Thread Scheduling. Zhuravlev et al. [29] aims to mitigate shared resource contention between
threads by co-scheduling threads that interact well with each other on cores sharing the resource, similar
to [23]. Such solutions require enough threads with symbiotic characteristics to exist in the OS’s thread
scheduling pool. In contrast, our proposal can reduce memory interference even if threads that interfere
significantly with each other are co-scheduled in differentcores and can be combined with co-scheduling
proposals to further improve system performance.

Page Allocation. Page allocation mechanisms have been explored previously.Awasthi et al. [3] use
page allocation/migration to balance load across memory controllers (MCs) in an application-unaware
manner, to improve memory bandwidth utilization and systemperformance in a network-on-chip based
system where a core has different distances to different memory channels. Our proposal, in compar-
ison, performs page allocation in an application-aware manner with the aim of reducing interference
between different applications. We compare our approach toan adaptation of [3] to crossbar-based
multicore systems where all memory controllers are equidistant to any core (in Section9.3) and show
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that application-aware channel partitioning leads to better system performance than balancing load in
MCs. However, concepts from both approaches can be combinedfor further performance benefits. In
NUMA-based multiprocessor systems with local and remote memories, page allocation mechanisms
were used to place data close to corresponding computation node [5, 26]. Our goal is completely dif-
ferent: to map data to different channels to mitigate interference between different applications. In fact,
our schemes do not require the system to have non-uniform access characteristics to MCs.

Sudan et al. [24] propose to colocate frequently used chunks of data into rows, thereby improving
row-buffer locality, by modifying OS page mapping mechanisms. Lebeck et al. and Hur et al. [9,
12] propose page allocation mechanisms to increase idleness and thus decrease energy consumption in
DRAM ranks/banks. Phadke et al. [20] propose a heterogeneous memory system where each memory
channel is optimized for latency, bandwidth, or power and propose page mapping mechanisms to map
appropriate applications’ data to appropriate channels toimprove performance and energy efficiency.
None of these works consider using page allocation to reduceinter-application memory interference,
and therefore they can be potentially combined with our proposal to achieve multiple different goals.

8. Evaluation Methodology

Simulation Setup. MCP requires the MPKI and RBH values to be collected for each application.
These per-application hardware counters, though easy to implement, are not present in existing systems.
Also, our evaluation requires different system configurations with varying architectural parameters and
comparison to new scheduling algorithms. For these reasons, we are unable to evaluate MCP on a real
system and use an in-house cycle-level x86 multi-core simulator. The front end of the simulator is based
on Pin [13]. This simulator models the memory subsystem of a CMP in detail. It enforces channel, rank,
bank, port and bus conflicts, thereby capturing all the bandwidth limitations and modeling both channel
and bank-level parallelism accurately. The memory model isbased on DDR2 timing parameters [14],
verified using DRAMSim [27]. We model the execution in a core, including the instruction-window.
Unless mentioned otherwise, we model a 24-core system with 4memory channels/controllers. Table2
shows major processor and memory parameters.

Processor Pipeline 128-entry instruction window (64-entry issue queue, 64-entry store queue), 12-stage pipeline
Fetch/Exec/Commit Width 3 instructions per cycle in each core; 1 can be a memory operation
L1 Caches 32 K-byte per-core, 4-way set associative, 32-byte block size, 2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 32-byte block size, 12-cycle latency
DRAM controller (on-chip) 128-entry request buffer, 64-entry write buffer, reads prioritized over writes, row interleaving
DRAM chip parameters DDR2-800 timing parameters,tCL=15ns,tRCD=15ns,tRP =15ns, BL/2=10ns, 8 banks, 4K row-buffer
DIMM Configuration Single-rank, 8 DRAM chips put together on a DIMM to provide a 64-bit wide memory channel
Round-trip L2 miss latency For a 32-byte cache line

uncontended: row-buffer hit: 40ns (200 cycles), closed: 60ns (300 cycles), conflict: 80ns (400 cycles)
Cores and DRAM controllers 24 cores, 4 independent DRAM controllers, each controllinga single memory channel

Table 2. Default processor and memory subsystem configuration.

Evaluation Metrics. We measure the overall throughput of the system usingweighted speedup[23].
We also reportharmonic speedup, which is a combined measure of performance and fairness.

