Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning

SAFARI Technical Report No. 2011-002

June 3, 2011
Sai Prashanth Muralidhara Lavanya Subramanian
Pennsylvania State University Carnegie Mellon University
snural i d@se. psu. edu | subr ama@ndr ew. cnu. edu
Onur Mutlu Mahmut Kandemir
Carnegie Mellon University Pennsylvania State University
onur @nu. edu kandeni r @se. psu. edu

Thomas Moscibroda
Microsoft Research
nosci t ho@r crosoft.com

Abstract

Main memory is a major shared resource among cores in a nauéisystem. If the interference
between different applications’ memory requests is notroblad effectively, system performance can
degrade significantly. Previous work aimed to mitigate trabfem of interference between applications
by changing the scheduling policy in the memory controiler, by prioritizing memory requests from
applications in a way that benefits system performance.

In this paper, we first present an alternative approach touadg inter-application interference in
the memory systenapplication-aware memory channel partitioning (MCH)e idea is to map the data
of applications that are likely to harmfully interfere widach other to different memory channels. The
key principles are to partition the data of 1) light (memopnaintensive) and heavy (memory intensive)
applications, and of 2) applications with low and high rowfier locality onto separate channels, re-
spectively. We show that by doing so, averaged over 240 aamtklon a 24-core system with 4 memory
channels, MCP improves system throughput by 7.1% over alicafipn-unaware memory scheduler
and by 1% over the best previous scheduler, while avoidindjfications to existing memory schedulers.

Second, we observe that interference can be even furthaceedwith a combination of MCP and
memory scheduling, which we caltegrated memory partitioning and scheduling (IMPB)e key idea
is to 1) always prioritize very light applications in the mem scheduler since such applications cause
negligible interference to others, 2) use memory channeitfming to reduce interference between
the remaining applications. Extensive evaluations on detgrof multi-programmed workloads and

1

SAFARI Technical Report No. 2011-002 (June 3, 2011)

system configurations show that this integrated memorytparing and scheduling approach provides
better system performance than MCP and four previous mesobwgduling algorithms employed alone.
Averaged over 240 workloads on a 24-core system with 4 meoi@ynels, IMPS improves system
throughput by 11.1% over an application unaware schedutet 8% over the current best scheduling
policy, while incurring much lower hardware complexity thide latter.

1. Introduction

Applications executing concurrently on a multicore chiptemd with each other to access main mem-
ory, which has limited bandwidth. If the limited memory bandth is not managed well, different ap-
plications can harmfully interfere with each other, whi@naesult in significant degradation in both
system performance and individual application perfornedf6, 11, 15, 16, 17, 19]. Several techniques
to improve system performance by reducing memory intenfeeamong applications have been pro-
posed 10, 11, 15, 16, 17, 19, 21]. Fundamentally, these proposals viewed the problem asmaame
access scheduling problem, and consequently focused @hogavgy new memory request scheduling
policies that prioritize the requests of different appiicas in a way that reduces inter-application in-
terference. However, such application-aware schedulgayithms require (non-negligible) changes to
the existing memory controllers’ scheduling logid] 2§].

In this paper, we present and explore a fundamentally+éiffiealternative approach to reducing inter-
application interference in the memory system: contrgltime mapping of applications’ data to memory
channels. Our approach is based on the observation thatoralsystems have multiple main mem-
ory channels?, 4, 10] each of which controls a disjoint portion of physical mesand can be ac-
cessed independently without any interferent@.[This reveals an interesting trade-off. On the one
hand, interference between applications could (the@gticbe completely eliminated if each applica-
tion’s accesses were mapped to a different channel, asguh@re were enough channels in the system.
But, on the other hand, even if so many channels were avajlaipping each application to its own
channel would under utilize memory bandwidth and capasityre applications may need less band-
width/capacity than they are assigned, while others need)@nd would reduce the opportunity for
bank/channel-level parallelism within each applicatsomiemory access stream. Therefore, the main
idea of our approach is to find a sweet spot in this trade-ofhlpping the data (i.e., memory pages) of
applications that are likely to cause significant interfece/slowdown to each other to different memory
channels

We make two major contributions. First, we explore the pti#nf reducing inter-application mem-
ory interference purely with channel partitioning, withouodifying the memory scheduler. To this end,
we develop a nevApplication-Aware Memory Channel Partitioning (MCP) algorithm that assigns
preferred memory channels to different applications. Tb& ¢ to assign any two applications whose
mutual interference would cause significant slowdownsifferént channels. Our algorithm operates
using a set of heuristics which are guided by insight abowt Bpplications with different memory
access characteristics interfere with each other. Spaityfieve show in Se@ that, whenever possi-
ble, applications of largely divergent memory-intensityr@w-buffer-hit rate should be separated onto
different channels.

Second, we show that MCP and traditional memory scheduppgoaches are orthogonal in the sense
that both concepts can beneficially be applied together.cifigaly, whereas our MCP algorithm is
agnostic to the memory scheduler (i.e., we assume an unmwdifhmmonly used row-hit-first memory

SAFARI Technical Report No. 2011-002 (June 3, 2011)

scheduler22, 30]), we show that additional gains are possible when using MG®mbination with a
minimal-complexity application-aware memory scheduladicy. We develop aintegrated Memory
Partitioning and Scheduling (IMPS) algorithm that seamlessly divides the work of redgcinter-
application interference between the memory schedulettlamdystem software’s page mapper based
on what each can do best.

The key insight underlying the design of IMPS is that intesfece suffered by very low memory-
intensity applications is more easily mitigated by priaritg them in the memory scheduler, than with
channel partitioning. Since such applications seldom ggeeequests, prioritizing their requests does
not cause significant interference to other applicatiosspravious work has also observel| 11].
Furthermore, explicitly allocating one or more channelsdioch applications can result in a waste of
bandwidth. Therefore, IMPS prioritizes requests from sagplications in the memory scheduler, with-
out assigning them dedicated channels, while reducingf@rence between all other applications using
channel partitioning.

Overview of Results:We evaluate MCP and IMPS on a wide variety of multi-progrardaggplications
and systems and in comparison to a variety of pure memorydsitihg algorithms. Our first main
finding is that on a 24-core 4-memory controller system withegisting application-unaware memory
scheduler, MCP provides slightly higher performance b&hgfan the best previous memory scheduling
algorithm, Thread Cluster Memory Scheduling (TCM}J 7.1% performance improvement vs. 6.1%
for TCM. This performance improvement is achieved with nalification to the underlying scheduling
policy. Furthermore, we find that IMPS provides better sysperformance than current state-of-the-art
memory scheduling policies, pure MCP, as well as combinatad MCP and state-of-the-art scheduling
policies: 5% over the best scheduler, while requiring sendlardware complexity.

Our main conclusion is thathe task of reducing harmful inter-application memory ifeesnce should
be divided between the memory scheduler and the systenasoftage mapperOnly the respective
contributions of both entities yields the best system perémce.

2. Background

We present a brief background about the DRAM main memoryesysinore details can be found in
[6, 16, 22]. A modern main memory system consists of several changelsh channel can be accessed
independently, i.e., accesses to different channels carepd in parallel. A channel, in turn, is organized
as several banks. These banks can be accessed in paraileldrpthe data and address buses are shared
among the banks, and data from only one bank can be sent thtbeghannel at any time.

Each DRAM bank has a 2D structure consisting of rows and cofunA column is the smallest
addressable unit of memory, and a large number of columng mala row. When a unit of data has to
be accessed from a bank, the row containing the data is brantgha small internal buffer called the
row buffer If subsequent memory access requests are to the same egvgah be serviced faster (2-3
times) than accessing a new row. This is called a row-hit.réfeoto improve DRAM data throughput,
modern memory controller scheduling algorithms prioetiaw-hits over row-misses.

