M oder nizing the Computer Architecture Curriculum at Carnegie Méellon:
A Multi-Core-Systems Centered Approach

Onur Mutlu (onur@cmu.edu)
Carnegie Mellon University
http://www.ece.cmu.edu/ ~omutlu

The Setting: Computer science and engineering is undergoing a revalut@omputationally very powerfyparallel
computers, which used to be the luxury of the government and billiofiadaorporations, are already in the laptops and
desktops of millions of ordinary users. Computer archii@ee building existing computer chips withultiple processing
cores inside them, as opposed to with solelgingle processing core, which used to be the traditional way of designing
mainstream computer chips until around 2004. Essentalprocessing core is analogous to the brain of the computing
system: the more cores there are, the more tasks the systepeidarm in parallel. Chips with multiple processing cores
are commonly callednulti-core chips. Existing Intel and AMD chips in the market already have 4espiiBM and Sun
Microsystems have chips with respectively 9 and 16 cores)@tel has demonstrated prototypes of an 80-core chip. Both
academic and industrial researchers, including us at @améellon, are envisioning and charting out designs of 1000
core chips in the 10-20-year timeframe [1, 2]. Soon, ungtented amounts of computing power will be in the hands of
almost every single computer user and programmer. And,thetprogrammers and the users need to be aware of how to
harness this power.

To aid understanding, Figure 1 shows an example single-system and an example multi-core system with nine
processing cores. Major differences between the two system highlighted in terms of designers’, programmers’ and
users’ perspectives.

Multi-Core Chip ‘ Shared Memory ‘
) ¥
ingle— i Shared Shared
Single—Core ChlP g NGLE-CORE SYSTEM «t|vemory @ Shared Cache (o wemory|™ MULTI-CORE SYSTEM
Control Control
* Standard until ~2004 T T * Standard from 2004
* Less computation power * Enormous computation power
. * ;
; Sxecutes only oneprogram atatime |, G| * Much harder to wite sofwareTors oo
imple to write software for :
Cache P 3 ;:r? ;”:;- 3 * Much harder to design (due to shared resources)
* Hardware and software design Q b @ g * Much harder to control (due to shared resources)
T assumed single—core systems for = =3 =3 =
" at least five decades @ 9 9 o * Requires fundamentally different
emory 3 & = 3 ways of designing hardware and
Cliiitel 3 o @ 2 writing software
T * Requires a strong understanding of both
x T the single-core system and interconnection of
Memory| shared Shored multiple cores together
Lt [Memory [+ Shared Cache [Memory 4
Control Control

v v
Shared Memory

Figure 1. lllustration of the difference between tradition al single-core and modern multi-core systems. The figure sho ws a nine-core multi-core

system on the left; future systems are projected to have hund reds and thousands of processing cores.

The Problem: Computer architecture is the science and art of understgndiesigning, and interconnecting hardware
components and designing the hardware/software intesiacie that the resulting computer chip/system satisfiesfgpec
performance, power consumption, energy-efficiency, aliaxiéty requirements. Traditionallygomputer architecture ed-
ucation and practice have largely assumed that there is only one single processing core on a chip. The assumption stems
from the fact that software programs that execute on thewse weresequential, i.e. had single thread of execution.
However, with multi-core chips, this assumption is viothtdo obtain satisfactory and scalable performance frontimul
core chips, not only should the chip/system be architeateh Scratch with keeping the parallel execution of multiple
programs in mind, but also software should be re-desigrad fcratch to use multiple cores. This changes the way in
which fundamental computer architecture concepts shautidught of and taught, as well as the way in which fundamen-
tal programming and software design concepts are thougimiataught. Literally every aspect of computer architectur
design and thinking changes with the existence of multiples instead of a single one (Figure 1 provides a glimpse of
such changes)if we would like future generations to truly understand how current and future computers work and if we
would like future hardware/software designers to push the boundaries of hardware/software design, we, as educators, need

to make multi-core architectures a central part of the computer architecture and systems software curriculum. But, is our
computer architecture curriculum ready to prepare theestisdadequately to understand, design, and program nouéi-c
systems?

Existing Computer Architecture Curriculum at Carnegie Mellon: Current major computer architecture courses (18-
447, the undergraduate course, and 18-741, the advancedadgacourse) in the ECE Department at Carnegie Mellon
cover almost exclusively single-core architectures. Mudicessors (in the traditional sense, where single-caregssors
are simply connected instead of placing multiple cores ap)dre very briefly covered in one lecture in the graduate
course, but not in enough detail and emphasis to give sta@esttong understanding of existing multi-core systemsnEv
the parallel computer architecture course, 18-742, whiah last taught in Spring 2006, focuses on traditionaltiple
single-core chips instead ofmulti-core chips, which are fundamentally different from each other [1, 4F guch, existing
core courses at Carnegie Mellon do not adequately prepadtersts for industrial or research jobs in which they will @av
to design the hardware or software for multi-core chips.

