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Abstract—The memory system is a fundamental performance
and energy bottleneck in almost all computing systems. Recent
system design, application, and technology trends that require
more capacity, bandwidth, efficiency, and predictability out of
the memory system make it an even more important system
bottleneck. At the same time, DRAM technology is experiencing
difficult technology scaling challenges that make the maintenance
and enhancement of its capacity, energy-efficiency, and reliability
significantly more costly with conventional techniques.

In this paper, after describing the demands and challenges
faced by the memory system, we examine some promising
research and design directions to overcome challenges posed
by memory scaling. Specifically, we survey three key solution
directions: 1) enabling new DRAM architectures, functions,
interfaces, and better integration of the DRAM and the rest of
the system, 2) designing a memory system that employs emerging
memory technologies and takes advantage of multiple different
technologies, 3) providing predictable performance and QoS to
applications sharing the memory system. We also briefly describe
our ongoing related work in combating scaling challenges of
NAND flash memory.

I. INTRODUCTION

Main memory is a critical component of all computing systems,
whether they be server, embedded, desktop, mobile, sensor. Memory
capacity, energy, cost, performance, and management algorithms must
scale as we scale the size of the computing system in order to
maintain performance growth and enable new applications. Unfor-
tunately, such scaling has become difficult because recent trends in
systems, applications, and technology exacerbate the memory system
bottleneck.

II. TRENDS AND REQUIREMENTS

In particular, on the systems/architecture front, energy and power
consumption have become key design limiters as the memory system
continues to be responsible for a significant fraction of overall system
energy/power [43]. More and increasingly heterogeneous [15, 70, 29]
processing cores and agents/clients are sharing the memory system,
leading to increasing demand for memory capacity and bandwidth
along with a relatively new demand for predictable performance and
QoS from the memory system [52, 57, 69]. On the applications
front, important applications are usually very data intensive and are
becoming increasingly so [6], requiring both real-time and offline
manipulation of great amounts of data. For example, next-generation
genome sequencing technologies produce massive amounts of se-
quence data that overwhelms memory storage and bandwidth require-
ments of today’s high-end desktop and laptop systems [71, 3, 74] yet
researchers have the goal of enabling low-cost personalized medicine.
Creation of new killer applications and usage models for computers
likely depends on how well the memory system can support the
efficient storage and manipulation of data in such data-intensive
applications. In addition, there is an increasing trend towards consol-
idation of applications on a chip, which leads to the sharing of the
memory system across many heterogeneous applications with diverse
performance requirements, exacerbating the aforementioned need for
predictable performance guarantees from the memory system. On the
technology front, two key trends profoundly affect memory systems.
First, there is increasing difficulty scaling the well-established charge-
based memory technologies, such as DRAM [48, 4, 38, 1] and flash
memory [35, 47, 9, 10, 12], to smaller technology nodes. Such scaling
has enabled memory systems with reasonable capacity and efficiency;
lack of it will make it difficult to achieve high capacity and efficiency

at low cost. Second, some emerging resistive memory technologies,
such as phase change memory (PCM) [66, 73, 38, 39, 65] or spin-
transfer torque magnetic memory (STT-MRAM) [14, 36] appear more
scalable, have latency and bandwidth characteristics much closer
to DRAM than flash memory and hard disks, and are non-volatile
with little idle power consumption. Such emerging technologies can
enable new opportunities in system design, including, for example,
the unification of memory and storage subsystems. They have the
potential to be employed as part of main memory, alongside or in
place of less scalable and leaky DRAM, but they also have various
shortcomings depending on the technology (e.g., some have cell
endurance problems, some have very high write latency/power, some
have low density) that need to be overcome.

III. SOLUTION DIRECTIONS

As a result of these systems, applications, and technology trends
and the resulting requirements, it is our position that researchers and
designers need to fundamentally rethink the way we design memory
systems today to 1) overcome scaling challenges with DRAM, 2)
enable the use of emerging memory technologies, 3) design memory
systems that provide predictable performance and quality of service
to applications and users. The rest of the paper describes our solution
ideas in these three directions, with pointers to specific techniques
when possible. Since scaling challenges themselves arise due to
difficulties in enhancing memory components at solely one level
of the computing stack (e.g., the device and/or circuit levels in
case of DRAM scaling), we believe effective solutions to the above
challenges will require cooperation across different layers of the
computing stack, from algorithms to software to microarchitecture
to devices, as well as between different components of the system,
including processors, memory controllers, memory chips, and the
storage subsystem.