SystemThroughput = WeightedSpeedup = Σi
IPCshared

i

IPCalone
i

;

HarmonicSpeedup = Σi
N

IPCalone
i

IPCshared
i

.

Our normalized results are normalized to the FR-FCFS baseline, unless stated otherwise.
Workloads. We use workloads constructed from the SPEC CPU2006 benchmarks [1] in our evaluations.
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We compiled the benchmarks using gcc with the O3 optimization flag. Table3 shows benchmarks’ char-
acteristics. We classify benchmarks into two categories: high memory-intensity (greater than 10 MPKI)
and low memory-intensity (less than 10 MPKI). We vary the fraction of high memory-intensity bench-
marks in our workloads from 0%, 25%, 50%, 75%, 100% and construct 40 workloads in each category.
Within each memory-intensity category, we vary the fraction of high row-buffer hit rate benchmarks in
a workload from low to high. We also create another category,V eryLow(V L) of 40 workloads. All
benchmarks in these workloads have less than 1 MPKI. We consider V L for completeness, although
these workloads have little bandwidth demand. For our main evaluations and some analyses, we use all
240 workloads and run each workload for 300M cycles. For sensitivity studies, we use the 40 balanced
(50% memory-intensive) workloads, unless otherwise mentioned, and run for 100M cycles to reduce
simulation time.

No. Benchmark MPKI RBH No. Benchmark MPKI RBH No. Benchmark MPKI RBH

1 453.povray 0.03 85.2% 10 445.gobmk 0.6 71% 19 482.sphinx3 24.9 85.4%
2 400.perlbench 0.13 83.6% 11 435.gromacs 0.7 84.4% 20 459.GemsFDTD 25.3 28.8%
3 465.tonto 0.16 91% 12 464.h264 2.7 92.3% 21 433.milc 34.3 93.2%
4 454.calculix 0.20 87.2% 13 401.bzip2 3.9 53.8% 22 470.lbm 43.5 95.2%
5 444.namd 0.3 95.4% 14 456.hmmer 5.7 35.5% 23 462.libquantum 50 99.2%
6 481.wrf 0.3 91.9% 15 473.astar 9.2 76.2% 24 450.soplex 50.1 91.3%
7 403.gcc 0.4 73.2% 16 436.cactusADM 9.4 18% 25 437.leslie3d 59 82.6%
8 458.sjeng 0.4 11.5% 17 471.omnetpp 21.6 46% 26 429.mcf 99.8 42.9%
9 447.dealIII 0.5 81.2% 18 483.xalancbmk 23.9 73.2%

Table 3. SPEC CPU2006 benchmark characteristics.

Parameter Values.The default MPKI scaling factor andRBHt values we use in our experiments are
1 and 50% respectively. For theprofile intervalandexecution interval, we use values of 10 million and
100 million, respectively. We later study sensitivity to all these parameters.

9. Results
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Figure 6. MCP and IMPS per-
formance (normalized) across 240
workloads.

We first present and analyze the performance of MCP and IMPS
on a 24-core 4-memory controller system. Figure6 shows the
system throughput and harmonic speedup averaged over all 240
workloads. The upper right part of the graph corresponds to bet-
ter system throughput and a better balance between fairnessand
performance. MCP improves system throughput by 7.1% and har-
monic speedup by 11% over the baseline. IMPS provides 4%
better system throughput (13% better harmonic speedup) over
MCP, and 11% better system throughput (24% better harmonic
speedup) over the baseline. We observe (not shown) that the
scheduling component of IMPS alone (without partitioning)gains
half of the performance improvement of IMPS. We conclude that
interference-aware channel partitioning is beneficial forsystem performance, but dividing the task of
interference reduction using both channel partitioning and memory scheduling together provides better
system performance than employing either alone.
Individual Workloads. Figure7 shows the weighted speedup for four randomly selected, representative
workloads shown in Table4. We observe that MCP and IMPS gain performance benefits consistently
across different workloads.
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Workload High memory-intensity benchmarks Low Memory-intensity benchmarks

W1 perlbench, gobmk, gromacs, gcc(2), sjeng(2), sphinx3, soplex, libquantum(4),
hmmer(2), bzip2, cactus, h264ref milc(3), lbm(3)

