
..

The 2014 MICRO Test of
Time Award Winners:
From 1978 to 1992

ONUR MUTLU
Carnegie Mellon University

RICH BELGARD

......As you may know, the Interna-

tional Symposium on Microarchitecture

(MICRO)—the flagship microarchitecture

conference, and a premier computer

architecture conference for nearly five

decades—selected 10 papers as recipi-

ents of the first set of MICRO Test of

Time (ToT) Awards in December 2014.

We announced the winning papers and

described the selection process in the

March/April 2015 issue of IEEE Micro.1

The authors of these 10 distinguished

papers were invited to write short retro-

spectives to reflect on their work, which

was done at least 20 years ago. This

issue features retrospectives written by

the original coauthors of two of the

award-winning papers. We briefly intro-

duce these papers and retrospectives,

and we hope that you will enjoy reading

them as much as we have.

The first retrospective is for the old-

est paper that won the 2014 MICRO ToT

Award. “Microprogrammed Implemen-

tation of a Single Chip Microprocessor”

by Skip Stritter and Nick Tredennick was

published in MICRO 1978.2 It introduced

the idea of a two-level control store (text-

book material in computer architecture

today) with the goal of minimizing the

chip real estate dedicated to the control

logic used in microprogrammed pro-

cessor designs, and in particular the

memory used to store the microinstruc-

tions. The two-level control store is

essentially two carefully codesigned pro-

grammable logic arrays (PLAs) that

together comprise more compact stor-

age for microinstructions than a single

monolithic control store. It was born

from the necessity to “maximize the

contribution of every transistor spent”

(to quote Tredennick’s retrospective) in

the design of the Motorola MC68000

processor. The paper also described in

detail the microprogrammed control logic

implementation of a single-chip micro-

architecture, based on the MC68000

experience. In his retrospective, Treden-

nick describes his experience at Motor-

ola that led to this paper and discusses

his subsequent experiences in industry,

which were partially shaped by his

involvement with the MC68000. He also

muses about the connection between

design and design automation proc-

esses, which makes the retrospective a

fun historical perspective and a delightful

read for the IEEE Micro audience.

The second retrospective is for one of

the youngest papers that won the 2014

MICRO ToT Award. “Code Generation

Schema for Modulo Scheduled Loops,”

authored by Bob Ramakrishna Rau,

Michael S. Schlansker, and P.P. Tirumalai,

was published in MICRO 1992.3 The

paper provides a “recipe book” (to quote

Schlansker) that discusses and enumera-

tes code-generation choices for correctly

and efficiently optimizing instruction

schedules of loops for various architec-

tures, including very long instruction word

(VLIW) and superscalar. The paper covers

architectures incorporating a varying set

of features for loop schedule optimiza-

tion, using the notions of software pipelin-

ing and modulo scheduling. The work is

based on the authors’ extensive (about a

decade long) experience in hardware/soft-

ware codesign for realizing Cydrome’s

Cydra 5 processor. Yet, the paper’s loop

code scheduling strategies apply far

beyond the extensive architectural sup-

port provided by the Cydra 5 for loop

scheduling purposes, as Schlansker’s ret-

rospective beautifully describes.

A s we conclude, we would like to

take the opportunity to pay tribute

to the extremely valuable impact that

Bob Rau has had in our field, especially in

the development of compiler technology

and VLIW processors, as well as hard-

ware/software cooperation in instruc-

tion-level parallelism. It has been 13

years since Bob died, but his impact is

wonderfully felt in the compiler technol-

ogy commonly in use today, along with

the many clearly articulated technical

articles he contributed to academic litera-

ture. His works are taught in many mod-

ern compiler and computer architecture

...

