
Efficient Runahead Execution: Power-efficient Memory Latency Tolerance

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt}@ece.utexas.edu

Abstract

Runahead execution improves memory latency tolerance
without significantly increasing processor complexity. Un-
fortunately, a runahead execution processor executes sig-
nificantly more instructions than a conventional proces-
sor, sometimes without providing any performance benefit,
which makes it inefficient. In this article, we identify the
causes of inefficiency in runahead execution and propose
simple -yet effective- techniques to make a runahead pro-
cessor more efficient, thereby reducing its energy consump-
tion. The proposed efficiency techniques reduce the extra
instructions executed in a runahead processor from 26.5%
to 6.2% without significantly affecting the 22% performance
improvement provided by runahead execution.

1.. Introduction
Today’s high-performance processors are facing main

memory latencies in the order of hundreds of processor
clock cycles. As a result, even the most aggressive state-
of-the-art processors end up spending a significant portion
of their execution time stalling and waiting for main mem-
ory accesses to return data into the execution core. Previous
research has shown that “runahead execution” is a technique
that significantly increases the ability of a high-performance
processor to tolerate long main memory latencies [1, 2, 3].
Runahead execution improves the performance of a proces-
sor by speculatively pre-executing the application program
while a long-latency (L2) data cache miss is being serviced,
instead of stalling the processor for the duration of the long-
latency miss. Thus, runahead execution allows the execu-
tion of instructions that cannot be executed by a state-of-
the-art processor under a long-latency cache miss. These
pre-executed instructions generate prefetches that will later
be used by the application program, which results in perfor-
mance improvement.

Runahead execution is a promising way to tolerate long
main memory latencies, since it has very modest hardware
cost and it does not significantly increase processor com-
plexity [4]. However, runahead execution significantly in-
creases the dynamic energy consumption of a processor by
increasing the number of speculatively processed (executed)
instructions, sometimes without providing any performance
benefit.

To be efficiently implementable in current or future high-
performance processors, which will be energy-constrained,

the extra instructions executed due to runahead execution
need to be reduced. Our article provides novel solutions
to this problem with both hardware and software mecha-
nisms that are simple, implementable, and effective. We
first present a brief overview of runahead execution and then
describe the techniques that increase its power-efficiency.

2. Background on Runahead Execution
Conventional out-of-order execution processors employ

instruction windows to buffer instructions in order to tol-
erate long latencies. Since a cache miss to main memory
takes hundreds of processor cycles to service, the number
of instructions that need to be buffered to tolerate such a
long latency is unreasonably large. Runahead execution [2]
is a technique that provides the memory-level parallelism
(MLP) benefits of a large instruction window, without re-
quiring the large, complex, slow, and power-hungry struc-
tures -such as large schedulers, register files, load/store
buffers, and reorder buffers- associated with a large instruc-
tion window.

Figure 1 shows an example execution timeline illustrat-
ing the differences between the operation of a conventional
out-of-order execution processor and a runahead execution
processor. The instruction window of a conventional pro-
cessor becomes full soon after a load instruction incurs a
long-latency (L2) cache miss. Once the instruction window
is full, the processor cannot decode and process any new
instructions and stalls until the L2 cache miss is serviced.
While the processor is stalled, no forward progress is made
in the running application. Therefore, the execution time-
line of a memory-intensive application on a conventional
processor consists of useful computation (COMPUTE) pe-
riods interleaved with long useless STALL periods due to
L2 cache misses, as shown in Figure 1(a). With increas-
ing memory latencies, STALL periods start dominating the
COMPUTE periods, leaving the processor idle for most of
its execution time and thus reducing performance.