Our Goals: Carnegie Mellon has traditionally been a powerhouse in agar@rchitecture education and research in the
world. Our goal is to re-design the computer architectureiculum such that we adapt our curriculum to the multi-core
revolution and continue to keep our edge in the forefrontoohputer architecture education and research by providieg t
necessary background and skills for students to desigmamadate multi-core systems. To achieve this goal, thisgsap
aims to accomplish the following synergistic sub-goals:

1. One of our major goals is tiee-design the existing fundamental computer architecture cour ses such that their
focus is on the design of multi-core systems rather thaniesiogre systems. The focus will initially be on graduateele
courses (18-741 and 18-742), but eventually (not as pahisfaroposal) the undergraduate-level computer architect
course will be re-designed as well (18-447). The major thefnthe re-design, which is elaborated below, is to start
the course with the assumption that existing computers atd-oore computers and to teach all fundamental computer
architecture concepts (even those related to single-gaterss) within the context of a multi-core system. We believ
this re-design of fundamental courses will adequately gnepur graduates to jobs in industry as well as basic ras@arc
computer architecture.

2. The second major goal is tievelop a focused graduate-level course on the hardwar e/softwar e design of multi-
core systems. The purpose is twofolds. First, to teach the Ph.D., masterd motivated undergraduate students the
fundamental challenges and research problems in desigmairttyvare and software for multi-core systems, and the basic
solutions to them as we know now. Second, to challenge thikests to develop out-of-the-box thinking and solutions to
the described problems via a focused research project wiestudents will work in groups. We believe such a new course
will prepare our students to do advanced research in moifg-systems related topics in hardware as well as software.

3. The final major goal is tdevelop synergistic activitiesto foster broader multi-core education to enable Carnegie
Mellon to be a leader in “mainstream parallel computing.”isTtonsists of two components. First, we will work with
other faculty members to incorporate concepts of multe@gystems into related courses. The software stack thabruns
hardware is very much affected by the movement of hardwam fingle-core to multi-core and therefore needs to be
re-designed and re-thought. Operating systems, compilees interfaces, and algorithms are all affected by thdimul
core revolution. Incorporating multi-core concepts intsaourses will enable our students to stay up-to-date witreat
technology. We will work with faculty members teaching the&surses to devise a comprehensive plan for incorporating
multi-core revolution and thinking into the courses in agietent manner. Second, we will educate the broader Carnegi
Mellon community by giving accessible seminars within thévarsity about the potential and caveats of multi-coreéesys
as well as inviting prominent speakers from industry to giveilar seminars. The widespread availability of very loast
and very powerful parallel computers can enable sophteticases of technology in other fields than engineering, asch
fine arts, motion arts, natural sciences, business admaititst, and social sciences. Our broader education wililned at
enabling professionals and students in these fields to nhakeetst use of multi-core computers for their purposes witho
requiring them to know about the underlying technical detai

Teaching Philosophy (as related to this proposal): A cutting-edge school needs to educate its students arfdrstaf
cutting-edge concepts. There are two aspects to this edocéirst, the fundamental concepts need to be taughtgiron
so that students can acquire the necessary skills to thohdpindently without being restricted to the state-ofdhe-
Second, the state-of-the-art in a field needs to be woveltitigiio the teaching of the fundamental concepts such that
students acquire a strong perspective of the existing appes to fundamental problems and develop the ability toauep
cutting-edge concepts. These two aspects can be seen asticayfbut they do not need to be. In my teaching, my goal
is to hammer home the fundamentals while providing the stisdihe necessary contemporary perspective of cutting-edg
practice and research. As a concrete exangaehing is a fundamental concept in computer architecture that bas b
proven to be useful over 50 years of research and practicewogtlall systems built since the early 1980s included the
concept of caching by implementing hardware-based cachiesprove system performance (as demonstrated pictorially
in the single-core system depicted in Figure 1). Almost athputer architecture courses in the country teach caching
within the context of a single-core system. However, thalamental concept of caching requires a very different way of

thinking if we consider a multi-core system instead of a lEngpre system. In a multi-core system, multiple processor
share the hardware-based cache, which fundamentally ebahg way caching is designed, implemented, and evaluated
to achieve high system performance. Figure 1 pictorialigwahthe differences between a shared cache in a multi-core
system and a cache in a single core system: the cache in thiecond system is distributed into multiple pieces, and
each piece can be accessed by each core via a network of Wwirfagt, even the definition of “optimal caching” changes
when we move to a multi-core system from a single-core sy$&mf the students are taught the fundamental concept
of caching from a single-core perspective, they will not lbepared for the reality of multi-core systems, which is the
state-of-the-art in computing. For this very reason, mghésy philosophy is to combine the state-of-the-art pcactind
research tightly into the fundamental concepts such thigesits are prepared for making a difference in both realdvor
designs and cutting-edge research.

