
................................................................................................................................................................

Common Bonds: MIPS, HPS,
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......We are continuing our series of

retrospectives for the 10 papers that

received the first set of MICRO Test of

Time (“ToT”) Awards in December

2014.1,2 This issue features four retro-

spectives written for six of the award-

winning papers. We briefly introduce

these papers and retrospectives and

hope that you will enjoy reading them as

much as we have. If anything ties these

works together, it is the innovation they

delivered by taking a strong position in

the RISC/CISC debates of their decade.

We hope the IEEE Micro audience, espe-

cially younger generations, will find the

historical perspective provided by these

retrospectives invaluable.

MIPS
The first retrospective is for the oldest

paper being discussed in this issue:

“MIPS: A Microprocessor Architecture.”3

This work introduced MIPS (Microproces-

sor without Interlocked Pipeline Stages)

and its design philosophy, principles, hard-

ware implementation, related systems,

and software issues. It is a concise over-

view of the MIPS design, which is one of

the early reduced, or simple, instruction

sets that have significantly impacted the

microprocessor industry as well as com-

puter architecture research and education

for decades (and probably counting!). The

key design principle is to push the burden

of performance optimization on the com-

piler and keep the hardware design sim-

ple. The compiler is responsible for

generating and scheduling simple instruc-

tions, which require little translation in

hardware to generate control signals to

control the datapath components, which

in turn keeps the hardware design simple.

Thus, the instructions and hardware both

remain simple, whereas the compiler

becomes much more important (and

likely complex) because it must schedule

instructions well to ensure correct and

high-performance use of a simple pipe-

line. Many modern processors continue

to take advantage of some of the design

principles outlined in this paper, either in

their ISA (the MIPS ISA still has consider-

able use) or in their internal execution of

instructions (many complex instructions

are broken into simple RISC-style microin-

structions in modern processors). The

MIPS ISA and design is also used in many

modern computer architecture courses

because of its simplicity.

Thomas Gross, Norman Jouppi, John

Hennessy, Steven Przybylski, and Chris

Rowen provide in their retrospective a

historical perspective on the development

of MIPS, the context in which they arrived

at the design principles, and the develop-

ments that occurred after the paper. They

also provide their reflections on what they

see as the design and evaluation deci-

sions made in the MIPS project that

passed the test of time. The retrospective

touches on the design tradeoffs made to

couple the hardware and the software,

the MIPS project’s effect on the later

development of “fabless” semiconductor

companies, and the use of benchmarks

as a method for evaluating end-to-end

performance of a system as, among

others, contributions of the MIPS project

that have stood the test of time.

High-Performance Systems
The second retrospective addresses three

related papers that received MICRO ToT

Awards in 2014. These papers introduce

the High Performance Substrate (HPS)

microarchitecture, examine its critical

design issues, and discuss the use of large

hardware-supported atomic units to

enhanceperformanceinHPS-style,dynam-

icallyscheduledmicroarchitectures.

The first paper, “HPS, A New Micro-

architecture: Rationale and Introduction,”4

introduced the HPS microarchitecture, its

design principles, and a prototype imple-

mentation. It also introduced the concept

of restricted dataflow and its use in imple-

menting out-of-order instruction schedul-

ing and execution while maintaining

sequential execution and precise excep-

tions from the programmer’s perspective

(that is, without exposing the out-of-order-

ness of dataflow execution to software).
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This concept of out-of-order execution

using a restricted dataflow engine that

supports precise exceptions has been the

hallmark of high-performance processor

designs since the success of the Intel

Pentium Pro,5 which implemented the

concept. The paper describes how com-

plex instructions can be translated in hard-

ware to simple micro-operations and how

dependent micro-operations are linked in

hardware such that they are executed in

a dataflow manner, in which a micro-

operation “fires” when its input operands

are ready. The mechanisms described in

this work paved the way for many future

and current processor designs with com-

plex instruction sets to execute programs

using out-of-order execution (and exploit

some of the RISC principles) without

requiring changes to the instruction set

architecture or the software. The retro-

spective by Yale Patt and his former stu-

dents Wen-mei Hwu, Steve Melvin, and

Mike Shebanow beautifully describes the

six major contributions of the original HPS

paper.

The second paper, “Critical Issues

Regarding HPS, A High Performance

Microarchitecture,”6 discusses what the

authors deem as critical issues in the

design of the HPS microarchitecture. The

paper is forward looking, discussing some

of the problems that the authors thought

“would have to be solved to make HPS

viable,” as the retrospective puts it. The

paper can be seen as a “problem book”

that anticipates the many issues to be

solved in designing a modern out-of-order

execution engine that translates a com-

plex instruction set to a simple set of

micro-operations internally. For example,

it introduces the notion of a node cache,

an early precursor to a modern trace

cache, and discusses issues related to

control flow, design of the dynamic

instruction scheduler, the memory units,

and state repair mechanisms. It also intro-

duces the unknown address problem—

the problem of whether a younger load

instruction can execute in the presence of

an older store instruction whose address

has not yet been computed. This prob-

lem, now more commonly known as the

memory disambiguation problem, has

since been the subject of many works.

The third paper, “Hardware Support

for Large Atomic Units in Dynamically

Scheduled Machines,”7 likely provides

the first treatment of large units of work

as atomic units that can enable higher

performance in an HPS-like dynamically

scheduled processor. It discusses the

benefits of enlarged blocks in an out-of-

order microarchitecture and describes

how enlarged blocks can be formed at dif-

ferent layers: architectural, compiler, and

hardware. It introduces the notion of a fill

unit, which is a hardware structure that

enables the formation of large blocks of

micro-operations that can be executed

atomically. This work has opened up new

dimensions and is considered a direct pre-

cursor to notions such as the trace cache,

which is implemented in the Intel Pen-

tium 4,8 and the block-structured ISA.9

In their retrospective, Yale Patt and

colleagues provide a historical perspec-

tive of HPS, the environment and the

works that influenced the design deci-

sions behind it, its reception by the com-

munity and the industry, and what

happened afterward. We hope you enjoy

reading this retrospective that describes

the inspirations and development of a

research project that has heavily influ-

enced almost all modern high-

performance microprocessor designs,

CISC or RISC. The authors also provide a

glimpse of some of the future research

that has been enabled and influenced by

the HPS project, of which the next paper

we discuss is a prime example.

Two-Level Branch Prediction
The third retrospective is for “Two-Level

Adaptive Training Branch Prediction”10 by

Tse-Yu Yeh and Yale Patt. This paper

addresses a critical problem in the HPS

microarchitecture, and in pipelined and

out-of-order microarchitectures in gen-

eral: how to feed the pipeline with useful

instructions in the presence of conditional

branches. The authors introduced a break-

through design for conditional branch pre-

diction, which they dubbed the two-level

branch predictor. This predictor is based

on the realization that adding another level

of history to predict a branch’s direction

can greatly improve branch prediction

accuracy, in addition to the single level

that tracks which direction the same

static branch went the last N times it was

executed (which had been established

practice since Jim Smith’s seminal ISCA

1981 paper11). In other words, the direc-

tion the branch took the last N times the

same “history of branch directions” was

encountered can provide a much better

prediction for where the branch might go

the next time the same “history of branch

directions” is encountered.

This insight formed the basis of many

future branch predictor designs used in

high-performance processors, most nota-

bly starting with the Pentium Pro. Yeh

and Patt’s MICRO 1991 paper discusses

various design choices for this predictor

and provides a detailed evaluation of their

impact on prediction accuracy. For exam-

ple, they examine the effect of keeping

global or local branch history registers

(many modern hybrid predictors use a

combination) and the effect of how the

pattern history tables are organized. The

retrospective provides the historical per-

spective as to how two-level branch pre-

diction came about, along with the

contemporary works that followed it.

