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Abstract

Higher level of resource integration and the addition of new fea-
tures in modern multi-processors put a significant pressure on their
verification. Although a large amount of resources and time is devoted
to the verification phase of modern processors, many design bugs es-
cape the verification process and slip into processors operating in the
field. These design bugs often lead to lower quality products, lower
customer satisfaction, diminishing brand/company reputation, or even
expensive product recalls.

This paper proposes a flexible, low-overhead mechanism to detect
the occurrence of design bugs during on-line operation. First, we an-
alyze the actual design bugs found and fixed in a commercial chip-
multiprocessor, Sun’s OpenSPARC T1, to understand the behavior and
characteristics of design bugs. Our RTLggfe¥ analysis of design bugs
shows that the number of signals that need to be monitored to detect
design bugs is significantly larger than suggested by previous studies
that analyzed design bugs at a higl'ylcvel using processor errata sheets.
Second, based on the insights obtained from our analyses, we propose
a programmable, distributed online design bug detection mechanism
that incorporates the monitoring for bugs into the flip-flops of the de-
sign. Theyrkey contribution of our mechanism is its ability to monitor
all control signals in the design rather than a set of signals selected at
design time. As a result, it is very flexible: when a bug is discovered
after the processor is shipped, it can be detected by monitoring the set
of control signals that trigger the design bug.

We develop an RT prototype implementation of our mech-
anism on the OpenSPARC T1 chip multiprocessor. We found its area
overhead to be 10% and its power consumption overhead to be 3.5%
over the whole OpenSPARC T chip./We show that the hardware sub-
strate used to enable our proposal can also be used for enabling hard-
ware defect detection. As a result, we propose a unified bug detection
and defect detection solution that increases overall dependability dur-
ing on-line operation. -*’%ﬂ }h, aen gualrLad S ore addin R")
1. Introduction reeded ]

The Challenges of Correct Design - The advent of chip-
multiprocessing has led to unprecedented levels of chip integration.
Today, most general purpose processor chips are equipped with mul-
tiple cores, multiple levels of coherent memory, on-chip interconnect
networks, and memory and I/O controllers. #Complex interactions
between these modules, as well as the complexity of the modules
themselves, put a tremendous pressure in the verification of the sys-
tem. Although the verification phase of modern processors can con-
sume a large portion of the design cycle [3], require significant amount
of resources [7], and utilize state-of-the-art verification techniques, de-
sign bugs (also known as errata, design defects, or design errors) still
slip into the final products and “buggy " processors find their way into
the field. This trend is clearly shown in Figure 1. We
studied the errata documentation of five recent Intel processors and iy
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Figure 1. W‘ti%ﬁgfine of discovered design bugs
over the lifetime of five Intel processors.
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shows the nulnbf{ of discovered design bugs over the lifetime of fiv >
Intel processorsil) The Pentium 4, Pentium M and the Xcoanig_B
processors exhibit a similar trend with an average of 1.2 design bugs °
discovered per month during their lifetime. We suspect that the reason
why the Pentium M processor had less design bugs than the other two
processors is because it was based on the matured Intel P6 architec-
ture.

The advances in silicon process technology that offered higher de-
vice integration and the power consumption challenges of complex
single-core architectures led to the advent of chip-multiprocessing
where two or more cores are plugged into a single chip. However,
putting more cores into a single chip required the addition or adaption
of other on-chip resources such as the memory subsystem for sup-
porting on-chip shared/coherent caches and on-chip interconnection
networks. At the same time, processors where augmented with new
technologies such as virtualization, dynamic power management, and
64-bit extensions. As shown in the graph, this higher chip-level in-
tegration of resources and the addition of new features resulted ing§’
more design bugs. For example, although ##@the Core Duo dual-core
processor was derived from the Pentium M single-core processor and
had the same architecture, it exhibited a much higher rate of design
bugs than its predecessor. This trend also holds with the newest gen-
eration of Intel’s multi-core processors, the Core 2 Duo. Specifically,
the design bug discovery rate of the two multi-core processors is 3.5
design bugs per month, almost triple that of their single-core predeces-
sors. This trend is expected to&xacc@a\e in the future as technology
scaling will allow for more diverse regsources to be integrated into a
single chip. i5 wggen

Why Gn‘line Bug Detection j ! Today, design bugs are
treated with ad-hoc heuristic techniques that seek to avoid the oc-
currence of design bugs through software and hardware configura-
tion changes [16]. A common approach employed by such techniques
to avoid the occurrence of design bugs is disabling some processor
features that trigger the design bugs (e.g., support for cache prefetch-

9].

found that the rate of design bugs discovered after product release h>/ ! The data is extracted from the processors’ errata documentation [12, 11, 8,
0,
1
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tion and avoidance framework.

ing [16], dynamic power management [1], etc.). However, this often
leads to reduced product quality/performance and lower customer sat-
isfaction. Furthermore, when such workarounds are not possible, de-
sign bugs can lead to expensive product recalls [27] and a potentially
diminishing brand/company reputation.

Augmenting a design with a mechanism that enables a systematic
approach to detect and avoid design bugs after the product release and
while the system is operating in the field can offer the following ben-
efits:

1. Faster design cycle and time to market. Today, a significant frac-
tion of the verification phase is spent to discover a very small
number of design bugs [6]. This time can be saved by discover-
ing and fixing that small number of design bugs in the field after
product release.

2. Reduce the risk of expensive product recalls (and potentially
damaged company reputations) due to ad-hoc heuristic tech-
niques that might not be able to avoid a discovered design bug.
A systematic online design bug detection technique increases
the probability of successfully dealing with the design bug and
avoiding expensive recalls.

3. Avoid potential impac#to product quality and customer satisfac-
tion due to the use of conventional techniques that disable design
features to avoid design bugs. Instead, online design bug detec-
tion allows the system to operate with all its features enabled and
recover the system only when the design bug occurs. Therefore,
during bug-free execution the system is operating under its orig-
inal specifications.

Online Desngn Bug Detection & Avoidance - Fi r'e°2 provides a
high-level overview of our in-the-field design bug detection and avoid-
ance framework which we will describe in this paper. The frame-
work has four layers: 1) The bottom layer @#provides a field-
programmable substrate for flexible signal monitoring. This substrate
is programmed by special firmware at system startup to select the set
of signals that are required to be monitored for design bug detection.
2) A field-programmable design bug detection mechanism that checks
if the monitored signals match with a bug triggering condition. The
mechanism is programmed by special firmware at system startup with
the bug triggering conditions. 3) A system recovery mechanism that
rolls back the system state to the last correct state when a design bug
occurrence is detected. 4) Design bug avoidance techniques that are
activated after a design bug detection to guide execution around the
bug triggering conditions and avert the design bug. In this paper we
Jocus on the first two layers and provide a novel mechanism for per-
forming flexible signal monitoring and online design bug detection.

1.1. Contrlbutmns of this Work

tions in the arcaof Al dey g bg Jhdn

o Iithispapes ‘We further the understandmg in online design bug
detection by performing a rigorous analysis of the design bugs in

re !

the OpenSPARC T1 chip-multiprocessor, the open source ver-
sion of Sun’s Niagara processor. Unlike previous works that
based their design bug analyses on high-level abstract descrip-
tions of the processor errata documentation, our analysis is per-
formed at the RTL ###&model of the design, thus enabling the
extraction of low-level information directly related to the ac-
tual hardware implementation. To the best of our knowledge
this is the first RTL-level design bug analysis performed-to-date:
ith our-tow-level-analysis; we found that the signal monitor-
ing requirements of online design bug detection are significantly
higher than the estimates of previous studies. As a result, the
problem of detecting design bugs is more difficult and the solu-
tion is likely more hardware intensive than estimated by previous

work. &
omwtained from our RTL-level analysis of

design bugs, we propose a novel distributed online bug detec-
tion mechanism. Unlike the mechanisms proposed in previous
work, our mechanism can concurrently monitor a// the control

mgmls in the design that can trigger a design_ bngﬁl‘hls ﬁ%‘—\

fufe waives the requirement of selecting the candidate monitor |
[mgna!s at dcsngn time as reqmrcd by prewously proposed mech-/

e We provide a deta hardware implementation of our mech-
anism. Unlike previously proposed mechanisms that route se-
lected signals from the source flip-flops to a centralized moni-
toring mechanism that checks for bug triggering conditions, our
mechanism distributes the meonitoring and checking process at

the flip-flop level./ The distributed-checking results are aggre=,

~pated hsmg a hierarchical tree structure. This implementation ,

offers low overhead and high runtime flexibility for our mecha<’
2
e We show that our online design bug detection mechanism can
be synergistically combined with a previously proposed online
hardware defect detection mechanism. The combination imple-
ments a thorough solution that provides a high degree of both re-
liability and dependability to a system operating in the field. We
show that the hardware used for the detection of design bugs can
partially be used for detecting hardware defects, thereby amor-

tizing the cost of both mechanisms.
e We provide an extensive evaluation of our mechanism. Specif-

ically, we use as our test case design the OpenSPARC T1 chip-
multiprocessor to develop an RTL-level prototype implementa-

tion and estimate its overhead in terms of silicon arca and power.

consumption.

