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The Main Memory System 

 
 

n  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

n  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Processor 
and caches 

Main Memory Storage (SSD/HDD) 



State of the Main Memory System 
n  Recent technology, architecture, and application trends 

q  lead to new requirements 
q  exacerbate old requirements 

n  DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements 

n  Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging 

n  We need to rethink the main memory system 
q  to fix DRAM issues and enable emerging technologies  
q  to satisfy all requirements 
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Agenda 

n  Major Trends Affecting Main Memory 
n  The DRAM Scaling Problem  
n  Refresh as a Limiter of DRAM Scaling 
n  Solution Directions and Challenges 
n  Summary 
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Major Trends Affecting Main Memory (I) 
n  Need for main memory capacity, bandwidth, QoS increasing  

n  Main memory energy/power is a key system design concern 

n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (II) 
n  Need for main memory capacity, bandwidth, QoS increasing  

q  Multi-core: increasing number of cores/agents 
q  Data-intensive applications: increasing demand/hunger for data 
q  Consolidation: cloud computing, GPUs, mobile, heterogeneity 

n  Main memory energy/power is a key system design concern 

 
 
n  DRAM technology scaling is ending  
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Example: The Memory Capacity Gap 

 

n  Memory capacity per core expected to drop by 30% every two years 
n  Trends worse for memory bandwidth per core! 
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Core count doubling ~ every 2 years  
DRAM DIMM capacity doubling ~ every 3 years 



Major Trends Affecting Main Memory (III) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
n  Main memory energy/power is a key system design concern 

q  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 
IEEE Computer 2003] 

q  DRAM consumes power even when not used (periodic refresh) 

n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (IV) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
 
n  Main memory energy/power is a key system design concern 

 
n  DRAM technology scaling is ending  

q  ITRS projects DRAM will not scale easily below X nm  
q  Scaling has provided many benefits:  

n  higher capacity (density), lower cost, lower energy 
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Agenda 

n  Major Trends Affecting Main Memory 
n  The DRAM Scaling Problem 
n  Refresh as a Limiter of DRAM Scaling 
n  Challenges and Solution Directions 
n  Summary 

10 



The DRAM Scaling Problem 
n  DRAM stores charge in a capacitor (charge-based memory) 

q  Capacitor must be large enough for reliable sensing 
q  Access transistor should be large enough for low leakage and high 

retention time 
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

n  DRAM capacity, cost, and energy/power hard to scale 
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An Example of  The Scaling Problem 



Most  DRAM  Modules  Are  at  Risk

86%
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(28/32)

A  company B  company C  company

Up  to
1.0×107  �
errors  

Up  to
2.7×106�
errors  

Up  to
3.3×105  �
errors  
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DRAM	  Disturbance	  Errors,” ISCA 2014. 
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A DRAM Cell 

 
n  A DRAM cell consists of a capacitor and an access transistor 
n  It stores data in terms of charge in the capacitor 
n  A DRAM chip consists of (10s of 1000s of) rows of such cells 
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DRAM Refresh 

n  DRAM capacitor charge leaks over time 

n  Each DRAM row is periodically refreshed to restore charge 
q  Activate each row every N ms 
q  Typical N = 64 ms 

n  Downsides of refresh 
    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 
-- Refresh rate limits DRAM capacity scaling  
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Refresh Overhead: Performance 
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8%	  

46%	  

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Refresh Overhead: Energy 
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15%	  

47%	  

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 
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Solutions to the DRAM Scaling Problem 

n  Two potential solutions 
q  Rethink DRAM and refresh (by taking a fresh look at it) 
q  Enable emerging non-volatile memory technologies to 

eliminate/minimize DRAM 

n  Do both 
q  Hybrid memory systems 
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Solution 1: Rethink DRAM and Refresh 

n  Overcome DRAM shortcomings with 
q  System-DRAM co-design 
q  Novel DRAM architectures, interfaces, functions 
q  Better waste management (efficient utilization) 

n  Key issues to tackle 
q  Reduce energy 
q  Enable reliability at low cost 
q  Improve bandwidth, latency, QoS 
q  Reduce waste 
q  Enable computation close to data 
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Solution 1: Rethink DRAM and Refresh 
n  Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 
n  Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 
n  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 
n  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013. 
n  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013. 
n  Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013. 
n  Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014. 
n  Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative 

Experimental Study,” SIGMETRICS 2014. 
n  Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014. 
n  Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance 

Errors,” ISCA 2014. 