Compressed Code RISC
Processor
The final retrospective in this issue is for

“Executing Compressed Programs on an

Embedded RISC Architecture,”12 one of

the first papers to tackle the problem of

code compression to save physical mem-

ory space in cost-sensitive embedded

processors. It is also one of the first to

examine cost-related architectural issues

in a RISC-based system on chip (SoC), as

Andy Wolfe’s retrospective nicely

describes. The basic idea is to store pro-

grams in compressed form in main mem-

ory to save memory space, and decom-

press each cache block right before it is

fetched into the processor’s instruction

cache. Wolfe’s retrospective shows clearly

why RISC made sense for embedded SoC

designs, owing to such designs’ cost
.............................................................
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constraints and real-time requirements. He

discusses how he came to work on

designing such embedded RISC process-

ors, the challenges associated with such

designs, and the series of alternatives he

examined to reduce the cost of an

embedded RISC processor. He also pro-

vides a nice perspective of the require-

ments, history, and development of the

embedded computing market, which we

hope you will greatly enjoy reading.

A s we conclude our introduction of

this set of six MICRO ToT Award

winners, we make a few observations.

First, as the retrospectives make clear, all

these papers have had widespread

impact on both modern processor

designs as well as academic research,

which has made them worthy of the Test

of Time Award. Second, each of these

papers vigorously challenged the status

quo and took contrarian positions to the

dominant design paradigms or popular

approaches of their times, which is how

they achieved their impact. MIPS (RISC)

was proposed as a compelling alterna-

tive to CISC, which was the dominant

ISA design paradigm at the time; HPS

was proposed as a way to enable high-

performance CISC against the strong

advocacy for RISC at the time; two-

level branch prediction came as a

breakthrough when Jim Smith’s dec-

ade-old two-bit counters were thought

to be the best predictor available; and

cost-sensitive embedded RISC pro-

cessors were proposed as an alterna-

tive to simple low-performance micro-

controllers in the embedded computing

market. Third, and perhaps most impor-

tantly, in all these papers, the focus on

quantitative evaluation was much less

than a typical paper we see published

today in top computer architecture con-

ferences. In fact, the three seminal

HPS papers have no evaluation at all!

As we go through these award-winning

papers, we cannot help but ask the

question, “Could these award-winning

papers with little or no quantitative

evaluation have been published today if

they were submitted to our top com-

puter architecture conferences?”

We hope our community opens a dia-

logue to seriously consider this question

when evaluating papers for acceptance.

Contrarian ideas that change many things

in a system might not easily be quantita-

tively evaluated in a rigorous manner

(and they perhaps should not be), but

that does not mean that they cannot

change the world or that the entire scien-

tific community cannot greatly benefit

from their publication and presentation at

our top conferences. As the computer

architecture field evolves and diversifies

in a period where there does not seem to

be a dominant architectural design para-

digm, it is time to take a step back and

enable the unleashing of bigger ideas in

our conferences by relaxing the per-

ceived requirements for quantitative

evaluation. We hope the MICRO ToT

Award winners and their retrospectives

provide inspiration and motivation to this

end, in addition to inspiring young mem-

bers of our community to develop ideas

that challenge the status quo in major

ways.
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......The MIPS project started in early

1981. At that time, mainstream architec-

tures such as the VAX, IBM 370, Intel

8086, and Motorola 68000 were fairly

complex, and their operation was con-

trolled by microcode. Designers of high-

performance implementations discovered

that pipelining of complex-instruction-set

computer (CISC) machines, especially the

VAX, was hard; the VAX 11/780 required

around 10 processor cycles to execute a

single instruction, on average. Tradeoffs

that had been made when there were

few resources available for implementa-

tion (for example, dense instruction sets

sequentially decoded over many cycles by

microcode) ended up creating unneces-

sary constraints when more resources

became available. For example, as transis-

tors were replacing the core, the cost of

memory dropped much faster than

logic—favoring a slightly less dense pro-

gram encoding over logic-intensive inter-

pretation. Also, the design of instruction

sets did not assume the use of an optimiz-

ing compiler. CISC instruction features

such as arithmetic operations with oper-

ands in memory were especially difficult

to pipeline and did not take advantage of

compiler capabilities (such as register allo-

cation) that could provide more efficient

execution.

One area of architecture research in

the early 1980s was to create even more

complex CISC architectures. Notable

examples of these include high-level lan-

guage machines such as Lisp machines,

and later the Intel 432. However, the

approach taken in the MIPS project as

well as the RISC project at the University

of California, Berkeley, was to design

simpler instruction sets that did not

require execution of microcode. These

simpler instructions were a better fit for

an optimizing compiler’s output—more

complex operations could be synthe-

sized from several simple operations, but

in the common case where only a simple

operation was needed, the more com-

plex aspects of a CISC instruction could

be effectively optimized away. In the

case of the MIPS project, we empha-

sized ease of pipelining and sophisti-

cated register allocation, whereas the

Berkeley RISC project included support

for register windows in hardware.

The quarter before the MIPS project

started, Stanford University had offered

for the second time a (graduate) class on

VLSI design, based on the approach

developed by Carver Mead and Lynn

Conway.1 One key idea was that the

design rules could be specified without

close coupling to the details of a specific

process. Most of the MIPS project team

members had taken this class. Another

difference was that in VLSI, tradeoffs dif-

fer from those made in multiboard

machines built from hundreds of small-,

medium-, and large-scale integration

parts like the VAX 11/780. In a multiboard

machine, gate transistors were expen-

sive (for example, only four 2-input gates

per transistor-transistor logic package),

whereas ROM transistors were relatively

cheap (for example, kilobits of ROM per

package). Much of this was driven by

pinout and other limitations of DIP pack-

aging. This naturally favored the design

of microcoded machines, in which con-

trol and sequencing signals could be effi-

ciently stored as many bits per package

instead of being computed by low-

density gates requiring many packages.

.............................................................

JULY/AUGUST 2016 73



However, in VLSI, a transistor has

approximately the same cost no matter

what logical function it is used for, which

favors the adoption of direct control as in

early RISC architectures instead of

microcode. Another difference with

widespread adoption of VLSI was that

the topology of the wiring was important.

In 1981, we had only a single level of

metal, so long wires had to be largely pla-

nar. This also favored simple and regular

designs. Finally, in a VLSI design it was

clearly zero-sum: we had a maximum

chip size available, so any feature put in

would have to justify its value and would

displace a less valuable feature. These

constraints brought a lot of clarity of

focus to the design process.

Given this context, we decided to

build a single-chip high-performance

microprocessor that could be realized

with the fabrication technology available

to university teams—a 4-lm single-level

metal nMOS process that put severe lim-

itations on the design complexity and

size. (The DARPA MOSIS program bro-

kered access to silicon foundries so that

students and researchers in universities

could obtain real silicon parts.) High per-

formance at that time meant that the pro-

cessor could execute more than 1 million

(meaningful) instructions per second

(MIPS), and the design target was 2

MIPS (that is, a clock rate of 4 MHz). Rel-

ative to other processor designs of this

era, a board powered by a MIPS pro-

cessor could deliver the same perform-

ance as a cabinet-sized computer built

with lower levels of integration. At the

time we wrote our paper in the fall of

1982,2 the architecture and microarchi-

tecture were defined, compilers for C

and Pascal were written, and several

test chips covering different parts of the

design had been sent out for fabrication.

Developments After
Publication
The MIPS design was completed in the

spring of 1983 and sent out for fabrica-

tion.3 At about the time the design was

sent for fabrication, the Center for Inte-

grated Systems at Stanford University

developed a 3-lm VLSI fabrication pro-

cess and used the MIPS design (shrunk

optically) to tune its process. In early

1984, we received working 3-lm MIPS

processors from MOSIS that operated at

the speed we had expected for the

design at 4 lm. Figure 1 shows the die

photo. These processors were run on a

test board developed by our fellow grad

student, Anant Agarwal, and on 20 Feb-

ruary 1984, the first program (8queens)

was run to completion. In mid-1984,

MIPS Computer Systems was founded.