60 Published by the IEEE Computer Society 0272-1732/16/$33.00�c 2016 IEEE

Awards

classes today. Bob was one of the most

prominent contributors to MICRO for

decades, and our selection of the 1992

article, for which he was the primary

driver (according to Schlansker’s retro-

spective), as part of the first set of

MICRO ToT Awards points to the techni-

cal excellence and value of insight he

upheld as a leading member of our com-

munity. We hope these two key values

continue to thrive as microarchitecture/

architecture and hardware/software

codesign become even more important

with fundamental challenges threatening

the large improvements obtained from

the scaling of the underlying circuit and

device technologies. MICR O

..
References
1. O. Mutlu and R. Belgard, “Introducing

the MICRO Test of Time Awards:

Concept, Process, 2014 Winners, and

the Future,” IEEE Micro, vol. 35, no.

2, 2015, pp. 85–87.

2. S. Stritter and N. Tredennick,

“Microprogrammed Implementation

of a Single Chip Microprocessor,”

Proc. 11th Ann. Workshop Microprog-

ramming, 1978, pp. 8–16.

3. B. Ramakrishna Rau, Michael S.

Schlansker, and P.P. Tirumalai, “Code

Generation Schema for Modulo Sched-

uled Loops,” Proc. 25th Ann. Int’l Symp.

Microarchitecture, 1992, pp. 158–169.

Onur Mutlu is the Strecker Early Career

Professor at Carnegie Mellon Univer-

sity. Contact him at omutlu@gmail.com.

Rich Belgard is an independent consul-

tant for computer manufacturers, soft-

ware companies, and investor groups

and an expert and consultant to law firms.

Contact him at belgard@gmail.com.

..

Evolution of Microprocessor
Logic Design

NICK TREDENNICK
Jonetix

......In the summer of 1977, I was

teaching as an assistant professor at the

University of Texas in Austin when Tom

Gunter walked into my office and intro-

duced himself. He asked if I’d like to work

for Motorola on a microprocessor design

project. My areas of expertise were com-

puters and logic design, and I had a little

experience with microprocessor applica-

tions, but no experience with microproc-

essor design or semiconductor design.

Nevertheless, there was mutual interest

and I took a job with Motorola beginning

in September 1977. The project was a

next-generation microprocessor design

called MACS (Motorola Advanced Com-

puter System). Motorola’s previous

microprocessor designs had been 8-bit

accumulator-based designs suitable for

embedded applications; MACS was to be

a 16-/32-bit design more suitable for com-

puter applications. Tom said he eventually

wanted me to work on the design of the

on-chip cache, but that he first needed

me to begin work on the microproces-

sor’s logic design “until we find a compe-

tent logic designer.” Of course, that

never happened, and I spent my time

doing the logic design for what became

the MC68000.

I began looking for books and articles

on microprocessor logic design. I was

unable to find documentation for any

microprocessor logic design methods.

That seemed odd, given that the Design

Automation Conference was already 14

years old in 1977. Just what processes

were all those software engineers auto-

mating? Well, OK, I’d have to make up

the design process as I went along.

At the time, the biggest differences

between computer design and micro-

processor design were in the constraints

placed on the microprocessor’s designer.

The microprocessor’s entire design had

to fit on a single power-, pin-, and transis-

tor-constrained, size-limited silicon chip.

All of the microprocessor’s comput-

ing resources (data registers, address

registers, program counter, and arith-

metic units), interrupt logic, interface

logic (pin and external bus control), and

control logic had to fit inside the transis-

tor, area, and power budget. Since we

began by doubling or more than doubling

the width of the data and address regis-

ters and the arithmetic units, as well as

substantially increasing the number of

data and address registers compared to

an 8-bit accumulator-based design, we

quickly ate into the transistor-budget

increases provided by our move to the

next most advanced semiconductor

process. The consequence of these

decisions was that, in the implementa-

tion of the control logic, we had to
...

JANUARY/FEBRUARY 2016 61

maximize the contribution of every tran-

sistor spent.