Avoid DRAM: 
n  Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and 

Thrashing,” PACT 2012. 
n  Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 

2012. 
n  Seshadri+, “The Dirty-Block Index,” ISCA 2014. 
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Tackling Refresh: Solutions 

n  Parallelize refreshes with accesses [Chang+ HPCA’14] 

n  Eliminate unnecessary refreshes [Liu+ ISCA’12] 

q  Exploit device characteristics  
q  Exploit data and application characteristics 

 
n  Reduce refresh rate and detect+correct errors that occur 

[Khan+ SIGMETRICS’14] 

n  Understand retention time behavior in DRAM [Liu+ ISCA’13] 
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Summary:	  Refresh-‐Access	  Paralleliza<on	  
•  DRAM	  refresh	  interferes	  with	  memory	  accesses	  	  

–  Degrades	  system	  performance	  and	  energy	  efficiency	  
–  Becomes	  exacerbated	  as	  DRAM	  density	  increases	  

•  Goal:	  Serve	  memory	  accesses	  in	  parallel	  with	  refreshes	  to	  
reduce	  refresh	  interference	  on	  demand	  requests	  

•  Our	  mechanisms:	  
–  1.	  Enable	  more	  parallelizaJon	  between	  refreshes	  and	  accesses	  across	  

different	  banks	  with	  new	  per-‐bank	  refresh	  scheduling	  algorithms	  
–  2.	  Enable	  serving	  accesses	  concurrently	  with	  refreshes	  in	  the	  same	  bank	  

by	  exploiJng	  parallelism	  across	  DRAM	  subarrays	  

•  Improve	  system	  performance	  and	  energy	  efficiency	  for	  a	  wide	  
variety	  of	  different	  workloads	  and	  DRAM	  densiJes	  
–  20.2%	  and	  9.0%	  for	  8-‐core	  systems	  using	  32Gb	  DRAM	  at	  low	  cost	  
–  Very	  close	  to	  the	  ideal	  scheme	  without	  refreshes	  
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Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014. 



Tackling Refresh: Solutions 

n  Parallelize refreshes with accesses [Chang+ HPCA’14] 

n  Eliminate unnecessary refreshes [Liu+ ISCA’12] 

q  Exploit device characteristics  
q  Exploit data and application characteristics 

 
n  Reduce refresh rate and detect+correct errors that occur 

[Khan+ SIGMETRICS’14] 

n  Understand retention time behavior in DRAM [Liu+ ISCA’13] 
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Most Refreshes Are Unnecessary 
n  Retention Time Profile of DRAM looks like this: 
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Works on Reducing Refreshes 
n  Observed significant variation in data retention times of 

DRAM cells (due to manufacturing process variation) 
q  Retention time: maximum time a cell can go without being 

refreshed while maintaining its stored data 

n  Proposed methods to take advantage of widely varying 
retention times among DRAM rows 
q  Reduce refresh rate for rows that can retain data for longer 

than 64 ms, e.g., [Liu+ ISCA 2012] 

q  Disable rows that have low retention times, e.g., [Venkatesan+ 
HPCA 2006] 

n  Showed large benefits in energy and performance 
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1. Profiling: Profile the retention time of all DRAM rows 
 
 
 
2. Binning: Store rows into bins by retention time 
   à use Bloom Filters for efficient and scalable storage 
 
 
 
3. Refreshing: Memory controller refreshes rows in different 
bins at different rates 
   à probe Bloom Filters to determine refresh rate of a row 

An Example: RAIDR [Liu+, ISCA 2012] 
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1.25KB storage in controller for 32GB DRAM memory 