It designed a completely new processor

that was heavily influenced by the Stan-

ford MIPS design and was sold as the

MIPS R2000. A final evaluation of the

Stanford MIPS architecture was pub-

lished in 1988.4

Reflections
Several papers described the implemen-

tation and testing of the MIPS pro-

cessor5 and discussed the design

decisions that turned out to be right and

those that deserve to be reconsidered.

More than 30 years later, at a time when

microprocessors contain multiple inde-

pendent processing units (cores) and

more than 5 billion transistors, a few of

these have passed the test of time.

MIPS Design
As part of the MIPS project, we devel-

oped various CAD tools, such as tools for

programmable logic array synthesis and

timing verification.6 These tools were

driven by the designer’s requirements

and allowed a small team of students

and faculty to complete the processor

design in a timely manner.

We also invested heavily in compilers

beyond the immediate needs of the

MIPS processor development. Fellow

student Fred Chow designed and imple-

mented a machine-independent global

optimizer, and fellow student Peter

Steenkiste developed a Lisp compiler to

investigate dynamic type checking on a

processor that did not provide any dedi-

cated hardware support for this task.

Personal workstations were a novelty

at that time, and the MIPS project mem-

bers were the first to enjoy workstations

in their offices. These workstations let us

support the implementation with novel

tools and interactively experiment with

different compiler and hardware optimi-

zations. RISC designs emphasize effi-

cient resource usage and encourage

designers to employ resources where

they can contribute the most; this RISC

strategy drove many of the major design

decisions (for example, to abandon

microcode in favor of simple instructions,

or to use precious on-chip transistors for

Figure 1. Die photo of MIPS processor.
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frequent operations and leave other

operations to be dealt with by software).

Hardware/Software Coupling
The MIPS project invested in software

early on; the compiler tool chain worked

before the design was finalized. We

made several key microarchitecture deci-

sions (including the structure of the pipe-

line) after running benchmark programs

and assessing the impact of proposed

design changes.

The MIPS project also emphasized

tradeoffs across layers as defined by

then-prevalent industry practice. Two

sample design decisions illustrate this

aspect: the MIPS processor uses word

addresses, not byte addresses. The rea-

soning was that byte addressing would

complicate the memory interface and

slow down the processor, that bytes

aren’t accessed that often, and that an

optimizing compiler could handle any

programming language issues. This deci-

sion was probably correct for research

processors (and saved us from debating

if the processor should be big-endian or

little-endian) and illustrates the freedom

afforded by looking beyond a single layer.

But all subsequent descendants sup-

ported byte addressing (of course, by

that time, VLSI had advanced to CMOS

with at least two levels of metal, so byte

selection logic was easier to implement).

However, word alignment of word

accesses as in MIPS was still retained,

unlike in minicomputers.

Sometimes the absence of interlocks

on MIPS is seen as a defining feature of

this project. However, it was a tradeoff,

based on the capabilities of the imple-

mentation technology of the time. To

meet the design goal of a 4-MHz clock,

the designers had to streamline the pro-

cessor, and still most of the critical paths

involved the processor’s control compo-

nent.7 For the MIPS processor, it made

sense to simplify the design as much as

possible; later descendants, with access

to better VLSI processes, made different

decisions. The absence of hardware

interlocks (to delay an instruction if one

of the operands wasn’t ready) was a

tradeoff between design complexity, crit-

ical path length, and software develop-

ment costs. In addition to clever circuit

design and novel tools, this ability to

make hardware/software tradeoffs was

a key factor for success.

The team wanted to pick a name for

the project that emphasized performance.

About nine months earlier, the RISC proj-

ect at UC Berkeley had started, so we

needed a catchy acronym. “Million instruc-

tions per second” (MIPS) sounded right,

given the project’s goals, but this metric

was also known as the “meaningless indi-

cator of processor speed.” So, we settled

on “microprocessor without interlocked

pipeline stages.”

The Mead/Conway approach to VLSI

design emphasized a decoupling of archi-

tecture and fabrication. No longer was a

chip design tied to a specific (often pro-

prietary, in-house) process. The MIPS

project demonstrated that a high-

performance design could be realized in

this framework and supported the view

that VLSI design could be done without

close coupling to a proprietary process.

Vertical integration—that is, design and

fabrication in one company—might offer

benefits, but so does the separation of

fabrication and design. The MOSIS ser-

vice was an early (nonprofit) experiment;

a few years after the end of the MIPS

project, commercial silicon foundries

started to offer fabrication services and

allowed the creation of “fabless” semi-

conductor companies.

Benchmarks
The MIPS project used a quantitative

approach to decide on various features

of the processor and therefore needed a

collection of benchmark programs to col-

lect the data needed for decision making.

In retrospect, the benchmarks we used

were tiny and did not include any signifi-

cant operating systems code. Conse-

quently, the designers focused on

producing a design that delivered per-

formance for compiled programs but

paid less attention to the operating sys-

tem interface and the need to connect

the processor to a memory hierarchy. At

conferences, benchmark results started

to become important, and the MIPS

paper (as well as papers by other design

groups, such as the UC Berkeley RISC

project8) presented empirical evidence.

Stanford University published the set of

benchmarks used by the MIPS project

(the Stanford Benchmark Suite), and

despite their limitations, they were in

use (at least) 25 years later to explore

array indexing and recursive function

calls. About five years later came the

founding of the SPEC consortium, which

eventually produced a large body of real-

istic benchmarks. In 2011, about 30

years later, the first ACM conferences

initiated a process that lets authors of

accepted papers submit an artifact col-

lection (the benchmarks and tools used

to generate any empirical evidence pre-

sented in a paper).9 The MIPS project

cannot claim credit for these develop-

ments, but it emphasized early on that

end-to-end performance, from source

program to executing machine instruc-

tions, is the metric that matters.

T he Stanford MIPS project was an

important evolutionary step. Later

RISC architectures such as MIPS Inc. and

DEC Alpha were able to learn from both

our mistakes and successes, producing

cleaner and more widely applicable archi-

tectures, including integrated floating-

point and system support features such

as TLBs. All new architectures that

appeared afterward (since 1985) incorpo-

rated ideas from the RISC designs, and

as the concern for resource and power

efficiency continues to be important, we

expect RISC ideas to remain relevant for

processor designs. And, finally, this MIPS

paper was also an important step in the

transition of the SIGMICRO Annual Work-

shop on Microprogramming to the IEEE/

ACM International Symposium on

Microarchitecture.
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HPS Papers: A Retrospective
YALE N. PATT
University of Texas at Austin

WEN-MEI W. HWU
University of Illinois at Urbana–Champaign

STEPHEN W. MELVIN

MICHAEL C. SHEBANOW
Samsung

......HPS happened at a time (1984)

when the computer architecture com-

munity was being inundated with the

promises of RISC technology. Dave Pat-

terson’s RISC at Berkeley and John Hen-

nessy’s MIPS at Stanford were visible

university research projects. Hewlett

Packard had abandoned its previous

instruction set architecture (ISA) in favor

of the HP Precision Architecture (HP/PA)

and had attracted a number of people

from IBM to join their workforce. Sun

Microsystems had moved from the

Motorola 68020 to the Sparc ISA. Motor-

ola itself was focusing on their 78K, later

renumbered 88K. Even Intel was hedg-

ing its bets, pursuing the development of

the i860 along with continued activity on

x86.

The RISC phenomenon rejected the

VAX and x86 architectures as far too com-

plex. Both architectures had variable-

length instruction sets, often with multi-

ple operations in each instruction. The

VAX Index instruction, for example,

required six operands to assist in comput-

ing the memory location of a desired ele-

ment in a multidimensional subscripted

array. If you wanted the location of

A[I,J,K], you could obtain it with three

instantiations of the Index instruction.