IV. CHALLENGE 1: NEW DRAM ARCHITECTURES

DRAM has been the choice technology for implementing main
memory due to its relatively low latency and low cost. DRAM process
technology scaling has for long enabled lower cost per unit area
by enabling reductions in DRAM cell size. Unfortunately, further
scaling of DRAM cells has become costly [4, 48, 38, 1] due to
increased manufacturing complexity/cost, reduced cell reliability, and
potentially increased cell leakage leading to high refresh rates. Several
key issues to tackle include:

1) reducing the negative impact of refresh on energy, performance,
QoS, and density scaling [45],

2) improving DRAM parallelism/bandwidth [34], latency [42], and
energy efficiency [34, 42, 45],

3) improving reliability of DRAM cells at low cost,

4) reducing the significant amount of waste present in today’s main
memories in which much of the fetched/stored data can be unused
due to coarse-granularity management [50, 76],

5) minimizing data movement between DRAM and processing
elements, which causes high latency, energy, and bandwidth con-
sumption [68].

Traditionally, DRAM devices have been separated from the rest
of the system with a rigid interface, and DRAM has been treated as
a passive slave device that simply responds to the commands given
to it by the memory controller. We believe the above key issues
can be solved more easily if we rethink the DRAM architecture and
functions, and redesign the interface such that DRAM, controllers,
and processors closely cooperate. We call this high-level solution
approach system-DRAM co-design. We believe key technology trends,
e.g., the 3D stacking of memory and logic [46, 2] and increasing cost
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of scaling DRAM solely via circuit-level approaches, enable such a
co-design to become increasingly feasible. We proceed to provide
several examples from our recent research that tackle the problems
of refresh, parallelism, latency, and energy efficiency.

A. Reducing Refresh Impact and DRAM Error Management

With higher DRAM capacity, more cells need to be refreshed
at likely higher rates than today. Our recent work [45] indicates
that refresh rate limits DRAM density scaling: a hypothetical 64Gb
DRAM device would spend 46% of its time and 47% of all DRAM
energy for refreshing its rows, as opposed to typical 4Gb devices
of today that spend respectively 8% of the time and 15% of the
DRAM energy on refresh. Today’s DRAM devices refresh all rows
at the same worst-case rate (e.g., every 64ms). However, only a small
number of weak rows require a high refresh rate [31, 44] (e.g.,
only ~1000 rows in 32GB DRAM require to be refreshed more
frequently than every 256ms). Retention-Aware Intelligent DRAM
Refresh (RAIDR) [45] exploits this observation: it groups DRAM
rows into bins (implemented as Bloom filters to minimize hardware
overhead) based on the retention time of the weakest cell within each
row. Each row is refreshed at a rate corresponding to its retention time
bin. Since few rows need high refresh rate, one can use very few
bins to achieve large reductions in refresh counts: our results show
that RAIDR with three bins (1.25KB hardware cost) reduces refresh
operations by ~75%, leading to significant improvements in system
performance and energy efficiency as described by Liu et al. [45].

Note that such approaches that exploit non-uniform retention
times across DRAM, like RAIDR, require accurate retention time
profiling mechanisms. Understanding of retention time as well as
error behavior of DRAM devices is a critical research topic, which
we believe can enable other mechanisms to tolerate refresh impact
and errors at low cost. Liu et al. [44] provides an experimental
characterization of retention times in modern DRAM devices to aid
such understanding. Our initial results in that work, obtained via the
characterization of 248 modern commodity DRAM chips from five
different DRAM manufacturers, suggests that the retention time of
cells in a modern device is largely affected by two phenomena: 1)
Data Pattern Dependence, where the retention time of each DRAM
cell is significantly affected by the data stored in other DRAM cells,
2) Variable Retention Time, where the retention time of some DRAM
cells changes unpredictably over time. These two phenomena pose
challenges against accurate and reliable determination of the retention
time of DRAM cells, online or offline, and a promising area of future
research is to devise techniques that can identify retention times of
DRAM cells in the presence of data pattern dependence and variable
retention time.