Can reduce refreshes by ~75%  
à reduces energy consumption and improves performance 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



RAIDR Results 
n  Baseline: 

q  32 GB DDR3 DRAM system (8 cores, 512KB cache/core) 
q  64ms refresh interval for all rows 

n  RAIDR:  
q  64–128ms retention range: 256 B Bloom filter, 10 hash functions 
q  128–256ms retention range: 1 KB Bloom filter, 6 hash functions 
q  Default refresh interval: 256 ms 

n  Results on SPEC CPU2006, TPC-C, TPC-H benchmarks 
q  74.6% refresh reduction 
q  ~16%/20% DRAM dynamic/idle power reduction 
q  ~9% performance improvement  
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DRAM Device Capacity Scaling: Performance 
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RAIDR performance benefits increase with DRAM chip capacity 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



DRAM Device Capacity Scaling: Energy 
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RAIDR energy benefits increase with DRAM chip capacity RAIDR slides 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Tackling Refresh: Solutions 

n  Parallelize refreshes with accesses [Chang+ HPCA’14] 

n  Eliminate unnecessary refreshes [Liu+ ISCA’12] 

q  Exploit device characteristics  
q  Exploit data and application characteristics 

 
n  Reduce refresh rate and detect+correct errors that occur 

[Khan+ SIGMETRICS’14] 

n  Understand retention time behavior in DRAM [Liu+ ISCA’13] 
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Motivation: Understanding Retention 
n  Past works require accurate and reliable measurement of 

retention time of each DRAM row 
q  To maintain data integrity while reducing refreshes 

n  Assumption: worst-case retention time of each row can be 
determined and stays the same at a given temperature 
q  Some works propose writing all 1’s and 0’s to a row, and 

measuring the time before data corruption 

n  Question: 
q  Can we reliably and accurately determine retention times of all 

DRAM rows? 

33 



Two Challenges to Retention Time Profiling 
n  Data Pattern Dependence (DPD) of retention time 

 
n  Variable Retention Time (VRT) phenomenon 
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Two Challenges to Retention Time Profiling 
n  Challenge 1: Data Pattern Dependence (DPD) 

q  Retention time of a DRAM cell depends on its value and the 
values of cells nearby it 

q  When a row is activated, all bitlines are perturbed simultaneously 
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n  Electrical noise on the bitline affects reliable sensing of a DRAM cell 
n  The magnitude of this noise is affected by values of nearby cells via 

q  Bitline-bitline coupling à electrical coupling between adjacent bitlines 
q  Bitline-wordline coupling à electrical coupling between each bitline and 

the activated wordline 

n  Retention time of a cell depends on data patterns stored in 
nearby cells  

    à need to find the worst data pattern to find worst-case retention time 

Data Pattern Dependence 
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Two Challenges to Retention Time Profiling 
n  Challenge 2: Variable Retention Time (VRT) 

q  Retention time of a DRAM cell changes randomly over time        
n  a cell alternates between multiple retention time states 

q  Leakage current of a cell changes sporadically due to a charge 
trap in the gate oxide of the DRAM cell access transistor 

q  When the trap becomes occupied, charge leaks more readily from 
the transistor’s drain, leading to a short retention time 
n  Called Trap-Assisted Gate-Induced Drain Leakage 

q  This process appears to be a random process [Kim+ IEEE TED’11] 

q  Worst-case retention time depends on a random process  
à need to find the worst case despite this 
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Our Goal [Liu+, ISCA 2013] 

n  Analyze the retention time behavior of DRAM cells in 
modern commodity DRAM devices  
q  to aid the collection of accurate profile information 

n  Provide a comprehensive empirical investigation of two key 
challenges to retention time profiling 
q  Data Pattern Dependence (DPD) 
q  Variable Retention Time (VRT) 
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Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013. 



Experimental Infrastructure (DRAM) 
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Liu+, “An Experimental Study of Data 
Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time 
Profiling Mechanisms”, ISCA 2013. 
 