W2 gromacs(2), h264(2), dealII(2), astar(2), milc(2), leslie3d(2)), sphinx(3),
hmmer(2), cactusADM(2) gemsFDTD(3), libquantum(3)

W3 namd(3), gcc(3), astar(3), leslie3d(3), milc(3), omnetpp(3),
cactusADM(3) mcf(3)

W4 tonto, astar, gcc, povray, hmmer, h264, xalancbmk, libquantum, lbm, sphinx3, milc
gromacs, perlbench, dealII, cactusADM(2), bzip2soplex, omnetpp(2), gemsFDTD(3), mcf

Table 4. Four representative workloads.
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Effect of Workload Memory-Intensity. Figure8 shows the system throughput benefits of MCP and
IMPS, for six memory-intensity based categories of workloads.5 As expected, as workload intensity
increases (from left to right in the figure), absolute systemthroughput decreases due to increased inter-
ference between applications.

We make three major conclusions. First, MCP and IMPS improveperformance significantly over
FR-FCFS in most of the memory-intensity categories. Specifically, MCP avoids interference between
applications of both dissimilar and similar intensities byisolating them to different channels, enabling
benefits mostly regardless of workload composition. Second, IMPS’s performance benefit over MCP is
especially significant in the lower-intensity workloads. Such workloads have a higher number of very
low memory-intensity applications and IMPS prioritizes them in the scheduler, which is more effective
for system performance than reducing interference for themby assigning them to their own channels,
which wastes bandwidth as done by MCP. As the workload memory-intensity increases, IMPS’ per-
formance benefit over MCP becomes smaller because the numberof low-intensity workloads becomes
smaller. Third, when the workload mix is very non-intensiveor very intensive, MCP/IMPS do not pro-
vide much benefit. In theV L category, load on memory and as a result interference is verylow, limiting
the potential of MCP/IMPS. When 100% of applications in the workload are intensive, the system be-
comes memory bandwidth limited and conserving memory bandwidth by exploiting row-buffer locality
(using simple FR-FCFS) provides better performance than reducing inter-application interference at the
expense of reducing memory throughput. Any scheduling or partitioning scheme that breaks the con-
secutive row-buffer hits results in a system performance loss. We conclude that MCP and IMPS are
effective for a wide variety of workloads where contention exists and the system is not fully bandwidth
limited.

5All categories from 0 - 100% place a load on the memory system,as the intensity cut off used to classify an application
as intensive is 10 MPKI, which is reasonably large to begin with.
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9.1. Comparison with Previous Scheduling Policies

Figure 9 compares MCP and IMPS with previous memory scheduling policies, FR-FCFS [22],
PARBS [17], ATLAS [10] and TCM [11] over 240 workloads. Two major conclusions are in order.
First, application-aware scheduling policies perform better than FR-FCFS, and, TCM performs the best
among the application-aware scheduling policies, consistent with previous work[10, 11, 17]. Second,
MCP and IMPS outperform TCM by 1%/5%, with no/minimal changes to the scheduler.
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Figure 10 provides insight into where MCP and IMPS’ performance benefits are coming from by
breaking down performance based on workload intensity. As the workload memory intensity (thus con-
tention) increases, MCP and IMPS become more effective thanpure memory scheduling approaches. At
low-intensity workloads (VL, 0%, 25%), TCM performs slightly better than IMPS because TCM is able
to distinguish and prioritize between each individual application in the memory scheduler (not true for
MCP/IMPS), leading to reduced interference between low andmedium intensity applications. At higher
intensity workloads (50%, 75%, 100%), reducing interference via channel partitioning is more effective
than memory scheduling: both MCP and IMPS outperform TCM, e.g. by 40% in the 100%-intensity
workloads. In such workloads, contention for memory is veryhigh as many high-intensity applications
contend. Channel partitioning completely eliminates interference between some applications by sepa-
rating out their access streams to different channels, thereby reducing the number of applications that
contend with each other. On the other hand, TCM or a pure memory scheduling scheme tries to handle
contention between high-intensity workloads purely by prioritization, which is more effective at balanc-
ing interference but cannot eliminate interference as MCP/IMPS does since all applications contend with
each other. We conclude that IMPS is a more effective solution than pure memory scheduling especially
when workload intensity (i.e., memory load) is high, which is the expected trend in future systems.