In 1977, moving to the next semicon-

ductor process meant designers had

somewhat more than twice the number of

transistors enabled by the previous-genera-

tion semiconductor process. With each

semiconductor process generation—which

came along about every 18 months—tran-

sistor area shrunk by half, which doubled

the number of available transistors in a

fixed area. Additional available transistors

came from improvements in transistor lay-

out and from lithography advances that

enabled production of larger chips.

As transistor size decreased, power

per transistor fell, so that chip power

rose only slowly. Leakage currents, even

for new process generations, were negli-

gible, so we worried only about active

power. In addition, the smaller transis-

tors were faster, so clock speeds rose

and performance increased with each

semiconductor process generation. The

18-month cycle for new semiconductor

process generations also drove the

development cycle. Project delay could

mean that your competitors benefitted

from twice as many of the newer, faster

transistors in their designs.

Design process
The MC68000 was probably among the

last of the pencil-and-paper microprocessor

designs. The project did not have the bene-

fit of either computer-aided design entry or

computer-based logic simulation. I drew

pencil-and-paper diagrams of the execution

units, decoders, logic units, and intercon-

nections. I used modified Karnaugh maps

(ofup to16variables) for logicminimization.

I wrote register transfer sequences in

cycle-by-cycle flowcharts for each instruc-

tion in pencil on large sheets of paper.

I used these methods both to place

and to assign the instructions’ op codes

(for efficient instruction decoding and uni-

form access to register fields) and to opti-

mize the programmable logic arrays (PLAs)

that decoded the instructions and provided

instruction execution sequencing.

For control efficiency, instructions

shared operand address calculation

sequences. One instruction decoder

pointed to the operand address calcula-

tion sequence and a second pointed to

the required operation sequence. The

address calculation sequence computed

the operand address and sent a request

to memory for the operand before trans-

ferring control to the second instruction

decoder, which performed the operation

and stored the result. This led to a prob-

lem with the clear memory instruction,

which read the location to be cleared

before writing a zero to that location. It

was necessary to enable universal shar-

ing of the address calculation functions,

but some users didn’t expect a read to

accompany a clear memory instruction.

Similar to the sharing of address calcu-

lation sequences, instruction operations

shared sequences. Add, subtract, AND,

OR, and XOR, for example, could all share

a common two-operand arithmetic

sequence through the use of an arith-

metic logic unit and condition-code con-

trol table. For that table, the instruction

decoder selected a row and the common

two-operand arithmetic sequence chose

a column; that way, the sequences could

be common and the operations different.

The controller for the MC68000 micro-

processor looked like a two-level control

store with vertical (compact) microcode

for sequencing and horizontal (mostly

decoded) microcode for execution unit

control points. The structure is described

in the paper “Microprogrammed Imple-

mentation of a Single Chip Microproc-

essor,” which Skip Stritter and I wrote.

What we called vertical and horizontal

microcode are nothing more than the out-

puts of two highly optimized PLAs operat-

ing in parallel. The execution unit control

PLA was optimized to eliminate duplicate

states that would have occurred if the

control points had been included in the

sequencing PLA.

Most of the decisions in the design of

the control unit focused on transistor

efficiency.

Logical conclusions
At the end of the MC68000 project, in

late 1979, I resolved to do two things.

First, I decided to make a list of the prob-

lematic design decisions that I had made

during the project, so that I could avoid

those errors in the next design. Second,

because available design tools did not

support the design method I had been

using, I decided to create a design

description that could act as the basis for

implementing design aids.

Make better decisions
At the end of the MC68000 project, I

made a list of the design decisions that I

felt led either to inefficiencies that could

have been avoided or to increased diffi-

culty in completing the design. I don’t

recall the contents of the list, but I believe

there were about 10 items. The character

of the items on the list was something

like “instead of X as a method for register

decoding and control, Y is probably to be

preferred.” I resolved to use this error-

correction sheet at the beginning of my

next microprocessor design.