2. Design Bug Analysis

We first analyze design bugs in a real processor to obtain insights
into their characteristics and to develop a mechanism that can flexibly
and efficiently detect the occurence of design bugs while the system is
in operation.

2.1. Previous Design Bug Analysis Studies

The potential of augmenting future microprocessors with online
design bug detection has led to a number of studies that analyzed the
known design bugs that slipped into recent commercial microproces-
sors. The objective of these studies was to better understand and gain
insights into the characteristics of the known design bugs in existing
microprocessors, and extrapolate the expected characteristics of the
design bugs of future microprocessors. These insights were later used
to devise techniques that aimed to detect design bugs discovered af-
ter fpgrproduct release and while the processors are already shipped
and operating in the field. The main premise of these techniques is
that most design bugs are detectable by tapping a set of hardware sig-
nals and checking for bug triggering conditions while the processor is
operating.




R31. Interactions between the Instruction Translation
Lookaside Buffer (ITLB) and the Instruction Streaming
Buffer May Cause Unpredictable Software Behavior

Problem: Complex interactions within the instruction
fetch/decode unit may make it possible for the processor
to execute instructions from an internal streaming buffer
containing stale or incorrect information.

Implication: When this erratum occurs, an incorrect
instruction stream may be executed resulting in
unpredictable software behavior.

(a)

63 - TLB Flush Filter Causes Coherency Problem in
Multiprocessor Systems

Description: If the TLB flush filter is enabled in a
multiprocessor configuration, coherency problems may
arise between the page tables in memory and the
translations stored in the on-chip TLBs. This can result
in the possible use of stale translations even after
software has performed a TLB flush.

Potential Effect on System: Unpredictable system failure.

/ . (b}
/ Figure 3. Examples of design bugs from errata documents: De-
\\, sign bug descriptions from (a) the Pentium 4 errata sheet, and (b)

Ay M / the Opteron errata sheet. Both design bug descriptions are limited.

details of the underlying hardware implemglation«-—'f""ﬂ—w

Specifically, Avzienis et al. [2] analyzed the known design bugs in
the Intel Pentium II since its initial release. More recently, Sarangi et
al. [20] analyzed the design bugs in ten modern commercial micropro-
cessors from Intel, AMD, IBM and Motorola, and Narayanasamy et
al. [17] analyzed the design bugs in two microprocessors: Intel’s Pen-
tium 4 and AMD’s Athlon 64. Another study by Wagner et al. [26]
analyzed the design bugs in Intel StrongARM SA1100 and IBM Pow-
erPC 750GX. The analysis in all of these studies was based on infor-
mation extracted from the available microprocessor errata sheets [13,
1, 5]. An errata sheet is a document published and maintained by
the microprocessor manufacturer to provide its customers with details
about known microprocessor design bugs. The sheet provides an as-
sessment of each design bug’s severity, the degree to which it can af-
fect a running system, a possible set of conditions that can trigger the
design bug, any possible workarounds, and sometimes the company’s
intention to provide a fix in a future version of the product.

A major drawback of using the errata sheets to extrapolate statis-
tics about design bugs is that the errata sheets commonly provide very
high-level descriptions of the design bugs. Such descriptions provide
little or no insight into the low-level details of the underlying hard-
ware problem. An example description of a design bug listed in the
Intel Pentium 4 errata sheet [13] is shown in Figure 3(a). This design
bug is related to complex interactions between the processor’s instruc-
tion translation lookaside buffer and the instruction streaming buffer
that can result in the execution of an incorrect instruction stream with
unpredictable software behavior. Using this description, it is very hard
to accurately relate this design bug to the actual hardware implemen-
tation and reason about, for example, exactly what hardware signals
(i.e., wires) need to be monitored by an online design bug detection
mechanism to effectively detect the occurrence of the design bug. Fig-
ure 3(b) shows another example design bug description, from AMD’s
Opteron errata sheet [1]. This bug is related to the translation looka-
side buffer flush filter and can lead to unpredictable system behavior.
Again, from this high-level description, it is impossible to infer the set
of hardware signals that should be examined to dynamically detect its
occurrence. Without knowing the set of hardware signals that needed
to be monitored to detect the bug, it is impossible to design a mecha-
nism that would detect the bug and to accurately estimate the hardware

% t‘p'_a high-level deséf?ﬁtion that is hard to associate witl‘{; low-level /

cost of such a mechanism.

Our Goal: In order to design a hardware mechanism that detects
design bugs, the signals that affect the occurrence of each bug need
to be known. Our goal in this section is to perform a more rigorous,
lower-level (RTL!level) analysis of design bugs. Our purpose is to
understand design bug characteristics at the register transfer level to
(1) design a flexible mechanism that can detect known design bugs
during online operation after the chip is manufactured, and (2) more
accurately estimate the hardware cost of such a design bug detection
mechanism. To this end, we first draw insights from our analysis of de-
sign bugs found and fixed in an existing commercial processor, Sun’s
OpenSPARC T1.

e

2.2. RTL#é#& Design Bug Analysis

We perform an RTIZAgfgh design bug analysis in an attempt to
bridge the gap between the high-level design bug descriptions pro-
vided by the microprocessor errata sheets and the low-level hardware
implementation details needed. to devise effective online design bug
detection mechanisms—ATt the RTL level, the microprocessor design
behavior is-described in a hardware description language (mestseem-
Mrilog or VHDL). This level is considered to be very close
to the actual hardware implementation. The only design phases sep-
arating the RTL level with the actual hardware implementation are 1)
logic synthesis, which generates the design’s gate-level netlist and 2)
place-and-route, which creates the transistor-level layout of the netlist.
Therefore, the direct relation between the RTL level and the underly-
ing implementation provides an adequate level of detail that allows the
extraction of low-level design bug characteristics.

Our study focuses on the Verilog RTL source code of the
OpenSPARC T1 chip-multiprocessor [23], the open source version
of Sun’s commercial UltraSPARC T1 (Niagara) chip-multiprocessor.
Since no errata documentation is publicly available for the Ultra-
SPARC T1 microprocessor, we focus on the actual design bugs found
during the development of the OpenSPARC T1 and documented in
the RTL source code. Specifically, when the designers corrected a de-
sign bug, they left the original buggy code in the RTL source file as
a comment. Therefore, both the original erroneous implementation as
well as the fixed implementation are available in the source code. As
such, by examining these two implementations, it is straightforward to
discover what hardware signals are involved in each design bug. Al-
though these design bugs did not slip into the final product, we believe
they share y?similar characteristics with the design bugs that even-
tually slipped into the released version of the microprocessor with the
exception of some differences which we discuss in the next section.

Methodology: We analyzed 296 design bugs that were docu-

mented in the Verilog source files of two OpenSPARC core-uriifs.
These bugs account fo )i?wuut 99% of all documented bugs in the
OpenSPARC TI ' "We classified these bugs into three major
classes: 1) Logic design bugs, 2) Algorithmic design bugs, and 3) Tim-
ing design bugs. Later, in Section 3, we analyze the logic signals that
need to be monitored to detect these bugs.

2.3. Classification of Design Bugs

Logic Design Bugs: This class of design bugs is characterized by
erroneous logic in combinational circuits. A logic bug occurs because
the designer formed an erroneous logic block; for example an AND
gate could be used instead of an OR gate, or an inverted signal rather
than the non-inverted one. The code segment presented in Figure 4,
taken from the OpenSPARC T1 Verilog source files, illustrates an ex-
ample of a logic design bug. The design bug is located in the core’s
trap logic unit (TLU) and is associated with the combinational logic
that computes the control signal trap_to_redmode. The incorrect
combinational circuit implementation is commented out in line 1106.
The corrected combinational circuit implementation is shown in line



Example 1 from Verilog file tlu_tcl.v

Correct Code

Lline 1107:

assign trap to_redmode =

line 1089: assign intrpt_taken = Buggy Code
line 1090: rstint_taken | hwint_taken | sirint_taken;

line 1105:  // modified for bug 3919

line 1106: // assign trap to redmode = trp lvl at maxtllessl & ~intrpt taken;

trp_lvl at maxtllessl & ~(rstint taken

sirint_taken);

Figure 4. Example of a logic design bug at the RTL level.