In the broader perspective, | see a teacher as an educatoniyoin the classroom but also in everyday life. The
mission of an educator should be to lay out the concepts aslglas possible such that non-experts in a field can make
use of the provided information. Computer architecture mmudti-core computing are areas that affect every member of
our university community, directly or indirectly. Eduaadi clearly our community members on what they can accomplish
with multi-core computing at a level they can empathize wdthn important teaching responsibility that | aim to undlegt
within the scope of this proposal.

Activities to Meet the Educational Goals: As outlined above, this proposal aims to achieve three mejacational
goals. Hereby we briefly describe the concrete steps we kirgtand we will take to achieve each of the goals.

I. Re-design of the Advanced Computer Architecture course (18-741): The author is currently teaching 18-741 (in Spring
2009). During the course of teaching, each lecture is bedsigded from scratch such that it meets the following deter

1. The lecture briefly introduces the fundamental concejpigdgught (e.g., caching, as described above) as it refates
single-core architectures.

2. The lecture describes how the fundamental concept hasyedawithin the context of multi-core architectures.
Depending on the concept, this is where a significant podfdhe lecture is spent.

3. The lecture describes open research and implementdiadiecges related to both single-core and multi-core dspec
of the concept.

Structuring each lecture as described allows us to teaththefundamental concepts as well as their multi-core aspec
concisely. Homeworks, programming assignments, exaioimatn the course are also accordingly re-designed to break
the assumption of single-core systems that used to be priesthe course. 18-741 also includes a major design praject i
which students, in groups of two, perform a research prajeatcomputer architecture topic. The project topics aradpei
re-designed such that they are all multi-core orientedadm, thirteen out of the sixteen project groups are curyetting
projects that are very tightly related to multi-core syséen®ur hope is that focusing on multi-core systems in 18-741
will enable graduate students to 1) quickly jump into cugtedge research in the field or 2) quickly get used to designin
software and hardware for multi-core systems upon grasluatiithout going the extra step to learn about multi-core
systems on their own (or via other means).

I1. Re-design of the Multiprocessor Architecture course (18-742): This course was a course focused on designing mul-
tiprocessor architectures by connecting single-coresctugether. With the arrival of multi-core chips, this wayimter-
connecting single-core systems to form a multiprocessoo i®nger the mainstream way of building a parallel computer
Having multiple cores on the same chip enables many new @atilons and software/hardware opportunities (e.g. fast
communication between cores, on-chip networks, fast sdimepof tasks) that is not possible in traditional multipessor
systems. However, when 18-742 was taught last time, maoitg-systems were covered in only two lectures toward the end
of the semester. Our goal is to re-design 18-742 such thasitraes multiple cores are on the same chip. To accomplish
this, we aim to re-design each lecture such that:

1. the concepts are first introduced within the context of &imare system with an on-chip interconnection network.

2. the advantages/disadvantages of a multi-core systetaddycdescribed in comparison to a traditional singleecor
based multiprocessor system.

3. research and implementation challenges in buildingabbahardware for multi-core systems are outlined.

The homeworks, programming assignments, and examinatidhalso be re-designed with a fundamental emphasis
on multi-core systems. We would like to overhaul the redearoject in this course, which assumed extensions to tra-
ditional multiprocessors and simulation-based evalnatibsuch enhancements. The focus of the project will beeghift
to 1) enhancing multi-core architectures in which studevilispropose changes to the state-of-the-art, 2) evalgatire
enhancements using hardware-based prototyping of nari-architectures, especially the hardware-based magdefin
shared caches and on-chip multi-core interconnectionar&sy The former will enable the students to work on state-of
the-art and the latter will lead to more accurate evaluatsuilts.