About a year later, I made use of that

list when I began the Micro/370 micro-

processor design while working at IBM

Research in Yorktown Heights. And

here’s why I don’t recall the contents of

that list: at the end of the Micro/370

design project, when I made a list of the

design decisions that I felt led either to

inefficiencies that could have been

avoided or to increased difficulty in com-

pleting the design, it turned out to be

essentially the inverse of the list that I

had made at the end of the previous

design. My lesson from this was that it’s

probably not fruitful to try to judge your

design decisions in retrospect, because

it is impossible to forecast the conse-

quences of the alternatives in the

absence of actually doing the detailed

design work to implement them.

Design process, design
automation
In 1979, design automation was a popular

and growing business, but there seemed

to be little correlation between what was

being automated and the actual logic

design process that I had been using. It

looked more like design engineers were

..

AWARDS

..

62 IEEE MICRO

modifying their design processes to con-

form to the available tools. That seemed

like an inefficient approach to me, so I

resolved to document the microproces-

sor design process that I had used so that

if there was any interest in automating an

actual design process, there would be at

least one template for doing so. About a

year after I went to work for IBM, I began

documenting the process I would use to

design a microprocessor. Since I couldn’t

use the information from the MC68000

design—because many of the design

details were confidential—I began a new

IBM 360-based microprocessor design

that was eventually named Micro/370.

It began as an example design, but it

grew into a team building a real microproc-

essor when we decided we had to

actually build the microprocessor for the

design process to have credibility. The

project produced a Micro/370 microproc-

essor that was functional and even booted

IBM’s VM operating system, but was not

successful in the market. The project also

resulted in Microprocessor Logic Design

(Digital Press, 1987), a computer engi-

neering textbook that described the

design process. A number of universities

adopted the text for courses.

Constraint evolution
So, there we were in 1987—10 years after I

had gone to work at Motorola and had been

unable to find a microprocessor design

process, there now existed a documented

microprocessor design process. Would the

design automation engineers finally see the

light and begin automating a process from a

design engineer’s template?

In a word: no.

It didn’t happen and it shouldn’t have

happened. I was disappointed, but I

shouldn’t have been. Just as I had done at

the end of the MC68000 project’s “design

errors” list, I was taking the same myopic

view of the design process. We all took for

granted that transistors shrunk and got

faster with each generation. My mistake

was that I took as an unstated assumption

that the design process didn’t evolve with

the march of semiconductor progress.

That was unwise. The design process

changed dramatically as transistors shrunk

because the constraints changed.

The design process I used was suited

to a single individual controlling an entire

logic design encompassing fewer than

100,000 transistors. In computer archi-

tecture terms, the processors of 1977

were primitive even compared to the

mainframe designs of the time. Micro-

processors didn’t have to invent architec-

tural features; we were still copying

features from the more advanced main-

frame implementations of the time.

In the time it took me to initiate and

complete another design and write the

process, microprocessor designs were

already incorporating millions of transis-

tors. Computational path widths would

at most double and then level off, so exe-

cution units became a smaller portion of

the design; there were plenty of transis-

tors to spend on control logic, easing

constraints on the efficiency of controller

design. On-chip caches, floating-point

capabilities, and multiprocessor designs

debuted to consume excess transistors.

Microprocessor development acceler-

ated past mainframe and minicomputer

design as the leading edge of computer

architecture, encouraging innovators to

enter the field. Newer design projects

lead to specialization in design expertise

in areas such as cache replacement

strategies, branch prediction, and

floating-point implementation. This fur-

ther specialization led to the growth and

fragmentation of design teams, which

called for more coordination and for

standardization of methods and design

documents.

Progress in semiconductor process

conspired to change design constraints.

As transistors shrunk below 90 nm, leak-

age currents became significant, changing

the design emphasis in power manage-

ment. Logic speed diverged further from

memory speed as semiconductor process

engineers emphasized speed for logic and

density for memory, changing constraints

in cache design and shifting emphasis to

consistency issues in the cache hierarchy.