Looking forward, we believe that increasing cooperation between
the DRAM device and the DRAM controller as well as other parts
of the system, including system software, is needed to communicate
information about weak (or, unreliable) cells and the characteristics
of different rows or physical memory regions from the device to
the system. The system can then use this information to optimize
data allocation and movement, refresh rate management, and error
tolerance mechanisms. Low-cost error tolerance mechanisms are
likely to be enabled more efficiently with such coordination between
DRAM and the system. In fact, as DRAM technology scales and error
rates increase, it might become increasingly more difficult to maintain
the common illusion that DRAM is a perfect, error-free storage
device. DRAM may start looking increasingly like flash memory,
where the memory controller manages errors such that an acceptable
specified uncorrectable bit error rate is satisfied.

B. Improving DRAM Parallelism

A key limiter of DRAM parallelism is bank conflicts. We have
recently developed mechanisms, called SALP (subarray level paral-
lelism) [34], that exploit the internal subarray structure of the DRAM
bank to mostly parallelize two requests that access the same DRAM
bank. The key idea is to reduce the hardware sharing between DRAM
subarrays slightly such that accesses to the same bank but different
subarrays can be initiated in a pipelined manner. This mechanism
requires the exposure of the internal subarray structure of DRAM to

the controller and the design of the controller to take advantage of this
structure. Our results show significant improvements in performance
and energy efficiency of main memory due to parallelization of
requests and improvement of row buffer hit rates (as row buffers
of different subarrays can be kept active) at a low DRAM area
overhead of 0.15%. Exploiting SALP achieves most of the benefits
of increasing the number of banks at much lower area and power
overhead than doing so. Exposing the subarray structure of DRAM
to other parts of the system, e.g., to system software or memory
allocators, can enable data placement and partitioning mechanisms
that can improve performance and efficiency even further.

C. Reducing DRAM Latency and Energy

The DRAM industry has so far been primarily driven by the
cost-per-bit metric: provide maximum capacity for a given cost. To
mitigate the high area overhead of DRAM sensing structures, com-
modity DRAMs connect many DRAM cells to each sense-amplifier
through a wire called a bitline. These bitlines have a high parasitic
capacitance due to their long length, and this bitline capacitance is the
dominant source of DRAM latency. Specialized low-latency DRAMSs
use shorter bitlines with fewer cells, but have a higher cost-per-bit
due to greater sense-amplifier area overhead. We have recently shown
that we can architect a heterogeneous-latency bitline DRAM, called
Tiered-Latency DRAM (TL-DRAM) [42], by dividing a long bitline
into two shorter segments using an isolation transistor: a low-latency
segment can be accessed with the latency and efficiency of a short-
bitline DRAM (by turning off the isolation transistor that separates the
two segments) while the high-latency segment enables high density,
thereby reducing cost-per-bit (The additional area overhead of TL-
DRAM is approximately 3% over commodity DRAM). Significant
performance and energy improvements can be achieved by exposing
the two segments to the memory controller and system software
such that appropriate data is cached or allocated into the low-
latency segment. We expect such approaches that design and exploit
heterogeneity to enable/achieve the best of multiple worlds [55] in
the memory system can lead to other novel mechanisms that can
overcome difficult contradictory tradeoffs in design.

D. Exporting Bulk Data Operations to DRAM

Today’s systems waste significant amount of energy, DRAM
bandwidth, time (as well as valuable on-chip cache space) by
unnecessarily moving data from main memory to processor caches.
One example of such wastage sometimes occurs for bulk data copy
and initialization operations in which a page is copied to another
or initialized to a value. If the copied or initialized data is not
immediately needed by the processor, performing such operations
within DRAM (with relatively small changes to DRAM) can save
significant amounts of energy, bandwidth, and time. We observe that
a DRAM chip internally operates on bulk data at a row granularity.
Exploiting this internal structure of DRAM can enable page copy and
initialization to be performed entirely within DRAM without bringing
any data off the DRAM chip [68]. If the source and destination page
reside within the same DRAM subarray, our results show that a page
copy can be accelerated by more than an order of magnitude, leading
to an energy reduction of ~74 times and no wastage of DRAM
data bus bandwidth [68]. The key idea is to capture the contents
of the source row in the sense amplifiers by activating the row, then
deactivating the source row (using a new command which introduces
very little hardware cost, amounting to less than 0.03% of DRAM
chip area), and immediately activating the destination row, which
causes the sense amplifiers to drive their contents into the destination
row, effectively accomplishing the page copy.