Khan+, “The Efficacy of Error Mitigation 
Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” 
SIGMETRICS 2014. 



Experimental Infrastructure (DRAM) 

40 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
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DRAM Testing Platform and Method 
n  Test platform: Developed a DDR3 DRAM testing platform 

using the Xilinx ML605 FPGA development board 
q  Temperature controlled 

n  Tested DRAM chips: 248 commodity DRAM chips from five 
manufacturers (A,B,C,D,E) 

n  Seven families based on equal capacity per device: 
q  A 1Gb, A 2Gb 
q  B 2Gb 
q  C 2Gb 
q  D 1Gb, D 2Gb 
q  E 2Gb 
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Experiment Design 
n  Each module tested for multiple rounds of tests. 

n  Each test searches for the set of cells with a retention time 
less than a threshold value for a particular data pattern 

n  High-level structure of a test: 
q  Write data pattern to rows in a DRAM bank 
q  Prevent refresh for a period of time tWAIT, leave DRAM idle 
q  Read stored data pattern, compare to written pattern and 

record corrupt cells as those with retention time < tWAIT 

n  Test details and important issues to pay attention to are 
discussed in paper 
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Experiment Structure 
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Round 1

Data Pattern X
tWAIT = 1.5s

Data Pattern Y
tWAIT = 1.5s

Data Pattern Z
tWAIT = 1.5s

Data Pattern X
tWAIT = 1.6s

Data Pattern Y
tWAIT = 1.6s

Data Pattern Z
tWAIT = 1.6s

Data Pattern X
tWAIT = 6.0s

Data Pattern Y
tWAIT = 6.0s

Data Pattern Z
tWAIT = 6.0s

Data Pattern X
tWAIT = 1.5s

Data Pattern Y
tWAIT = 1.5s

Data Pattern Z
tWAIT = 1.5s

Round 2

Test Round Tests both the data pattern 
and its complement 



Experiment Parameters 
n  Most tests conducted at 45oC 

n  No cells observed to have a retention time less than 1.5 
second at 45oC 

n  Tested tWAIT in increments of 128ms from 1.5 to 6.1 
seconds 

44 



Tested Data Patterns 
n  All 0s/1s: Value 0/1 is written to all bits  

q  Previous work suggested this is sufficient 

n  Checkerboard: Consecutive bits alternate between 0 and 1  
q  Coupling noise increases with voltage difference between the 

neighboring bitlines à May induce worst case data pattern (if adjacent 
bits mapped to adjacent cells) 

n  Walk: Attempts to ensure a single cell storing 1 is 
surrounded by cells storing 0  
q  This may lead to even worse coupling noise and retention time due to 

coupling between nearby bitlines [Li+ IEEE TCSI 2011] 
q  Walk pattern is permuted in each round to exercise different cells 

n  Random: Randomly generated data is written to each row 
q  A new set of random data is generated for each round 
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Fixed patterns 



DRAM Retention Time: Results 
n  Foundational Results 

q  Temperature Dependence 
q  Retention Time Distribution 

n  Data Pattern Dependence: Analysis and Implications 
n  Variable Retention Time: Analysis and Implications 
n  Conclusions 
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Temperature Stability 

47 

0 1 2 3 4 5 6 7
Time (Hours)

45

50

55

60

65

70

75

Te
m

pe
ra

tu
re

 (C
)

50C 55C 60C 65C 70C

Tested	  chips	  at	  five	  different	  stable	  temperatures	  



Dependence of Retention Time on Temperature 
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Dependence of Retention Time on Temperature 
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Retention Time Distribution 
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DRAM Retention Time: Results 
n  Foundational Results 

q  Temperature Dependence 
q  Retention Time Distribution 

n  Data Pattern Dependence: Analysis and Implications 
n  Variable Retention Time: Analysis and Implications 
n  Conclusions 
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Some Terminology 
n  Failure population of cells with Retention Time X: The set of 

all cells that exhibit retention failure in any test with any 
data pattern at that retention time (tWAIT) 