Relative differences in logic speed and

propagation delay forced tradeoffs in pipe-

line depth versus per-stage logic process-

ing and in on-chip location of functional

units. Multiprocessor designs opened

whole new vistas of requirements for

innovation and development.

I thought there should be a core method

for microprocessor logic design and

that should be the basis for the automation

of design aids. In an environment evolving

rapidly with progress in semiconductor

process, that assumption was invalid. I

built an ad-hoc design method that was

suited to the constraints present at the

time I began the design. Maximum chip

size could accommodate fewer than

100,000 transistors, making transistors the

scarce resource, so design efficiency was

paramount. Today’s chips easily contain

billions of transistors; transistors are abun-

dant, so the scarce resource is designers

or design management, verification, or

time. Newer microprocessor design proj-

ects require large teams and emphasize

specialization and design fragmentation.

In the 1970s, microprocessor design

was primitive. Its logic design, incorporat-

ing a few tens of thousands of transistors,

could be managed by a single person or a

small team, and in terms of computer

architecture, it was a trailing-edge imple-

mentation incorporating features that had

been pioneered in mainframes, minicom-

puters, and workstations. In contrast,

today’s microprocessor design is perhaps

the most sophisticated of all engineering

design. Its logic design, incorporating bil-

lions of transistors, requires a large team

of experts in a wide range of specialties,

and in terms of computer architecture,

these advanced microprocessors are

blazing the trail in innovation. MICR O

Nick Tredennick is a VP and engineer

at Jonetix. He is a life fellow of IEEE.

Contact him at bozo@computer.org.

...

JANUARY/FEBRUARY 2016 63

..

Efficient Code Generation Schema for
Modulo Loops

MICHAEL SCHLANSKER
Hewlett Packard Enterprise Labs

......This retrospective is dedicated

to Bob Rau, who sadly cannot participate

in receiving this honor. It was Bob’s pas-

sionate interest in computer architecture,

instruction-level parallelism, and compilers

that enabled our original paper, “Code

Generation Schema for Modulo Sched-

uled Loops,” with coauthor Partha Tiru-

malai.1 This paper was published in 1992

at MICRO 25. It addressed a basic ques-

tion—how can we efficiently execute

loops on a processor with instruction-level

parallelism while preserving processor

simplicity? The paper condensed a body

of work that resulted from Bob’s passion-

ate effort over an extended period of time

into a summary of known techniques for

loop acceleration. It distilled contributions

by Bob, his close collaborators, and a

broader parallel processing community

into an architecture for, and a manual of

facts about, synchronous parallel loop

execution. The goal of this retrospective

is to share a few highlights in our progress

toward developing this body of work.

In addition to Partha Tirumalai and

myself, other collaborators who worked

directly with Bob and influenced this

work included Bob’s ESL collaborator

Chris Glaeser; Bob’s Cydrome collabora-

tors, including Joe Bratt, Peter Donovan,

Peter Hsu, Ross Towle, and Art Sorkin;

and Bob’s Hewlett-Packard collabora-

tors, including Vinod Kathail, Meng Lee,

and Scott Mahlke.

The Code Generation Schema paper

resulted from Bob’s lasting interest in

instruction-level parallelism. An important

launching pad for our work came from ear-

lier work on single assignment languages

and dataflow, such as MIT’s tagged-token

dataflow architecture,2 which formalized

the renaming of variable instances within a

sequence of loop iterations in order to

allow concurrent processing. Dataflow

strengthened our understanding of loop-

level parallelism, recurrences, and loop-car-

ried dependences and helped us identify a

rigorous means to express loop parallelism

within our compiler’s intermediate form.

But dataflow was not the target of our

research. We wanted to accelerate inner-

most loops with synchronous hardware to

exploit large amounts of parallelism with-

out the complexities of hardware-based

dynamic scheduling. Much as in earlier

horizontal microcode, or very long instruc-

tion words (VLIWs),3 our goal was to

remove complexity from the processor

and instead use a compiler to produce

highly optimized static code schedules

that are executed by simple hardware.