The Index instruction took one of the sub-

scripted variables—say I—and checked

the upper and lower bounds; if they both

passed, it used the size information of

each element in the array and the array’s

dimensions to compute part of the loca-

tion of A[I,J,K]. More than a half-dozen

operations were performed in carrying

out the work of this instruction. Intel’s

x86’s variable-length instruction had pre-

fixes to override an instruction’s normal

activity, and several bytes when neces-

sary to locate the location of an operand.

RISC advocates argued that with sim-

pler instructions requiring in general a

single operation, wherein the signals

needed to control the datapath were

..............................................................................................................................................................................................
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contained within the instruction itself,

one would require no microcode and

could make the hardware much simpler,

resulting in a program executing in less

time. Not everyone followed the mantra

exactly; for example, Hennessy’s MIPS

used a pipeline reorganizer to package

two operations in a single instruction.

But for the most part, RISC meant sin-

gle-cycle execution of individual instruc-

tions, statically scheduled and fetched

one at a time. The instructions were

essentially micro-ops.

We marched to a different drum.

“We” were Yale Patt, a visiting professor

in the fifth year of his nine-year visit at UC

Berkeley, and Wen-mei Hwu, Michael

Shebanow, and Steve Melvin, all PhD stu-

dents at Berkeley who completed their

PhDs there with Yale over the next sev-

eral years. We dubbed our project the

High Performance Substrate (HPS). We

were all part of the Aquarius project, led

by Al Despain. Al concentrated on design-

ing a Prolog engine, and we focused on

high-performance microarchitecture.

Berkeley was a special place to do

research in the 1980s. Among the work

going on, Velvel Kahan invented and

refined his specification of IEEE floating-

point arithmetic; Michael Stonebraker

invented Ingres; Domenico Ferrari pro-

duced distributed UNIX; Manuel Blum,

Dick Karp, and Mike Harrison pursued

exciting theoretical issues; Lotfi Zadeh

refined his fuzziness concepts; and Sue

Graham did important work in compiler

technology.

Unlike the RISC projects going on at

the time, we felt it was unnecessary to

meddle with the ISA; rather, we would

require the microarchitecture to break

instructions into micro-operations (AMD

later called them Rops, for RISC ops) and

allow the micro-ops to be scheduled to

the function units dynamically (that is, at

runtime). We insisted on operating below

the ISA’s level, allowing the ISA to remain

inviolable and thereby retaining all the

work of the previous 50 years. We were

sensitive to not introduce features that

might seem attractive at the moment but

could turn out to be costly downstream.

Several pieces of previous work pro-

vided insights. Twenty years earlier, in

the mid-1960s, the IBM 360/91 intro-

duced the Tomasulo algorithm, a

dynamic scheduling (aka out-of-order

execution) mechanism, in their FPU.1

Instructions were allowed to schedule

themselves out of program order when

all flow dependencies (RAW hazards)

were satisfied. Unfortunately, instruc-

tions were allowed to retire as soon as

they completed execution, breaking the

ISA and preventing precise exceptions.

In fact, the 360/91 design team had to

get special permission from IBM to pro-

duce the 360/91 because it did not obey

the requirements of the System 360

ISA.2 IBM did not produce a follow-on

product embracing the ideas of the 360/

91 FPU.

Ten years earlier, in 1975, Arvind and

Kim Gostelow3 and Jack Dennis and

David Misunas4 introduced the important

notion of representing programs as data-

flow graphs, and Robert Keller5 intro-

duced the notion of a window of

instructions—that is, instructions that

had been fetched and decoded but not

yet executed. When we studied these

papers in 1984, several things became

clear to us.

First, with respect to the Tomasulo

algorithm, we would have to do some-

thing about the lack of precise excep-

tions. We correctly decided that this

problem was the deal breaker that pre-

vented IBM from producing follow-on

designs. We introduced the Result Buf-

fer, which stored the results of instruc-

tions executed out of order, allowing

them to be retired in order. Although we

did not know it at the time, Jim Smith

and Andy Pleszkun were concurrently

investigating in-order retirement of out-

of-order execution machines, and came

up with the name Reorder Buffer (ROB),

which is a much better descriptor for our

Result Buffer.6

Second, we recognized that Dennis

and Arvind’s dataflow graph concept

could allow huge gains in performance

by allowing many instructions to execute

concurrently—and that although it would

be near-impossible for a global scheduler

to see the available parallelism in an irreg-

ularly parallel program, it did not matter.

It only mattered that the operations

themselves knew when they were ready

to execute. By allowing the operations

themselves to determine when they

were ready to execute, we could exploit

irregular parallelism. Allowing the nodes

to determine when they can fire is the

hallmark of dataflow.

Third, we recognized that, unlike

Tomasulo, the mechanism need not be

restricted to the FPU—that indeed other

arithmetic logic unit operations, and

more importantly, loads and stores,

could also be allowed to execute in paral-

lel. This let us build the dataflow graph

from all instructions in the program, not

just the floating-point instructions.

Fourth, we recognized that we did

not have to change the ISA and in fact

not doing so provided two benefits:

� Our HPS microarchitecture could

be used with any ISA. That is,

instructions in any ISA could be

decoded (that is, converted) to a

dataflow graph and merged into

the dataflow graph of the previ-

ously decoded instructions. The

dataflow graph’s elements were

single operations: micro-ops.

Decoding could produce multiple

operations each cycle, that is,

wide issue.

� Importantly, we could maintain

the ISA’s inviolability.

Fifth, we recognized that to make this

work, we needed to be able to continu-

ously supply a lot of micro-operations

into the execution core. We incorporated

a post-decode window of instructions,

but knew we could not, as Keller advo-

cated, stop supplying micro-ops when

we encountered an unresolved condi-

tional branch. For this we would need an

aggressive branch predictor, and beyond

that, speculative execution. We did not

have a suitable branch predictor at the

time, but we knew one would be neces-

sary for HPS to be viable. It would also

require a fast mechanism for recovering
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the state of the machine if a branch pre-

diction took us down the wrong path.

Finally, we recognized that unlike previ-

ously constructed dataflow machines,

wherein the compiler constructed a gener-

ally unwieldly dataflow graph, our dataflow

graph would be constructed dynamically.

This allowed nodes of the dataflow graph

to be created in the front end of the pipe-

line when the instructions were fetched,

decoded, and renamed, and removed

from the dataflow graph at the back end

of the pipeline when the instructions were

retired. The result: at any point in time,

only a small subset of the instruction

stream, the instructions in flight, are in the

dataflow graph. We dubbed this concept

“restricted dataflow.” We saw that

although pure dataflow was problematic

for many reasons (such as saving state on

an interrupt or exception, debugging pro-

grams, and verifying hardware), restricted

dataflow was viable.

These revelations did not come all at

once. We had the luxury at the time of

meeting almost daily in Yale’s office as

we argued and struggled over the con-

cepts. Sometimes one or more of us

were ready to give up, but we didn’t.

At the time, many of our colleagues

were skeptical of our work and made it

clear they thought we were barking up

the wrong tree. We were advocating

future chips that would use the HPS

microarchitecture to fetch and decode

four instructions each cycle. Our critics

argued that there was not enough paral-

lel work available to support the notion of

four-wide issue, and besides, there were

not enough transistors on the chip to

handle the job. To the first criticism, we

pointed out that although we could not

see the parallelism, it did not matter. The

parallelism was there, and the dataflow

nodes would know when all dependen-

cies had been satisfied and they were

ready to fire. To the second argument,

we begged for patience. Moore’s law

was alive and well, and although at the

time there were fewer than 1 million

transistors on each chip, we had faith

that Moore’s law would satisfy that one

for us.