Runahead execution avoids stalling the processor when
an L2 cache miss occurs, as shown in Figure 1(b). When the
processor detects that the oldest instruction is waiting for an
L2 cache miss that is still being serviced, it checkpoints the
architectural register state, the branch history register, and
the return address stack, and enters a speculative processing
mode, which is called the “runahead mode.” The processor
removes this long-latency instruction from the instruction
window. While in runahead mode, the processor continues

1

Becomes Full
Instruction Window

COMPUTE STALL

in L2 Cache Becomes Full
Instruction Window

COMPUTE STALL

Load B Misses

COMPUTE

L2 Miss A Being Serviced From Memory Being Serviced From MemoryL2 Miss B

No Forward Progress in Program

Useful
Computation

in L2 Cache
Load A Misses

COMPUTE

L2 Miss A Being Serviced From Memory

Instruction in Window
Load A is the Oldest Load B Misses

in L2 Cache

L2 Miss B Being Serviced From Memory

Pipeline Flush

Load A Re−executed
(Cache Hit) (Cache Hit)

Load B Re−executed

COMPUTE COMPUTE

Cycles Saved by Runahead Execution

Load A Misses
in L2 Cache

RUNAHEAD MODE

Program Execution Timeline

(a) CONVENTIONAL OUT−OF−ORDER EXECUTION PROCESSOR

(b) RUNAHEAD EXECUTION PROCESSOR

Figure 1. Execution timeline showing a high-level overview of the concept of runahead execution. A runahead processor pre-executes
the running application during cycles in which a conventional processor would be stalled due to an L2 cache miss. The purpose of this
pre-execution is to discover and service in parallel additional L2 cache misses. In this example, runahead execution discovers L2 Miss B
and services it in parallel with L2 Miss A, thereby eliminating a stall that would be caused by Load B in a conventional processor.

to execute instructions without updating the architectural
state. The results of L2 cache misses and their dependents
are identified as bogus (INV). Instructions that source INV
results (INV instructions) are removed from the instruction
window so that they do not prevent independent instruc-
tions from being placed into the window. The removal of
instructions from the processor during runahead mode is
accomplished in program order and it is called “pseudo-
retirement.” Some of the instructions executed in runa-
head mode that are independent of L2 cache misses may
miss in the instruction, data, or unified caches (e.g., Load
B in Figure 1(b)). Their miss latencies are overlapped with
the latency of the runahead-causing cache miss. When the
runahead-causing cache miss completes, the processor exits
runahead mode by flushing the instructions in its pipeline. It
restores the checkpointed state and resumes normal instruc-
tion fetch and execution starting with the runahead-causing
instruction (Load A in Figure 1(b)).

Once the processor returns to “normal mode,” it is able
to make faster progress without stalling because some of
the data and instructions needed during normal mode have
already been prefetched into the caches during runahead
mode. For example, in Figure 1(b), the processor does not

need to stall for Load B because the L2 miss caused by
Load B was discovered in runahead mode and serviced in
parallel with the L2 miss caused by Load A. Hence, runa-
head execution uses otherwise-idle clock cycles due to L2
misses to pre-execute the application in order to generate
accurate prefetch requests. Previous research has shown
that runahead execution increases processor performance
mainly because it parallelizes independent long-latency L2
cache misses [4, 3]. Furthermore, the memory latency tol-
erance provided by runahead execution comes at a small
hardware cost, as shown in our previous papers [2, 4].

3. Efficiency of Runahead Execution

A runahead processor executes some instructions in the
instruction stream more than once because it speculatively
pre-executes instructions in runahead mode. As each execu-
tion of an instruction consumes dynamic energy, a runahead
processor consumes more dynamic energy than a proces-
sor that does not implement runahead execution. To reduce
the energy consumed by a runahead processor, it is desir-
able to reduce the number of instructions executed in runa-
head mode. Unfortunately, reducing the number of instruc-
tions executed during runahead mode may significantly re-

2

duce the performance improvement of runahead execution,
since runahead execution relies on the execution of instruc-
tions in runahead mode to discover L2 cache misses further
down in the instruction stream. Our goal is to increase the
efficiency of a runahead processor without significantly de-
creasing its IPC (Instructions Per Cycle) performance im-
provement. We define efficiency as follows:

Efficiency =

Percent Increase In IPC Performance

Percent Increase In Executed Instructions

Percent Increase In IPC Performance is the IPC increase
after the addition of runahead execution to a conventional
baseline processor. Percent Increase In Executed Instruc-
tions is the increase in the number of executed instructions
after the addition of runahead execution. Efficiency of a
runahead processor can be increased in two ways. First, the
number of executed instructions (the denominator) can be
reduced without affecting the increase in IPC (the nomina-
tor). This can be accomplished by eliminating the causes
of inefficiency. Second, the IPC improvement can be in-
creased without increasing the number of executed instruc-
tions. This can be accomplished by increasing the useful-
ness of each runahead execution period by extracting more
useful prefetches from the executed instructions. We pro-
pose techniques to increase efficiency in both ways.