Memory Request Scheduling Policy. FR-FCFS 22, 30] is a commonly used scheduling policy in cur-
rent commodity systems. It prioritizes row-hits over rovisges, and within each category, it prioritizes
older requests. The analyses in this paper assume the FR-§€@feduling policy, but our insights are
applicable to other scheduling policies as well. 3atescribes other memory scheduling policies and
Sec8 qualitatively and quantitatively compares our approactinémn.

OS Page Mapping Policy. The Operating System (OS) maps a virtual address to a physideess.

SAFARI Technical Report No. 2011-002 (June 3, 2011)

The address interleaving policy implemented in the memongroller in turn maps the physical address
to a specific channel/bank in the main memory. Row interleggand cache line interleaving are two
commonly used interleaving policies. In the row interl@&vpolicy, consecutive rows of memory are
mapped to consecutive memory channels. We assume equalfeiz@S pages and DRAM rows in
this work and use the terms page and row interchangeablyutifoss of generality. Pure cache line
interleaving maps consecutive cache lines in physicalesddspace to consecutive memory channels.
MCP cannot be applied on top of this, as a page has to staywatbinannel for MCP. However, we can
potentially apply MCP on top of a restricted version of cathe interleaving that maps consecutive
cache lines of a page to banks within a channel.

Commonly used OS page mapping and address interleavirggsodire application-unaware and map
applications’ pages across different channels. The OS wdoesonsider inter-application interference
and channel information while mapping a virtual page to asptal page. It simply uses the next physical
page to allocate/replace based on recency of use. We buildiscussions, insights and mechanisms
assuming such an interference-unaware OS page mappiey pati a row interleaved address mapping
policy. However, we also evaluate MCP on top of cache linerlaiving across banks in Segl.

Memory Related Application Characteristics. We characterize memory access behavior of applica-
tions using two attributesviemory Access Intensity defined as the rate at which an application misses
in the last level on-chip cache and accesses memory — cadwdaMisses per Kilo Instruction@VIPKI).

Row Buffer Localitys defined as the fraction of an application’s accesses that the row buffer (i.e.,
access to an open row). This is calculated as the avé&ageBuffer Hit RatéRBH) across all banks.

3. Motivation

In this section, we motivate our partitioning approach bgveing how applications with certain char-
acteristics cause more interference to other applicatemmd how careful mapping of application pages
to memory channels can ameliorate this problem.

Time Units Time Units

S aya12,1 chamnel0 ST 4rsi .1y ChannelO
CoreO M _HEH H H | CoreO N H H H |
App A R AppA 0N |
oreT]: i 1 1 Barnk ore T Lo Banka
AppB |1 1 i [Bank g AppB |l a0 [Bank G
. 0 L dldg

ved '
Channel 1 %lmqumts Channel 1

(a) Conventional Page Mapping.

(b) Channel Partitioning.

Figure 1. Conceptual example showing benefits of mapping afaiow and high memory-intensity applications
to separate channels.

In Figurel, we present a conceptual example showing the performameditseof mapping the pages
of applications with largely different memory-intensgit separate channels. Applicatidron Core O
has high memory-intensity, generating memory requestsigterate; ApplicationB on Core 1 has low
memory-intensity and generates requests at a much loveerfguresl(a)and1(b) show characteristic
examples of what can happen with conventional page mappihgré the pages of andB are mapped
to the same channels) and with application-aware chanmétipaing (where A and B’s pages are
mapped to separate channels), respectively. In the firet B&ssingle request is queued up behind 3 of

Lour mechanism works as long as the row size is greater thaD$heage size, as is the case in typical systems.

SAFARI Technical Report No. 2011-002 (June 3, 2011)

A’s requests in a bank of Channel O (see Eig)). As a result, ApplicatiorB stalls for a long period of
time (4 DRAM bank access latencies, in this example) unéil3tpreviously scheduled requests fram

to the same bank get serviced. In contrast, if the two apjmics’ data are mapped to separate channels
as shown in Figurd.(b), B’s request is not queued and can be serviced immediatelyinigdo B’s

fast progress (1 access latency vs 4 access latencied)eRudre, even Applicatiod’s access latency
improves (4 vs. 5 time units) because the interference dawséby B’s single request is eliminated.

To determine to what extent such effects occur in practiee, w
ran a large number of simulation experiméntsth applications
of vastly different memory-intensities and present a re@néative Channel Partitionin
result: We run four copies each wofilc andh264(from the SPEC
CPU2006 suite]]) on an eight-core, two-channel system. Fig-
ure2 shows the effects of conventional channel sharhizf4 the
application with lower memory-intensity, is slowed downayx e X e
When sharing memory channgl_s withilc. On the other hand, if Figure 2. fh: sff’ﬁliggtigﬁgg/l"bwdowns
milc's andh264s data are partitioned and mapped to Channels Qe (o interference between high and
and 1, respectiveljh264s slowdown reduces to 1.5x. Further- |ow memory-intensity applications.
more,milc’s slowdown also drops from 2.3x to 2.1x, as its queue-
ing delays reduce due to reduced interference fh@®4 This substantiates our intuition from the ex-
ample:Separating the data of low memory-intensity applicatisosfthat of the high memory-intensity
applications can largely improve the performance of bothldw memory-intensity applications and the
overall system.

Memory-intensity is not the only characteristic that detigres the relative harmfulness of applica-
tions. In Figure3, we show potential benefits of mapping memory-intensivdiegions with signifi-
cantly different row-buffer localities onto separate amals. In the example, Applicatias accesses the
same row, Row 5, repeatedly and hence has much higher rderatality than Application3, whose
accesses are to different rows, incurring many row misses.

@

< = r
oSk, TN Wy

Conventional Page Mapping——

N

Slowdown

o

Arrival Order Arrival Order
Time Units Time Units
Pe s tala 2t Channel 0 Pels lalal2la Channel 0
Core 0 [NEEEESER NN [Core O - [Bank 0
App A HEN - BBl <o App A HEE - -
(o= 1o] o (Goea]s 04 0 il
AppB i 4 ARB L RIE
Channel 1 Channel 1
Service Order Service Order
Time Units Time Units
L ts b4zl o2t Channel 0 "6 !5 !lala!l2! Channel 0
Core O [N [Bank 0 Lo
App A HIEVERHIEERAH =5 H Rs | e 0 0 ¢ EE
orell, | | | [Rowd ore L) 1 [Row4]
I [|t
| | | | | i ! ! 3] Bank
oo oo (R3]
Channel 1 Time Units Channel 1
(a) Conventional Page Mapping (b) Channel Partitioning

Figure 3. Conceptual example showing benefits of mapping dfatow and high row-buffer hit rate memory-
intensive applications to separate channels. In both @J@nthe top part shows the request arrival order and the
bottom part shows the order in which the requests are sekvice

20ur simulation methodology is described in Sec

SAFARI Technical Report No. 2011-002 (June 3, 2011)

Figure3(a) shows a conventional page mapping approach, while Fig{imeshows a channel parti-
tioning approach. With conventional mapping, the commardgd row-hit-first memory scheduling
policy prioritizesA’s requests oveB’s requests to Rows 7 and 3, even thougjk requests had arrived
earlier (Figure3(a)). This leads to increased queueing delay®&f requests causing to slow down.
On the other hand, if the pages dfand B are mapped to separate channels (Fi(g), the inter-
ference received by is reduced and consequently the queueing delays expedidrycB’s requests
reduced (by 2 time units). This improves Applicatié's performance without affecting Application
A’s.