Bob’s early work toward this goal resulted

in the Polycyclic architecture,4 which com-

bined wide synchronous execution with

innovative shift-register hardware. The

architecture demonstrated cyclic code

schedules, with a period called the initia-

tion interval (II), which controlled the

steady state execution pattern for a loop.

The innermost loop was scheduled as a

cyclic pipeline of overlapped loop itera-

tions. Code running these loops came to

be known as software pipelines, and the

compile-time scheduler used to generate

code for such loops was called a modulo

scheduler. The highest performance was

achieved by identifying a minimal loop II,

which accommodated throughput limita-

tions that were dictated either by fully uti-

lized computational resources or by the

latencies of operations around a cycle of

carried dependence.

Because of Bob’s interest in develop-

ing efficient hardware for a new processor

product (the Axiom processor was later

renamed as the Cydrome processor), he

strongly desired to replace the Polycyclic’s

shift registers with more efficient static

RAM. Cydrome’s Cydra 5 processor incor-

porated rotating register hardware to

implement register renaming. For each

operation, register addresses could be

dynamically computed by adding a register

offset that was specified by the operation

to an iteration control pointer (ICP). The

ICP was incremented by the execution of

a loop branch to relocate register referen-

ces within innermost loops in a manner

similar to laying out a new context frame

in dataflow, or incrementing a vector regis-

ter pointer. This allowed code from parallel

loop iterations to access values stored in

a nonshifting RAM without replicating

loop code. For machines without register

renaming, a compiler uses Modulo Varia-

ble Expansion, which combines compile-

time register renaming with code replica-

tion to enable parallel loop execution.

In addition to rotating registers, the

Cydra 5 provided predicates to support

conditional execution. A compare opera-

tion computed a predicate that could

conditionally nullify operations that were

dependent on that predicate. Predicated

execution supported the if-conversion of

conditionals in the body of loops, which

allowed the parallel execution of condi-

tionals without code replication.

Another complex problem is that of

controlling the software pipeline fill and

drain process. As execution ramps up,

..

AWARDS

..

64 IEEE MICRO

reaches a steady state, and then ramps

down, a different set of operations are

either needed or unused in the software

processing pipeline. Again, the Cydra 5

solved this problem without code replica-

tion. After a compiler determined an II and

generated a cyclic code schedule, opera-

tions within a loop could be separated

(according to their scheduled time) into

stages, each lasting II cycles. The total

number of stages, or stage count, indi-

cates the maximum number of loop itera-

tions that are simultaneously in process

when a software pipeline reaches fully

busy execution. The Cydra 5’s loop branch

operation computes a sequence of predi-

cate values that are applied to code in

each stage. The actions of the branch

operation, which computed a stage predi-

cate and advanced the ICP, caused code

in each stage to be correctly executed or

nullified according the software pipeline’s

fill and drain progress. This was called

“kernel-only code” and eliminated the

loop unrolling needed in other approaches.

Another important high-performance

loop feature is speculative execution,

which allows operations to be executed in

scheduled code before it is known whether

they would have executed in the original

sequential code. Speculative operations

produce errors that should not be reported

until it is known whether they execute in

the original code; they should be reported

after that time. Speculative execution was

used by Multiflow5 and was incorporated

into the IMPACT architecture6 at the Uni-

versity of Illinois. Speculative execution is

particularly important in while loops, in

which load operations must be moved

above one or more conditional exit

branches to achieve good performance.

This discussion sets the stage for the

Code Generation Schema paper’s primary

goal of developing efficient code genera-

tion schema for loops that execute on a

range of hardware architectures with

some or all of the loop features described

earlier. We knew that many processors

would not have rotating registers or predi-

cated execution and that code replication

could be used in their absence. For a stati-

cally scheduled VLIW with none of these

features, achieving the highest perform-

ance requires substantial code replication.

