Techniques tor Etficient Processing
in Runahead Execution Engines

Onur Mutlu
Hyesoon Kim
Yale N. Patt

[SIE=ECE]

Talk Outline

Background on Runahead Execution
The Problem
Causes of Inefficiency and Eliminating Them

Evaluation
Performance Optimizations to Increase Efficiency

Combined Results
Conclusions

Efficient Runahead Execution \I'-{ ECE

Background on Runahead Execution

A technique to obtain the memory-level parallelism benefits
of a large instruction window

When the oldest instruction is an L2 miss:

o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Instructions are speculatively pre-executed

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original L2 miss returns

o Checkpoint is restored and normal execution resumes

Efficient Runahead Execution \I'-{ ECE 3

Runahead Example

Small Window:

Load 1 Miss Load 2 Miss
Miss 1 Miss 2

Runahead:
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

Miss 1

Saved Cycles

Efficient Runahead Execution -—' ECE 4

The Problem

= A runahead processor pre-executes some instructions
speculatively

» Each pre-executed instruction consumes energy

= Runahead execution significantly increases the
number of executed instructions, sometimes
without providing significant performance
improvement

Efficient Runahead Execution -—' ECE

The Problem (cont.)

A

110%

100%

90%

80%

70%

60%

50%

409

309

209

109

0%

| 2350,

!

M % Increase in IPC

B % Increase in Executed Instructions
6%
| 26.5%
N c o 0 o HBiys/x = X 5 o 5 g \E T T VW ®©® T = o
Q o & © 7§ 2l9 /e © ¥ 2 £ 3 4\c m L o o = £
N /8 o o O ISI Y s © - < T 2 O 0 O = >
8 /5 2 /= % 8 E & E S 2 E E @ <
o

equ

facerec

sixtrack

wupwi

Efficient Runahead Execution

Eftticiency of Runahead Execution

% Increase in IPC

Efficiency =
% Increase in Executed Instructions

Goals:

o Reduce the number of executed instructions
without reducing the IPC improvement

o Increase the IPC improvement
without increasing the number of executed instructions

Efficient Runahead Execution \I'-{ ECE

Talk Outline

Background on Runahead Execution

The Problem

Causes of Inefficiency and Eliminating Them
Evaluation

Performance Optimizations to Increase Efficiency
Combined Results

Conclusions

Efficient Runahead Execution \I'-{ ECE

Causes of Inetficiency

Short runahead periods
Overlapping runahead periods

Useless runahead periods

Efficient Runahead Execution \-'-(ECE

Short Runahead Periods

= Processor can initiate runahead mode due to an already in-flight L2
miss generated by

o the prefetcher, wrong-path, or a previous runahead period

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Miss

R

Miss 1

= Short periods
o are less likely to generate useful L2 misses
o have high overhead due to the flush penalty at runahead exit

Efficient Runahead Execution -—' ECE

10

Eliminating Short Runahead Periods

Mechanism to eliminate short periods:
o Record the number of cycles C an L2-miss has been in flight

o If Cis greater than a threshold T for an L2 miss, disable entry
into runahead mode due to that miss

o T can be determined statically (at design time) or dynamically

T=400 for a minimum main memory latency of 500 cycles
works well

Efficient Runahead Execution \-'—(ECE 11

Overlapping Runahead Periods

Two runahead periods that execute the same instructions

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Compute OVERLAP Bl OVERLAP |]

MiSS 1 feafamae

Second period is inefficient

Efficient Runahead Execution \-'-(E CE 12

Overlapping Runahead Periods (cont.)

Overlapping periods are not necessarily useless

o The availability of a new data value can result in the
generation of useful L2 misses

But, this does not happen often enough

Mechanism to eliminate overlapping periods:

o Keep track of the number of pseudo-retired instructions R
during a runahead period

o Keep track of the number of fetched instructions N since the
exit from last runahead period

a If N < R, do not enter runahead mode

Efficient Runahead Execution \-'—(ECE 13

Useless Runahead Periods

Periods that do not result in prefetches for normal mode

Load 1 Miss Load 1 Hit

Compute Runahead J

Miss 1

They exist due to the lack of memory-level parallelism
Mechanism to eliminate useless periods:
o Predict if a period will generate useful L2 misses

o Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

Useless period predictors are trained based on this estimation

Efficient Runahead Execution \-'-(E CE 14

Predicting Useless Runahead Periods

Prediction based on the past usefulness of runahead
periods caused by the same static load instruction
o A 2-bit state machine records the past usefulness of a load