A representative case study from among our experiments is
shown in Figured. We ran four copies each aficf andlibquan- 30 . ,
tum, two memory-intensive applications on an eight-core two- 25 "™ Chaael Sarttanmommmm
channel systemMcf has a low row-buffer hit rate of 42% and 20
suffers a slow down of 20.7x when sharing memory channels wit 3
libquantum which is a streaming application with 99% row-buffer ? 5

hit rate. On the other hand, if the datamtf is isolated from ol ==

. . , libquantum mcf

libquantuns data and given a separate channel, mcf’'s slowdown (MPK: 50 5, (mpk: 99
1 99% . rbh:

drops significantly, to 6.5x from 20.7X.ibquantun’s small per- Figure 4" ,%?p lication Slowdowns
formance loss of 4% shows the trade-off involved in chanael p due to interference between high
titioning: The drop is due to the loss in bank-level parai®l and low row-buffer hit rate memory-
resulting from assigning only one channel to libquantuntetms intensive applications.

of system performance, however, this drop is far outweighed

the reduction in slowdown ahct We therefore conclude thalating applications with low row-buffer
locality from applications with high row-buffer localityylmeans of channel partitioning improves the
performance of applications with low row-buffer localitpcithe overall system.

Based on these insights, we next develop MCP, an OS-levdianém to partition the main memory
bandwidth across the different applications running onséesy. Then, we examine how to best combine
memory partitioning and scheduling to minimize inter-aggtion interference and obtain better system
performance.

4. Memory Channel Partitioning Mechanism (MCP)

Our MCP mechanism consists of three components: 1) profifrapplication behavior during run
time, 2) assignment of preferred channels to applicati8hallocation of pages to the preferred chan-
nel. The mechanism proceeds in periodic intervals. Duraupénterval, application behavior is profiled
(Sec4.l). At the end of an interval, the applications are categdrinéo groups based on the charac-
teristics collected during the interval, and each apphceis accordingly assignedmeferred channel
(Sec4.2). In the subsequent interval, these preferred channejrassints are applied. That is, when
an application accesses a new page that is either not dyrremRAM or not in the application’s pre-
ferred channel, MCP uses thesferred channel assignmeifatr that application: The requested page is
allocated in the preferred channel, or migrated to the predechannel (see Sdc3).

In summary, during th&(th interval, MCP applies the preferred channel assignméidtvwwas com-
puted at the end of theX{ — 1)st interval, and also collects statistics, which will tHenused to compute
the new preferred channel assignment to be applied duran@tht 1)st execution interval.Note that

3The very first interval is used for profiling only. We envisiirio be shorter than the subsequent execution intervals,

SAFARI Technical Report No. 2011-002 (June 3, 2011)

MCP does not constrain the memory usage of applicationgoWtiges a preferred channel assignment
in order to reduce interference. Therefore, applicati@msise the entire DRAM capacity, if needed.

4.1. Profiling of Application Characteristics

As shown in Se@, memory access intensity and row-buffer locality are keydes determining the
level of harm caused by interference between applicatidhsrefore, during every execution interval,
each application’s Misses Per Kilo Instruction (MPKI) andwrRBuffer Hit Rate (RBH) statistics are
collected. To compute an application’s inherent row-huffg rate, we use a per-core shadow row-
buffer index for each bank, as in previous wo8k11, 16], which keeps track of the row that would have
been present in the row-buffer had the application beenimgradone.

4.2. Preferred Channel Assignment

At the end of every execution interval, each applicatiorssigned a preferred channel. The assign-
ment algorithm is based on the insights derived in $€the goal is to separate as much as possible 1)
the data of low memory-intensity applications from that mfrfhmemory-intensity applications, and, 2)
among the memory-intensive applications, the data of lomtbaffer locality applications from that of
high row-buffer locality applications. To do so, MCP exexsithe following steps in order:

1. Categorize applications into low and high memory-intgngroups based on their MPKI. (Sé.J)

2. Further categorize the high memory-intensity applicatjdrased on their row-buffer hit rate (RBH)
values into low and high row-buffer hit rate groups. (3€2.2

3. Partition the available memory channels among the threkcagipn groups. (Sed.2.3

4. For each application group, partition the set of channdtxcaled to this group between all the
applications in that group, and assign a preferred chaoread¢h application. (Set?3)

4.2.1 Intensity Based Grouping

MCP categorizes applications into low and high memoryrsiiy

groups based on a threshold parameté? K'I;,. M PK 1, is deter-

mined by averaging the last level cache MPKI of all applimasiand MPKI'> MPKI
multiplying it by a scaling factor. For every applicatignf its MPKI, No Yes
MPKI; is less thanV/ PK I, the application is categorized as low
memory-intensity, else high memory-intensity. The averague of
MPKI provides a threshold that adapts to the workload’s mgnmo
tensity and acts as a separation point in the middle of th&load’s
memory-intensity range. The scaling factor further hetpmove this No Yes
point up or down the range, regulating the number of apptioatin Low Row High Row_
the low memory-intensity group. We empirically found thaicaling Buffer Localty | Buffer Locali
factor of 1 provides an effective separation point and goadesn Figure 5. MCP: Application
performance (Se®). Grouping.

‘Low Intensit){ ‘ High Intensit&

and its length is a trade off between minimizing the numbegyagfes that get allocated before the first set of channelrprefe
ences are established and letting the application’s mermagss behavior stabilize before collecting statistiEsnirical
evaluation in Se®.6)

SAFARI Technical Report No. 2011-002 (June 3, 2011)

4.2.2 Row-Buffer Locality Based Grouping

MCP further classifies the high memory-intensity applimasiinto either low or high row-buffer locality
groups based on a threshold parame®eds,H,. For every application, if its RBH; is less thanlRBH,,
thenitis classified as a low row-buffer locality applicatidn this case, we do not take an average or use
a scaling factor, as we observe that inter-applicatiorrietence due to row-buffer locality differences
are more pronounced between applications with very low > tow-buffer localities, unlike memory-
intensity where there is interference across the continlWeempirically observe that aRB H; value

of 50% provides effective interference reduction and goadgsmance (Sef€).

4.2.3 Partitioning of Channels between Application Groups

After thus categorizing applications into 3 groups, MCPtiians the available memory channels be-
tween the groups. Itis important to note that at this stagleeélgorithm, memory channels are assigned
to application groups anabtto individual applications. MCP handles the preferred clghassignment

to individual applications in the next step (S€@.4. Channels are first partitioned between low and
high memory-intensity groups. The main question is how mamnnels should be assigned to each
group. One possibility is to allocate channels proportiom#he total bandwidth demand (sum of appli-
cations’ MPKI) of each group (bandwidth proportional alition). This amounts to balancing the total
bandwidth demand across channels. Alternatively, charamlld be allocated proportional to the num-
ber of applications in that group (application count prajmal allocation). In the former case, the low
memory-intensity applications which constitute a very jmoportion of total bandwidth demand might
be assigned no channels. This fails to achieve their isoldtom high memory-intensity applications,
leading to low system performance. In contrast, if the tast@sed, it results in bandwidth wastage as the
low memory-intensity applications seldom generate reigussd the bandwidth of the channels they are
assigned to would have been better utilized by the high mgnmbensity applications. We found that the
isolation benefits of application-count-proportionabalition outweighs the bandwidth wastage caused
by potentially allocating low-intensity applications ta@or more channefsTherefore, we use the ap-
plication count proportional channel allocation stratégyMCP. However, bandwidth wastage caused
by potentially allocating very low intensity applicatiodedicated channels remains, and we will show
that eliminating this wastage by handling these applicatio the scheduler in an integrated scheduling
and partitioning mechanism is beneficial (3¢c The channels allocated to the high memory-intensity
group are further partitioned between the low and high roffep locality groups. The applications in
the high memory-intensity group are bandwidth sensitiveaning they each need a fair share of band-
width to make progress. To ensure this, MCP assigns a nunfilseaanels to each of these two groups
proportionally to the bandwidth demand (sum of MPKIs) of ¢meup.