Going forward, we believe acceleration of other bulk data move-
ment and computation operations in or very close to DRAM can
enable promising savings in system energy, latency, and bandwidth.
Given the trends and requirements described in Section II, it is
likely time to re-examine the partitioning of computation between
processors and DRAM, treating memory as a first-class accelerator
as an integral part of a heterogeneous parallel computing system [55].



E. Minimizing Capacity and Bandwidth Waste

Storing and transferring data at large granularities (e.g., pages,
cache blocks) within the memory system leads to large inefficiency
when most of the large granularity is not needed [76, 77, 50, 49, 72,
67, 37, 63, 30]. In addition, much of the data stored in memory
has significant redundancy [75, 25, 61]. Two promising research
directions are to develop techniques that can 1) efficiently provide
fine granularity access/storage when enough and large granularity
access/storage only when needed, 2) efficiently compress data in
main memory and caches without significantly increasing latency
and system complexity. Our results with new low-cost low-latency
cache compression [61] and memory compression [62] techniques
and frameworks are promising, providing high compression ratios
at low complexity and latency. For example, the key idea of Base-
Delta-Immediate compression [61] is that many cache blocks have
low dynamic range in the values they store, i.e., the differences
between values stored in the cache block are small. Such a cache
block can be encoded using a base value and an array of much
smaller (in size) differences from that base value, which together
occupy much less space than storing the full values in the original
cache block. This compression algorithm has low decompression
latency as the cache block can be reconstructed using a vector
addition. It reduces memory bandwidth requirements, better utilizes
memory/cache space, while minimally impacting the latency to access
data. Granularity management and data compression support can
potentially be integrated into DRAM controllers or partially provided
within DRAM, and such mechanisms can be exposed to software,
which can enable higher energy savings and higher performance
improvements.

V. CHALLENGE 2: EMERGING MEMORY TECHNOLOGIES

While DRAM scaling is in jeopardy, some emerging technologies
seem more scalable. These include PCM and STT-MRAM. These
emerging technologies usually provide a tradeoff, and seem unlikely
to completely replace DRAM (evaluated in [38, 39, 40] for PCM
and in [36] for STT-MRAM), as they are not strictly superior to
DRAM. For example, PCM is advantageous over DRAM because it
1) has been demonstrated to scale to much smaller feature sizes and
can store multiple bits per cell [79], promising higher density, 2) is
non-volatile and as such requires no refresh (which is a key scaling
challenge of DRAM as we discussed in Section IV-A), and 3) has
low idle power consumption. On the other hand, PCM has significant
shortcomings compared to DRAM, which include 1) higher read
latency and read energy, 2) much higher write latency and write
energy, and 3) limited endurance for a given PCM cell, a problem that
does not exist (practically) for a DRAM cell. As a result, a research
challenge is how to utilize such emerging technologies at the system
and architecture levels such that they can augment or perhaps even
replace DRAM.

Our initial experiments and analyses [38, 39, 40] that evaluated
the complete replacement of DRAM with PCM showed that one
would require reorganization of peripheral circuitry of PCM chips
(with the goal of absorbing writes and reads before they update or
access the PCM cell array) to enable PCM to get close to DRAM
performance and efficiency. These initial results are reported in Lee
et al. [38, 39, 40]. We have also reached a similar conclusion
upon evaluation of the complete replacement of DRAM with STT-
MRAM [36]: reorganization of peripheral circuitry of STT-MRAM
chips (with the goal of minimizing the number of writes to the STT-
MRAM cell array, as write operations are high-latency and high-
energy in STT-MRAM) enables an STT-MRAM based main memory
to be much more energy-efficient than a DRAM-based main memory.

One can achieve more efficient designs of PCM (or STT-MRAM)
chips by taking advantage of the non-destructive nature of reads,
which enables simpler and narrower row buffer organizations [49]
Unlike in DRAM, the entire memory row does not need to be
buffered in a device where reading a memory row does not destroy
the data stored in the row. Meza et al. [49] shows that having
narrow row buffers in emerging non-volatile devices can greatly
reduce main memory dynamic energy compared to a DRAM baseline
with large row sizes, without greatly affecting endurance, and for

some NVM technologies, leading to improved performance. Going
forward, designing systems, memory controllers and memory chips
taking advantage of the specific property of non-volatility of emerging
technology seems promising.

We believe emerging technologies enable at least three major
system-level opportunities that can improve overall system efficiency:
1) hybrid main memory systems, 2) non-volatile main memory, 3)
merging of memory and storage. We briefly touch upon each.