n  Retention Failure Coverage of a Data Pattern DP: Fraction 
of cells with retention time X that exhibit retention failure 
with that particular data pattern DP 

n  If retention times are not dependent on data pattern stored 
in cells, we would expect 
q  Coverage of any data pattern to be 100% 
q  In other words, if one data pattern causes a retention failure, 

any other data pattern also would 
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Recall the Tested Data Patterns 
n  All 0s/1s: Value 0/1 is written to all bits 

n  Checkerboard: Consecutive bits alternate between 0 and 1  

n  Walk: Attempts to ensure a single cell storing 1 is 
surrounded by cells storing 0  

n  Random: Randomly generated data is written to each row 
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Retention Failure Coverage of Data Patterns 
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Retention Failure Coverage of Data Patterns 
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Retention Failure Coverage of Data Patterns 

56 

0 2 4 6 8 10 12 14 16
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

All 0s/1s

Checkerboard

Random

Walk

All 0s/1s Checkerboard Walk Random

Random	  is	  the	  most	  effec<ve	  data	  paWern	  for	  this	  device	  
No	  data	  paWern	  achieves	  100%	  coverage	  

C 2Gb chip family 
6.1s retention time 



Data Pattern Dependence: Observations (I) 
n  A cell’s retention time is heavily influenced by data pattern 

stored in other cells  
q  Pattern affects the coupling noise, which affects cell leakage  

n  No tested data pattern exercises the worst case retention 
time for all cells (no pattern has 100% coverage)  
q  No pattern is able to induce the worst-case coupling noise for 

every cell 
q  Problem: Underlying DRAM circuit organization is not known to 

the memory controller à very hard to construct a pattern that 
exercises the worst-case cell leakage 
 à Opaque mapping of addresses to physical DRAM geometry 
 à Internal remapping of addresses within DRAM to tolerate faults 
 à Second order coupling effects are very hard to determine 
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Data Pattern Dependence: Observations (II) 
n  Fixed, simple data patterns have low coverage 

q  They do not exercise the worst-case coupling noise 

n  The effectiveness of each data pattern varies significantly 
between DRAM devices (of the same or different vendors) 
q  Underlying DRAM circuit organization likely differs between 

different devices à patterns leading to worst coupling are 
different in different devices 

n  Technology scaling appears to increase the impact of data 
pattern dependence 
q  Scaling reduces the physical distance between circuit elements, 

increasing the magnitude of coupling effects 
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Effect of Technology Scaling on DPD 
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DPD: Implications on Profiling Mechanisms 
n  Any retention time profiling mechanism must handle data pattern 

dependence of retention time 
n  Intuitive approach: Identify the data pattern that induces the 

worst-case retention time for a particular cell or device 

n  Problem 1: Very hard to know at the memory controller which 
bits actually interfere with each other due to 
q  Opaque mapping of addresses to physical DRAM geometry à 

logically consecutive bits may not be physically consecutive 
q  Remapping of faulty bitlines/wordlines to redundant ones internally 

within DRAM 

n  Problem 2: Worst-case coupling noise is affected by non-obvious 
second order bitline coupling effects 
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DRAM Retention Time: Results 
n  Foundational Results 

q  Temperature Dependence 
q  Retention Time Distribution 

n  Data Pattern Dependence: Analysis and Implications 
n  Variable Retention Time: Analysis and Implications 
n  Conclusions 
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Variable Retention Time 
n  Retention time of a cell can vary over time 

n  A cell can randomly switch between multiple leakage 
current states due to Trap-Assisted Gate-Induced Drain 
Leakage, which appears to be a random process  

    [Yaney+ IEDM 1987, Restle+ IEDM 1992] 
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An Example VRT Cell 

63 

0 2 4 6 8 10
Time (Hours)

0

1

2

3

4

5

6

7
Re

te
nt

io
n 

Ti
m

e 
(s

)