Prediction based on too many INV loads

o If the fraction of INV loads in a runahead period is greater than T,
exit runahead mode

Sampling (phase) based prediction

o If last N runahead periods generated fewer than T L2 misses, do
not enter runahead for the next M runahead opportunities

Compile-time profile-based prediction

o If runahead modes caused by a load were not useful in the profiling
run, mark it as non-runahead load

Efficient Runahead Execution \I'-{ ECE 15

Talk Outline

Background on Runahead Execution

The Problem

Causes of Inefficiency and Eliminating Them
Evaluation

Performance Optimizations to Increase Efficiency
Combined Results

Conclusions

Efficient Runahead Execution \-'—(ECE

16

Baseline Processor

Execution-driven Alpha simulator

8-wide superscalar processor

128-entry instruction window, 20-stage pipeline

64 KB, 4-way, 2-cycle L1 data and instruction caches
1 MB, 32-way, 10-cycle unified L2 cache

500-cycle minimum main memory latency
Aggressive stream-based prefetcher

32 DRAM banks, 32-byte wide processor-memory bus (4:1
frequency ratio), 128 outstanding misses

o Detailed memory model

Efficient Runahead Execution \I'-{ ECE 17

Impact on Etticiency

Increase Over Baseline OO0

35%

30%

25% -

20% -

15% -

10% -

5% A

0% -

Efficient Runahead Execution

M baseline runahead

O short
M overlapping

O useless

B short+overlapping+useless

26.899226.996.8926.5%

15.3% 14.9%

6.7%

22.6%

Executed Instructions

[SIES=ECE

SE =

IPC

18

Performance Optimizations tor Etficiency

= Both efficiency AND performance can be increased by
increasing the usefulness of runahead periods

= Three optimizations:
a Turning off the Floating Point Unit (FPU) in runahead mode

o Optimizing the update policy of the hardware prefetcher
(HWP) in runahead mode

o Early wake-up of INV instructions (in paper)

Efficient Runahead Execution ‘T ECE 19

Turning Off the FPU in Runahead Mode

FP instructions do not contribute to the generation of load
addresses

FP instructions can be dropped after decode

o Spares processor resources for more useful instructions
o Increases performance by enabling faster progress

o Enables dynamic/static energy savings

o Results in an unresolvable branch misprediction if a
mispredicted branch depends on an FP operation (rare)

Overall — increases IPC and reduces executed instructions

Efficient Runahead Execution \-'-(ECE 20

HWP Update Policy in Runahead Mode

Aggressive hardware prefetching in runahead mode may
hurt performance, if the prefetcher accuracy is low

Runahead requests more accurate than prefetcher requests
Three policies:

o Do not update the prefetcher state

o Update the prefetcher state just like in normal mode

o Only train existing streams, but do not create new streams

Runahead mode improves the timeliness of the prefetcher
in many benchmarks

Only training the existing streams is the best policy

Efficient Runahead Execution \-'-(E CE 21

Talk Outline

Background on Runahead Execution

The Problem

Causes of Inefficiency and Eliminating Them
Evaluation

Performance Optimizations to Increase Efficiency
Combined Results

Conclusions

Efficient Runahead Execution \-'-(ECE

22

Overall Impact on Executed Instructions

232%

110%

0) .
100% M baseline runahead

90% M all techniques

80% A

70% -

60% -

50% -

40% -

Increase in Executed Instructions

30% -

26.5%

20% -

10% -

v F 6.2%
0% -
x
' [}
5}
>

bzip2
crafty
eon
gap

gcc
gzip
mcf
parser
perlbmk
twolf
ammp
applu
apsi

art
equake
facerec
fma3d
galgel
lucas
mesa
mgrid
sixtrack
swim
wupwise
AVG

Efficient Runahead Execution @ 23

Overall Impact on IPC ~

116%

110%

100% :
° M baseline runahead

90% M all techniques

80% \

70% -

60% -

50% -

Increase in IPC

40%

30% 27N\

6%
20% 2P 1%

10%

bzip2
crafty
eon
gap
gcc

gzi

parse
perlbmk
twolf
vortex
ammp

aan

apsi
art
equake
facerec
fma3d
galgel
lucas
mesa
mgrid
sixtrack
swim
AVG

wupwise

Efficient Runahead Execution \-‘—{ECE 24

Conclusions

Three major causes of inefficiency in runahead execution:
short, overiapping, and useless runahead periods