A. Hybrid Main Memory

A hybrid main memory system [65, 20, 50, 78] consists of
multiple different technologies with differing characteristics, e.g.,
performance, cost, energy, reliability, endurance. A key question is
how to manage data allocation and movement between the different
technologies such that one can achieve the best of (or close to the
best of) the desired performance metrics. Put another way, we would
like to achieve the advantages of each technology while hiding the
disadvantages of each technology.

The design space of hybrid memory systems is large, and many
potential questions exist. For example, should all memories be part
of main memory or should some of them be used as a cache of
main memory (or should there be configurability)? What technologies
should be software visible? What component of the system should
manage data allocation and movement? Should these tasks be done
in hardware, software, or collaboratively? At what granularity should
data moved between different memory technologies? Some of these
questions are tackled in [50, 78, 65, 20], among other works recently
published in the computer architecture community. For example,
Yoon et al. [78] makes the key observation that row buffers are present
in both DRAM and PCM, and they have (or can be designed to have)
the same latency and bandwidth in both DRAM and PCM. Yet, row
buffer misses are much more costly in terms of latency, bandwidth,
and energy in PCM than in DRAM. To exploit this, we devise a
policy that avoids accessing in PCM data that frequently causes row
buffer misses. Hardware or software can dynamically keep track of
such data and allocate/cache it in DRAM whereas keeping data that
frequently hits in the row buffer in PCM. PCM also has much higher
write latency/power than read latency/power: to take this into account,
the allocation/caching policy is biased such that pages that are written
to more likely stay in DRAM [78].

B. Exploiting and Securing Non-volatile Main Memory

Non-volatility of main memory opens up new opportunities that
can be exploited by higher levels of the system stack to improve
performance and reliability/consistency [21, 16]. Researching how
to adapt applications and system software to utilize fast, byte-
addressable non-volatile main memory is an important research
direction to pursue [51].

On the flip side, the same non-volatility can lead to potentially
unforeseen security and privacy issues: critical and private data can
persist long after the system is powered down, and an attacker can
take advantage of this fact. Wearout issues of emerging technology
can also cause attacks that can intentionally degrade memory capacity
in the system [64]. Securing non-volatile main memory is therefore
an important systems challenge.

C. Merging of Memory and Storage

Traditional computer systems have a two-level storage model: they
access and manipulate 1) volatile data in main memory (DRAM,
today) with a fast load/store interface, 2) persistent data in storage
media (flash and hard disks, today) with a slower file system interface.
Unfortunately, such a decoupled memory/storage model managed via
vastly different techniques (fast, hardware-accelerated memory man-
agement units on one hand, and slow operating/file system (OS/FS)
software on the other) suffers from large inefficiencies in locating
data, moving data, and translating data between the different formats
of these two levels of storage that are accessed via two vastly different
interfacesleading to potentially large amounts of wasted work and
energy [51]. The two different interfaces arose largely due to the large
discrepancy in the access latencies of conventional technologies used



to construct volatile memory (DRAM) and persistent storage (hard
disks and flash).

Today, new non-volatile memory technologies (NVM), e.g, PCM,
STT-MRAM, RRAM, show the promise of storage capacity and
endurance similar to or better than flash memory at latencies com-
parable to DRAM. This makes them prime candidates for providing
applications a persistent single-level store with a single load/store-like
interface to access all system data (including volatile and persistent
data). In fact, if we keep the traditional two-level memory/storage
model in the presence of these fast NVM devices as part of storage,
the operating system and file system code for locating, moving, and
translating persistent data from the non-volatile NVM devices to
volatile DRAM for manipulation purposes becomes a great bottle-
neck, causing most of the energy consumption and degrading perfor-
mance by an order of magnitude in some data-intensive workloads, as
we showed in recent work [51]. With energy as a key constraint, and
in light of modern high-density NVM devices, a promising research
direction is to unify and coordinate the management of volatile
memory and persistent storage in a single level, to eliminate wasted
energy and performance, and to simplify the programming model at
the same time.