Figure 2 shows the increase in IPC and increase in the
number of executed instructions due to the addition of runa-
head execution to an aggressive conventional out-of-order
processor. Our baseline processor model includes a very
effective stream-based prefetcher, a 1 MB L2 cache, and a
detailed model of a main memory system with a 500-cycle
latency. Detailed information on our experimental method-
ology is provided in our ISCA-32 paper [5]. On average, for
the SPEC CPU2000 benchmarks, runahead execution in-
creases the IPC by 22.6% at a cost of increasing the number
of executed instructions by 26.5%. Unfortunately, runahead
execution in some benchmarks results in a large increase
in the number of executed instructions without yielding a
correspondingly large IPC improvement. For example, in
parser, runahead increases the number of executed instruc-
tions by 47.8% while decreasing the IPC by 0.8%. In art,
there is an impressive 108.4% IPC increase, only to be over-
shadowed by a 235.4% increase in the number of executed
instructions.

4. Eliminating the Causes of Inefficiency
We have identified three major causes of inefficiency in a

runahead execution processor: short, overlapping, and use-
less runahead periods. Runahead execution episodes with
these properties usually do not provide performance benefit
but result in unnecessary speculative execution of instruc-
tions. As exit from runahead execution is costly in terms
of performance (it requires a full pipeline flush), such runa-
head periods can actually be detrimental to performance.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110

In
cr

ea
se

 o
ve

r
B

as
el

in
e

(%
)

% Increase in IPC
% Increase in Executed Instructions

235

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

mk

tw
olf

vo
rte

x
vp

r
am

mp
ap

plu ap
si art

eq
ua

ke

fac
ere

c

fm
a3

d
ga

lge
l
luc

as
mesa

mgri
d

six
tra

ck

sw
im
wup

wise

mea
n

Figure 2. Increase in IPC performance and executed instruc-
tions due to runahead execution.

This section proposes simple techniques to eliminate such
periods.

4.1. Short Runahead Periods

In a short runahead period, the processor stays in runa-
head mode for tens, instead of hundreds of cycles. These
periods occur because the processor may start runahead ex-
ecution due to an already outstanding L2 cache miss, which
was prefetched by the hardware or software prefetcher, a
wrong-path instruction, or a previous runahead period, but
has not yet completed. Figure 3(a) shows a short runahead
period that occurs due to an incomplete prefetch generated
by a previous runahead period. Load B generates an L2
miss when it is speculatively pre-executed in runahead pe-
riod A. When the processor executes Load B again in nor-
mal mode, the associated L2 miss (L2 Miss B) is still in
progress. Therefore, Load B causes the processor to en-
ter runahead mode again. Shortly after, L2 Miss B is com-
pletely serviced by the memory system and the processor
exits runahead mode. Hence, the runahead period caused
by Load B is short. Short runahead periods are not desir-
able because the processor is unlikely to pre-execute enough
instructions far ahead into the instruction stream and hence
unlikely to uncover any useful L2 cache misses during runa-
head mode.

We propose to eliminate short runahead periods by as-
sociating a timer with each outstanding L2 miss. If the L2
miss has been outstanding for more than N cycles, where N
is determined statically or dynamically, the processor pre-
dicts that the miss will return from memory soon and does
not enter runahead mode on that miss. We found that a
static threshold of 400 cycles for a processor with a 500-
cycle minimum main memory latency eliminates almost all
short runahead periods and reduces the extra instructions
from 26.5% to 15.3% with negligible impact on perfor-
mance (Performance improvement is reduced slightly from
22.6% to 21.5%).