4.2.4 Preferred Channel Assignment within an Application Goup

As a final step, MCP determines which applications within augrare mapped to which channels,
when more than one channel is allocated to a group. Withih gagup, we balance the total band-
width demand across the allocated channels. For each gn@umaintain a ranking of applications by
memory-intensity. We start with the least intensive atlan in the group and map applications to

4We found that bandwidth proportional allocation result@id% performance loss over the baseline since it increases
memory interference.

SAFARI Technical Report No. 2011-002 (June 3, 2011)

the group’s first allocated channel until the bandwidth dednallocated to it (approximated by sum of
M PK1; of every applicationi allocated to it) iSSNTJ’S]EQ"OF;*é:;;ﬁf’spgﬁigg?esd'rt‘ot?ﬁegr‘fgfr\/ye then move on to the
next channel and allocate applications to it. This is regubédr every appﬁcatlon group. At the end of

this procedure, each application is assigngdederred channel

4.3. Allocation of Pages to Preferred Channel

Once each application is assigned a preferred channel, M@fages a page to the preferred channel
in case it is not already there. There are two possibilitiésst, a page fault: the accessed page is not
present in any channel. In this case, the page fault hantiéenpts to allocate the page in the preferred
channel. If there is a free page in the preferred channehdepage is allocated there. Otherwise, a
modified version of the CLOCK replacement policy, as desctiim [7] is used. The baseline CLOCK
policy keeps a circular list of pages in memory, with the hétetator) pointing to the oldest allocated
page in the list. There is a Referenced (R) bit for each pageéjg set to 1’ when the page is referenced.
The R bits of all pages are cleared periodically by the opegatystem. When a page fault occurs and
there are no free pages, the hand moves over the circulantistan unreferenced page (a page with R
bit set to '0’) is found. The goal is to choose the first unrefered page as the replacement. To allocate
a page in the preferred channel, the modified CLOCK algoriihwks ahead N pages beyond the first
replacement candidate to potentially find an unreferenegg [in the preferred channel. If there is no
unreferenced page within N, the first unreferenced pageeitishacross all channels is chosen as the
replacement candidate. We use an N value of 512.

Second, the accessed page is present in a channel othehé¢harmeterred channel, which we observe
to be very rare in our workloads, since application behaigaelatively constant within an interval.
In this case, dynamically migrating the page to the preteaieannel could be beneficial. However,
dynamic page migration incurs TLB and cache block invalaabverheads as discussed 8).[We
find that less than 12% of pages in all our workloads go to mefiepred channels and hence migration
does not gain much performance over allowing some pagesagalication to potentially remain in the
non-preferred channels. Thus, our default implementatfddCP does not do migrations. However, if
needed, migration can of course be seamlessly incorporgteMCP and IMPS.

5. Integrated Memory Partitioning and Scheduling (IMPS)

MCP aims to solve the inter-application memory interfeeepooblem entirely with the system soft-
ware’s page mapper (with the support of additional hardweatmters to collect MPKI and RBH metrics
for each application). It does not require any changes tonéory scheduling policy. This approach
is in stark contrast to the various existing proposals, Wwixig to solve the problem “from the opposite
side”. These proposals aim to reduce memory interferentieelynin the memory controller hardware
using sophisticated scheduling policies (e.@0,[11, 16, 17]) The question is whether either extreme
alone (i.e., page mapping alone and memory scheduling eatmarereally provide the best possible
interference reduction. Based on our observations, theams negative. Specifically, we devise an in-
tegrated memory partitioning and scheduling (IMPS) meigmarthat aims to combine the interference
reduction benefits of both.

The key observation underlying IMPS is that applicationthwery low memory-intensity, when pri-
oritized over other applications in the memory schedulerndt cause significant slowdowns to other
applications. This observation was also made in previouk W0, 11]. These applications seldom
generate memory requests; prioritizing these requestdenthe applications to quickly continue with

SAFARI Technical Report No. 2011-002 (June 3, 2011)

long computation periods and utilize their cores bettarehy significantly improving system through-
put [10, 11]. As such, scheduling can very efficiently reduce interfieesthat affects very low memory-
intensity applications. In contrast, reducing the intesfeee against such applications purely using the
page mapper is inefficient. The mapper would have to dedimaéeor more channels to such low-
memory-intensity applications, wasting memory bandwidithce these applications do not require sig-
nificant memory bandwidth (yet high-intensity applicasawmould likely need the wasted bandwidth, but
cannot use it). If the mapper cannot dedicate a channel toaalications, they would share channels
with high-intensity applications and experience highifgieence with an unmodified memory scheduler.

The basic idea and operation of IMPS is therefore simplestHuentify at the end of an execution
interval very low memory-intensity applications (i.e. péipations whose MPKI is smaller than a very
low threshold, 1.5 in most of our experiments (Se@)), prioritize them in the memory scheduler over
all other applications in the next interval, and allow theppiag of the pages of such applications to
any memory channel. Second, reduce interference betwéethal applications by using memory
channel partitioning (MCP), exactly as described in ðe modification to the memory scheduler is
minimal: the scheduler only distinguishes the requesteof low memory-intensity applications over
those of others, but does not distinguish between requéstslividual applications in either group.
The memory scheduling policy consists of three priorit@atules: 1) prioritize requests of very low
memory-intensity applications, 2) prioritize row-hitdirequests, 3) prioritize older requests.

Note that MCP is still used to classify the remaining appiaas as low and high memory-intensity, as
only the very low memory-intensity applications are filut and prioritized in the scheduler. MCP’s
channel partitioning still reduces interference and cqusat slowdowns of the remaining applications.

6. Implementation

Hardware support. MCP requires hardware support to estimate MPKI and rowebuift rate of
each application, as described in Set These counters are readable by the system software vimkpec
instructions. Tabld shows the storage cost incurred for this purpose. For a Blsystem with 4 mem-
ory controllers (each controlling 4 memory banks and 1638vsrper bank), the hardware overhead is
12K bits. IMPS requires an additional bit per each requestgdlow-intensity bij to distinguish very
low-memory-intensity applications’ requests over oth&rkich is an additional overhead of only 512
bits for a request queue size of 128 per MC. IMPS also requsinesl modifications to the memory
scheduler to take into account thev-intensity bitsin prioritization decisions. Note that, unlike pre-
vious application-aware memory request scheduling pdidMPS (or MCP) 1) does not require each
main memory request to be tagged with a thread/applicafiosirice it does not distinguish between
individual applications’ requests, 2) adds only a singh& bé per request for the memory scheduler to
consider, 3) does not require application ranking ady 11, 17] — ranking and prioritization require
hardware logic for sorting and performing comparisons. échsthe complexity of IMPS is much lower
than previous application-aware memory scheduling pesici

System software support MCP and IMPS require support from system software to 1) read¢doun-
ters provided by the hardware, 2) perform the preferred mbleassignment, at the end of each execution
interval, as already described. Each application’s prefechannel is stored as part of the system soft-
ware’s data structures, leading to a very modest memonhe@erofN 4,,sn.system X NitemoryChannels-
The page fault handler and the page replacement policy ad#ietbslightly, as described in Sec3.
Our experiments show that the execution time overheadsafethuired tasks are negligible. Note that
our proposed mechanisms do not require changes to the gage ta

SAFARI Technical Report No. 2011-002 (June 3, 2011)

[Storage | Description | Size
Storage Overhead for MCP - per-core registers
MPKI-counter | A cores last level cache misses per kilo instruction | Neore X loggMPK Injyqr = 240
Storage Overhead for MCP - per-core registers in each controller
Shadow row-buffers Row address of a core’s last accessed row Necore X Npanks X l0g2 Nrows = 1344
Shadow row-buffer hit counters Number of row-hits if the application were running alone Neore X Npanks X logoCountmar = 1536
Additional Storage Overhead for IMPS - per request register in each controller
Very low memory-intensity indicatod To identify requests from very low memory-intensity apations | 1 X Queuemazr = 128

Table 1. Hardware storage required for MCP and IMPS

7. Related Work and Qualitative Comparisons to Previous Wok

To our knowledge, this paper is the first to propose and egpt@mory page mapping mechanisms as
a solution to mitigate inter-application memory interfeze and thereby improve system performance.