1107. By examining lines 1089-1090, we notice that the signal re-
placed in the correct code (intrpt_taken) is computed by ORing
three other signals. One of the three signals (hwint_taken) is not
any more a source signal in the correct implementation. We observed
that many logic design bugs cannot be fixed by simply redefining the
logic between the source signals in the buggy implementation. In-
stead, it is very common that fixing the bug requires the addition or
removal of signals to/from the buggy implementation (more than 5%
of logic design bugs had this requirement).

This example demonstrates the amount of low-level informa-
tion provided at the RTL-level that is missing from the de-
sign bug descriptions in the errata documentation. For instance,
by observing the code segment associated with the design bug,
it is very easy to find the set of hardware signals that acti-
vate the bug (ie, trp_lvl_at_maxtllessl, rstint.taken,
hwint_taken, and sirint_taken). In analyses solely based on
errata sheets, this low-level information is abstracted away in the
high-level design bug description and has to be inferred; a process
that involves a high amount of uncertainty and inaccuracy.

Algorithmic Design Bugs: This class covers major design bugs
related to the algorithmic implementation of the design. These design
bugs exhibit algorithmic deviations from the design specification and
they usually require major modifications to be fixed. Figure 5 illus-
trates an example algorithmic design bug located in the load queue
control logic at the core’s load/store unit. This bug is due to an incor-
rect implementation of the round robin algorithm for selecting one of
the four loads buffered in the load queue. To fix the incorrect round
robin implementation described in module 1su_rrobin pickeril,
anew module had to be implemented (1su-rrobin_picker2). Un-
like fixes for logic design bugs, fixes for algorithmic design bugs are
not limited to combinational circuit modifications, rather they some-
times require multiple major modifications that can span the whole
module. "2

Timing Design Bugs: This third class of design bugs 4#¢ associ-
ated with the timing correctness of the implementation. We have ob-
served that most of these design bugs are cases where a signal needed
to be latched a cycle earlier or a cycle later in order to keep the tim-
ing of signals correct in the design. An example of such a design bug
is shown in Figure 6. This timing design bug is located in the queue
data path of the core’s load/store unit. As shown in th oiir’é'czcrilog,l
code, the incorrect implementation at line 1248 assig
the 48-bit t 1b_st_data_dl bus to the 1su_ifu_stxa_data bus
in the same cycle. However, as shown in lines 1239-1244, the correct
timing of the data movement between the two buses requires the data
to be latched for one clock cycle. We found that the most common fix
for this class of design bugs is the addition or removal of flip-flops to
adhere to theé requiréd timing constraints to keep the design correct.

2.4. Design Bug Type Distribution  _—" )

After studying the OpenSPARC TI(source Verilog files [22] we
found that almost all (~99%) of the doc ed design bugs are lo-
cated in two units, the load/store unit (LSU) and the trap logic unit
(TLU) [23), shown in Figure 7(a).* The LSU processes all data mem-

2The concentration of the bugs in these two units might stem from the logic
complexity involved in these units. Alternatively, there is a likelihood that the

OpenSPARC
T1 Core

t|3}86]7

OpenSPARC T"ﬂ:;f‘"“
T1 Chip (TLy)

(a)

Algorithmic Timing Algorithmic Timing
Design Bugs Design Bugs Design Bugs Design Bugs
(54)-35% (10)-6%  (65)-47% (5)-4%

Load/Store Unit (LSU)
157 Design Bugs

Trap Logic Unit (TLU)
139 Design Bugs

Figure7. Desig;)ﬂ bugs in the OpenSPARC T1 c{f))re: Part (a) shows
the OpenSPARC T1 core. Parts (b) and (c) show the design bug
distribution for the Load/Store unit (LSU) and the Trap Logic unit
(TLU) respectively.

ory access instructions. It interfaces with all the functional units and
it serves as the gateway between the SPARC core and the core-cache
crossbar to the memory subsystem. The LSU also includes the core’s
data TLB and L1 cache. The TLU implements the SPARC core’s trap
and software interrupt handling logic. It supports six trap levels rang-
ing from hypervisor and supervisor mode traps to user mode traps and
is capable of handling up to 64 pending software interrupts per thread.
In our study we analyzed a total of 296 design bugs documented in
these two units.

Figure 7(b-c) shows the design bug type distribution. A large frac-
tion of the documented design bugs in the two units belong to the logic
design bug class, which accounts for 59% and 49% of the total design
bugs for the LSU and the TLU respectively. The second most frequent
design bug class is algorithmic design bugs, while timing design bugs
are less frequent and account for only ~5% of the total bugs. The
dominance of logic design bugs over the other two bug classes can
imply that the process of implementing complex combinational logic
is more prone to human error than implementing the algorithmic or
timing specifications of the design.

Furthermore, as mentioned earlier in this section, these design bugs
were discovered, fixed, and documented before the final tape-out of
the design. As such, we expect them to have some differences with
the design bugs that escape the verification phase and slip into the fi-
nal product. We suspect that the algorithmic and timing design bugs

verification methodology employed in the other units did not follow the same
bug documentation approach, resulting in source files without any bug-related
information in the other units.
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Example from Verilog file lsu_gctll.v

"

ine 2993: //bug4814 - change rrobin_pickerl to rrobin _pickerz

line 2993: // Choose one among 4 loads.

line 2994: //1lsu_rrobin pickerl 1d4 rrobin (

Nine 2995: // .events ({1d3_pecx_rq vld,1d2_pcx_rg vid,

line 2996: // 1d1_pex rq vld,1do_pcx rq vld}), Buggy Code

Lline 3007: Vs .ge(se),

line 3008: L/ .s0()

line 3009: Vi il i

Tine 3010: Correct Code
ine 3011: 1su_rrobin_picker2 ld4_rrobin {

[Line 3012: .events ({1d3_pcx_rq_vld,1d2_pecx_rg vld, ldl_pex_rq_vld,1d0_pcx_rg vld}),
[Line 3020: .se(se),

[line 3021: .sof() -

[line 3022: });

Cimira B Evannia af an alaavithwis dacicen haiee a4t tha RTT Joval

Example from Verilog file lsu_gdpl.v

Correct Code

[line 1228: / Begin - Bug3487.

line 1239: dff #(48) ifu_std_d1l (

line 1240: .din (tlb_st_data[47:0]),

line 1241: - (lsu_ifu_stxa_data([47:0]),

line 1242: .clk (asi_data_clk),

line 1243: .se (1'b0), 8i (), .so ()
line 1244: ) ;

line 1245:

ine 1246: // select 1s now a stage earlier, which should be
line 1247: // fine as selects stay constant.

line 1248: //assign 1lsu_ifu_stxa_data[47:0] = tlb st_data_di[47:0] ;
line 1249:

line 1250: // End - Bug3487.

Buggy Code

Figure 6. Example of a timing design bug at the RTL level.

have a more severe impact on the design’s correctness and therefore
they have a higher probability of being discovered during the design
verification phase. In conftrast, because logic design bugs are isolated
and localized to small combinational logic portions, they could be less
likely to be discovered during the verification of the chip. This is be-
cause the erroneous effects of the logic design bugs either might not
be exercised or might be masked before propagating to observable out-
puts during testing. For example, in order for the logic bug illugtarfed
in Figure 4 to be active, the source combinational circuit must be set to

. specific values (which might be an infrequent combination of valu.esﬁ,c -
/ Furthermore, even in the case that a logic bug does get active, it Gn

be cancelled out by subsequent logic or microarchitectural effects and
.&‘gt affect in any way the correct executiofl. “/Based on this obser-.
vatien, the distribution of design bugs that actually slip into the final
product g@ld have fewer algorithmic and timing design bugs than the
distribution shown in Figure 7(b-c) and the bugs in the shipped product
might be heavily dominated by logic design bugs.

