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Abstract

High-performance processors employ aggressive specu-
lation and prefetching techniques to increase performance.
Speculative memory references caused by these techniques
sometimes bring data into the caches that are not needed by
correct execution. This paper proposes the use of the first-
level caches as filters that predict the usefulness of spec-
ulative memory references. With the proposed technique,
speculative memory references bring data only into the first-
level caches rather than all levels in the cache hierarchy.
The processor monitors the use of the cache blocks in the
first-level caches and decides which blocks to keep in the
cache hierarchy based on the usefulness of cache blocks.
It is shown that a simple implementation of this technique
usually outperforms inclusive and exclusive baseline cache
hierarchies commonly used by today’s processors and re-
sults in IPC performance improvements of up to 9.2% on
the SPEC2000 integer benchmarks.

1. Introduction

Branch prediction and prefetching are two of the most
effective techniques used by processors to achieve high per-
formance. When accurate, these techniques improve per-
formance significantly. However, incorrect branch predic-
tions and inaccurate prefetch requests result in memory ref-
erences that bring data into the caches that are not needed
by correct-path execution. We name these references “use-
less speculative memory references.” Useless speculative
memory references may be detrimental to processor perfor-
mance in two major ways: they may cause cache pollution
by evicting cache blocks that will be used by correct-path
execution and they may consume bandwidth and resources
that are needed by correct-path memory references.

In this paper, we show that the dominant negative effect
of speculative memory references is cache pollution, in par-

ticular second-level cache pollution. Based on this obser-
vation and an analysis of the behavior of speculative mem-
ory references, we propose a simple, novel cache filtering
technique to reduce the second-level cache pollution caused
by useless speculative memory references. We evaluate the
performance of the proposed mechanism on several aggres-
sive machine models and show that it usually outperforms
the baseline cache hierarchies commonly used by today’s
processors which do not employ filtering.

2. Motivation

Useless speculative memory references are detrimental
to processor performance because they cause cache pollu-
tion and consume bandwidth and resources. In this section
we quantify the performance impact of cache pollution as
well as unnecessary bandwidth and resource usage of spec-
ulative memory references. The baseline processor we use
for the experiments in this section uses an aggressive branch
predictor and an aggressive stream-based prefetcher1.

To quantify the performance impact of cache pollution
and bandwidth and resource usage caused by speculative
memory references, we simulate three idealized processor
models and compare the performance of these models to
that of the baseline processor. The first idealized model is
a processor in which speculative memory references do not
cause any pollution in the first-level (L1) caches. In the
second model, speculative memory references do not cause
pollution in the second-level (L2) cache2. In both of these
models, the bandwidth and resources used by speculative
memory references are realistically modeled. In the third
model, speculative memory references never get in the way
of non-speculative references by consuming bandwidth or

1The baseline processor is described in Section 5.
2To eliminate pollution in both of these models, speculative memory

references resulting from memory accesses on the wrong path as well as
prefetch requests, are fetched into a separate idealized buffer and moved
into the caches if they are used by correct-path execution.
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resources, but they can cause cache pollution. The perfor-
mance improvement of these three idealized models com-
pared to the baseline model for SPEC2000 integer bench-
marks is shown in Figure 1.
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Figure 1. IPC improvement over the baseline proces-
sor with stream prefetching (stream-baseline described
in Section 5) if negative effects of speculative mem-
ory references (L1 cache pollution, L2 cache pollution,
bandwidth/resource contention) are eliminated.

Figure 1 shows that the negative performance impact of
speculative memory references is primarily due to L2 cache
pollution. Therefore, techniques to reduce L2 cache pollu-
tion caused by speculative memory references have the
potential to increase processor performance. Based on this
observation, we present a technique that aims to increase
performance by reducing the L2 cache pollution caused by
speculative memory references.

3. Analysis of Speculative References

In order to design a mechanism to eliminate pollution
due to speculative memory references, we need to under-
stand the behavior of these references. In this section, we
examine when, if at all, these references are used after they
are brought into the cache hierarchy.

Figure 2 shows the distribution of the time between
the fetch and correct-path use of speculatively-fetched (by
wrong-path references or the prefetcher) data cache blocks
for the gcc benchmark. The X-axis, which is in log-scale,
represents the number of cycles between the placement of
a block into the caches and the use of that block by a
correct-path instruction. The Y-axis shows the number of
speculatively-fetched data cache blocks. The rightmost bar
shows the number of speculatively-fetched blocks that are
never used by correct-path instructions during the entire ex-
ecution of the benchmark. The average time a block stays
in the data cache (the average D-cache residence time, cal-
culated over all blocks evicted from the data cache) and the
average time a block stays in the L2 cache are also shown
on the graph. Note that the data in Figure 2 are collected by

monitoring the use of the speculatively-fetched blocks even
after they are evicted from all caches. Therefore, a block
that is requested by a correct-path instruction, even after the
block was evicted from the caches is counted as “used.”
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Figure 2. Distribution of the time (in number of cycles)
between the fetch and correct-path use of speculatively-
fetched data cache blocks for the gcc benchmark. X-axis
is in log-scale (base 2).

Figure 2 shows that most speculatively-fetched blocks
are used before the average D-cache residence time, while
they are still likely to be in the data cache. If a speculatively-
fetched block is not used before the average D-cache resi-
dence time, then it is unlikely that the block will be used
before the average L2 residence time, if it is used at all.
That is, the total number of blocks to the right of the average
L2 cache residence time, including the blocks that are never
used, is greater than the total number of blocks between the
average D-cache residence time and the average L2 cache
residence time in Figure 2. Therefore, if a speculatively-
fetched block is going to be used, then it is most likely that
it will be used while it resides in the data cache. This obser-
vation provides the motivation for using the data cache as a
filter for speculative memory references.