3

L2 Miss B Being Serviced From Memory

L2 Miss B Being Serviced From Memory

COMPUTE

L2 Miss A Being Serviced From Memory

Load A Re−executed
(Cache Hit)

COMPUTE

Load A Misses
in L2 Cache

Load B Misses
in L2 Cache

COMPUTE

OVERLAP OVERLAP

RUNAHEAD PERIOD A RUNAHEAD PERIOD B

(dependent on Load A)
Load B INV

(a) SHORT RUNAHEAD PERIOD EXAMPLE

COMPUTE

L2 Miss A Being Serviced From Memory

Load B Misses
in L2 Cache

Pipeline Flush

Load A Re−executed
(Cache Hit)

Load B Re−executed

COMPUTE

Load A Misses
in L2 Cache

COMPUTE

(Still L2 Miss!)
Load B Re−executed

(Cache Hit)

SHORT RUNAHEAD PERIOD

RUNAHEAD PERIOD A

COMPUTE

L2 Miss A Being Serviced From Memory

Load A Re−executed
(Cache Hit)

Load A Misses
in L2 Cache

(c) USELESS RUNAHEAD PERIOD EXAMPLE

COMPUTE

NO L2 MISSES DISCOVERED

RUNAHEAD PERIOD A

(RUNAHEAD PERIOD B)

Load B Re−executed
(Cache Hit)

(b) OVERLAPPING RUNAHEAD PERIOD EXAMPLE

Figure 3. Example execution timelines illustrating the causes of inefficiency in runahead execution (short, overlapping, useless
runahead periods) and how they may occur.

4.2. Overlapping Runahead Periods

Two runahead periods are overlapping if some of the
instructions the processor executes in both periods are the
same dynamic instructions. These periods can occur due to
dependent L2 misses (e.g., due to pointer-chasing loads) or
independent L2 misses that have significantly different la-
tencies. Figure 3(b) shows an example where runahead pe-
riods A and B are overlapping due to dependent L2 misses.
During period A, Load B is processed and found to be de-
pendent on the miss caused by Load A. Since L2 Miss A has
not been serviced yet, Load B cannot calculate its address
and is marked as INV. The processor executes and pseudo-
retires N instructions after load B and exits period A. In
normal mode, Load B is re-executed and found to be an L2
miss, which causes runahead period B. The first N instruc-
tions executed during period B are the same dynamic in-
structions that were executed at the end of period A. Hence,

period B repeats the same work done by period A.
Overlapping runahead periods may be beneficial for per-

formance, because the completion of Load A may result in
the availability of data values for more instructions in runa-
head period B, which may result in the generation of useful
L2 misses that could not have been generated in runahead
period A. However, in the benchmark set we examined,
we found that overlapping runahead periods are usually not
beneficial for performance. In any case, overlapping runa-
head periods can be a major cause of inefficiency, because
they result in the execution of the same instructions multiple
times in runahead mode, especially if many L2 misses are
clustered together in the program.

Our solution to reducing the inefficiency due to over-
lapping periods involves not entering a runahead period if
the processor predicts it to be overlapping with a previous
runahead period. During a runahead period, the processor
counts the number of pseudo-retired instructions. During

4

normal mode, the processor counts the number of instruc-
tions fetched since the exit from the last runahead period.
If the number of instructions fetched after runahead mode
is less than the number of instructions pseudo-retired in the
previous runahead period, the processor does not enter runa-
head mode. With two simple counters and a comparator
needed to implement this technique, extra instructions due
to runahead execution are reduced from 26.5% to 11.8%
while the performance benefit is reduced only slightly from
22.6% to 21.2%.

4.3. Useless Runahead Periods

Useless runahead periods are runahead periods where no
useful L2 misses that are needed by normal mode execution
are generated, as shown in Figure 3(c). These periods exist
due to the lack of memory-level parallelism [6, 3] in the ap-
plication program, i.e. due to the lack of independent cache
misses under the shadow of an L2 miss. Useless periods are
inefficient because they increase the number of executed in-
structions without providing any performance benefit. To
eliminate a useless runahead period, we propose four sim-
ple, novel prediction mechanisms that predict whether or
not a runahead period will be useful (i.e., generate an L2
cache miss).