Memory Scheduling. The problem of mitigating interference has been extengiadtiressed using
application-aware memory request scheduling. We briefgcidee the two approaches we compare
our mechanisms to in Secti@ ATLAS [10] is a memory scheduling algorithm that improves system
throughput by prioritizing applications based on theiaiitd memory service. Applications that have
smaller attained memory service are prioritized over gtbecause such threads are more likely to return
to long compute periods and keep their cores utilized. Tthobaster memory scheduling (TCM1J]
improves both system performance and fairness. Systemrpehce is improved by allocating a share
of the main memory bandwidth for latency-sensitive appiwes. Fairness is achieved by shuffling
scheduling priorities of memory-intensive applicatiohsegular intervals to prevent starvation of any
application. These works and other application-aware nmgracheduler works15, 16, 17, 19, 21]
attempt to reduce inter-application memory interferenaeely through memory scheduling. As a re-
sult, they require significant modifications to the memomgtoaller’s design. In contrast, we propose 1)
an alternative approach to reduce memory interferencehnndoes not require changes to the schedul-
ing algorithm when employed alone, 2) combining our cham@etitioning mechanism with memory
scheduling to gain better performance than either can eeline. Our quantitative comparisons in
Section9 show that our proposed mechanisms perform better than thentstate-of-the-art scheduling
policies, with no change or minimal changes to the memorgdeling algorithm.

Application-unaware memory schedule® 8, 22, 30], including the commonly-employed FR-
FCFS policy P2, 30], aim to maximize DRAM throughput, and therefore, lead tas Isystem per-
formance in multi-core systems, as shown in previous wbdk11, 15, 16, 17, 19].

OS Thread Scheduling. Zhuravlev et al. 29] aims to mitigate shared resource contention between
threads by co-scheduling threads that interact well withedher on cores sharing the resource, similar
to [23]. Such solutions require enough threads with symbioticattaristics to exist in the OS’s thread
scheduling pool. In contrast, our proposal can reduce mgmterference even if threads that interfere
significantly with each other are co-scheduled in differes and can be combined with co-scheduling
proposals to further improve system performance.

Page Allocation. Page allocation mechanisms have been explored previd\wsasthi et al. B] use
page allocation/migration to balance load across memanjyralters (MCs) in an application-unaware
manner, to improve memory bandwidth utilization and syspemiormance in a network-on-chip based
system where a core has different distances to differentangchannels. Our proposal, in compar-
ison, performs page allocation in an application-aware meamith the aim of reducing interference
between different applications. We compare our approadntadaptation of J] to crossbar-based
multicore systems where all memory controllers are eqtadiso any core (in Sectio®.3) and show

SAFARI Technical Report No. 2011-002 (June 3, 2011)

that application-aware channel partitioning leads todretystem performance than balancing load in
MCs. However, concepts from both approaches can be combanddrther performance benefits. In
NUMA-based multiprocessor systems with local and remotenorees, page allocation mechanisms
were used to place data close to corresponding computatida [B, 26]. Our goal is completely dif-
ferent: to map data to different channels to mitigate ietenice between different applications. In fact,
our schemes do not require the system to have non-uniforesa@haracteristics to MCs.

Sudan et al. 4] propose to colocate frequently used chunks of data intsraaereby improving
row-buffer locality, by modifying OS page mapping mechams Lebeck et al. and Hur et al9,[
12] propose page allocation mechanisms to increase idlemesthas decrease energy consumption in
DRAM ranks/banks. Phadke et aR(] propose a heterogeneous memory system where each memory
channel is optimized for latency, bandwidth, or power anappse page mapping mechanisms to map
appropriate applications’ data to appropriate channelmpove performance and energy efficiency.
None of these works consider using page allocation to rethtee-application memory interference,
and therefore they can be potentially combined with our psapto achieve multiple different goals.

8. Evaluation Methodology

Simulation Setup. MCP requires the MPKI and RBH values to be collected for eguflieation.
These per-application hardware counters, though easyieiment, are not present in existing systems.
Also, our evaluation requires different system configwradiwith varying architectural parameters and
comparison to new scheduling algorithms. For these reasanare unable to evaluate MCP on a real
system and use an in-house cycle-level x86 multi-core sitoul The front end of the simulator is based
on Pin [L3]. This simulator models the memory subsystem of a CMP inidétanforces channel, rank,
bank, port and bus conflicts, thereby capturing all the badithdimitations and modeling both channel
and bank-level parallelism accurately. The memory modbbsed on DDR2 timing parametefs],
verified using DRAMSIm 27]. We model the execution in a core, including the instructira@ndow.
Unless mentioned otherwise, we model a 24-core system witkefhory channels/controllers. Talle
shows major processor and memory parameters.

Processor Pipeline 128-entry instruction window (64-entry issue queue, 6#yestore queue), 12-stage pipeline
Fetch/Exec/Commit Width 3 instructions per cycle in each core; 1 can be a memory aperat
L1 Caches 32 K-byte per-core, 4-way set associative, 32-byte blozk,<2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 32-byte blang, Si2-cycle latency
DRAM controller (on-chip) 128-entry request buffer, 64-entry write buffer, readsiitized over writes, row interleaving
DRAM chip parameters DDR2-800 timing parameterse 1, =15ns,t rc p=15ns,t g p=15ns, BL/2=10ns, 8 banks, 4K row-buffdr
DIMM Configuration Single-rank, 8 DRAM chips put together on a DIMM to providelit wide memory channel
Round-trip L2 miss latency For a 32-byte cache line

uncontended: row-buffer hit: 40ns (200 cycles), closedisg@00 cycles), conflict: 80ns (400 cycles
Cores and DRAM controllers 24 cores, 4 independent DRAM controllers, each controlirgingle memory channel

Table 2. Default processor and memory subsystem configatati

Evaluation Metrics. We measure the overall throughput of the system usieighted speedu23].
We also reporharmonic speedypvhich is a combined measure of performance and fairness.

. IPC;haTEd .
SystemT hroughput = WeightedSpeedup = EiW’
N

% pcalone *
i
1pcshared

Our normalized results are normalized to the FR-FCFS basalinless stated otherwise.
Workloads. We use workloads constructed from the SPEC CPU2006 beng&kifdgim our evaluations.

HarmonicSpeedup = 3

SAFARI Technical Report No. 2011-002 (June 3, 2011)

We compiled the benchmarks using gcc with the O3 optimindtar. Table3 shows benchmarks’ char-
acteristics. We classify benchmarks into two categoriggh memory-intensity (greater than 10 MPKI)
and low memory-intensity (less than 10 MPKI). We vary thefi@n of high memory-intensity bench-
marks in our workloads from 0%, 25%, 50%, 75%, 100% and caoos#0 workloads in each category.
Within each memory-intensity category, we vary the fractod high row-buffer hit rate benchmarks in
a workload from low to high. We also create another categdey,y Low(V L) of 40 workloads. All
benchmarks in these workloads have less than 1 MPKI. We dengiL for completeness, although
these workloads have little bandwidth demand. For our meafuations and some analyses, we use all
240 workloads and run each workload for 300M cycles. Forigeitg studies, we use the 40 balanced
(50% memory-intensive) workloads, unless otherwise moeetil, and run for 100M cycles to reduce
simulation time.