3. Detecting Logic Design Bugs at Runtime
Although logic design bugs might be harder to discover than the
other two design bug classes, we believe that once they have been dis-
covered, it is much casier to detect their occurrence while the “buggy”
microprocessor is in operation in the field. Their characteristic of be-
ing isolated in a combinational logic circuit portion makes it possible
to deterministically detect their occurrence by monitoring the values
of their source signals. To illustrate this concept, we consider the logic
bug example shown in Figure 4. By computing the truth table of the
buggy circuit (line 1106) and the correct circuit (line 1107), as shown
in (Hg=mislese? Figure 8(a), we can infer that the design bug occurs
when the source signals are set to a specific combination of values

3This is similar to the masking phenomenogiobserved in glitches occuring
in combinational logic due to soft errors. (

b}

trp_Ivl_at_maxtlless1 |0[0|0|0|O[OfOO[1|T{1]{T1{1]{L[1]]
Input | rstint_taken olofofoft[1[1]t]ofofolo]1]1]1]1
Signals | hwint_taken oloft|t{ofo]i|t]ofo]1]1]o]o]1]1
sirint_taken ofrjefrjojrjofrfojrjoftjo|1|of1
trap_to_redmode 1, |4101410l0{0fo|1]0]o[olo]o]o]o
Output | (buggy code)
Signal
e | trap_to_redmode 1|4 101410l0(0f0|1]0]1[0|o]o]o|o
(correct code)

(@)

1 First-Level
1 Monitor Signals
1

trap_to

D‘m

Source-Level
sMonitor Signals

Figure 8. Logredes:ga_bug—&m{fgaﬂe&&ﬂfcew Part (a):d
The logic bug shown in Figure 4 is triggered whenever its source'|
signals take the values shown in the shaded column. Part (b): The |
source-level and first-level signals for the same logic bug. '

(shown in the shaded column of the table). Therefore, by monitoring
the values of the bug’s source signals it is possible to deterministically
detect the occurrence of the specific design bug. In this work, we call
this set of signals first-level monitor signals (i.e., signals that directly
determine the occurrence of the design bug). For this specific bug, the
size of the first-level monitor signal set is 4 because there are 4 signals
whose values directly determine the bug’s occurrence.
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‘{,\Although it is easy to find the set of first-level monitor signals
At the RTL Jéy&l, these signals unfortunately might not exist in the
lower transistor-level implementation due to the logic synthesis pro-
cess and optimizations employed during the process of translating the
RTL-}@ implementation to pig#ate-level and then transistor-level
implementation [24]. Thus, there is not a guaranteed one-to-one map-
ping between signals in the RTLA¢@&@and signals in the transistor-
level implementations. However, the logic synthesis process maintains
a one-to-one mapping of the state-holding elements (e.g., flip-flops)
and module-level primary inputs/outputs* between the RTL-level and
transistor-level implementations [24]. To effectively detect the occur-
rence of a logic design bug‘ﬂ the transistor-level hardware implemen-
tation, we need only to trace back the combinational logic that feeds
the first-level monitor signals to a set of signals that are directly con-
nected to either 1) state-holding elements or 2) primary inputs of the
module. We call this set of signals source-level monitor signals. This
process is illustrated et Figure 8(b). Monitoring the source-level moni-
tor signal set of a design bug allows the detection of the bug. Note that
it is very easy to construct a truth table using the source-level monitor
signals instead of the first-level monitor signals to understand which
combination of the values assigned to source-level signals would ex-
ercise the design bug.

To determine the number of signals required to be monitored to de-
tect the occurrence of logic design bugs, we measured the first-level
and source-level signals of the 162 logic design bugs located in the
LSU and the TLU units. Tesahas=st Figure 9 shows the cumulative
distribution of the logic design bugs versus the first-level and source-
level monitor signal set sizes in the LSU and the TLU units. We ob-
serve that 97% of the logic bugs located in the LSU and 92% of those
located in the TLU have a source-level monitor signal set size that is
smaller than 64 signals. This means that for detecting any single bug
that is within the aforementioned percentage, at most 64 signals need

i AW o S0 > N Puaetf sove |
obe meniored—r e | oo s e T )
n interesting observation from Tabl®”] 15 that the average set size

of source-level monitor signals per logic bug is about double the size
of the first-level monitor signal sets. Notice that the size of the first-
level monitor signal set determines the minimum number of RTL-level
signals required to be monitored to precisely detect the occurrence
of a certain bug, given that those signals exist in the actual hardware
implementation, and can be probed. On the other hand, the size of the
source-level monitor signal set determines the number of transistor-
level signals required to be tapped to detect a bug, given that design
flip-flops and module inputs can be probed. Furthermore, the average
number of source-level monitor signals per logic design bug is 17 and
24 for the LSU and the TLU units respectively (The minimum and
maximum set sizes are presented as well). Hence, the detection of
an average design bug requires 17 to 24 transistor-level signals to be
monitored. Zin T/

The total amount of tapped signals can be small if there is a high
degree of source signal sharing between multiple design bugs. To
quantify this, we studied the amount of sharing between the 162 logic
bugs covered by our study. We found that the sharing between the
source-level monitor signal sets is about 65% on average (68% in
LSU and 64%). This means that 65% of the signals that belong to
the source-level monitor signal set of a logic design bug also belong
to the source-level monitor signal set of at least one other logic design
bug. Furthermore, each logic design bug has on average 6-9 signals
in its source-level monitor signal set that are unique, i.e., they do not
belong to the source-level monitor signal set of any other logic de-
sign bug. This result implies that the discovery of a new design bug
requires the monitoring of an additional 6-9 signals, on average, that

4In this work we consider a module to be a Verilog design module in the
RTL code.
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Figure 9. Logic design bug source signals: The graph shows

the cumulative distribution of logic bugs versus the first-level and
source-level monitor signal set sizes for the LSU and the TLU units.
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Metrics _ [eESUE]F TET
Mm.fAveg‘agefMax. number 9f first-level 2/8/43 | 2/12/44
monitor signals per logic design bug
Min./Average/Max. number of source-
level monitor signals per logic design 2/17/97 | 2/24/89
bug
Source-!(?vel monitqr signal sharing 68% 64%
among different design bugs
Average number of unique source-level 6 9
monitor signals per logic design bug
Umqu{l: sour‘cc-level monitor signals (for 516 602
all logic design bugs)

Table 1. Logic, bug statisiics: The table shows statistics regarda
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have not been previousiy monitored for any other bug, thus increasing
;{18 total number of tapped signals.

4L 5dn order to detect all the 162 studied logic design bugs, 516 and

602 unique source-level monitor signals need to be monitored in the
LSU and the TLU modules respectively. Note that these numbers are
much higher than previous work estimates that used high-level errata
documentation to analyze design bugs. Specifically, the study in [20]
reports that on average, for the ten processors studied, only 210 sig-
nals need to be monitored to detect all design bugs in all modules of
a processor, with the maximum requirement out of the ten micropro-
cessors being 260 signals. The study in [17] reports that monitoring
only 41 signals is adequate to detect the occurrence of 43 out of the
63 known design bugs in the AMD Athlon 64 and AMD Opteron mi-
croprocessors. In contrast, our study shows that 1118 signals need to
be monitored to detect 162 bugs in two modules of the SPARC core.
We believe this discrepancy stems from the attempt in previous stud-
ies to infer low-level hardware implementation information from the
high-level, abstract information provided in the microprocessor errata
documents. By studying the documented design bugs at the lower RTL
level, we found that the signal monitoring requirements of online de-
sign bug detection ignificantly higher than the estimates of these
previous studies. As a result, the problem of detecting design bugs is
more difficult and the solutien is likely more hardware intensive than
estimated by previous work. ol

3.1. Insights from RTL-Level Design Bug Analysis
In summary, our RTL-level design bug analysis provides the fol-

lowing conclusions and insights:
1. %he design bugs docu%nented in the Verilog source files of the

OpenSPARC T1 chip{multiprocessor can be classified into three
major classes based on their characteristics: logic, algorithmic,

and timing design bugs (Section 2.3). .
Logic design bugs oufnuimber the documented design bugs of the

other two design bug classes. Furthemore, they are-expectod-te-
| ' g -jhr -
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dominate the distribution of design bugs that escape the verifica-
tion phase and slip into the final product (Section 2.4).

3. Because they only affect combinational logic, the occurrence of
logic design bugs is more rcadily detectable while the system is
in operation. PmMe;e—.Thls can be done deterministically by
monitoring a set of source-level signals.

4. The number of signals that need to be monitored to detect the

occurrence of logic design bugs is significantly higher than es-
timates provided by previous work. F@@w‘ﬁle discovery
of a new design bug requires the monitoring of additional 6-9
signals, on average, that have not been previously monitored for
any other bug.

These conclusions and insights call for a mechanism capable of
concurrently monitoring a large number of different signals scattered
in the design and thus providing an effective and efficient substrate to
perform online detection of the occurrence of logic design bugs. In
the rest of the paper we describe our proposal for developing such a
mechanism. '

4. Distributed Online Bug Detection

In this section we present our distributed online design bug detec-
tion mechanism. Jaf Section 4.1 y#% giv&'an overview of our mecha-
nism and_ifl-Section 4.2 w# describ&how it can be implemented in
hardware. Details regarding the system integration of our mechanism
are provided in Section 4.3.

4.1. Overview of Online Design Bug Detection

Figure 10 illustrates the high-level architecture of our online design
bug detection mechanism. The mechanism is characterized by two
phases: 1) the initial setup of the mechanism, and 2) the cycle-by-
cycle operation where design bugs are detected while the system is
operating in the ficld.

4.1.1. Initial Setup Process The first step of the mechanism’s
setup process is the determination of the triggering conditions for each
design bug in the system. The design bug triggering conditions are
characterized by (1) thessets®¥f the bug’s source-level monitor signals
and (2) their values that would activate the bug. The design bug trig-
gering conditions of each bug are determined by the system engineers
after performing the bug analysis process presented in Section 3.