In the first technique, the processor records the useful-
ness of past runahead periods caused by static load instruc-
tions in a small table of two-bit counters, which is called the
Runahead Cause Status Table (RCST) [5]. If the runahead
periods initiated by the same load were useful in the recent
past, the processor initiates runahead execution if that load
misses in the L2 cache. Otherwise, the processor does not
initiate entry into runahead mode on an L2 miss due to the
static load instruction. The insight behind this technique is
that the usefulness of runahead periods caused by the same
static load tend to be predictable based on recent past be-
havior.

The second technique predicts the available memory-
level parallelism during the ongoing runahead period. If
the fraction of INV (i.e., L2-miss dependent) load instruc-
tions encountered during the ongoing runahead mode is
greater than a statically-determined threshold, the processor
predicts that there is not enough memory-level parallelism
runahead execution can exploit and exits runahead mode.

The third technique predicts the usefulness of runahead
execution in a more coarse-grain fashion using sampling.
The purpose of this technique is to turn off runahead exe-
cution in program phases where memory-level parallelism
is low. To do so, the processor periodically monitors the
total number of L2 misses generated during N consecutive
runahead periods. If this number is less than a static thresh-
old T, the processor does not enter runahead mode for the
next M L2 misses. We found that even with un-tuned val-
ues of N, M, and T (100, 1000, and 25, respectively, in our
experiments), sampling can significantly reduce the extra
instructions due to runahead execution.

The fourth uselessness prediction technique leverages
compile-time profiling. The compiler profiles the appli-
cation and identifies load instructions which consistently
cause useless runahead periods. Such load instructions are
marked as non-runahead loads by the compiler. When the
hardware encounters a non-runahead load instruction that is
an L2 cache miss, it does not initiate runahead execution on
that load.

Combining the four uselessness prediction techniques re-
duces the extra instructions from 26.5% to 14.9% while the
performance benefit is reduced only slightly from 22.6% to
20.8%. Experiments analyzing the effectiveness of each in-
dividual technique can be found in a previous paper [5].

5. Increasing the Usefulness of Runahead Pe-
riods

As the performance improvement of runahead execution
is mainly due to the useful L2 misses prefetched during
runahead mode [4, 3], it can be increased with optimizations
that lead to the discovery of more L2 misses during runa-
head mode. This section proposes two optimizations that
increase efficiency by increasing the usefulness of runahead
periods.

5.1. Eliminating Useless Instructions

Since the goal of runahead execution is to generate L2
cache misses, instructions that do not contribute to the gen-
eration of L2 cache misses are essentially “useless” for the
purposes of runahead execution. Therefore, the usefulness
of a runahead period can be increased by eliminating in-
structions that do not lead into the generation of L2 cache
misses during runahead mode.

One example of such useless instructions are floating-
point (FP) operate instructions, which do not contribute to
the address computation of load instructions. Thus, we pro-
pose that the FP unit be turned off during runahead mode
and FP operate instructions be dropped after being decoded.
With this optimization, the processor resources are spared
for more useful instructions that lead into the generation
of load/store addresses, which increases the likelihood of
generating an L2 miss during a runahead period. Further-
more, significant dynamic and static energy savings can be
enabled by not executing the energy-intensive FP instruc-
tions and powering down the FP unit during runahead mode.
On the other hand, turning off the FP unit during runahead
mode has one disadvantage that can reduce performance.
If a control-flow instruction that depends on the result of
an FP instruction is mispredicted during runahead mode,
the processor would have no way of recovering from that
misprediction if the FP unit is turned off, since the source
operand of the branch would not be computed. Neverthe-
less, our simulations show that turning off the FP unit is a
valuable optimization that both increases the performance

5

improvement of runahead execution (from 22.6% to 24.0%)
and reduces the extra instructions (from 26.5% to 25.5%).

5.2. Optimizing the Interaction Between Runa-
head Execution and the Hardware Prefetcher

One of the potential benefits of runahead execution is
that the hardware data prefetcher can be updated during
runahead mode. If the updates are accurate, the prefetcher
can generate prefetches earlier than it would in the baseline
processor. This can improve the timeliness of the accurate
prefetches. On the other hand, if the prefetches generated
by updates during runahead mode are not accurate, they
will waste memory bandwidth and may cause cache pol-
lution. Moreover, inaccurate hardware prefetcher requests
can cause resource contention for the more accurate runa-
head memory requests during runahead mode and thus re-
duce the effectiveness of runahead execution.