To this end, Meza et al. [S51] describe the vision and research
challenges of a persistent memory manager (PMM), a hardware accel-
eration unit that coordinates and unifies memory/storage management
in a single address space that spans potentially multiple different
memory technologies (DRAM, NVM, flash) via hardware/software
cooperation. The spirit of the PMM unit is much like the virtual mem-
ory management unit of a modern virtual memory system used for
managing working memory, but it is fundamentally different in that
it redesigns/rethinks the virtual memory and storage abstractions and
unifies them in a different interface supported by scalable hardware
mechanisms. The PMM: 1) exposes a load/store interface to access
persistent data, 2) manages data placement, location, persistence
semantics, and protection (across multiple memory devices) using
both dynamic access information and hints from the application and
system software, 3) manages metadata storage and retrieval, needed
to support efficient location and movement of persistent data, and 4)
exposes hooks and interfaces for applications and system software to
enable intelligent data placement and persistence management. Our
preliminary evaluations show that the use of such a unit, if scalable
and efficient, can eliminate the energy inefficiency and performance
overheads of the two-level storage model, improving both perfor-
mance and energy-efficiency of the overall system, especially for
data-intensive workloads [51].

We believe there are challenges to be overcome in the design,
use, and adoption of such a unit that unifies working memory and
persistent storage. These challenges include:

1. How to devise efficient and scalable data mapping, placement,
and location mechanisms (which likely need to be hardware/software
cooperative).

2. How to ensure that the consistency and protection requirements
of different types of data are adequately, correctly, and reliably
satisfied. How to enable the reliable and effective coexistence and
manipulation of volatile and persistent data.

3. How to redesign applications such that they can take advantage
of the unified memory/storage interface and make the best use of it
by providing appropriate hints for data allocation and placement to
the persistent memory manager.

4. How to provide efficient and high-performance backward com-
patibility mechanisms for enabling and enhancing existing memory
and storage interfaces in a single-level store. These techniques can
seamlessly enable applications targeting traditional two-level storage
systems to take advantage of the performance and energy-efficiency
benefits of systems employing single-level stores. We believe such
techniques are needed to ease the software transition to a radically
different storage interface.

VI. CHALLENGE 3: PREDICTABLE PERFORMANCE

Since memory is a shared resource between multiple cores (or,
agents, threads, or applications), different applications contend for
memory bandwidth and capacity. As such, memory contention, or
memory interference, between different cores critically affects both

the overall system performance and each application’s performance.
Providing the appropriate bandwidth and capacity allocation to each
application such that its performance requirements are satisfied is
important to satisfy user expectations and service level agreements,
and at the same time enable better system performance. Our past
work [52, 57, 58] showed that application-unaware design of memory
controllers, and in particular memory scheduling algorithms, leads
to uncontrolled interference of applications in the memory system.
Such uncontrolled interference can lead to denial of service to some
applications [52], low system performance [57, 58], and an inability
to satisfy performance requirements [57, 69, 22], which makes the
system uncontrollable and unpredictable. In fact, an application’s
performance depends on what other applications its sharing resources
with: an application can sometimes have very high performance
and other times very low performance on the same system, solely
depending on its co-runners. A critical research challenge is therefore
how to design the memory system (including all shared resources
such as main memory, caches, and interconnects) such that 1) the
performance of each application is predictable and controllable, 2)
while the performance and efficiency of the entire system are as high
as needed or possible.

To achieve these goals, we have designed various solutions in-
cluding QoS-aware memory controllers [57, 58, 53, 32, 33, 54,
5, 69, 41, 23], interconnects [17, 18, 27, 28, 13, 59, 60, 19],
and entire memory systems including caches, interconnect, and
memory [22, 24, 19]. These works enhanced our understanding
and provide viable and effective mechanisms that improve system
performance and predictability, but we are far from perfectly 1)
estimating and predicting application performance in the presence
of interference and a dynamic system with continuously incoming
and outgoing applications and 2) enforcing end-to-end performance
guarantees within the entire shared memory system. Subramanian
et al. [69] provides a simple method for estimating application
slowdowns in the presence of main memory interference. We ob-
serve that an application’s request service rate is a good proxy for
performance. As such, an application’s slowdown can be accurately
estimated by estimating its uninterfered request service rate, which
can be done by prioritizing that application’s requests in the memory
system during some execution intervals. Results show that average
error in slowdown estimation with this relatively simple technique
is approximately 8% across a wide variety of workloads. Extending
such simple techniques to the entire memory and storage system is
a promising area of future research. Devising memory devices and
architectures that can support predictability and QoS also appears
promising.