Bug Signatures: Once bug triggering conditions are determined,
they are represented by a structure called a bug signature (step 1 in
Fig. 10). Conceptually, the bug signature is a list of all the signals in
the system. From that list, the bug’s source-level monitor signals are
marked with the value they need to take to trigger the bug, while non-
source signals are marked with a don’t care value (X) indicating
that their values are irrelevant to the bug activation. The bug signature
can be considered as a representation of the system state that would
activate the design bug. Each design bug can have multiple bug signa-
tures due to multiple possible combinations of triggering conditions.

System Bug Signature: The next step in setting up our design
bug detection mechanism is the generation of the system bug signa-
ture. The collection of bug signatures of all design bugs are merged
together to form the system bug signature (step 2 in Fig. 10). The
system bug signature constitutes a representation of all the conditions
that can trigger any individual design bug in the system. The process
of merging multiple bug signatures into the system bug signature is
detailed in Section 4.2.2.

Bug Detection Segments: The system bug signature is subse-
quently encoded into a binary representation, partitioned into seg-
ments, and loaded into the mechanism’s bug detection segments (step 3
in Fig. 10). The bug detection segments are field programmable struc-
tures each associated with a part of the system state (i.e., the system’s
flip-flops). Each bug detection segment is loaded with the part of the
system bug signature corresponding to its part of the system state. The

loading of the bug detection segments is done by firmware that have
access to the segments’ field programmable resources. During system
operation, the bug detection segments compare the system state to the
system bug signature and generate match/mismatch signals.

Segment Match Detection Tables: The source-level signals of a
design bug can be located only in some of the bug detection segments.
Therefore, each bug is associated with a segment match detection en-
try that indicates which lower-level segments need to match the sys-
tem bug signature with the system state for the bug to be detected. In
essence, the system bug signature summarizes all the triggering con-
ditions from all bugs whereas each segment match detection entry de-
multiplexes them to enable the detection of individual bugs. The seg-
ment match detection entries are loaded into the field-programmable
segment match detection tables by firmware (step 4 in Fig. 10).

4.1.2. Cycle-by-cycle Operation and Design Bug Detection
Flip-Flop Level Checking: Once the initial setup of the mechanism
is done by the firmware, the remaining task of the mechanism is to
check if the system steps into a bug triggering state while it is operat-
ing. To check this, each bug detection segment compares its portion of
the system bug signature to thes;zstamstaie\and generates a segment-
wide match/mismatch signal {step 5 in Fig. lO) —2 J[%r'c:m h
Segment Checking Tree: The detection of each mdxv1dual bug,re-

quires only a subset of all the bug detection segments in the de51gn to-

match their portion of system bug signature with the system state. For

bug nt

05U

each bug, this information is encoded into a segment match detection

entry. However, the subset of segments that are sensitive-for the de-
tection of an individual bug might be scattered in Hsllf'?erent areas of the
chip. To aggregate the match/mismatch signals of all the segmentsfin
the chip, our mechanism employs a distributed segment checking tree.
Each node in the segment checking tree has a segment match detec-

tion table that is populafed Wil the segmentmatch-detection entries of~

‘each bug that has sensitive segments connected to the tree node. These
entries are loaded during the initial setup phase by firmware (step 4 in
Fig. 10). During system operation, if the match/mismatch signals of
the underlying segments match with one of the node’s segment match
detection entries this indicates that the local triggering conditions of a
design bug within that node are met. In a similar fashion, each level
of nodes in the tree generates a match/mismatch signal and feeds the
upper level of nodes (step 6 in Fig. 10). If a match signal propagates
all the way from the bug detection segmentg/level to the top level of
the tregthis indicates that the triggering conditions of a specific design
bug are met for the whole chip and a global bug detection signal is set.
This process is illustrated in detail with an example in Section 4.2.3.
The bug is subsequently flagged to the bug recovery handler (step 7 in
Fig 10).

Design Bug Recovery Handler: If a bug is flagged by the global
bug detection signal, the design bug recovery handler recovers the Sys-
tem into the last validated system state. Execution is then restarted
and guided by design bug avoidance techmquio that the design bug

V/I
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is averted. Sy ar forws & on dedegksn, we lve e desipn of Hre ‘
hondle~to juJ-wt wo k. |

4.2. Hardware Implementation
4.2.1. Bug Detection Flip-Flops In our mechanism, the system
bug signature and its comparison with system state is distributed to the
flip-flop level. This is achieved by augmenting the system flip-flops
with extra logic for storing the system bug signature and comparing it
to the system state. Figure 11(a) shows a system flip-flop augmented
with these extensions. The non-shaded logic comprises a scan flip-
flop, the common type of flip-flop used in most modern processors to
enable scan-in and scan-out functionality to facilitate manufacturing
testing using Automatic Test Pattern Generation [14, 28]. The system
_flip=fop is used for holding the system state, while the scan portion
is uged to scan-in test patterns and scan-out test responses. In current
\ F, 0 (-'L/:J,.‘_r\
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Figure 10. Overview of our online design bug detection mechanism:

\ (steps 1-4), and 2) online bug d@n (steps 5-7).
(&

\

designs, the scan portion is utilized only during thé manufacturing test-
ing phase and stays idle during processor operafion. During processor
operation, our mechanism uses the scan portion in combination with
an extra bug detection portion to store the system bug signature. The
~scan portion is used to indicate whether thd specific flip-flop belongs

or to‘bug s source-level monitor signal set. Iﬁf the scan portion is set to
M‘-l the flip-flop is indicated as a bug sourc%;jgnal otherwise the flip-

flop’s value is irrelevant to the activation offajdesign bug. In the former
case, the value that will activate the design bug is stored in the bug de-
tection portion. The box at the top of Figure 11(b) illustrates the three
encoding rules used to binary map the system bug signature to the bug
detectlon portion (shaded box) and the scan portion (white box).

" Indheasesthat the scan portion is set, the value of the system flip-
flop is compared to the value of the bug detection portion to check
if there is a match between the system state and the system bug sig-
nature. In our mechanism, flip-flops are grouped into bug detection
segments to simplify checking; the comparison result is ORed with
the comparison result of the previous flip-flop to generate a segment
match/mismatch signal. The signal is propagated to the next flip-flop
(0 indicates a segment match and 1 indicates a segment mismatch).
A bug detection segment consists of multiple bug detection flip-flops
connected together in a serial fashion (this is analogous to scan seg-
ments in scan chains).

Figure 11(b) demonstrates the system bug signature binary encod-
ing process with an example 8-bit system bug signature. It also demon-
strates how the bug detection segment signals are generated for two
different scenarios. Once the system bug signature is encoded and
loaded into the bug detection and scan portion, the checking is parti-
tioned into two 4-bit bug detection segments. In the first scenario, the
system state matches with the system bug signature and the segment
bug detection signals are both set to zero indicating that the bug is
activated. In the second scenario, the second bit of the system state
does not match with that of the system bug signature and therefore the
bug detection signal of the particular segment is set to one indicating
that the bug is not activated.

4.2.2. Merging Individual Bug Signatures to Z‘ System Bug
Signature In this section we describe the technique we employ to
merge multiple bug signatures to generate the system bug signature.
First, we merge all the bug signatures related/to a single design bug
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into an intermediate bug signature. To do th@it, for each bit location
we check the values of all bug signatures. If the bit takes the value

of zero in some signatures and the value of one in others, then a

don’t care (X) value is assigned to the merged intermediate bug
signature since for that signal either value can lead to a bug triggering
combination. If the value of the bit is constant for all signatures then
that value is assigned to the merged intermediate bug signature. This
technique is illustrated in Figure 12 for two example design bugs.

For merging the intermediate bug signatures of multiple bugs to
generate the system bug signature,we employ a slightly different tech-
Again, if a bit location takes both values (one and zero)
among different intermediate signatures then it is marked with a
don’t care. The difference from the previous technique is that
now it is possible for a bit location to have a zero or a one value
in the intermediate signature of one bug and adon’t care value in
the intermediate signature of another. This case is treated differently
depending on the status of the remaining signals in the bug detection

nique.
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showssan-example of an 8-bit bug signature encoding and checklng)\(}/“) -
Firmware loads Dynamic trade-off between design bug . . . . .
initial system coverage and performance overhead signatures. This approach relaxes the bug triggering conditions and
b“gs”f”mm can result in false positives, that is, non-errant conditions which ini-
[ s ] tiate an innocuous recovery sequencc. However, since the technique
Recover el | T only relaxes the triggering conditions, it cannot exhibit false nega-
iy | design bug with highest || design bug with lowest tives, that is, discovered design bugs with installed signatures that do
& avoid Deslontig false positive rate from false positive rate to 11 initiz his i .
design bug diagmisb system bug Signature system bug signature not successfully initiate recovery. This is a very important property,
- g If since it guarantees that the system will not experience the effects of a
\ . . . .
BUGID'y ,BUGID specific design bug once the bug is covered by the mechanism.