Runahead execution and hardware data prefetching were
shown to have synergistic behavior [2, 7]. We propose op-
timizing the prefetcher update policy in runahead mode to
increase the synergy between these two prefetching mech-
anisms. Our analysis shows that creating new hardware
prefetch streams is sometimes harmful in runahead mode,
since these streams contend with more accurate runahead
requests. Thus, not creating prefetch streams in runahead
mode increases the usefulness of runahead periods. This op-
timization increases the IPC improvement of runahead ex-
ecution (from 22.6% to 25.0%) and also reduces the extra
instructions (from 26.5% to 24.7%).

6. Putting It All Together

Figure 4 shows the increase in executed instructions and
IPC due to runahead execution when all the techniques pro-
posed in the previous two sections are incorporated into a
runahead processor. The effect of profiling-based useless
period elimination is examined separately, since it requires
modifications to the instruction set architecture (ISA).

Applying all the proposed techniques significantly re-
duces the average increase in executed instructions in a
runahead processor, from 26.5% to only 6.7% (6.2% with
profiling). The average IPC increase of a runahead proces-
sor which uses the proposed techniques is reduced slightly
from 22.6% to 22.0% (22.1% with profiling). Hence, a
runahead processor employing the proposed techniques is
much more efficient than a traditional runahead processor,
but it still increases performance almost as much as a tradi-
tional runahead processor does.

Figure 5 shows that the proposed techniques are effective
for a wide range of memory latencies. As memory latency
increases, both the IPC improvement and extra instructions
due to runahead execution increase. Hence, runahead ex-
ecution is more effective at longer memory latencies. For
almost all memory latencies, employing the proposed effi-
ciency techniques increases the average IPC improvement

on the floating-point (FP) benchmarks while only slightly
reducing the IPC improvement on the integer (INT) bench-
marks. For all memory latencies, employing the proposed
dynamic techniques significantly reduces the extra instruc-
tions.

7. Future Research Directions
We have described the major causes of inefficiency in

runahead execution and proposed simple and effective ways
of increasing the efficiency of a runahead processor. Or-
thogonal approaches can be developed to solve the same
problem, which, we believe, is an important research area
in runahead execution and memory latency tolerance tech-
niques in general. In particular, solutions to two important
problems in computer architecture can significantly increase
the efficiency of runahead execution: branch mispredictions
and dependent cache misses.

Since the processor relies on correct branch predictions
to stay on the correct program path during runahead mode,
the development of more accurate branch predictors will
increase both the efficiency and the performance benefits
of runahead execution. Irresolvable branch mispredictions
that are dependent on long-latency cache misses cause the
processor to stay on the wrong-path, which may not al-
ways provide useful prefetching benefits, until the end of
the runahead period. Reducing such branch mispredictions
with novel techniques is a promising area of future work.

Dependent long-latency cache misses reduce the useful-
ness of a runahead period because they cannot be paral-
lelized using runahead execution. Therefore, runahead exe-
cution is inefficient, and sometimes ineffective, for pointer-
chasing workloads where dependent load instructions are
common. In a recent paper [8], we showed that a simple
novel value prediction technique for pointer load instruc-
tions, called “address-value delta prediction,” significantly
increases the efficiency and performance of runahead exe-
cution by parallelizing dependent L2 cache misses. We be-
lieve techniques that enable the parallelization of dependent
cache misses is another promising area of future research in
runahead execution.

Our future research will also focus on refining the meth-
ods for increasing the usefulness of runahead execution pe-
riods. Combined compiler-microarchitecture mechanisms
can be very instrumental in eliminating useless runahead
instructions. Through simple modifications to the ISA, the
compiler can convey to the hardware which instructions are
important to execute or not execute during runahead mode.
Furthermore, the compiler may be able to increase the use-
fulness of runahead periods by trying to arrange code such
that independent L2 cache misses are clustered close to-
gether during program execution.