VII. ASIDE: FLASH SCALING CHALLENGES

Flash memory, another successful charge-based memory like
DRAM, has been commonly employed as part of the storage system.
In part of our research, we aim to develop new techniques that
overcome reliability and endurance challenges of flash memory to
enable its scaling beyond the 20nm technology generations. To this
end, we experimentally measure, characterize, analyze, and model
error patterns that occur in existing flash chips, using an experimental
flash memory testing and characterization platform [8]. Based on the
understanding we develop from our experiments, we aim to develop
error management techniques that mitigate the fundamental types of
errors that are likely to increase as flash memory scales.

We have recently experimentally characterized complex flash er-
rors that occur at 30-40nm flash technologies [9], categorizing them
into four types: retention errors, program interference errors, read
errors, and erase errors. Our characterization shows the relation-
ship between various types of errors and demonstrates empirically
using real 3x-nm flash chips that retention errors are the most
dominant error type. Our results demonstrate that different flash
errors have distinct patterns: retention errors and program interference
errors are program/erase-(P/E)-cycle-dependent, memory-location-
dependent, and data-value-dependent. Since the observed error pat-
terns are due to fundamental circuit and device behavior inherent in
flash memory, we expect our observations and error patterns to also
hold in flash memories beyond 30-nm technology.



Based on our experimental characterization results that show that
the retention errors are the most dominant errors, we have developed
a suite of techniques to mitigate the effects of such errors, called
Flash Correct-and-Refresh (FCR) [10]. The key idea is to periodically
read each page in flash memory, correct its errors using simple error
correcting codes (ECC), and either remap (copy/move) the page to a
different location or reprogram it in its original location by recharging
the floating gates, before the page accumulates more errors than can
be corrected with simple ECC. Our simulation experiments using real
I/0 workload traces from a variety of file system, database, and search
applications show that FCR can provide 46x flash memory lifetime
improvement at only 1.5% energy overhead, with no additional
hardware cost.

Recently, we have also experimentally investigated and character-
ized the threshold voltage distribution of different logical states in
MLC NAND flash memory [12]. We have developed new models
that can predict the shifts in the threshold voltage distribution based
on the number of P/E cycles endured by flash memory cells. Our data
shows that the threshold voltage distribution of flash cells that store
the same value can be approximated, with reasonable accuracy, as a
Gaussian distribution. The threshold voltage distribution of flash cells
that store the same value gets distorted as the number of P/E cycles
increases, causing threshold voltages of cells storing different values
to overlap with each other, which can lead to the incorrect reading
of values of some cells as flash cells accumulate P/E cycles. We find
that this distortion can be accurately modeled and predicted as an
exponential function of the P/E cycles, with more than 95% accuracy.
Such predictive models can aid the design of more sophisticated
error correction methods, such as LDPC codes [26], which are likely
needed for reliable operation of future flash memories.

We are currently investigating another increasingly significant
obstacle to MLC NAND flash scaling, which is the increasing cell-
to-cell program interference due to increasing parasitic capacitances
between the cells’ floating gates. Accurate characterization and
modeling of this phenomenon are needed to find effective techniques
to combat program interference. In recent work [11], we leverage
the read retry mechanism found in some flash designs to obtain
measured threshold voltage distributions from state-of-the-art 2Y-
nm (i.e., 24-20 nm) MLC NAND flash chips. These results are
then used to characterize the cell-to-cell program interference under
various programming conditions. We show that program interference
can be accurately modeled as additive noise following Gaussian-
mixture distributions, which can be predicted with 96.8% accuracy
using linear regression models. We use these models to develop and
evaluate a read reference voltage prediction technique that reduces
the raw flash bit error rate by 64% and increases the flash lifetime
by 30%. More detail can be found in Cai et al. [11].

Going forward, we believe more accurate and detailed characteri-
zation of flash memory error mechanisms is needed to devise models
that can aid the design of more efficient and effective mechanisms
to tolerate errors found in sub-20nm flash memories. A promising
direction is the design of predictive models that the system (e.g., the
flash controller or system software) can use to proactively estimate
the occurrence of errors and take action to prevent the error before
it happens. Flash-correct-and-refresh [10], described earlier, can be
thought of as an early form of such a predictive error tolerance
mechanism.

VIII. CONCLUSION

We have described several research directions and ideas to enhance
memory scaling via system and architecture-level approaches, by co-
designing memory and other system components as well as with
cooperation across multiple levels of the computing stack, including
software, microarchitecture, and devices. We believe such approaches
will become increasingly important and effective as the underlying
memory technology nears its scaling limits at the physical level.
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