However, the presence of false positives can adversely impact the

Vot tamaT] BuG D +3 chg of~  performance of the system if too many false recovery alarms are is- — |
false positiverate | | falec pesinesued. Since the false positivef rate highly depends on the dynamic sys- LA G
rale o tem conditions and workload, we propose a dynamic scheme fortrad-
eadh BU§  ing off design bug coverage with system performanee-Figure 13 gives

a high-level overview of th’is/sehemE’At system start-up, Erlnyygm,._,_m- — O
loads into the mechanisf the initial system bug signature-that covers

ACeICoVerage—tadesoff. M\ | design bugs. A design bug detection is followed by/diagnosis pro- v i 2
E 2 scheme (dynamically Chang&ﬁa\e set of cov-  cess that determines if the design bug detection is correct or/4 false
ered design bugs to regulate the false positive rate and system- positive. If the detection is correct, the system execution is recovered
performance overhead. and the design bug is averted using design bug avoidance techniques.

If the detection is a false positive, then the false positive rate of the spe-

® CASE I: Consider the two righmost bits of the middle bug detec- ~ cific design bug is logged using the bug’s ID tag and the system’s false
tion segment of Figure 12. They both have the value of one in  Positive rate is calculated. The system’s false positive rate is then com-
<oell o —Jone of thedtermmidiate\bug signatures and a don’ t care value pared with a predefined thresholq. If the system’s fa]se positive rate is
<U" ™~ in the other. Since the whole bug detection segment needs to larger than the threshold, the design bug with the highest false positive
match to trigger a bug and both bugs have other source signalsin ~ rate is removed fron} the set of cove?red design bugs and ﬁrmware Ie-
this bug detection segment (the second source signal with the generates and loads into the mechanism the new system bug signature.
value zero), the specific source signal is assigned a don’t On the other hand, if the system’s false positive rate is smaller than the
care value so that it will not prevent the detection of any of threshold, the design bug with the lowest false positive rate is added 5 (G bE
these two particular design bugs. to the set of covered design bugs(aiid again firmware regenerates and ™ Cot

® CASE 2: Now, consider the third bits of the leftmost and the ~d0ads into the mechanism the new system bug signature. [
rightmost bug detection segments. Again, in one of the interme- The predefined threshold can be adapted dynamically based on )
diate signatures they have the value of one while in the other the requirements of the running applications. For example, a |
they have a don' t care value. However, in this case no other performance-critical application with low dependability requirements |
source signal in the bug detection segments is shared between can set the threshold low, while a dependability-critical application :

the twg!pggs_blhismeansmmersagmems,,a_rqui_swsﬂgciatg@ can set it high. Furthermore, this scheme can be optimized to achieve ‘\’, ;oM

withfpne design bug. Therefore, the source signals can be s the optimum trade-off between design bug coverage and performance [ ). )
one in the system bug signature because only a single bug re-  overhead due to false positivesy however the exploration and evalua- | }@}K’ A
quires the particular segment to match its portion of system bug  tion of this technique requires extensive simulation of real workloads |
signature with the system state to detect the bug activation, on a low-level (RTL-level) el of the design that would simulate ‘\\

False Positives - Notice that our mechanism uses don’t care our hardware signal monitoring and bug detection mechanism. To the |
values to merge multiple bug triggering conditions and multiple bug  best of our knowledge, chy simulation infrastructure is not available /l
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in our research community. Currently,-this-is-a-werk-in-progress-and-—
T herelure we leave this exploration and evaluation for future work.

4.2.3. Segment Checking Tree Implementation In our mech-
anism, the bug detection segment signals are aggregated to generate
one global bug detection signal through a hierarchical tree structure,
the segment checking tree. The implementation of this structure is
shown in Figure 14. Each leaf node of the structure is connected to
a set of bug detection segments. For each bug that has source signals

ps ) Jocated in bug detection segments assigned to a leaf node, a segment

e

H)"’
"’t’\

\

\

match detection entry is allocated forii@lifig-in that node. Each seg-
ment mateh- detection entry indicates which subset of the node’s bug
detection segments need-to match the system bug signature to trigger

g [na e
——FEach entry also has a B TD and a Flag field. The Bug ID

field indicates the bug associated with the specific entry, while the
Flag field indicates whether the specific bug has source signals that
are mapped on a different leaf node. For example, the design bug
with the ID tag 12, has source signals both in the leftmost and in the
rightmost leaf nodes of the tree. Therefore, it is allocated a segment
match detection entry in each of those nodes with the Flag field set
to zero. On the other hand, the design bugs with ID tags 7 and 9

\_have source signals limited only to one leaf node and this is indicated

by having their Flag ﬁeld set. A bug that has its Flag field set

means that 1Ffﬁe(%riatur eld of that particular bug matches with
the values of the under m bug detection segments, then no further
checking is required (since the bug’s signals are limited only to that
node) and the bug is flagged, along with its ID tag, through the tree to
\the top level global bug detection signal. Notice that if two bugs are
flagged in the same cycle (e.g., bugs 7 and 9), only one of them will be
flagged to the top level and the decision will be arbitrary based on the
implemeéntation. However, due to the rare occurence of design bugs,
we don’t expect-two design bugs to be triggered in the same cycle.
Presexampitaal Figire-14 illustrates the detection of the bug with
the ID tag 12. In the specific exaimple, the values ’_gﬂnerale\by the
underlying bug detection segments match with \Slgnatu;&)ﬁelds
of bug 12 in both leaf nodes. Since the Flag field is set to zero,
the bug is not flagged and the hit/miss signal from the leaf nodes are
passed to the upper level. When the node hit/miss signals reach the top
le\g nodcs of the tree;wwenmesmmmisst the values match w1th the bug s
to one,tnggermg the design bug recovery process,and the bug ID tag
is passed to the bug recovery handler,

4.3. System-Level Integration
The,bug detection mechanism described intire-previeus-subseetion

requirgs two additional critical functionalities to provide a complete

propos=d
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etection: Fhe-figure-show: p-timeline-of —

online bug detection solution:
1. In-the-Field Programmability: The system bug signature and

the data that need to be stored in segment match detection en-
tries are dynamic and change as new design bugs are discov-
cred or old bugs get fixed. This part of the design needs to be
field-programmable and upgradable by special firmware devel-
oped and distributed by~ microprocessor vendo

'$ IHC«."VC&J

Recovery Support: The detection of the occurrence of a design
bug is only the first step in providing a solution to the problem.
Further action is required to avert the design bug and avoid-anys
“bugseffeets=from-corrupting the execution. This is commonly
achieved through recovery support where the system state recov-
ers to the last validated/correct state [18, 21] and execution is
guided from there in a way that the design bug is averted [19, 26,
17].

In ad]dition, to be widely adopted, a bug detection mechanism needs
to have low area and power consumption overhead. To accomplish
this, we propose amortizing the cost of the proposed logic by using
it for other purposes than solely bug detection (e.g., hardware defect
detection). pr e

Unifying Online Defect Detection and Design Bug Detection -
We found that #'recently proposed mechanism for detecting hardware
defects can provide an efficient substrate for both requirements [4].
This online defect detection technique introduces the Access/Control
Extension (ACE) framework to provide firmware access to the pro-
cessor’s scan state. This functionality is used to load ATPG test pat-
tern/and test the underlying hardware through specialized firmware.
The ACE framework also uses a tree structure to access the scan state,
similar to the tree structure used in our work to maintain the segment
match detection entries and perform distributed bug checking (see Fig-
ure 11(b)). Since the ACE framework can read/write to any of the tree
nodes and any scan flip-flop in the design, it can also be used to pro-
gram the segment match detection entries in our distributed bug check-
ing tree and load the bug signature at the flip-flop level. We believe that
this framework can be easily adapted to provide our mechanism pro-
grammability through firmware with minor engineering changes. Ve

Checkpointing & Recovery: The same framework also employs
coarse-grained checkpoint and recovery techniques, based on previous
work [18, 21], to provide recovery from hardware defects. We believe
thigt these checkpoint and recovery techniques can offer an effective
substrate to provide recovery support to our mechanism. By rolling
back the system state to the last validated and correct system state,
execution can be guided by design bug avoidance techniques in a way \
to avert the design bug. Several design bug avoidance techniques have k
already been proposed in the research literature [19, 26, 17]. Any
further advancement toward this d1rect10n is left for future work. s'aux)

2.
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System-Level Operation: Furthermore the two mechamsms can
work together synergistically and provide a collective solution for re-
liable and dependable computing. Figure 15 shows the synergistic
execution timeline of the two mechanisms. At system startup spe-
cial firmware uses the ACE framework to load the bug signature and
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the segment match detection entries needed for online design bug de-
tection. During a checkpoint interval, execution is guarded from the
effects of design bugs by our online bug detection design (phase 1). If
no design bug is detected, at the end of the checkpoint interval special
firmware uses the ACE framework to test the underlying hardware for
defects as described in [4]. If the test succeeds a new S:Qf&checkpoint
is taken. If, during the checkpoint interval_a design bug is detected
by our mechanism, the system state is rolled back to the last check-

point (phase 2) and bug avoidance techniques are employed to avoid

the design bug (phase 3). 4—;

If a hardware defect manifests during a checkpoint (phase 4), the

* defect is detected at the end of the checkpoint and after system repair

the system state is rolled back to the last checkpoint for re-execution as
described in [4]. Notice that the use of the tree resources and the scan
state is mutually exclusive by the two mechanisms. Our online design
bug detection mechanism utilizes these resources during a checkpoint
interval, while the hardware defect detection mechanism utilizes the
xesources at the end of a checkpoint interval. Hence, the cost of the

tree is amortized between thestwosdifferent-sehemes, bug detection and

defect detection.