We started publishing the HPS micro-

architecture with two papers at MICRO

18. The first paper provided an introduc-

tion to the HPS microarchitecture.7 We

described the rationale for a restricted

dataflow machine that schedules opera-

tions out of order within an active win-

dow of the dynamic instruction stream.

We showed the need for an aggressive

branch predictor that allowed speculative

execution, and we provided a mecha-

nism for quickly repairing the state of the

machine when a branch misprediction

occurs. We introduced the notion of

decoding complex instructions into

micro-ops, and the use of the result buf-

fer to retire instructions in program order.

The second paper at MICRO 18, the

“Critical Issues” paper, pointed out

some of the problems that would have

to be solved to make HPS viable.8 We

discussed various issues, including cach-

ing and control flow, and discussed what

we called the “unknown address prob-

lem.” We presented an algorithm for

determining whether a memory read

operation is ready to be executed in the

presence of older memory writes, includ-

ing those with unknown addresses.

We continued the work over the next

several years, publishing results as we

went along. In one of those subsequent

papers, published at MICRO 21, we

introduced the concept of a fill unit and

the treatment of large units of work as

atomic units.9 In all, we published more

than a dozen papers extending the ideas

first put forward in 1985. More impor-

tantly, starting with Intel’s Pentium Pro,

announced in 1995, the microprocessor

industry embraced the fundamental con-

cepts of HPS: aggressive branch predic-

tion leading to speculative execution;

wide-issue, dynamic scheduling of

micro-ops via a restricted dataflow

graph; and in-order retirement enabling

precise exceptions.

Y ale Patt continued as a visiting pro-

fessor at Berkeley for four more

years, then moved on to the University

of Michigan and eventually to the Univer-

sity of Texas at Austin. Wen-mei Hwu

finished his PhD in 1987 and took a fac-

ulty position at the University of Illinois at

Urbana–Champaign. Steve Melvin com-

pleted his PhD in 1990 and has been a

successful independent consultant in the

computer architecture industry for more

than 25 years. Michael Shebanow com-

pleted his PhD and went on to become a

lead architect on many microprocessors

over the years, including the M88120 at

Motorola, the R1 and Denali at HAL, the

M3 at Cyrix, and the Fermi GPU shader

core complex at Nvidia. He is now a vice

president at Samsung, leading a team

focused on advanced graphics IP.
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Retrospective on “Two-Level Adaptive
Training Branch Prediction”
TSE-YU YEH
Apple

YALE N. PATT
University of Texas at Austin

......Looking back at the world of

computer architecture in 1991, when we

wrote our MICRO paper,1 we believe our

motivation foraddressingbranch prediction

is best illustrated by our earlier 1991 ISCA

paper,2 which showed that instructions per

cycle can be greater than two. Conven-

tional wisdomat the timehad argued other-

wise. We demonstrated in that paper that

there was enough instruction-level parallel-

ism in nonscientific workloads to support

our contention. We further showed that

the HPS microarchitecture (a superscalar

out-of-order execution engine) could

improve the execution rate greatly by

exploiting instruction-level parallelism, pro-

vided the penalty caused by incorrect

branch predictions was minimized.

In fact, the lack of an aggressive,

highly accurate branch predictor was a

major stumbling block in enabling our

high-performance microarchitecture to

achieve its potential. The HPS microarchi-

tecture required the execution core to be

kept fully supplied with micro-ops, organ-

ized as a dataflow graph that allowed lots

of concurrent execution. This meant a

powerful and effective branch predictor

that could fetch, decode, and execute

instructions speculatively, and only very

infrequently have to throw away the

speculative work because of a branch

misprediction. The computer architecture

community had pretty well given up on

branch prediction providing any major

benefits. Most accepted as fact that Jim

Smith’s 2-bit saturating counter was as

good as it was going to get.3 His branch

predictor was published in ISCA in 1981

and was still the best-performing branch

predictor 10 years later. It was the branch

predictor in Pentium, Intel’s “brainiac”

microprocessor, the top of the x86 line at

the time, released in 1991.

Tse-Yu spent the summer of 1990 at

Motorola, working for Michael Sheba-

now, one of the original inventors of the

HPS microarchitecture. Michael was

interested in branch prediction, and in fact

almost did his PhD dissertation at Berke-

ley on branch prediction. Tse-Yu and

Michael had many conversations about

microarchitecture tradeoffs that summer,

and often the discussions would gravitate

to branch prediction. When Tse-Yu

returned to Ann Arbor for the fall semes-

ter, he was excited about the possibility

of a branch predictor that could support

the HPS microarchitecture.

After many after-midnight meetings

over several months in Yale’s office,

combined with a whole lot of simula-

tion, the two-level adaptive branch pre-

dictor was born. We knew the branch

predictor would have to be dynamic;

that was a no-brainer. The branch pre-

dictor would have to use historical infor-

mation based on the input data that the

program was processing, and it would

have to accommodate phase changes.

But that was not enough. What histori-

cal information would yield good branch

prediction? Somehow we stumbled on

the answer: it was not the direct record

of a branch’s behavior that was needed,

but rather whether the branch was

taken at previous instances of time hav-

ing the same history. That is, if the
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branch’s history was 011000101 (0

means not taken, 1 means taken), there

is little one can infer. But, if the last time

the history was 011000101 the branch

was taken, and the time before that

when the history was 011000101 the

branch was also taken, it was a good

bet that the branch would be taken at

this time.

With that insight, we set out to

design the two-level predictor. Several

issues had to be resolved.

First, how should the direct record of

branches be stored? Three choices pre-

sented themselves: a global history regis-

ter to record the behavior of each dynamic

branch; a separate history register for

each static branch; and a half-way meas-

ure, in which we partitioned branches into

equivalence classes and allocated one his-

tory register for each class. We dubbed

the three schemes G, P, and S, respec-

tively. The obvious tradeoffs were inter-

ference versus correlation and the cost of

the history registers.

Second, how should the information

be stored that records what happens as a

result of a previous instance of the current

history? We decided to store results as

entries in a table, indexed by the bits of his-

tory in the history registers. The same

three choices applied here—a global pat-

tern table, a per-static-branch pattern table,

and the in-between scheme. We dubbed

the three choices g, p, and s. Thus, we

had nine choices to investigate: GAg, GAs,

GAp, SAg, SAs, SAp, PAg, PAs, and PAp.

Third, what decision structure should

we use given the entries in the pattern

tables? We examined several state

machines, finally deciding on the 2-bit

counter scheme of Jim Smith’s 1981

ISCA paper.

Finally, how many bits of history should

be kept in the history registers? Using n

bits of history meant a pattern table of size

2n. Adding one bit of history meant dou-

bling the size of each pattern table.

We introduced the Two-Level Adap-

tive Branch Predictor at MICRO in 1991,1

demonstrating that a lot more perform-

ance could be obtained with a branch

predictor that was significantly more

accurate than the previous best case.

Our predictor showed that maintaining

two levels of branch history would pro-

vide much greater accuracy than was

possible with the simpler branch predic-

tion schemes. Other researchers soon

agreed that the benefit from branch pre-

diction could be substantial, and that

maintaining two levels of branch history

was the correct mechanism. The result

was a wave of papers on dynamic branch

prediction, successively improving on

our basic two-level predictor design. We

followed our first paper with a more com-

prehensive paper describing alternative

implementations of the two-level

scheme in ISCA 1992,4 and Kimming So

and colleagues at IBM published their

correlation predictor in ASPLOS later that

same year.5 Soon after, Scott McFarling

introduced gshare,6 a variation on the

GAs two-level predictor and hybrid

branch prediction.