[No. [Benchmark [MPKI | RBH [No. | Benchmark | MPKI | RBH [No. [Benchmark | MPKI | RBH |
1 453.povray 0.03 | 85.2% || 10 445.gobmk 0.6 71% 19 482.sphinx3 24.9 | 85.4%
2 400.perlbench| 0.13 | 83.6% || 11 435.gromacs 0.7 84.4% || 20 459.GemsFDTD| 25.3 28.8%
3 465.tonto 0.16 91% 12 | 464.h264 2.7 92.3% || 21 | 433.milc 34.3 | 93.2%
4 454 calculix 0.20 | 87.2% || 13 | 401.bzip2 3.9 53.8% || 22 | 470.lbm 435 | 95.2%
5 444 namd 0.3 95.4% || 14 456.hmmer 5.7 35.5% || 23 462.libquantum 50 99.2%
6 481.wrf 0.3 91.9% || 15 473.astar 9.2 76.2% || 24 450.soplex 50.1 91.3%
7 403.gcc 0.4 73.2% || 16 436.cactusADM 9.4 18% 25 437 .leslie3d 59 82.6%
8 458.sjeng 0.4 11.5% || 17 471.omnetpp 21.6 46% 26 429.mcf 99.8 42.9%
9 447 deallll 0.5 81.2% || 18 483.xalancbhmk 23.9 73.2%

Table 3. SPEC CPU2006 benchmark characteristics.

Parameter Values. The default MPKI scaling factor an@ B H, values we use in our experiments are
1 and 50% respectively. For tipeofile intervalandexecution intervalwe use values of 10 million and
100 million, respectively. We later study sensitivity tbthlese parameters.

9. Results

We first present and analyze the performance of MCP and IMPS
on a 24-core 4-memory controller system. Figérehows the

1.2

system throughput and harmonic speedup averaged over@ll 24 f% 115 ,ngCEFS ;
workloads. The upper right part of the graph correspondte b g A
ter system throughput and a better balance between faiamess g s d
performance. MCP improves system throughputby 7.1% and har § |

monic speedup by 11% over the baseline. IMPS provides 4% §

0.95

0.9 1 11 12 13 14

better system throughput (13% better harmonic speedup) ove Normalized Harmonie Speedup

MCP, and 11% better system throughput (24% better harmoni€igure 6. MCP and IMPS per-
speedup) over the baseline. We observe (not shown) that tHermance (normalized) across 240
scheduling component of IMPS alone (without partitioniggihs ~ workloads.

half of the performance improvement of IMPS. We concludé¢ tha

interference-aware channel partitioning is beneficialsgstem performance, but dividing the task of
interference reduction using both channel partitionind ememory scheduling together provides better
system performance than employing either alone.

Individual Workloads. Figure7 shows the weighted speedup for four randomly selectedeseptative
workloads shown in Tabld. We observe that MCP and IMPS gain performance benefits stendly
across different workloads.

SAFARI Technical Report No. 2011-002 (June 3, 2011)

[Workload | High memory-intensity benchmarks | Low Memory-intensity benchmarks |

w1 perlbench, gobmk, gromacs, gcc(2), sjeng(2), | sphinx3, soplex, libquantum(4),
hmmer(2), bzip2, cactus, h264ref milc(3), Ibm(3)

w2 gromacs(2), h264(2), dealll(2), astar(2), milc(2), leslie3d(2)), sphinx(3),
hmmer(2), cactusADM(2) gemsFDTD(3), libquantum(3)

W3 namd(3), gcc(3), astar(3), leslie3d(3), milc(3), omnetpp(3),
cactusADM(3) mcf(3)

w4 tonto, astar, gcc, povray, hmmer, h264, xalancbmk, libquantum, Ibm, sphinx3, mil
gromacs, perlbench, dealll, cactusADM(2), bzip2soplex, omnetpp(2), gemsFDTD(3), mcf

Table 4. Four representative workloads.

25 T - .
14 FRFCFST—1

FRFCFS ——— 0% MCP —
o 13 MCP oo o 20 f IMPS s ||
= 12 IMPS mm | 3
D & 15
& 11 ¢ &
w =
z 10 g 10 |
= 9 =
[=2]
D 8 = gl
= 7
[0}
© w1 w2 w3 w4a AVG Vb 0 25 50 s 100

6 of memory-intensive benchmarks in a workloa
% of y-int b h k: kload

Workloads H
Figure 7. MCP and IMPS performance for 4 sample Figure 8'_ MCP_and IMPS_Performa_\nce across
memory-intensity categories. % gain values of

workloads and avg across 40 balanced workloads.
IMPS over FRFCFS are labeled.

Effect of Workload Memory-Intensity. Figure8 shows the system throughput benefits of MCP and
IMPS, for six memory-intensity based categories of worllkra As expected, as workload intensity
increases (from left to right in the figure), absolute systermughput decreases due to increased inter-
ference between applications.

We make three major conclusions. First, MCP and IMPS impmerformance significantly over
FR-FCFS in most of the memory-intensity categories. Spmedifi MCP avoids interference between
applications of both dissimilar and similar intensitiesibglating them to different channels, enabling
benefits mostly regardless of workload composition. SectMBS’s performance benefit over MCP is
especially significant in the lower-intensity workloadsicB workloads have a higher number of very
low memory-intensity applications and IMPS prioritizesmmin the scheduler, which is more effective
for system performance than reducing interference for thgrassigning them to their own channels,
which wastes bandwidth as done by MCP. As the workload menmeysity increases, IMPS’ per-
formance benefit over MCP becomes smaller because the nuhlosv-intensity workloads becomes
smaller. Third, when the workload mix is very non-intensivesery intensive, MCP/IMPS do not pro-
vide much benefit. In th& L category, load on memory and as a result interference isloeryimiting
the potential of MCP/IMPS. When 100% of applications in therkload are intensive, the system be-
comes memory bandwidth limited and conserving memory battvly exploiting row-buffer locality
(using simple FR-FCFS) provides better performance thdnaiag inter-application interference at the
expense of reducing memory throughput. Any scheduling ditjgaing scheme that breaks the con-
secutive row-buffer hits results in a system performanss.loNVe conclude that MCP and IMPS are
effective for a wide variety of workloads where contentioises and the system is not fully bandwidth
limited.

SAll categories from 0 - 100% place a load on the memory sysésnthe intensity cut off used to classify an application
as intensive is 10 MPKI, which is reasonably large to begiiwi

SAFARI Technical Report No. 2011-002 (June 3, 2011)

9.1. Comparison with Previous Scheduling Policies

Figure 9 compares MCP and IMPS with previous memory scheduling jeslicFR-FCFS 22],
PARBS [17], ATLAS [10] and TCM [11] over 240 workloads. Two major conclusions are in order.
First, application-aware scheduling policies performtdraghan FR-FCFS, and, TCM performs the best
among the application-aware scheduling policies, coasistith previous worKl0, 11, 17]. Second,
MCP and IMPS outperform TCM by 1%/5%, with no/minimal chasig@the scheduler.

24

| FRFCFST—— L
115 21
11 F 18
1.05 | 15

12

-
IN)

0.95
0.9

Weighted Speedup

6

0.85

o
o

Normalized Weighted Speedup

VL o 25 50 75 100

. Memory Scheduling Algorithms % of memory-intensive benchmarks in a workload
Figure 9. MCP and IMPS per- Figure 10. MCP and IMPS performance vs previ-
formance (normalized) vs previous ous scheduling policies across memory-intensity
scheduling policies averaged across categories. Percentage improvement values of
240 workloads. IMPS over FR-FCFS are displayed.