Note that IMPS’s performance benefits over application-aware memory schedulers come at a signifi-
cantly reduced complexity, as described in Section6.

9.2. Interaction with Previous Scheduling Policies

Figure11 compares MCP and IMPS, when implemented on top of FR-FCFS, ATLAS and TCM as
the underlying scheduling policy. When IMPS is implementedover ATLAS and TCM, it adds another
priority level on top of the scheduling policy’s priority levels: very-low-intensity applications are priori-
tized over others and the scheduling policy’s priorities are used between very-low-intensity applications
and between the remaining applications.
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Figure 11. MCP and IMPS perfor-
mance over different scheduling poli-
cies (240 workloads).

Several conclusions are in order. First, adding MCP/IMPS
on top of any previous scheduling policy improves perfor-
mance (IMPS gains 7% and 3% over ATLAS and TCM respec-
tively), showing that our proposal is orthogonal to the under-
lying memory scheduling algorithm. Second, MCP/IMPS over
FR-FCFS (our default proposal) provides better performance
than MCP/IMPS employed over TCM or ATLAS. This is due
to two reasons: 1) channel partitioning decisions MCP makes
are designed assuming an FR-FCFS policy and not designed
to take into account or interact well with ATLAS/TCM’s more
sophisticated thread ranking decisions. There is room for im-
provement if we design a channel partitioning scheme that isspecialized for the underlying scheduling
policy. We leave this for future work. 2) MCP/IMPS isolates groups of similar applications to different
channels and ATLAS/TCM operate within each channel to prioritize between/cluster these similar ap-
plications. However, ATLAS and TCM are designed to exploit heterogeneity between applications and
do not perform as well when the applications they prioritizebetween are similar. We found that prior-
itizing similar-intensity applications over each other inthe way ATLAS/TCM does, creates significant
slowdowns because the applications are treated very differently. We conclude that MCP/IMPS can be
employed on top of any underlying scheduler to gain better performance over using the scheduler alone.
However, it performs best when employed over an FR-FCFS baseline for which it is designed.

9.3. Comparison with Prior Work on Balancing Load Across Multiple Memory Controllers
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Figure 12. MCP and IMPS Performance
vs load balancing across memory con-
trollers [3] (40 workloads).

In [3], Awasthi et al propose two page allocation schemes
to balance the load across multiple memory controllers: 1)
page allocation on first touch (Adaptive First Touch, AFT),
2) Dynamic Page Migration (DPM). AFT attempts to bal-
ance load by allocating a page to a channel which has the
minimum value of a cost function involving channelload,
row buffer hit rate, and, thedistanceto the channel. DPM
proposes to migrate a certain number of pages from the chan-
nel with the highest load to the least loaded channel at reg-
ular intervals, in addition to AFT. In our adaptation of AFT,
we consider both channel load and row-buffer-hit rate but do
not incorporate the channel distance, as we do not model a
network-on-chip. Figure12 compares MCP/IMPS performance to that of AFT and DPM. First,AFT
and DPM both improve performance by 5% over the baseline, because they reduce memory access la-
tency by balancing load across different channels. The gains from the two schemes are similar as the
access patterns of the applications we evaluate do not vary largely with time, resulting in very few invo-
cations of dynamic page migration. Second, our proposals outperform AFT and DPM by 7% (MCP) and
12.4% (IMPS), as they proactively reduce inter-application interference by using application character-
istics, while AFT and DPM are not interference- or application-aware and try to reactively balance load
across memory controllers. We conclude that reducing inter-application interference by page allocation
provides better performance than balancing load across memory controllers in an application-unaware
manner.
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9.4. Impact of Cache Line Interleaving

We study the effect of MCP/IMPS on a system with a restricted form of cache line interleaving that
maps consecutive cache lines of a page across banks within a channel. Figure13shows that MCP/IMPS
improve the performance of such a system by 5.1% and 11% respectively. We observed (not shown) that
unrestricted cache line interleaving across channels (to which MCP/IMPS cannot be applied) improves
performance by only 2% over restricted cache line interleaving. Hence, using channel partitioning with
MCP/IMPS outperforms cache line interleaving across channels. This is because the reduction in inter-
application interference with MCP/IMPS provides more system performance benefit than the increase
of channel-level parallelism with unrestricted cache-line interleaving. We conclude that MCP/IMPS are
effective independent of the interleaving policy employed, as long as the interleaving policy allows the
mapping of an entire page to a channel (which is required for MCP/IMPS to be implementable).
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speedup with cache line interleaving (240 work-
loads).
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Figure 14. Performance and fairness compared to
previous scheduling policies (240 workloads).