At our industrial affiliates meeting

the next year, Tse-Yu presented our

branch predictor. Intel engineers in the

audience were excited about its possi-

bilities. They had decided to increase

the pipeline of their next processor Pen-

tium Pro from 5 stages to 13 to cut

down the cycle time to be more com-

petitive with all the emerging RISC

designs. More pipeline stages meant a

greater branch-misprediction penalty,

so Intel badly needed a better branch

predictor. Intel’s interest sparked sub-

stantial interaction between us, result-

ing in Tse-Yu spending the summer of

1992 at Intel in Hillsboro, Oregon,

where the Pentium Pro was being

designed. Intel decided to opt for the

PAs version of the two-level branch pre-

dictor and did all the hard engineering to

make it implementable in the Pentium

Pro. With the announcement of that

product, the computer architecture

landscape had changed forever in favor

of aggressive branch prediction.

T se-Yu Yeh completed his PhD at

Michigan in 1993 and took a job

with Intel in Santa Clara. Afterward, he

joined Sibyte, which was acquired by

Broadcom; later he moved to PA Semi

and eventually to Apple. He has been

responsible for many microprocessor

designs over the years. He is currently an

engineering director at Apple, where he

is responsible for CPU verification. Yale

Patt retired from Michigan in 1999 to

become the Ernest Cockrell, Jr. Centen-

nial Chair in Engineering at the University

of Texas at Austin. He continues to thrive

on directing PhD students in microarchi-

tecture research and teaching both fresh-

men and graduate students.
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Retrospective on Code Compression and a
Fresh Approach to Embedded Systems
ANDY WOLFE
Santa Clara University

......In late fall of 1991, I was a first-

year assistant professor at Princeton Uni-

versity. I was teaching an upper-level

course on computer architecture based

on quantitative analysis, a relatively new

approach that grew out of research at

Stanford and Berkeley in the prior dec-

ade. I was, quite literally, teaching the

class “by the book” using the recently

released text Computer Architecture: A

Quantitative Approach.1 I had been able

to sit in on John Hennessy’s similar

course a few years earlier where he

used the draft manuscript for the text,

and although I was unable to replicate his

gravitas, I was able to convey the primary

message to my students: Computer

architecture research had changed, and

it was incumbent to be able to model,

measure, and evaluate everything we

did. Alex Chanin was a student in that

class, on leave from AT&T in order to get

a master’s degree. He approached me

mid-semester to discuss ideas for a the-

sis topic related to computer architec-

ture. He made the primary requirements

for a topic very clear. It had to be impor-

tant enough that it would be accepted for

graduation, but equally as important, it

had to be finished on time at the end of

the next semester so he could graduate,

get married, and go back to his job on

time. Working within those constraints,

we developed the technology discussed

in the paper, “Executing Compressed

Programs on an Embedded RISC

Architecture.”2

I had a background in embedded

computing, primarily using microcontrol-

lers to design peripherals such as touch-

pads and touchscreens for PCs. I had

decided to focus on this area when I

joined Princeton, working with Marilyn

Wolf and Sharad Malik on hardware/soft-

ware codesign and on the emerging

opportunities in digital audio and video.

Alex had worked on telecommunica-

tions-based computing at AT&T. He

repeatedly would remind me that the

questions I was posing in class were not

relevant to “real engineers with real

jobs.” A change in cache configuration

that would improve average perform-

ance by a couple percent was not impor-

tant where he worked. Engineering

decisions were dominated by hard and

soft limits on space, power require-

ments, cooling capacity, and cost. We

started looking at the current state of

embedded systems to find an interesting

problem to solve. Could we improve

cost, size, or power as compared to con-

ventional processors? Could we show

that we had made such an improvement

with quantitative measures? And, of

course, could we find a problem that

could be “solved” in the next six months

using the tools and resources we had on

hand? With those goals in mind, we

decided to address the question of

whether we could make programs for

reduced-instruction-set computing

(RISC) processors smaller so that the

cost of program memory could be

reduced.

The system we developed was called

the compressed code RISC processor

(CCRP). The basic idea was that pro-

grams were compressed as the last step

in program development using a block-

based compression code. The com-

pressed blocks were stored in the pro-

gram ROM, using substantially less

space than the original programs. In prac-

tice, this meant that we could fit more

features and functionality into a limited-

size program memory. At runtime, the

compressed blocks are decompressed

when read into the instruction cache.

Neither the processor core nor the

instruction cache itself need be aware

that the programs were stored in com-

pressed form. A line address table with

its own cache provided pointers for locat-

ing the compressed blocks. Although the

decompression time could add to the

cache-line access time, in many configu-

rations the reduced number of program

memory accesses required to fetch the

compressed data would compensate for

the decompression time. In any case,

decompression was required only for a

cache miss, so any performance impact

would be small.

In looking back at this research, I find

it most interesting to look at the factors

that led us to think about this problem

and about the proposed solution. It is

interesting to review not only what we

published, but the other alternatives we

rejected, because at least one of those

has become successful. Most of all, how-

ever, I now find the specific problem that

we addressed to be less interesting than

the constraints that we put on the prob-

lem. On the basis of our limited resources

and our desire to make the solution as pal-

atable to industry as possible, we focused

on using mainstream RISC CPU architec-

tures in cost-sensitive embedded
.............................................................
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systems. This was a different way of

thinking about embedded CPU research

at the time, but it reflected some impor-

tant changes in the CPU industry and the

way many researchers were starting to

think about embedded computing. This

may have been the most important

impact of our paper, providing a concrete

example of success to researchers who

were starting to think about embedded

computing in a new way.

The State of the Art
In today’s world it seems obvious that a

RISC-based system on chip (SoC) is a

good solution for an embedded system,

but when we started working on this

research, such devices basically did not

exist. Moreover, the trends in RISC pro-

cessor development and mainstream

CPU core development in general were

moving further away from suitability in

embedded systems.

As an academic and a computer archi-

tect, I had expected RISC and complex-

instruction-set computing (CISC) imple-

mentations to begin to converge. During

my time as a graduate student at Carne-

gie Mellon University, Bob Colwell had

authored a well-known paper comparing

fundamental aspects of RISC and CISC

architecture.3 I was highly persuaded by

its primary conclusion, that at the most

fundamental level RISC and CISC differ

only in the way they represent and

decode instructions. All other tenets of

RISC architecture, such as large, general-

purpose register files, pipelining, on-chip

caches, and reliance on compiler optimi-

zation, were general advances in pro-

cessor implementation tied to advances

in VLSI technology. They were equally

applicable to RISC and CISC architec-

tures. By 1991, we were starting to see

this convergence at the high end. Intel

processors like the i486 and the upcom-

ing Pentium had RISC-like microarchitec-

tures and could match RISC processors

in integer performance; however, in

terms of the embedded processor land-

scape, RISC and CISC implementations

were starting to diverge in disturbing

ways.

Embedded systems developers

focused on low cost, low power, high lev-

els of integration, and absolute predict-

ability at runtime. The heart of the

embedded systems market was the 8-bit

microcontroller. These chips, such as

Intel’s 8051 and Motorola’s 68HC11 and

their derivatives, included on-board pro-

gram and data memory, integrated analog

and digital I/O peripherals, on-chip clock

generators, serial ports, timers, interrupt

controllers, and low-power sleep modes.

They typically used a fraction of a watt at

peak performance and were provided in

low-cost plastic packages with 40 to 80

pins. The processors were cheap. Sys-

tems built with them were cheap. They

were small and required little power.

Moreover, they were highly predictable.

Developers would “cycle count” the crit-

ical paths in programs to determine per-

formance, because the execution time of

each instruction in the path was known

and fixed. This allowed them to be used

for real-time control. At the higher end of

the embedded market, there were newer

16-bit microcontrollers that resembled

the 8-bit parts at a higher cost and simple

single-board computers based on older

8086 or 68000 family processors. These

were smaller than PCs and lower power

but also very predictable in operation.