5

S. Experimental Evaluation
~~ In this.section we experimentally evaluate the effectiveness of our
i technique. also present its overhead in terms of sikicon area and
{ power consumption. We first start by describing our experimental
evaluation methodology\in\SQ_gtion 5.1._Next, in Section 5.2, we ex-
plore the trade-off between the é‘lﬁsqﬁgrea required by our design bug
detection mechanism h::?heﬁovidéa‘deggn bug coverage. In Sec-
ow!

tion 5.3 we estimate 1t er consumptiori"@f»m\lr technique. Finally,

in Section 5.4 resent the area and power overhead of a unified
\ online desi ug and hardware defect detection mechanizm.

7~

S.1. Experimental Methodology

The case study design used for the experimental evaluation of
our mechanism is the OpenSPARC T1 chip-multiprocessor, the open-
source version of Sun’s Niagara (UltraSPARC T1) processor [22]. We
choose this design because the OpenSPARC T1 chip-multiprocessor
targets commercial applications such as database and web servers
where system correctness is of paramount importance. We believe
M such systems constitute ideal candidates to employ our mecha-
nism to provide the required correctness guarantees. Bursthermene, the
OpenSPARC T1 is a full-system multiprocessor design implementing
the 64-bit SPARC V9 architecture. It contains eight 6-stage pipelined
in-order cores, each with 8KB L1 data-cache, 16KB L1 instruction-
cache and full hardware support for four threads. The eight cores are
connected through a crossbar to a unified 3MB L2 cache and a shared
floating-point unit. The chip also includes four memory controllers
and an input/output bridge [23].

RTL Implementation: To make an accurate assessment of our
mechanism’s requirements in silicon area and power consumption, we
developed a detailed RTL-level model of our mechanism in Verilog.
Specifically, in our prototype we implemented 1) the bug detection
flip-flops that hold the bug signature and compare it with the system
state, 2) the segment checking tree with a parameterized number of
segment match detection entries per tree node, and 3) the ACE-based
field programmable framework that loads through firmware the bug
signature and the segment match detection entries. Our implemen-
tation covers all i modules iméOpenSPARC T1 sgifip-except the
memory cache)(data and tag arrays (we don’t expect logic design bugs
to be located ms@regular and meticulously optimized .detesandstag
arrays).

Logic Synthesis and Tools: We used the Synopsys Design Com-
piler to perform logic synthesis on the RTL code of the OpenSPARC

Tl ,ggxx-and our mecham’sm.%gic synthesis mapping is done

1) SPARC Cores, 2) Crossbar, 3) FPU,
4) Misc. Units (I/O Bridge, DRAM
Controllers, Control & Test Unit)

5) ACE Framework, 6) Online Design
Bug Detection Mechanism

1) L1 Inst. & Data Caches, 2) L2 Cache

1) I/O Pads, 2) Wires & Repeaters

Synopsys Power Compiler

CACTI14.2
Taken from [15]

Table 2. Fower consumplion estimation methodology—Fhetables

using the Artisan IBM 0.13um standard cell library. The result-
ing gate-level netlists of the OpenSPARC design and our mechanism
provided a common substrate to accurately estimate the silicon area
and power consumption overhead ofmowssmeeh@msm on the whole
OpenSPARC design.

Power Consumption Estimation Methodology: To evaluate the
power consumption overhead of our mechanism, we first estimated the
power consumption of the baseline OpenSPARC T1 design that lacks
the extra hardware required by our mechanism. We calibrated the es-
timated power consumption with actual power consumption numbers
provided by Sun for each module of the chip [15]. After we validated
our power estimates for the baseline OpenSPARC T1 design, we esti-
mated the additional power required by our mechanism. Table 2 shows
the major design components of the OpenSPARC T1 and the method-
ology/tools we used to estimate their power consumption. We esti-
mated the power consumption of the majority of the OpenSPARC T1
modules using the Synopsys Power Compiler (part of the Synopsys
Design Compiler package). The analysis uses the power consumption
values of the Artisan IBM 130nm standard cell library, characterized
at typical conditions of 1.2V (Vdd) am@@i’verage temperature. The
average transistor switching activity facfor was set to 0.5 transitions.
per cycle.) For inedules dominated by SRAM structures, such as the

son-chip caches, where logic synthesis a

'pméf_fan\lﬁls using the

to characterize SRAM modules/ To estimate the power consumption

.Correor7/

"‘rx( eded j

i RTL code is inefficient®; We used existing tools designed specifically./

of the LT and L2 caches, we used the CACTI 4.2 tool [25], a tool with
integrated performance, area, and power models for memory cache
structures.

This methodology is sufficient to estimate the power consumption
of most of the chip’s logic modules. However, there are parts of the
design whose power consumption cannot be accurately estimated with
these tools. These include 1) numerous buses, wires, and repeaters
distributed all over the design, which are very hard to model accu-
rately using the Design and Power Compilers, unless the design is
fully placed and routed, 2) I/O pads of the chip. In order to estimate
the power consumption of these two parts, we used values from the
reported power envelope of the commercial Sun UltraSPARC T1 de-
sign [15].

False Positives & Execution Overhead: Our mechanism affects
%system performance only in the case of a wrongly initiated sys-
tem recovery sequence due to a false positive design bug detection. In
Section 4.2.23we provide a scheme that dynamically trade-offs design
bug coverage with performance overhead reduction by regulating the
system’s false positive rate of design bug detections. Althoughywe be-
Lhigvmat this scheme can be optimized to obtain a favorable trade-off
auith=a" high design bug coverage and low performance overheadﬁ
further exploration and evaluation of this technique requires extensive
simulation of real workloads on a low-level (RTL-level) model of the

%In Togic synthesismem: nts are synthesized into either-latches or
flip-flops. Therefore, SRAM macro-cett ented using memory com-
pilers instead of using the conventional logic synthesis flow.

N ceded?
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Chip Submoedule
SPARC Core (x8)
CPU-Cache Crossbar
Floating-Point Unit
Control & Test Unit

Data Signals
15632 (79.06%)

Control Signals
4140 (20.94%)
362 (1.31%)
566 (12.25%)
1880 (44.71%)

27283 (98.69%)
4054 (87.75%)
2325 (55.29%)

Input/Output Bridge 10251 (95.14%) 524 (4.86%)
DRAM Controller (x4) | 13449 (94.70%) | 752 (5.30%)

U
Total 222765 (84.95%) | 39460 (15.05%)

T

S o . The fable-shewssthe fracfion of data and control signals
?&Ms in the OpenSPARC T1 wlipe.
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versJUs
design that would simulate our hardware signal monitoring and bug
detection mechanism. To the best of our knowledge such a simulation
infrastructure or methodology is not available in our research commu-

nity. Gumnéy,-ﬂaus.amdun_pmgm&&aad\#é leave this expleration
<ame evaluation for future work. b e '

5.2. Area Overhead and Design Bug Coverage
Control vs. Data Signals - After synthesizing the OpenSPARC T1
chip we found that there are about 262K flip-flops in the design. We
also found that providing monitoring and bug detection capabilities for
all these signals results in' prohibitive area overhead (~69%). How-
ever, we observed that the majority of these flip-flops serve as buffers

==

N—, ___—

[4renlc | to data busses or data registers, and only a small fraction of them are
/%S | control signals. Furthermore, after analyzing the source signals of the
vl logic design bugs studied-in Section 3, we found_that all of the bug
P+-shavtdd source signals were control signals, and no logic design bug had a
pehops ke ister, After this

source signal that was part-of adata bus or.a data register.
In Sedrbn observation, we partitioned the flip-flops of the OpenSPARC T1 de-

a.19.

sign into data and control signals. Table 3 shows the fraction of data
and control signals for all #frmodules in the OpenSPARC T

For the whole chip, only 39K flip-flops drive control mgnals account-
ing for 15% of all digflip-flops in the design.