A cell from E 2Gb chip family 



VRT: Questions and Methodology 
n  Key Questions 

q  How prevalent is VRT in modern DRAM devices? 
q  What is the timescale of observation of the lowest retention 

time state? 
q  What are the implications on retention time profiling? 

n  Test Methodology 
q  Each device was tested for at least 1024 rounds over 24 hours 
q  Temperature fixed at 45oC 
q  Data pattern used is the most effective data pattern for each 

device  
q  For each cell that fails at any retention time, we record the 

minimum and the maximum retention time observed 
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Variable Retention Time 
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Variable Retention Time 
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Variable Retention Time 
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VRT: Observations So Far 
n  VRT is common among weak cells (i.e., those cells that 

experience low retention times) 

n  VRT can result in significant retention time changes 
q  Difference between minimum and maximum retention times of 

a cell can be more than 4x, and may not be bounded 
q  Implication: Finding a retention time for a cell and using a 

guardband to ensure minimum retention time is “covered” 
requires a large guardband or may not work 

n  Retention time profiling mechanisms must identify lowest 
retention time in the presence of VRT 
q  Question: How long to profile a cell to find its lowest retention 

time state? 
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Time Between Retention Time State Changes 

n  How much time does a cell spend in a high retention state 
before switching to the minimum observed retention time 
state? 
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Time Spent in High Retention Time State 
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Time Spent in High Retention Time State 
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Time Spent in High Retention Time State 
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VRT: Implications on Profiling Mechanisms 
n  Problem 1: There does not seem to be a way of 

determining if a cell exhibits VRT without actually observing 
a cell exhibiting VRT 
q  VRT is a memoryless random process [Kim+ JJAP 2010] 

n  Problem 2: VRT complicates retention time profiling by 
DRAM manufacturers 
q  Exposure to very high temperatures can induce VRT in cells that 

were not previously susceptible  
    à can happen during soldering of DRAM chips 
    à manufacturer’s retention time profile may not be accurate 

n  One option for future work: Use ECC to continuously profile 
DRAM online while aggressively reducing refresh rate 
q  Need to keep ECC overhead in check 
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Tackling Refresh: Solutions 

n  Parallelize refreshes with accesses [Chang+ HPCA’14] 

n  Eliminate unnecessary refreshes [Liu+ ISCA’12] 

q  Exploit device characteristics  
q  Exploit data and application characteristics 

 
n  Reduce refresh rate and detect+correct errors that occur 

[Khan+ SIGMETRICS’14] 

n  Understand retention time behavior in DRAM [Liu+ ISCA’13] 
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	  	  	  Key	  Observa7ons:	  
•  Tes<ng	  alone	  cannot	  detect	  all	  possible	  failures	  
•  Combina<on	  of	  ECC	  and	  other	  mi<ga<on	  
techniques	  is	  much	  more	  effec<ve	  
– But	  degrades	  performance	  

•  Tes<ng	  can	  help	  to	  reduce	  the	  ECC	  strength	  
– Even	  when	  star<ng	  with	  a	  higher	  strength	  ECC	  

	  

Towards	  an	  Online	  Profiling	  System	  

Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative 
Experimental Study,” SIGMETRICS 2014. 



Run	  tests	  periodically	  a]er	  a	  short	  interval	  	  
at	  smaller	  regions	  of	  memory	  	  

Towards	  an	  Online	  Profiling	  System	  
Ini<ally	  Protect	  DRAM	  	  

with	  Strong	  ECC	   1	  
Periodically	  Test	  
	  Parts	  of	  DRAM	   2	  

Test	  
Test	  
Test	  

Mi<gate	  errors	  and	  
reduce	  ECC	   3	  



Agenda 

n  Major Trends Affecting Main Memory 
n  The DRAM Scaling Problem 
n  Refresh as a Limiter of DRAM Scaling 
n  Some Solution Directions and Challenges 
n  Summary 
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Summary and Conclusions 
n  DRAM refresh is a critical challenge  

q  in scaling DRAM technology efficiently to higher capacities 

n  Discussed several promising solution directions 
q  Parallelize refreshes with accesses [Chang+ HPCA’14] 
q  Eliminate unnecessary refreshes [Liu+ ISCA’12] 
q  Reduce refresh rate and detect+correct errors that occur             

