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Background on Runahead Execution

A technique to obtain the memory-level parallelism benefits
of a large instruction window

When the oldest instruction is an L2 miss:

o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Instructions are speculatively pre-executed

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original L2 miss returns

o Checkpoint is restored and normal execution resumes
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Runahead Example

Small Window:

Load 1 Miss Load 2 Miss
Miss 1 Miss 2

Runahead:
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

Miss 1

Saved Cycles

Efficient Runahead Execution -—' ECE 4




The Problem

= A runahead processor pre-executes some instructions
speculatively

» Each pre-executed instruction consumes energy

= Runahead execution significantly increases the
number of executed instructions, sometimes
without providing significant performance
improvement
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The Problem (cont.)
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Eftticiency of Runahead Execution

% Increase in IPC

Efficiency =
% Increase in Executed Instructions

Goals:

o Reduce the number of executed instructions
without reducing the IPC improvement

o Increase the IPC improvement
without increasing the number of executed instructions
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Causes of Inetficiency

Short runahead periods
Overlapping runahead periods

Useless runahead periods

Efficient Runahead Execution \-'-( ECE




Short Runahead Periods

= Processor can initiate runahead mode due to an already in-flight L2
miss generated by

o the prefetcher, wrong-path, or a previous runahead period

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Miss

R

Miss 1

= Short periods
o are less likely to generate useful L2 misses
o have high overhead due to the flush penalty at runahead exit
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Eliminating Short Runahead Periods

Mechanism to eliminate short periods:
o Record the number of cycles C an L2-miss has been in flight

o If Cis greater than a threshold T for an L2 miss, disable entry
into runahead mode due to that miss

o T can be determined statically (at design time) or dynamically

T=400 for a minimum main memory latency of 500 cycles
works well
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Overlapping Runahead Periods

Two runahead periods that execute the same instructions

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Compute OVERLAP Bl OVERLAP | ]

MiSS 1 feafamae

Second period is inefficient

Efficient Runahead Execution \-'-( E CE 12




Overlapping Runahead Periods (cont.)

Overlapping periods are not necessarily useless

o The availability of a new data value can result in the
generation of useful L2 misses

But, this does not happen often enough

Mechanism to eliminate overlapping periods:

o Keep track of the number of pseudo-retired instructions R
during a runahead period

o Keep track of the number of fetched instructions N since the
exit from last runahead period

a If N < R, do not enter runahead mode
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Useless Runahead Periods

Periods that do not result in prefetches for normal mode

Load 1 Miss Load 1 Hit

Compute Runahead J

Miss 1

They exist due to the lack of memory-level parallelism
Mechanism to eliminate useless periods:
o Predict if a period will generate useful L2 misses

o Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

Useless period predictors are trained based on this estimation

Efficient Runahead Execution \-'-( E CE 14




Predicting Useless Runahead Periods

Prediction based on the past usefulness of runahead
periods caused by the same static load instruction
o A 2-bit state machine records the past usefulness of a load

Prediction based on too many INV loads

o If the fraction of INV loads in a runahead period is greater than T,
exit runahead mode

Sampling (phase) based prediction

o If last N runahead periods generated fewer than T L2 misses, do
not enter runahead for the next M runahead opportunities

Compile-time profile-based prediction

o If runahead modes caused by a load were not useful in the profiling
run, mark it as non-runahead load

Efficient Runahead Execution \I'-{ ECE 15




Talk Outline

Background on Runahead Execution

The Problem

Causes of Inefficiency and Eliminating Them
Evaluation

Performance Optimizations to Increase Efficiency
Combined Results

Conclusions

Efficient Runahead Execution \-'—( ECE

16



Baseline Processor

Execution-driven Alpha simulator

8-wide superscalar processor

128-entry instruction window, 20-stage pipeline

64 KB, 4-way, 2-cycle L1 data and instruction caches
1 MB, 32-way, 10-cycle unified L2 cache

500-cycle minimum main memory latency
Aggressive stream-based prefetcher

32 DRAM banks, 32-byte wide processor-memory bus (4:1
frequency ratio), 128 outstanding misses

o Detailed memory model
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Impact on Etticiency
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Performance Optimizations tor Etficiency

= Both efficiency AND performance can be increased by
increasing the usefulness of runahead periods

= Three optimizations:
a Turning off the Floating Point Unit (FPU) in runahead mode

o Optimizing the update policy of the hardware prefetcher
(HWP) in runahead mode

o Early wake-up of INV instructions (in paper)
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Turning Off the FPU in Runahead Mode

FP instructions do not contribute to the generation of load
addresses

FP instructions can be dropped after decode

o Spares processor resources for more useful instructions
o Increases performance by enabling faster progress

o Enables dynamic/static energy savings

o Results in an unresolvable branch misprediction if a
mispredicted branch depends on an FP operation (rare)

Overall — increases IPC and reduces executed instructions
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HWP Update Policy in Runahead Mode

Aggressive hardware prefetching in runahead mode may
hurt performance, if the prefetcher accuracy is low

Runahead requests more accurate than prefetcher requests
Three policies:

o Do not update the prefetcher state

o Update the prefetcher state just like in normal mode

o Only train existing streams, but do not create new streams

Runahead mode improves the timeliness of the prefetcher
in many benchmarks

Only training the existing streams is the best policy
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Overall Impact on Executed Instructions
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Overall Impact on IPC ~
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Conclusions

Three major causes of inefficiency in runahead execution:
short, overiapping, and useless runahead periods

Simple efficiency techniques can effectively reduce the
three causes of inefficiency

Simple performance optimizations can increase efficiency
by increasing the usefulness of runahead periods

Proposed techniques:

o reduce the extra instructions from 26.5% to 6.2%,
without significantly affecting performance

o are effective for a variety of memory latencies ranging from
100 to 900 cycles
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Memory Latency (Executed Instructions)
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Memory Latency (IPC Delta)
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Cache Sizes (Executed Instructions)
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Cache Sizes (IPC Delta)
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INT (Executed Instructions)
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INT (IPC Delta)
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FP (Executed Instructions)
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FP (IPC Delta)
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FHarly INV Wake-up

Keep track of INV status of an instruction in the scheduler.
Scheduler wakes up the instruction if any source is INV.

+ Enables faster progress during runahead mode by removing
the useless INV instructions faster.

- Increases the nhumber of executed instructions.
- Increases the complexity of the scheduling logic.

Not worth implementing due to small IPC gain
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