Figure 10 provides insight into where MCP and IMPS’ performance bésnefie coming from by
breaking down performance based on workload intensityhasmorkload memory intensity (thus con-
tention) increases, MCP and IMPS become more effectiveiheeamemory scheduling approaches. At
low-intensity workloads (VL, 0%, 25%), TCM performs sligbetter than IMPS because TCM is able
to distinguish and prioritize between each individual &gilon in the memory scheduler (not true for
MCP/IMPS), leading to reduced interference between lowaadium intensity applications. At higher
intensity workloads (50%, 75%, 100%), reducing interfeesmia channel partitioning is more effective
than memory scheduling: both MCP and IMPS outperform TCg, &y 40% in the 100%-intensity
workloads. In such workloads, contention for memory is \@gh as many high-intensity applications
contend. Channel partitioning completely eliminatesrietence between some applications by sepa-
rating out their access streams to different channelsellyereducing the number of applications that
contend with each other. On the other hand, TCM or a pure mesatreduling scheme tries to handle
contention between high-intensity workloads purely byptization, which is more effective at balanc-
ing interference but cannot eliminate interference as NM@PS does since all applications contend with
each other. We conclude that IMPS is a more effective salutian pure memory scheduling especially
when workload intensity (i.e., memory load) is high, whishihe expected trend in future systems.

Note that IMPS’s performance benefits over applicationrawi@emory schedulers come at a signifi-
cantly reduced complexity, as described in Sec@on

9.2. Interaction with Previous Scheduling Policies

Figure11 compares MCP and IMPS, when implemented on top of FR-FCF&A&Tand TCM as
the underlying scheduling policy. When IMPS is implementgdr ATLAS and TCM, it adds another
priority level on top of the scheduling policy’s priorityMels: very-low-intensity applications are priori-
tized over others and the scheduling policy’s priorities @ased between very-low-intensity applications
and between the remaining applications.

SAFARI Technical Report No. 2011-002 (June 3, 2011)

Several conclusions are in order. First, adding MCP/IMPS
on top of any previous scheduling policy improves perfor-
mance (IMPS gains 7% and 3% over ATLAS and TCM respec-
tively), showing that our proposal is orthogonal to the unde
lying memory scheduling algorithm. Second, MCP/IMPS over
FR-FCFS (our default proposal) provides better perforraanc
than MCP/IMPS employed over TCM or ATLAS. This is due 09 CRFCFS ATLAS _ TCM
to two reasons: 1) channel partitioning decisions MCP makes§igure 11. MCP and IMPS perfor-
are designed assuming an FR-FCFS policy and not designedance over different scheduling poli-
to take into account or interact well with ATLAS/TCM'’s more cies (240 workloads).
sophisticated thread ranking decisions. There is roomnfer i
provement if we design a channel partitioning scheme thspeésialized for the underlying scheduling
policy. We leave this for future work. 2) MCP/IMPS isolatesgps of similar applications to different
channels and ATLAS/TCM operate within each channel to prker between/cluster these similar ap-
plications. However, ATLAS and TCM are designed to expletdnogeneity between applications and
do not perform as well when the applications they prioribetween are similar. We found that prior-
itizing similar-intensity applications over each othettlre way ATLAS/TCM does, creates significant
slowdowns because the applications are treated very eliffigr We conclude that MCP/IMPS can be
employed on top of any underlying scheduler to gain betteopmance over using the scheduler alone.
However, it performs best when employed over an FR-FCFSibhader which it is designed.

1.2

Base ——1

MCP o | |
1.15 IMPS

1.1
1.05

0.95

Normalized Weighted Speedup

9.3. Comparison with Prior Work on Balancing Load Across Multiple Memory Controllers

In [3], Awasthi et al propose two page allocation schemes
to balance the load across multiple memory controllers: 1)
page allocation on first touch (Adaptive First Touch, AFT),
2) Dynamic Page Migration (DPM). AFT attempts to bal-
ance load by allocating a page to a channel which has the
minimum value of a cost function involving channead,
row buffer hit rate, and, théistanceto the channel. DPM
proposes to migrate a certain number of pages from the chan- Page Mapping Schemes
nel with the highest load to the least loaded channel at regFigure 12. MCP and IMPS Performance
ular intervals, in addition to AFT. In our adaptation of AFT, vs load balancing across memory con-
we consider both channel load and row-buffer-hit rate but ddrollers [3] (40 workloads).
not incorporate the channel distance, as we do not model a
network-on-chip. Figurd2 compares MCP/IMPS performance to that of AFT and DPM. FAST
and DPM both improve performance by 5% over the baselineggusecthey reduce memory access la-
tency by balancing load across different channels. Thesgaim the two schemes are similar as the
access patterns of the applications we evaluate do not &eggly with time, resulting in very few invo-
cations of dynamic page migration. Second, our proposajseoiorm AFT and DPM by 7% (MCP) and
12.4% (IMPS), as they proactively reduce inter-appligatiderference by using application character-
istics, while AFT and DPM are not interference- or applicataware and try to reactively balance load
across memory controllers. We conclude that reducing-gp@tication interference by page allocation
provides better performance than balancing load acrossomyecontrollers in an application-unaware
manner.

125 FRFCFST—
1.2 HAFT =
1.15 |[DPM —]
. MCP —
1.1 HIMPS s |

1.05

0.95
0.9
0.85

o
®

Normalized Weighted Speedup

SAFARI Technical Report No. 2011-002 (June 3, 2011)

9.4. Impact of Cache Line Interleaving

We study the effect of MCP/IMPS on a system with a restrictechfof cache line interleaving that
maps consecutive cache lines of a page across banks withamael. Figurd 3 shows that MCP/IMPS
improve the performance of such a system by 5.1% and 11%atasglg. We observed (not shown) that
unrestricted cache line interleaving across channels lfiowMCP/IMPS cannot be applied) improves
performance by only 2% over restricted cache line interf@avHence, using channel partitioning with
MCP/IMPS outperforms cache line interleaving across chEnhis is because the reduction in inter-
application interference with MCP/IMPS provides more sgsperformance benefit than the increase
of channel-level parallelism with unrestricted cachelinterleaving. We conclude that MCP/IMPS are
effective independent of the interleaving policy employasilong as the interleaving policy allows the
mapping of an entire page to a channel (which is required fGPMMPS to be implementable).

1.2

FRFCFS W
MCP °
115 Fimps

RFCFS

o

2 o

<3 a 3 PARBS Z

0 — L 115 TLAS O

B 11 a 2 e S

£ B® 11 ® PS .

2 105 . £ ©

= . - 2 105 -

= 095 e >

£ T 095

S 0.9 £

= 0.9 1 1.1 1.2 1.3 1.4 1.5 S 0.0

Normalized Harmonic Speedup =z " 04 06 08 1 12 14 16
Figure 13. System throughput and harmonic , Normalized Maximum Slowdown
9 . Y _throughput Figure 14. Performance and fairness compared to

speedup with cache line interleaving (240 work-

loads). previous scheduling policies (240 workloads).

9.5. Effect of MCP and IMPS on Fairness

The fairness metric we use, the maximum slowdown of a wotkleadefined as the maximum of
the slowdowns (inverse of speedups) of all applicatidils 11, 25]; lower maximum slowdown values
are more desirable. Figutet shows throughput vs fairness of previously proposed sdimedpoli-
cies and our proposed schemes. IMPS has slightly betteretsr (3% lower maximum slowdown)
than FR-FCFS. While MCP and IMPS provide the best performammnpared to any other previous
proposal, they result in higher unfairness. Note that thisxpected by design: MCP and IMPS are de-
signed for improving system performance and not fairnebgyake the conscious choice of placing
high-intensity (and high-row-locality) applications orthe same channel(s) to enable faster progress
of lower-intensity applications, which sometimes resuitthe increased slowdown of higher-intensity
applications. Channel partitioning based techniquesddwaimprove both performance and fairness are
out of the scope of the paper and an interesting area of futark.