For complex-instruction-set computers,

reduced-instruction-set computers, and

superscalar machines that do not have

advanced loop features or cannot perform

sufficient dynamic scheduling in hard-

ware, their compilers can still improve per-

formance by exploiting schema for code

rescheduling, register renaming, and repli-

cation. However, the amount of code

grows with the amount of parallelism, and

a large expansion in code size can degrade

instruction processing performance.

Each hardware architecture choice

presents complex compile-time code-gen-

eration tradeoffs between the amount of

code replication and the achieved perform-

ance as a function of the loop’s trip count.

For example, loop preconditioning could be

used to sequentially execute a residual

number of iterations modulo p and then

retire parallel groups of exactly p unrolled

loop iterations to complete loop execution.

However, this approach leads to poor per-

formance with small loop trip count. Our

goal was to develop a set of precisely

defined code generation choices for a vari-

ety of important hardware architectural

alternatives and compare these loop control

schema for a specific amount of instruc-

tion-level parallelism as expressed with

example pipelined multifunction datapaths.

In summary, our goal for this paper

was to provide a recipe book for optimiz-

ing the schedule for loop codes for vari-

ous architectures. The paper uses

advanced Cydra 5 loop control features

that eliminate a need for code replication.

It defines code generation schema that

can be used for various VLIW and conven-

tional processors. The paper measures

key attributes such as achieved perform-

ance versus loop trip count and required

code size for varying degrees of hardware

parallelism. Finally, it shows that without

adequate hardware support, compile-

time loop scheduling causes significant

code growth unless performance is sacri-

ficed for short trip-count loops.

I thank those who recognized this work

as a lasting contribution to a large body

of exciting research in instruction-level

parallelism. Again, I would like to express

my sadness that Bob Rau cannot join us

to celebrate this honor. Bob was the pri-

mary driver for a body of work that was

developed over much of a decade and

culminated in the Code Generation

Schema publication. We miss his unwav-

ering pursuit of technical excellence,

which was directed toward developing

next-generation computer architectures

to exploit instruction-level parallelism. He

cultivated a positive approach to technol-

ogy development based on enthusiasm,

creativity, deep intellectual discourse, and

perseverance that many of his coworkers

remember fondly. MICR O

References
1. B.R. Rau, M.S. Schlansker, and P.P. Tir-

umalai, “Code Generation Schema for

Modulo Scheduled Loops,” Proc. 25th

Ann. Int’l Symp. Microarchitecture,

1992, pp. 158–169.

2. Arvind and V. Kathail, “A Multiple Pro-

cessor Data Flow Machine that Sup-

ports Generalized Procedures,” Proc.

8th Ann. Int’l Symp. Computer Archi-

tecture, 1981, pp. 291–302.

3. J.A. Fischer, “Trace Scheduling: A

Technique for Global Microcode

Compaction,” IEEE Trans. Com-

puters, July 1981, pp. 478–490.

4. B.R. Rau and C.D. Glaeser, “Some

Scheduling Techniques and an Easily

Schedulable Horizontal Architecture for

High PerformanceScientificComputing,”

Proc. 14th Ann. Workshop Microprog-

ramming, 1981,pp.183–198.

5. R.P. Colwell et al., “A VLIW for a Trace

Scheduling Compiler,” IEEE Trans. Com-

puters, vol. 37, no. 8, 1988, pp. 967–979.

6. S. Mahlke et al., “Sentinel Scheduling

for VLIW and Superscalar Processors,”

Proc. 5th Int’l Conf. Architectural Sup-

port for Programming Languages and

Operating Systems, 1992, pp. 238–247.

Michael Schlansker is a Distinguished

Technologist at the Hewlett Packard

Enterprise Labs. Contact him at mike_

schlansker@hpe.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