Although these solutions were suitable

for many applications, it was clear that

there was interest in higher performance

and more capabilities. General-purpose

computers were doubling in performance

every year, and the embedded world was

being left behind.

Almost all of the activity in CPU devel-

opment focused on high-performance

RISC processors for workstations and

servers and RISC-like microarchitectures

for CISC chips that could compete with

them. In the past, CPU implementations

would often start off as desktop process-

ors, and then, as they became cheaper,

they would be used for high-end

embedded systems and then reused in

integrated microcontrollers. This path-

way seemed to be at an end. Perform-

ance was skyrocketing, but the very

features that were contributing to these

performance increases made them

increasingly unsuitable for embedded

use. The most prominent of these fea-

tures was the heavy dependence on on-

chip caches to support high clock speeds

and the high instruction bandwidth

needed to provide one or more 32-bit

instructions per clock. The problem for

the embedded world was that nobody

understood how to use a processor with

caches in a real-time environment. We

thought of caches as having probabilistic

performance, and anyone could imagine

a worst-case scenario in which a pro-

cessor with caches might be 10 or more

times slower than the typical case. This

led to lots of ranting and raving in the

embedded-systems community about

missiles that wouldn’t fire, car engines

that would explode, and airplanes that

would drop out of the sky. It’s hard to

believe in retrospect, but many smart

people in 1991 thought that real-time

embedded systems simply could not

use processors with caches, and that

there would be very limited further

improvement in embedded processor

performance.

Additionally, the caches that could fit

on a chip at the time were never large

enough to keep up with the processor

core’s performance, and thus designers

would try to fill up as much of the chip as

possible with cache. This meant no room

to integrate any other features, such as

I/O, main memory, clock generators, or

communications. Unlike the early days of

the microprocessor, when Intel, Zilog,

and Motorola would create an ecosystem

of peripheral chips to support each new

processor bus, these new RISC micro-

processors were targeted toward large

computer manufacturers that would

develop proprietary support chips for

each computer system. Building a com-

plete system using the new RISC micro-

processors required a much larger

investment. Other factors made the cost

of these microprocessors unsuitable for

embedded use. As RISC architectures,

they relied on high clock speeds and lots

of instruction and data bandwidth.

Although caches helped, these
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processors were in large ceramic pack-

ages with lots of I/O pins and power and

ground pins. The SuperSPARC processor

had about 300 pins. The R4000SC had

about 450 pins. Even the low-end RISC

processors had close to 200 pins. This

meant that these were expensive parts

that used lots of I/O power for off-chip

communications. Designers also focused

on clock rate at the expense of power.

Many of these RISC CPUs used dynamic

logic and thus (at the time) did not have a

low-speed or sleep mode. Many designs

(such as Pentium and SuperSPARC) had

moved to Bi-CMOS circuits. Unlike today,

where power is a major constraint, power

had become a tool for increasing clock

speed.

Along with all of these CPU implemen-

tation issues, embedded system design-

ers were deterred by one fundamental

aspect of RISC architectures—that they

used fixed-length, 32-bit instructions.

This, along with the fact that RISC com-

pilers were all tuned for performance,

meant that in practice RISC object code

was much larger than CISC code. Some

measurements showed that, for exam-

ple, Sparc code could be three times as

large as VAX code for the same program.

This difference was not as pronounced

for other CISC microprocessors, but there

still seemed to be about a 50 percent

code-storage penalty for using a RISC

architecture as compared to CISC. In a

system with a limited dollar or space

budget for program ROM, this meant that

a RISC system could include only two-

thirds as much functionality as a CISC

system. This seemed like a major disad-

vantage. Remember, at the time, a typical

midrange embedded system might only

have 32 Kbytes of program memory.

Given all these factors, as well as the

fact that most RISC products were being

promoted as high-end solutions, design-

ers did not seriously consider RISC to be

practical for embedded computing.

Some earlier efforts had attempted to

introduce embedded RISC architectures,

most notably the AMD 29000 and

the Intel i960, but these were low-

integration, high-pin-count devices,

mostly targeted for laser printers. Both

teams were known to be working on

more expensive superscalar versions of

these chips rather than bringing them

downmarket. In fact, as late as 1992,

Intel still included the i960 in its Multime-

dia and Supercomputing databook, along

with the i860 and i750, as opposed to in

its two-volume Embedded Microcontrol-

lers and Processors databook. ARM was

deep into the development of the

ARM610 for the Apple Newton, but the

idea of an embedded ARM core as part

of a third-party SoC was not well-known

until several years later with the introduc-

tion of the ARM 7 core.

The embedded systems community

was stuck in a rut. It was clear that the

semiconductor industry was investing all

of its money and effort into RISC and yet

it was not at all clear how embedded sys-

tems would ever benefit from this invest-

ment. This was the problem we were

trying to solve when we developed the

CCRP.

Developing an Approach
By 1991, I had been struggling with this

problem for some time. I had been look-

ing for some unique architectural

approach that would break past existing

performance constraints. One thought

was that if we brought the instruction set

and datapath closer to the application

level and replaced runtime interpretation

with compile-time optimization, we could

reduce code storage space and band-

width and devote more hardware to cal-

culation. As one of those projects, in

1988 I developed a computer based on

the new Xilinx field-programmable gate

array (FPGA) technology based on recon-

figurable instruction decoding and data-

paths. Early results were promising.

Application-specific instruction sets

could be very dense, and increases in

instruction-level parallelism (ILP) of two

to four times over conventional process-

ors were easy to develop. I packaged my

initial results into a paper to be presented

at MICRO 21.

For the 1988–1989 academic year, I

was invited to be a visiting graduate stu-

dent in Ed McCluskey’s lab at Stanford. I

presented the MICRO 21 paper to some

of the Stanford faculty and students in

the Computer Systems Lab. After that

presentation, Mark Horowitz com-

mented that an architectural improve-

ment of two to four times was

immaterial compared to a modern RISC

processor. He explained that general-

purpose RISC processors benefitted

from enormous engineering efforts,

including critical-path circuit tuning and

access to the newest manufacturing

processes. He claimed that this design

effort, which was only affordable in a

high-volume, general-purpose processor,

would provide 10 to 100 times improve-

ment in cycle time compared to my

FPGA approach and that alternative

application-specific approaches made

sense only if they could exceed that. I

basically disregarded the comments at

the time as simply a defense of the sta-

tus quo, but as I continued my research

over the next couple of years, it became

clear that he had observed a fundamental

change in the computer industry.

Because processors were becoming

exponentially more complex, the ability

to invest large amounts of money in their

development was becoming as impor-

tant as the core architectural ideas.

During the summer of 1989, my advi-

sor, John Shen, arranged an internship at

ESL/TRW to design a proof-of-concept

system to track incoming missiles as part

of the Strategic Defense Initiative. I

started working on a VLIW-style board-

level processor based on high-

performance floating-point units (FPUs)

from Weitek and microcoded instructions.

Our objective was to get maximum per-

formance within a dorm-fridge-sized 9U

cabinet with a development budget that I

think was a few million dollars, including

application software. Sometime mid-

summer, I read an IEEE Micro article

describing the upcoming Intel i860XR 64-

bit microprocessor4 and then quickly

obtained the databook and programmer’s

manual from Intel. The i860XR was

expected to ship by September with the

ability to do 80 Mflops, double-precision,
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at 40 MHz with a promise of a 50 MHz

part soon behind. Dr. Horowitz’s predic-

tion had already come true. The floating-

point engines we could buy topped out at

20 MHz and did not have enough pin

bandwidth to sustain double-precision cal-

culations at that rate. If we built our own

chips, we estimated that we could sustain

20 MHz, but even with substantial ILP, it

would be difficult to reach 80 Mflops, and

chip development would cost millions of

dollars. Intel simply had been able to out-

invest anything we could duplicate. They

used a bleeding-edge 1,000-nm CMOS

process (no giggling from millennials) and

tuned the circuits using the best design-

ers. They customized the memory tech-

nology in the caches, included DRAM

support, and developed compilers tuned

to the architecture. They raised the bar on

everyone’s expectations, and did it in a

processor that used 3 W. We did not

know how to duplicate the performance

per unit area, but at the same time we did

not know how to build a reliable real-time

system using a processor with such com-

plex pipelining and heavy reliance on

caches. I decided to prove to my team

that I could “tame” a modern RISC micro-

processor by using restrictive Fortran-

style programming, modeling the cache

misses and DRAM page misses, and lim-

iting interrupts. We ended up building a

four-processor-per-card message-passing

architecture that provided up to 320

MFlops per board. I had “tamed” a lead-

ing-edge workstation processor and used

it as a practical digital signal processor in

an embedded system. Were there other

ways that this approach could be used

to leverage the investments in high-

performance RISC processors while

maintaining the characteristics of

embedded systems?