Simple efficiency techniques can effectively reduce the
three causes of inefficiency

Simple performance optimizations can increase efficiency
by increasing the usefulness of runahead periods

Proposed techniques:

o reduce the extra instructions from 26.5% to 6.2%,
without significantly affecting performance

o are effective for a variety of memory latencies ranging from
100 to 900 cycles

Efficient Runahead Execution \-'-(ECE 25

Backup Slides

UOTINDOXH Peayeuny JUIDTIH

HOH RIS

LC

G'g

IPC
O O B P N N W O w A~ A~ O
(@) a1 o a1 (@) a1 o a1 o a1 o
| | | | | | | |
bzip2 E—
4
crafty [EE———
4|
eon |
4|
gap EEEEEEEEE————
4|
cc I
9] OENED
gzip (E— ® S8 o
S £
ol — T80
| ' “ 83T
D
parser N—— S8 &
perbmk ®
) =

4|
wupwise | —
AVG —

DdI durseg

Memory Latency (Executed Instructions)

50%

45% -

40% _
M baseline runahead

0w
&)
X

M all techniques

30%

25%

20%

15% -

Increase in Executed Instructions

10% -

5% -

0% -
100 300 500 700 900

Memory Latency

Efficient Runahead Execution \I'-{ ECE 28

Memory Latency (IPC Delta)

50%

45% A

40%

H baseline runahead

3% +—— Mall techniques

30% A

25% A

Increase in IPC

20% A

15%

10% -

5%

0% -

100 300 500 700 900

Memory Latency

Efficient Runahead Execution \I'—{ ECE 29

Cache Sizes (Executed Instructions)

45%

40% -

35%

M baseline runahead

30% M all techniques

25%

20%

15%

Increase in Executed Instructions

10%

5%

0%
512 KB 1 MB 2 MB 4 MB

Efficient Runahead Execution \I'-{ ECE 30

Cache Sizes (IPC Delta)

45%

40%

0
35% M baseline runahead

30% M all techniques

25% -

20% A

Increase in IPC

15% A

10% A

5% A

0% -
512 KB 1 MB 2 MB 4 MB

Efficient Runahead Execution -—' ECE

INT (Executed Instructions)

40%

35%

30%

25%

20%

15%

Increase in Executed Instructions

10%

5%

0%

M runahead (INT)

M all techniques (INT)

100

Efficient Runahead Execution

300

500

Memory Latency

[SIES=ECE

700

900

32

INT (IPC Delta)

40%

35%

30%

25%

20%

Increase in IPC

15%

10%

5%

0%

M runahead (INT)

M all techniques (INT)

100

Efficient Runahead Execution

300 500 700 900
Memory Latency

EV=ECE

33

FP (Executed Instructions)

65%
60% -

55%

M runahead (FP)
50% M all techniques (FP)

45%
40% -
35%

30%

25%

20%

Increase in Executed Instructions

15% -
10%

5% -

0% -

100 300 500 700 900
Memory Latency

Efficient Runahead Execution \I'-{ ECE 34

FP (IPC Delta)

65%
60%
0,
25% M runahead (FP)
50% M all techniques (FP)

45%

40%
35% -

30% -

Increase in IPC

25% -

20%

15%

10%

5%

0% -

100 300 500 700 900
Memory Latency

Efficient Runahead Execution \I'—{ E CE 35

FHarly INV Wake-up

Keep track of INV status of an instruction in the scheduler.
Scheduler wakes up the instruction if any source is INV.

+ Enables faster progress during runahead mode by removing
the useless INV instructions faster.

- Increases the nhumber of executed instructions.
- Increases the complexity of the scheduling logic.

Not worth implementing due to small IPC gain

Efficient Runahead Execution \-'-(E CE 36