I11. Development of a focused graduate-level course on hardware/software (co-)design of multi-core systems. Multi-
core revolution has enabled the possibility of optimizihg tomputing system hardware and software at the same time
because neither traditional single-core hardware noitioadl single-core software can work in a multi-core coite
Therefore, a major opportunity exists to re-think the fundatals of computing such that hardware and software are co-
designed in a general purpose system to enable higher penige [6]. In fact, as many researchers have noted [2, 6],
traditional solutions that optimize only the software olyathe hardware can no longer deliver large benefits in comgut
performance and efficiency. The previous courses descebede are focused mainly on the hardware architecture of
multi-core systems. Extending them to include softwarenfuiti-core systems would stretch the material too much
and will likely make each course shallow. To provide a deapaterstanding of both hardware and software issues in
multi-core systems to the students, we are planning to dpv&lnext-level course that is solely focused on multi-core
systems, assuming that the student has taken both 18-7418Rd2. The course will take a strong interdisciplinary
approach: it will focus on the interactions between sofenand hardware in especially the memory system and on-chip
interconnection networks of multi-core systems in eactutec The purpose is not to develop a yet-another seminaseou
there will be regular lectures that discuss both recentarebeand existing implementations, and how they can be adapt
to a hardware/software co-design. Students will proposiepanform interdisciplinary projects involving changedtuth
hardware and software. The end goal is to produce versatiléogused computer architecture PhD students who can think
out of the box and are capable in advancing the state-oéithley enabling cooperation between hardware and software.

IV. Synergistic activities for university-wide multi-core education and awareness:. These activities are described in detail
above. We believe incorporating multi-core concepts t@iotourses and educating the university community on multi-
core are longer-term activities we will start within the text of this proposal, but they will last for years. The authas
already started some of these activities: he has been lotdinversations with faculty members and has given an ECE
Seminar on one possible security problem that arises wétlattival of multi-core systems [3].

Expected Outcomes: The longer-term (4+ years) outcomes this proposal is irgdrd serve are 1) the establishment
Carnegie Mellon as a major center in parallel computing ation and research and 2) the attraction and formation gélar
industry-supported parallel computing education/rageaenters, similar to the Universal Parallel ComputingeResh
Centers formed at UC-Berkeley and University of lllinois Bljcrosoft and Intel, and the Multi-Core Center at UPC-
Barcelona, supported by Microsoft. The medium-term (1-2arg) outcomes are 1) the education of students that are
highly-seeked for employment in parallel computing, 2) pineduction of cutting-edge and top-quality research intimul
core systems, 3) the enabling of effective use of multi-tecanology in other departments and on campus. The shant-te
and immediate outcomes are 1) a revised and modernized ¢engrghitecture curriculum that is adapted to trends in
industry and technology and 2) attraction of high-qualitydents who are interested in making a difference in pdralle
computing hardware/software.

Evaluation: The ultimate evaluation of the proposed activities will @from the success of students who are educated
with the revised curriculum. Measuring this success is g@mm process, which cannot be evaluated within the timeeli
of this proposal. Instead, we intend to collectimmediatslfeck from faculty, students, and industrial partnersvatuate
our success. In particular, we will use the perceived amofitearning (as described by students and faculty) and the
perceived level of competence (as described by industidihprs and colleagues who recruit our graduates) in roafg-
systems as measures for evaluation. In addition, we willsmesthe quality and number of published research artibbs t
stemmed from the revised curriculum (and course projestg)raeasure of evaluation of the success of the program.

Timeline: Figure 2 shows the timeline of major milestones. Activittedored in green have already been started.

‘Spring 2009 Summer 2009) Fall 2009
Jan Feb Mar Apr :Jun Jul . Sep
Re-design of 18-741 :

mm

Evaluation of 18-741 lectures and projects
Adjustments to 18-741 re—design
Re—-design of 18-742
Design of hardware/software multi—core course
Adjustment of other courses (w/ other faculty)
Accessible seminars on multi-core systems

Figure 2. Major milestones and expected completion dates
References
[1] S. Borkar. Thousand core chips: A technology perspectivDesign Automation Conference, 2007.

[2] W. W. Hwu et al. Implicitly parallel programming modelsrfthousad-core microprocessors. Design Automation Conference, 2007.

[3] O. Mutlu. Preventing Memory Performance Attacks in Nk@bre Systems. CMU ECE Seminar, Feb. 2009.

[4] O. Mutlu and T. Moscibroda. Parallelism-aware batchestiling: Enhancing both performance and fairness of sHaRA4M systems. Iri85th
International Symposium on Computer Architecture, 2008.

[5] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A cas® MLP-aware cache replacement.38rd International Symposium on Computer
Architecture, 2006.

[6] B. Smith.Reinventing Computing. Microsoft Technical Fellow. Keynote at the 2006 Interoatil Supercomputing Conference.