Our prototype implementation taps all 39K contr 51gnals in /the
OpenSPARC T1 design. This means that each of these flip- ﬂops is
augmented with the extra bug detection logic shownt Figure 11(a).

e area overhead of this flip-flop augmentation is estimated to¥3%.
%ﬁip—ﬂops are grouped into 8-bit bug detection segments and co
nected to a four-level segment checking tree structure (shown‘ﬂ'ﬁg‘:
ure 14). The area overhead of the tree structure depends on the number
of segment match detection entries per tree node. The number of de-
sign bugs that can be covered by our mechanism also depends on the
number of segment match detection entries per tree node, raising an
engineering trade-off between area overhead and bug coverage.

Area Overhead vs. Coverage - The graph of Figure 16 illustrates
this trade-off based on the 162 logic design bugs located in the SPARC
core’s LSU and TLU units Mstudied in Section 3. The graph depicts
the percentage of design bugs covered (left Y-axis) and the area over-
head (right Y-axis) versus the number of segment match detection en-
tries per tree node. When the tree nodes are equipped with 32 entries,

This Jable shevid
Cone a@* Figwe 1

Online Design
Bug Detection - 5 o
(1 sag. compaviter 39K Flip-Flops 10.26% 3.5%
entries per tree node)
Online Hardware . . 5
Defect Detection 262K Flip-Flops 5.8% 4%
Online Design 39K Flip-Flops
Bug Detection (bug detection)

+ 15.15% 6.8%
Online Hardware 262K Flip-Flops
Defect Detection (defect detection)

Table 4. The table shows the cost of the combined defect detection

and design bug detection mechanism.

our mechanism can cover all the 162 studied design bugs with an over-
all area overhead of 17%. Fortunately, not all design bugs are critical
to functional correctness and need to be covered. Sarangi et al. [20]

studied the errata documentation of ten modern microprocessors and
found that, on average for all the studied processors, gl 64% of the
design bugs are critical to functional correctness. The remaining 36%
of the design bugs were found to be non-critical to the correctness of
the system and commonly located into modules such as performance
counters, error reporting registers, or breakpoint support [20]. Fur-

thermore, as stated in the errata documentation, the majority of these)

non-critical design bugs are not even planned to be ﬁxecL T TiEw re-
leases of the processors [13, 1, 5]. Eromsthesgraphwef F]gure 16 ;we
can observe that 16 segment match detection entries per tree node pro-
vide a design bug coverage of 80% that is much hlgher than the typxcal
fraction of critical design bugfin-the=progessers fove
(This design configuration leads to a Stltcon area overhead of 10% of
he whole OpenSPARC T1 desi
¢ ? . ﬁncd W e
No Prakcsd nec

S
/
Employing the methodology described in Section 5.1/ we esti-
mated the power envelope of the baseline OpenSPARC T1/chip, with-
out the additional hardware required by our mechanism, to'56.3W. Our
estimate of the OpenSPARC T1 power is within 12% of the reported
power consumption of the commercial Sun Niagara design [15]. e
pie=ehartsf Figure 17 shows the power consumption for our enhanced
OpenSPARC T1 design including our online design bug detection
mechanism. The power envelope of the enhanced design is 58.3W.
From this, a total of about 3. 4?&5@115 devoted to the extra hard-

5.3. Power Consumption Overhead

ware required by our mechanism pecifically, T 5%T0m~7 THhs

sﬁmed by the 39K bug detection augmented flip-flops, 1.3% (0. 74W)
by the segment checking tree (each node has 16 segment match detcc¢
0 (0.35W) by the ACE-based field Drogrammabl’e

tion entries), and 0.6%
frameworkl The overall power consumption overhead of our mecha

'&Kmbmh—ds&gw i }*mdm.

12

o

nism over the baseline power.cnvelope-of=56=3T zsl,about 3.5%.

Hherefore
5.4. Overhead of %%Demgn Bug & Defect Detec-

Con
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As illustrated in Section 4.3, our online design bug detection mech-
anism can be easily coupled with an online ACE-based hardware de-
fect detection mechanis; i t i ihi
Mable 4 presents
the silicon area and power consumption overhead of the unified mech-
anism. The estimated silicon area overhead of the unified mechanism

is 15.15% and its power consumption,is 6.8%. Based on these num- -

bers, we believe that the coupling of the two mechanisms provides an
attractive low overhead solution for high dependability computing.
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6. Related Work

Design Bug Analyses: Our online design bug detection mecha-
nism is based on insights from this work and previous design bug anal-
yses that characterize the known design bugs of existing processors.
Section 2.1 provides a discussion on previous design bug analyses and
how our RTL level des1gn bug analy51s dlffers from those prev1ous

Onlme Desngn Bug Detection: Recently, studies have brought to
attention the increasing rate of discovered design bugs in modern pro-
cessors [20, 17, 26]. These works suggest employing in-the-field de-
sign bug detection and recovery as an approach to mitigate the negative
effects of design bugs. As with our mechanism, online design bug de-
tection is facilitated by a signal monitoring substrate. Qur work differs

from these previous works in the following ways:
. Higher Flexibility: In all these works, the signal monitoring

substrate is limited to a small set of signals selected at design

time when the design bugs are still unknown. This constitutes

a major limitation of these previously proposed mechanisms.

Specifically, if a design bug is discovered after product release

and its bug triggering conditions involve signals not included in

the set of signals selected to be monitored by the substrate, the

L_)J\"—J“’C’ ____occurrence &ffhe design bug cannot be detected effectively by
those mechamsms\'Fhmto greatly inflexible design bug
detection mechanisms effectiveness depends on deci-
sions made at design time based on assumptions regarding the
set of signals that would be involved in 3#€unknown design bug
triggering conditions. Our online design bug detection mecha-
<——nism-addresses_this limitation with a novel ﬁeld—programmab]e
substrate capable of monitoriny a// i
s;g;)hat can trigger a design bug. This capability waives the
requirement of selecting the set of signals to be monitored at
design time and allows this decision to be made after product re-
leasw when the design bugs and their triggering conditions

are kno
2, Synergy with other Mechanisms: We show that our mecha-

nism can synergistically share its resources with other mech-
anisms to amortize their cost and provide a complete high-
dependability solution. In contrast, the mechamsms proposed

.__in previous works are spccrahzed 1 fo
X & extensively evaluate the area cos

and power consumptlon of our mechanism through an RTL-
level prototype implementation based on a commercial chi

IDECCOSEOE
Online Hardware Defect Detection: Our mechanism relies on
a combination of field programmable flip-flops and a field pro-
grammable tree structure to provide a flexible and efficient in-the-field

a
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orough solutio
pendability o stem ope

ating in the fre ¥
nbug detection mechanism

grmore/ the<hard-

wareTlsed by our be used also for & 4}"’0("
hardware defect etection, thereby amortizing their cost over multiple W
. o \
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7. Conclusions ¢ _ D
This paper prov1ded arigorous analysis of processor design bugs in" o~ A

the RTL of a commercial microprocessor, Sun’s OpenSPARC T1 chip.
Our low-level analysis of design bugs concluded that the signal mon-
itoring requirements of online design bug detection are significantly
higher than the estimates of previous studies. We believe that this dis-
crepancy stems from the attempt in previous studies to infer low-level
hardware implementation information from the high-level, abstract in- d‘ &\”E)"\
formation provided in the microprocessor errata documents. _—

Based on the insights obtained from our rigoroug deisgn bug anal-

YSls thrs paper also proposed a novel distributed onlme W
' L2 I VicAaz e~

i¥a

—_—

"‘—" e - monitored-as

] ;;i L‘SK—“‘J W‘SM .
We evaluated the cost of our mechamsm'gL ed orFa %ie%aﬁé"ﬁ{T

on b(,-
/Wﬂprototype implementation. The silicon area overhead incurred by mal MJ]
our mechanism is 10% of the whole OpenSPARC T1 chip, whereas the reedled).

power consumption overhead is only 3.5%. We showed that the hard-
ware cost of the proposed technique can be amortized by combining
it with a previously proposed online hardware defect detection mech-
anism that relies on similar field-programmable resources.

We believe that the processor design bug analyses presented in this
paper provide an important step in the understanding of design bugs
and the requirements to detect, tolerate, and avoid them. The pro-
posed online design bug detection mechanism is the first fruit of that
understanding. We hope the analyses and frameworl@‘ﬁ)rovided in this
paper will lead to other, similar techniques that will enable the build-
ing of systems with high levels of dependablhty during in-the-field

/)T our current an
. First, to evaluate the gffects of RTL level design bug e-

tectlon mechanisihs.on the performance of real applications, we need

¢ extensive simulation of real
mercial designs such as the |

OpenSPARC TI1, in orde

sively. Second
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