[Khan+ SIGMETRICS’14] 

n  Examined properties of retention time behavior [Liu+ ISCA’13] 

n  Many avenues for overcoming DRAM refresh challenges 
q  Handling DPD/VRT phenomena  
q  Enabling online retention time profiling and error mitigation 
q  Exploiting application behavior 
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Referenced Papers 

n  All are available at 
http://users.ece.cmu.edu/~omutlu/projects.htm 
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Related Videos and Course Materials 
n  Computer Architecture Lecture Videos on Youtube 

q  https://www.youtube.com/playlist?
list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ 

n  Computer Architecture Course Materials 
q  http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule 

n  Advanced Computer Architecture Course Materials 
q  http://www.ece.cmu.edu/~ece740/f13/doku.php?id=schedule 

n  Advanced Computer Architecture Lecture Videos on Youtube 
q  https://www.youtube.com/playlist?

list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D  
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Thank you. 

Feel free to email me with any questions & feedback 
 

onur@cmu.edu 
http://users.ece.cmu.edu/~omutlu/ 
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Onur Mutlu 
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Number  of  Disturbance  Errors







•  In  a  more  controlled  environment,  we  can  
induce  as  many  as  ten  million  disturbance  errors

•  Disturbance  errors  are  a  serious  reliability  issue

CPU  Architecture Errors Access-‐Rate

Intel  Haswell  (2013) 22.9K	   12.3M/sec	  

Intel  Ivy  Bridge  (2012) 20.7K	   11.7M/sec	  

Intel  Sandy  Bridge  (2011) 16.1K	   11.6M/sec	  

AMD  Piledriver  (2012) 59	   6.1M/sec	  

85Kim+, “Flipping	  Bits	  in	  Memory	  Without	  Accessing	  Them:	  An	  Experimental	  Study	  of	  
DRAM	  Disturbance	  Errors,” ISCA 2014. 



Summary and Conclusions [ISCA’13] 
n  DRAM refresh is a critical challenge in scaling DRAM technology 

efficiently to higher capacities and smaller feature sizes 
n  Understanding the retention time of modern DRAM devices can 

enable old or new methods to reduce the impact of refresh 
q  Many mechanisms require accurate and reliable retention time profiles 

n  We presented the first work that comprehensively examines data 
retention behavior in modern commodity DRAM devices 
q  Characterized 248 devices from five manufacturers 

n  Key findings: Retention time of a cell significantly depends on data 
pattern stored in other cells (data pattern dependence) and 
changes over time via a random process (variable retention time) 
q  Discussed the underlying reasons and provided suggestions 

n  Future research on retention time profiling should solve the 
challenges posed by the DPD and VRT phenomena 
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DPD: Suggestions (for Future Work) 
n  A mechanism for identifying worst-case data pattern(s) 

likely requires support from DRAM device 
q  DRAM manufacturers might be in a better position to do this 
q  But, the ability of the manufacturer to identify and expose the 

entire retention time profile is limited due to VRT 

n  An alternative approach: Use random data patterns to 
increase coverage as much as possible; handle incorrect 
retention time estimates with ECC 
q  Need to keep profiling time in check 
q  Need to keep ECC overhead in check 
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Time	  

Per-‐bank	  refresh	  in	  mobile	  DRAM	  (LPDDRx)	  

Exis<ng	  Refresh	  Modes	  
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Time	  

All-‐bank	  refresh	  in	  commodity	  DRAM	  (DDRx)	  

Bank	  7	  

Bank	  1	  
Bank	  0	  

…
	  

Bank	  7	  

Bank	  1	  
Bank	  0	  

…
	  

Refresh	  

Round-‐robin	  order	  

Per-‐bank	  refresh	  allows	  accesses	  to	  other	  
banks	  while	  a	  bank	  is	  refreshing	  