The efficiency of runahead execution can potentially be
increased by eliminating the re-execution of instructions ex-
ecuted in runahead mode via result reuse [9] or value predic-
tion [10]. However, even an ideal reuse mechanism does not

6

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120

In
cr

ea
se

 in
 E

xe
cu

te
d

In
st

ru
ct

io
ns

 (%
)

baseline runahead
efficient runahead (no profiling)
efficient runahead (with profiling)

235

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

mk

tw
olf

vo
rte

x
vp

r
am

mp
ap

plu ap
si art

eq
ua

ke

fac
ere

c

fm
a3

d
ga

lge
l
luc

as
mesa

mgri
d

six
tra

ck

sw
im
wup

wise

am
ea

n
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120

In
cr

ea
se

 in
 IP

C
 (%

)

baseline runahead
efficient runahead (no profiling)
efficient runahead (with profiling)

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

mk

tw
olf

vo
rte

x
vp

r
am

mp
ap

plu ap
si art

eq
ua

ke

fac
ere

c

fm
a3

d
ga

lge
l
luc

as
mesa

mgri
d

six
tra

ck

sw
im
wup

wise

hm
ea

n

Figure 4. Increase in executed instructions and IPC due to runahead execution after incorporating all the efficiency techniques.

Memory Latency in Cycles (Minimum)

0

5

10

15

20

25

30

35

40

45

50

55

60

In
cr

ea
se

 in
 E

xe
cu

te
d

In
st

ru
ct

io
ns

 (%
)

baseline runahead (FP)
efficient runahead (FP)
baseline runahead (INT)
efficient runahead (INT)

100 300 500 700 900
Memory Latency in Cycles (Minimum)

0

5

10

15

20

25

30

35

40

45

50

55

60

In
cr

ea
se

 in
 IP

C
 (%

)

baseline runahead (FP)
efficient runahead (FP)
baseline runahead (INT)
efficient runahead (INT)

100 300 500 700 900

Figure 5. Extra instructions and IPC increase with and without the efficiency techniques for five different memory latencies. Data
shown are averaged separately over integer (INT) and floating-point (FP) benchmarks.

significantly improve performance [9] and it likely has sig-
nificant hardware cost and complexity, which may offset the
energy reduction due to improved efficiency. Value predic-
tion may not significantly improve efficiency due to its low
accuracy [10]. Nevertheless, further research on eliminat-
ing the unnecessary re-execution of instructions may yield
low-cost mechanisms that can significantly improve runa-
head efficiency.

Finally, the scope of the efficient processing techniques
is not limited to only runahead execution. In general, the
proposed runahead uselessness prediction techniques are
techniques for predicting the available MLP at a given point
in a program. Therefore, the techniques are applicable to
other mechanisms that are designed to exploit MLP. We be-
lieve other methods of pre-execution that are targeted for
prefetching, such as helper threads [11, 12], can benefit
from the proposed efficiency techniques to eliminate inef-
ficient threads and useless speculative execution.

8. Related Work on Runahead Execution

As a promising technique to increase tolerance to main
memory latency, runahead execution has recently inspired

and attracted research from many other computer architects
from both the industry [3, 7] and the academia [10, 13, 14].
Architects from Sun Microsystems described that they are
implementing a version of runahead execution in their next-
generation microprocessor [15]. To our knowledge, none of
the previous work addressed the efficiency problem in runa-
head execution. We hereby provide a very brief overview of
related work in runahead execution.

Dundas and Mudge [1] first proposed runahead execu-
tion as a means to improve the performance of an in-order
scalar processor. We [2] proposed runahead execution to
increase the main memory latency tolerance of more ag-
gressive out-of-order superscalar processors. Chou et al. [3]
demonstrated that runahead execution is very effective in
improving memory-level parallelism in large-scale database
benchmarks because it prevents the instruction and schedul-
ing windows, along with serializing instructions from being
performance bottlenecks. Three recent papers [3, 10, 13]
proposed combining runahead execution with value predic-
tion and Zhou [14] proposed using an idle processor core to
perform runahead execution in a chip multiprocessor. The
efficiency mechanisms we propose in this article can be ap-

7

plied to these variants of runahead execution to improve
their power-efficiency.