Developing a Solution
When Alex and I started to look for an

embedded system problem to solve, I

thought back to the Colwell paper about

RISC and CISC. One of the problems in

using RISC processors in embedded sys-

tems was that the code was so much

bigger. Even in a higher-end system like

a laser printer or an advanced car engine

controller, which might benefit from the

added performance, there often was no

room and no budget to add 50 percent

more ROM chips. The RISC code was

simply too big; but the question was

why? At a fundamental level, RISC code

and CISC code were specifying the

same amount of information. They were

describing the same amount of comput-

ing to be done. There should be some

way to express this in the same number

of bits. If we were willing to accept a per-

formance impact with RISC, could we

make the code as small as CISC code?

How big would that performance impact

be?

We started to explore various ideas.

One idea was to write CISC code for an

existing architecture, then decode it into

RISC code on instruction fetch. This was

inspired in part by the decoded instruc-

tion cache that Dave Ditzel and Alan

Berenbaum had developed in CRISP.5

We could use an existing CISC compiler

and retain most of the RISC core—every-

thing after the decode stage. However,

we quickly lost enthusiasm when we

looked at some details. There would be

no way to specify and efficiently use all

of the registers in the RISC. Also, at the

time, we believed that much of the

magic in RISC architecture was the abil-

ity to compile for one specific pipeline.

We would lose that ability. We moved on

to other ideas.

I was enamored with the idea of

using a 16-bit instruction set that used a

limited set of processor resources, used

only the most common opcodes, sup-

ported only short immediates, and speci-

fied two registers instead of three. A

mode-switch opcode would switch

between short-instruction and long-

instruction mode. I thought that we could

get close to a 2:1 improvement in code

density. Alex prototyped the system, but

we couldn’t get it to work to our satisfac-

tion. Performance dropped 30 to 50 per-

cent, and the extra instructions meant

that the code was not much smaller. I

suspected that the real problem was that

we were just not doing a good job of

rewriting the program with the new

instructions, and that a new compiler

was needed. I had lots of ideas I wanted

to try, but none would fit into Alex’s

“graduate this semester” timetable, so

we put it on hold and decided to try our

remaining approach. Within two days,

Alex was already getting promising

results. Of course, ARM successfully

implemented an alternative 16-bit

instruction set with their Thumb instruc-

tion set that was announced around

1995.

The final approach was to just com-

press the program and then decompress

it at runtime. We ran some programs

through “compress” on a Unix system

and got 40 to 50 percent size improve-

ments. Of course, one problem we faced

in executing compressed code is that we

no longer knew where the code for any

branch target had ended up. If we tried

to patch branch targets in the com-

pressed code with the new locations,

the compression would change and the

locations would move.

Our first inclination was that we

would decompress the programs into

RAM and run them uncompressed, but

upon reflection that made little sense.

The extra RAM required to hold the pro-

gram would offset any savings in ROM.

At that point, we came back to the idea

of the decoded instruction cache. If the

decompression happened on cache refill,

then the cache could be our decom-

pressed program RAM. Every RISC core

would have an instruction cache. Since

the cache would hold only uncom-

pressed code, the CPU core would not

even need to know about the compres-

sion and would need no modification. In

fact, the cache itself would need no mod-

ification other than the refill engine,

which would decompress the instruc-

tions. This was a great idea, but it quickly

led to the next problem. Active cache

lines were dispersed throughout the pro-

gram. You could not decompress a

“compress” file (which used the Lem-

pel-Ziv-Welch algorithm) unless you

started from the beginning and pro-

ceeded sequentially. The solution was to
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select a moderately large cache line size

and to compress each correspondingly

sized program block separately. That

way we could decompress a single

cache line at a time. For such small data-

sets, a preselected Huffman code

worked well. We looked at various alter-

natives but decided that for the MIPS

R2000 code in our experiments, treating

each byte as a character (rather than

each instruction) worked best.

The remaining problem was how to

find a cache replacement line in the com-

pressed code. Each block was no longer

at its original address in memory because

of the compression. We decided to incor-

porate a table of pointers to each cache

line, similar to a page table that locates

pages on a disk. The table would be

stored in ROM with the code and could

be referenced to find any block of the pro-

gram. We included a cache for the table,

a cache line address look-aside buffer

(like a translation look-aside buffer for a

page table), that would eliminate the extra

memory read. Even with all the overhead

of block coding and the tables, we could

still substantially reduce the code size.

We had all the pieces for a workable

system. We built a simulation, measured

compression rates, and simulated per-

formance. We wrote up the results into a

paper, and Alex prepared his master’s

thesis. All we needed were the final two

keys to publishing a computer architec-

ture paper in 1992: we needed to get

RISC into the title, and we needed a four-

letter acronym for our project.

Aftermath
The paper was well-received and

inspired many researchers to improve on

our methods. There were more than 100

follow-on papers that improved coding

efficiency and system performance. At

least two processor design teams imple-

mented the technique into commercial

processors. Josh Fisher and Paolo Fara-

boschi included code compression in

their LX VLIW processor at Hewlett

Packard. IBM incorporated it into the

CodePack technology in certain

PowerPC processors. However, in look-

ing back at the effort and its impact,

what I find most interesting is that it rep-

resented a change in thinking about how

to do embedded systems architecture

research. Many researchers with exper-

tise in high-performance architecture

began to think about how the investment

in high-performance processors could be

leveraged into the embedded space.

Researchers who saw this work pre-

sented at MICRO and other presenta-

tions, as well as other researchers who

simply noted the same technology shifts

through their own experiences, began to

propose other problems that could be

solved using a similar approach. This

reinvigorated embedded systems as a

research topic and led to widespread

advancement in the following years.

I n retrospect, this change in how we

thought about embedded computing

was inevitable. The changes that I

observed were rapidly impacting the

entire industry as the cost and complexity

of developing processors and compilers

escalated. The development of the ARM7

and eventually the synthesizable ARM7

TDMI had likely started. This would lead

to the development of other licensable

peripheral cores and buses that would be

used with ARM cores to build RISC micro-

controllers and SoCs for embedded sys-

tems. Kurt Keutzer at Berkeley was also

already working on code compression

techniques for RISC. Other research

groups began exploring other ways to lev-

erage mainstream RISC architectures for

embedded systems applications and thus

developing system-wide approaches to

managing power and predictability. The

availability of open source tools such as

compilers, simulators, and operating sys-

tems increased the opportunities for

embedded systems research in both aca-

demia and industry. Interestingly enough,

we are now reaching a point where the

development model is beginning to

switch. The embedded market—including

general-purpose devices such as mobile

phones that have severe cost, power, and

packaging constraints and real-time

requirements—now dominates the pro-

cessor market. Embedded designs are

evolving into servers and infrastructure in

which cost, power, and packaging are

important. Now we need to learn how to

leverage the investment in embedded

computing to support the general-purpose

computing markets. MICR O
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