9.5. Effect of MCP and IMPS on Fairness

The fairness metric we use, the maximum slowdown of a workload, is defined as the maximum of
the slowdowns (inverse of speedups) of all applications [10, 11, 25]; lower maximum slowdown values
are more desirable. Figure14 shows throughput vs fairness of previously proposed scheduling poli-
cies and our proposed schemes. IMPS has slightly better fairness (3% lower maximum slowdown)
than FR-FCFS. While MCP and IMPS provide the best performance compared to any other previous
proposal, they result in higher unfairness. Note that this is expected by design: MCP and IMPS are de-
signed for improving system performance and not fairness. They make the conscious choice of placing
high-intensity (and high-row-locality) applications onto the same channel(s) to enable faster progress
of lower-intensity applications, which sometimes resultsin the increased slowdown of higher-intensity
applications. Channel partitioning based techniques thatcan improve both performance and fairness are
out of the scope of the paper and an interesting area of futurework.

9.6. Sensitivity Studies

Sensitivity to MCP and IMPS algorithm parameters. We first vary the profile interval length to
study its impact on MCP and IMPS’ performance (Figure15). A shorter initial profile interval length
(1 and 5 Million) leads to less stable MPKI and RBH values, leading to inaccurate estimation of ap-
plication characteristics. In contrast, a longer profile interval length causes a number of pages to be
allocated prior to computing channel preferences. A profileinterval length of 10M cycles balances these
downsides of shorter and larger intervals and provides the best performance. We also experimented with
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different execution interval lengths (Figure16). A shorter interval leads to better adaptation to changes
in application behavior but also higher overhead due to pagemigration if application characteristics are
not stable within the interval. A longer interval might misschanges in the behavior of applications. A
100M-cycle interval ensures a good balance and provides good performance.
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Figure17 shows the sensitivity of MCP/IMPS toMPKIt. AsMPKIt is increased beyond 1, more
medium and high memory-intensity applications get into thelow memory-intensity group, thereby slow-
ing down the low-intensity applications and resulting in lower throughput. We also variedRBHt, the
row buffer-hit rate threshold and the very low memory-intensity threshold. System performance remains
high and stable over a wide range of these values, with the best performance observed at anRBHt value
of 50% and a very low memory-intensity threshold value of 1.5.
Scalability to cores, MCs and cache sizes.Table5 shows the performance of IMPS as number of
cores, number of MCs and L2 cache size are varied. The rest of the system remains the same. IMPS’
benefits are significant across all configurations. IMPS’ performance gain in general increases when the
system is more bandwidth constrained, i.e., with increasing number of cores and reducing number of
MCs. MCP shows similar trends as IMPS.

No. of Cores No. of MCs Private L2 Cache Size

16 24 32 2 4 8 256KB 512KB 1MB
IMPS System Throughput Improvement 15.8% 17.4% 31% 18.2% 17.1% 10.7% 16.6% 17.4% 14.3%

Table 5. Sensitivity to number of cores, number of MCs, and L2cache size (40 workloads).

10. Conclusion

We presented 1) MCP, a fundamentally new approach to reducing inter-application interference at
the memory system, by mapping the data of interfering applications to separate channels, 2) IMPS, that
effectively divides the work of reducing inter-application interference between the system software and
the memory scheduler. Our extensive qualitative and quantitative comparisons demonstrate that MCP
and IMPS both provide better system performance than the state-of-the-art memory scheduling policies,
with no or minimal hardware complexity. IMPS provides better performance than channel partitioning or
memory scheduling alone. We conclude that inter-application memory interference is best reduced using
the right combination of page allocation to channels and memory scheduling, and that IMPS achieves
this synergy with minimal hardware complexity.
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