9. Conclusion

In today’s power-constrained processor design environ-
ment, memory latency tolerance techniques need to be en-
ergy efficient. Inefficient techniques that provide good la-
tency tolerance can be unimplementable or very costly to
implement because they may require significant hardware
cost/complexity and energy cost. “Efficient runahead exe-
cution” has two major advantages. First, it does not require
large, complex, and power-hungry structures to be imple-
mented in the processor core. Instead, it utilizes the already-
existing processing structures to improve memory latency
tolerance. Second, with the simple efficiency techniques
described in this article, it requires only a small number
of extra instructions to be speculatively executed in order
to provide significant performance improvements. Hence,
“efficient runahead execution” provides a simple, energy-
efficient, and complexity-effective solution to the pressing
memory latency problem in high-performance processors.

Acknowledgments

We thank Mike Butler, Nhon Quach, Jared Stark, San-
thosh Srinath, and other members of the HPS research group
for their helpful comments on earlier drafts of this paper.
We gratefully acknowledge the generous support of the
Cockrell Foundation and Intel Corporation.

References
[1] James Dundas and Trevor Mudge. Improving data

cache performance by pre-executing instructions un-
der a cache miss. In Proceedings of the 1997 Interna-
tional Conference on Supercomputing, pages 68–75,
1997.

[2] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N.
Patt. Runahead execution: An alternative to very large
instruction windows for out-of-order processors. In
Proceedings of the 9th International Symposium on
High Performance Computer Architecture, pages 129–
140, 2003.

[3] Yuan Chou, Brian Fahs, and Santosh Abraham. Mi-
croarchitecture optimizations for exploiting memory-
level parallelism. In Proceedings of the 31st Interna-
tional Symposium on Computer Architecture, pages
76–87, 2004.

[4] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N.
Patt. Runahead execution: An effective alternative to
large instruction windows. IEEE Micro, 23(6):20–25,
Nov./Dec. 2003.

[5] Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Tech-
niques for efficient processing in runahead execu-
tion engines. In Proceedings of the 32nd International

Symposium on Computer Architecture, pages 370–
381, 2005.

[6] Andy Glew. MLP yes! ILP no! In ASPLOS Wild and
Crazy Idea Session ’98, October 1998.

[7] Sorin Iacobovici, Lawrence Spracklen, Sudarshan
Kadambi, Yuan Chou, and Santosh G. Abraham.
Effective stream-based and execution-based data
prefetching. In Proceedings of the 18th International
Conference on Supercomputing, pages 1–11, 2004.

[8] Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Address-
value delta (AVD) prediction: Increasing the effec-
tiveness of runahead execution by exploiting regular
memory allocation patterns. In Proceedings of the 38th
International Symposium on Microarchitecture, 2005.

[9] Onur Mutlu, Hyesoon Kim, Jared Stark, and Yale N.
Patt. On reusing the results of pre-executed instruc-
tions in a runahead execution processor. Computer Ar-
chitecture Letters, 4, January 2005.

[10] Nevin Kırman, Meyrem Kırman, Mainak Chaudhuri,
and José F. Martı́nez. Checkpointed early load retire-
ment. In Proceedings of the 11th International Sym-
posium on High Performance Computer Architecture,
pages 16–27, 2005.

[11] Robert S. Chappell, Jared Stark, Sangwook P. Kim,
Steven K. Reinhardt, and Yale N. Patt. Simultaneous
subordinate microthreading (SSMT). In Proceedings
of the 26th International Symposium on Computer Ar-
chitecture, pages 186–195, 1999.

[12] Jamison D. Collins, Dean M. Tullsen, Hong Wang,
and John P. Shen. Dynamic speculative precomputa-
tion. In Proceedings of the 34th International Sympo-
sium on Microarchitecture, 2001.

[13] Luis Ceze, Karin Strauss, James Tuck, Jose Renau,
and Josep Torrellas. CAVA: Hiding L2 misses with
checkpoint-assisted value prediction. Computer Archi-
tecture Letters, 3, December 2004.

[14] Huiyang Zhou. Dual-core execution: Building a
highly scalable single-thread instruction window. In
Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniques,
pages 231–242, 2005.

[15] Shailender Chaudhry, Paul Caprioli, Sherman Yip, and
Marc Tremblay. High-performance throughput com-
puting. IEEE Micro, 25(3):32–45, May 2005.

8