Shortcomings	  of	  Per-‐Bank	  Refresh	  
•  Problem	  1:	  Refreshes	  to	  different	  banks	  are	  scheduled	  
in	  a	  strict	  round-‐robin	  order	  	  
–  The	  staJc	  ordering	  is	  hardwired	  into	  DRAM	  chips	  
–  Refreshes	  busy	  banks	  with	  many	  queued	  requests	  when	  
other	  banks	  are	  idle	  

•  Key	  idea:	  Schedule	  per-‐bank	  refreshes	  to	  idle	  banks	  
opportunisJcally	  in	  a	  dynamic	  order	  	  
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Our First Approach: DARP 
•  Dynamic Access-Refresh Parallelization (DARP) 

–  An improved scheduling policy for per-bank refreshes 
–  Exploits refresh scheduling !exibility in DDR DRAM 

•  Component 1: Out-of-order per-bank refresh 
–  Avoids poor static scheduling decisions 
–  Dynamically issues per-bank refreshes to idle banks 

•  Component 2: Write-Refresh Parallelization 
–  Avoids refresh interference on latency-critical reads 
–  Parallelizes refreshes with a batch of writes 
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Shortcomings	  of	  Per-‐Bank	  Refresh	  
•  Problem	  2:	  Banks	  that	  are	  being	  refreshed	  cannot	  
concurrently	  serve	  memory	  requests	  
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Shortcomings	  of	  Per-‐Bank	  Refresh	  
•  Problem	  2:	  Refreshing	  banks	  cannot	  concurrently	  serve	  
memory	  requests	  

•  Key	  idea:	  Exploit	  subarrays	  within	  a	  bank	  to	  parallelize	  
refreshes	  and	  accesses	  across	  subarrays	  
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Methodology	  

	  

•  100	  workloads:	  SPEC	  CPU2006,	  STREAM,	  TPC-‐C/H,	  random	  access	  

•  System	  performance	  metric:	  Weighted	  speedup	  
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Comparison	  Points	  
•  All-‐bank	  refresh	  [DDR3,	  LPDDR3,	  …]	  

•  Per-‐bank	  refresh	  [LPDDR3]	  

•  Elas<c	  refresh	  [Stuecheli	  et	  al.,	  MICRO	  ‘10]:	  
–  Postpones	  refreshes	  by	  a	  Jme	  delay	  based	  on	  the	  predicted	  
rank	  idle	  Jme	  to	  avoid	  interference	  on	  memory	  requests	  

–  Proposed	  to	  schedule	  all-‐bank	  refreshes	  without	  exploiJng	  
per-‐bank	  refreshes	  

–  Cannot	  parallelize	  refreshes	  and	  accesses	  within	  a	  rank	  
	  

•  Ideal	  (no	  refresh)	  
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7.9%	   12.3%	   20.2%	  

1.	  Both	  DARP	  &	  SARP	  provide	  performance	  gains	  and	  
combining	  them	  (DSARP)	  improves	  even	  more	  
2.	  Consistent	  system	  performance	  improvement	  across	  
DRAM	  densiHes	  (within	  0.9%,	  1.2%,	  and	  3.8%	  of	  ideal)	  



Energy	  Efficiency	  
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Another Talk: NAND Flash Scaling Challenges 

n  Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, 
Characterization, and Analysis,” DATE 2012. 

n  Cai+, “Flash Correct-and-Refresh: Retention-Aware Error 
Management for Increased Flash Memory Lifetime,” ICCD 2012. 

n  Cai+, “Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling,” DATE 2013. 

n  Cai+, “Error Analysis and Retention-Aware Error Management for 
NAND Flash Memory,” Intel Tech Journal 2013. 

n  Cai+, “Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation,” ICCD 2013. 

n  Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND 
Flash Memories,” SIGMETRICS 2014. 
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Experimental Infrastructure (Flash) 
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[Cai+, DATE 2012, ICCD 2012, DATE 2013, 
ITJ 2013, ICCD 2013, SIGMETRICS 2014] 