9.6. Sensitivity Studies

Sensitivity to MCP and IMPS algorithm parameters. We first vary the profile interval length to
study its impact on MCP and IMPS’ performance (FigliEg. A shorter initial profile interval length

(12 and 5 Million) leads to less stable MPKI and RBH valuesdieg to inaccurate estimation of ap-
plication characteristics. In contrast, a longer profileimal length causes a number of pages to be
allocated prior to computing channel preferences. A praftierval length of 10M cycles balances these
downsides of shorter and larger intervals and provideseisegerformance. We also experimented with

SAFARI Technical Report No. 2011-002 (June 3, 2011)

different execution interval lengths (Figuté). A shorter interval leads to better adaptation to changes
in application behavior but also higher overhead due to paigeation if application characteristics are
not stable within the interval. A longer interval might mdsanges in the behavior of applications. A
100M-cycle interval ensures a good balance and provided gedormance.

1.25
1.2 ¢
1.15
1.1 ¢
1.05
1
0.95
0.9

I
N

I
N

MCP mmmm |[MPS s MCP mm

IMPS ——

i
.
«

Normalized Weighted Speedup
[
o
o

Normalized Weighted Speedup
P
=

Normalized Weighted Speedup
P
=
[&2]

1 11
10M 50M 100M 150M 200M

iM 5M 10M 20M 40M
Profile Interval Execution Interval MPKI Threshold

Figure 15. Performance vs Profileigure 16. Performance vs Execligure 17. Performance vs
interval (40 workloads). tion interval (40 workloads). M PKI; (40 workloads).

0.5 0.75 1 1.25 15

Figure17 shows the sensitivity of MCP/IMPS tof/ PK I;. As M PK I, is increased beyond 1, more
medium and high memory-intensity applications get intddeememory-intensity group, thereby slow-
ing down the low-intensity applications and resulting iwéy throughput. We also variel BH,, the
row buffer-hit rate threshold and the very low memory-irsignthreshold. System performance remains
high and stable over a wide range of these values, with thgee®rmance observed at &1 H; value
of 50% and a very low memory-intensity threshold value of 1.5
Scalability to cores, MCs and cache sizesTable5 shows the performance of IMPS as number of
cores, number of MCs and L2 cache size are varied. The reeedytistem remains the same. IMPS’
benefits are significant across all configurations. IMPSfggarance gain in general increases when the
system is more bandwidth constrained, i.e., with increpsimmber of cores and reducing number of
MCs. MCP shows similar trends as IMPS.

| I No. of Cores I No. of MCs I Private L2 Cache Size |

16 24 32 2 4 8 256KB | 512KB | 1MB
IMPSSystemThroughputImprovemevﬂt 15.8% | 17.4% | 31% || 18.2% | 17.1% | 10.7% || 16.6% | 17.4% | 14.3%

Table 5. Sensitivity to number of cores, number of MCs, and&éhe size (40 workloads).

10. Conclusion

We presented 1) MCP, a fundamentally new approach to regucter-application interference at
the memory system, by mapping the data of interfering apptios to separate channels, 2) IMPS, that
effectively divides the work of reducing inter-applicatimterference between the system software and
the memory scheduler. Our extensive qualitative and oiading comparisons demonstrate that MCP
and IMPS both provide better system performance than tie-sfahe-art memory scheduling policies,
with no or minimal hardware complexity. IMPS provides befterformance than channel partitioning or
memory scheduling alone. We conclude that inter-appboatiemory interference is best reduced using
the right combination of page allocation to channels and orgracheduling, and that IMPS achieves
this synergy with minimal hardware complexity.

11. Acknowledgements

We gratefully acknowledge Yoongu Kim, members of the SAFA&dearch group and CALCM at
CMU and the Microsystems Design Lab at PSU for many insigldfscussions on this work. We

SAFARI Technical Report No. 2011-002 (June 3, 2011)

acknowledge the support of our industrial sponsors; AMEellrand Microsoft. This research was par-
tially supported by grants from the Gigascale Systems Rels€zenter, the National Science Foundation
(CAREER Award CCF-0953246), and Carnegie Mellon CyLab.

References

[1] SPEC CPU2006http://www.spec.org/spec2006, 12
[2] The AMD processor roadmap for industry standard senz4%0. 2

[3] M. Awasthi et al. Handling the problems and opportusitiposed by multiple on-chip memory controllers.
In PACT-19 2010.9, 11, 16

[4] J. Casazza. First the tick, now the tock: Next generaitibel microarchitecture (Nehalem). Intel White
Paper, 2009.2

[5] R. Chandra et al. Scheduling and page migration for prdtiessor compute servers. ABPLO$1994.12
[6] V. Cuppu et al. A performance comparison of contempoRRAM architectures. INSCA-26 1999.3

[7] R. Das et al. Application-to-core mapping policies tduee interference in on-chip networks. SAFARI
Technical Report No. 2011-002011.9

[8] E. Ebrahimi et al. Fairness via source throttling: a cgmfable and high-performance fairness substrate for
multi-core memory systems. BSPLOS-152010.7

[9] I. Hur and C. Lin. Adaptive history-based memory scheds! InMICRO-37 2004.11, 12

[10] Y. Kim et al. ATLAS: A scalable and high-performance eduling algorithm for multiple memory con-
trollers. INnHPCA-16 2010.2, 3,9, 10, 11, 15, 17

[11] Y. Kim et al. Thread cluster memory scheduling: Exptait differences in memory access behavior. In
MICRO-43 2010.2, 3, 7,9, 10, 11, 15, 17

[12] A. Lebeck et al. Power aware page allocationABPLOS-92000.12

[13] C. Luk etal. Pin: building customized program analytsisls with dynamic instrumentation. PLDI, 2005
12

[14] Micron. 1Gb DDR2 SDRAM Component: MT47H128M8HQ-23

[15] T. Moscibroda and O. Mutlu. Memory performance attadkenial of memory service in multi-core systems.
In USENIX Security2007.2, 11

[16] O. Mutlu and T. Moscibroda. Stall-time fair memory assecheduling for chip multiprocessors.MHiCRO-
40, 2007.2,3,7,9,11

[17] O.Mutlu and T. Moscibroda. Parallelism-aware batdhestuling: Enhancing both performance and fairness
of shared DRAM systems. II5CA-35 2008.2, 9, 10, 11, 15

[18] C. Natarajan et al. A study of performance impact of mgnemntroller features in multi-processor server
environment. INWMPI-3 2004.11

[19] K. Nesbit et al. Fair queuing memory systems MICRO-39 2006.2, 11

[20] S. Phadke and S. Narayanasamy. MLP aware heterogenesmusry system. IDATE, 2011.12

[21] N. Rafique et al. Effective management of DRAM bandwiitimulticore processors. IRACT, 2007.2, 11
[22] S. Rixner et al. Memory access schedulingIS&A-27 2000.3, 11, 15

[23] A. Snavely and D. M. Tullsen. Symbiotic jobschedulirgy & simultaneous multithreaded processor. In
ASPLOS-92000.11, 12

SAFARI Technical Report No. 2011-002 (June 3, 2011)

[24] K. Sudan et al. Micro-pages: increasing DRAM efficienayh locality-aware data placement. ABPLOS-
15, 2010.12

[25] H. Vandierendonck and A. Seznec. Fairness metrics fdti+threaded processor&€omputer Architecture
Letters PP(99):1, 201117

[26] B. Verghese et al. Operating system support for imprgwata locality on cc-numa compute servers. In
ASPLOS-71996.12

[27] D. Wang et al. DRAMsim: a memory system simulatorSIGARCH Comp. Arch. News. 33(2D05.12

[28] G. L. Yuan et al. Complexity effective memory accessestilling for many-core accelerator architectures.
In MICRO-42 2009.2

[29] S. Zhuravlev et al. Addressing shared resource caoterih multicore processors via scheduling. In
ASPLOS-152010.11

[30] W. Zuravleff and T. Robinson. Controller for a synchoois DRAM that maximizes throughput by allowing
memory requests and commands to be issued out of order. 3997.