Figure 3 shows the percentage breakdown of all
speculatively-fetched data cache blocks for the six
SPEC2000 integer benchmarks that suffer from L2 cache
pollution3. The speculatively-fetched blocks are broken
down into four categories: blocks used before the average
D-cache residence time, blocks used between the average
D-cache residence time and the average L2 cache residence
time, blocks used after the average L2 cache residence time,
and blocks that are never used. According to this figure,
all the benchmarks except for bzip2, exhibit a behavior
similar to that which was observed for gcc in Figure 2.
In every case, more then 65% of the speculatively-fetched
blocks are used before the average D-cache residence time.
The percentage of blocks that are never used and the per-
centage of blocks that are used after the average L2 cache

3These six benchmarks are benchmarks that gain at least 2% IPC im-
provement from eliminating L2 cache pollution in Figure 1.
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residence time added together significantly exceed the per-
centage of blocks that are used after the average D-cache
residence time, but before the average L2 cache residence
time. Only in bzip2 is this behavior not observed. We find
that speculative instruction references also show a similar
behavior4.
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Figure 3. Breakdown of speculatively-fetcheddata cache
blocks based on their use time.

3.1. Wrong-path vs. Prefetcher References

We investigate the behavior of wrong-path references
and prefetcher references separately. Figure 4 shows
the breakdown of speculatively-fetched data cache blocks
based on their use time for five benchmarks5. The left bar
for each benchmark shows the number of data cache blocks
fetched by wrong-path references. The right bar shows the
number of blocks fetched by the prefetcher. For all five
benchmarks, the prefetcher fetches more blocks than the
wrong-path references. In general, the blocks fetched by
wrong-path references are more likely to be used by correct-
path execution and they are more likely to be used early
(before the average D-cache residence time) compared to
the blocks fetched by the prefetcher. This is true especially
for bzip2. In bzip2, there is a very large number of blocks
fetched by the prefetcher that are used between the average
D-cache residence time and the average L2 residence time.
Hence, for bzip2, if a prefetched cache block is not used
before the average D-cache residence time, it is still likely
to be used before the average L2 residence time. Therefore,
using the data cache as a filter for prefetch requests may not
be effective in bzip2.

4We do not present these results due to space constraints. Only gcc and
crafty have a significant number of speculatively-fetched instruction cache
blocks.

5Mcf is omitted from Figure 4 because almost all speculatively-fetched
blocks are used before the average D-cache residence time regardless of
whether they are fetched by the wrong path or the prefetcher.
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Figure 4. Breakdown of data blocks fetched by the wrong
path (WP) and the prefetcher based on their use time.

4. Cache Filtering Techniques

In the previous section, we have shown that most bench-
marks that suffer from L2 cache pollution due to speculative
memory references conform to the following characteristic:
“If a speculatively-fetched cache block is not used while it
resides in the first-level cache, then it is likely that the block
will not be used at all, or will not be used before it is evicted
from the L2 cache.” Based on this characteristic, in this sec-
tion, we propose filtering techniques to reduce the L2 cache
pollution caused by speculative memory references.

4.1. First-Level Caches as Filters

We propose a mechanism wherein the first-level caches
are used to predict the usefulness of speculatively-fetched
cache blocks and to filter out useless speculatively-fetched
blocks. In this mechanism, all memory references made by
wrong-path instructions or the prefetcher are fetched only
into the first-level cache, instead of into both the first-level
and second-level caches6. While the speculatively-fetched
blocks reside in the first-level cache, the processor monitors
whether they are referenced by non-speculative (correct-
path) instructions.

If a speculatively-fetched block is referenced by a non-
speculative instruction while it resides in the first-level
cache, then the speculatively fetched block is treated as any
other non-speculatively-fetched block. When the block
is replaced from the first-level cache, it is written into the
second-level cache.

If a speculatively-fetched block is not referenced by a
non-speculative instruction before it is evicted from the
first-level cache, the processor predicts that the block will
never be used or it will be replaced from the L2 cache
before it is used. Based on this prediction, the processor
may choose to not write the block into the L2 cache or
may adopt a policy that gives lower priority to the unused

6In-flight speculative references that are also requested by correct-path
instructions are considered non-speculative.
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speculatively-fetched block. We discuss some simple poli-
cies in the next section.

4.2. Filtering Policies

If a speculatively-fetched block is not referenced by a
non-speculative instruction before it is replaced from the
first-level cache, what should the processor do with the
block when it is evicted from the data cache? We propose
two simple policies to answer this question.

One policy is not to write the block into the L2 cache.
We call this policy no-spec-L2fill (i.e., no speculative L2
fill). This policy prevents all the useless speculative ref-
erences from polluting the L2 cache. Unfortunately, such
a policy also filters out some useful speculatively-fetched
blocks that would have been used if they were placed into
the L2 cache.

The second policy, called spec-L2fill-lru, is to write the
block into the L2 cache, but to write it into the LRU (least
recently used) slot of its set. This policy captures the benefit
of those speculatively-fetched blocks that are referenced by
correct-path execution shortly after they are replaced from
the first-level cache. Useless speculatively-fetched blocks
may still evict useful L2 cache blocks, but the effect is less
pronounced because useless blocks occupy an L2 cache
entry for a shorter amount of time.

More complicated filtering policies, such as complex
predictors to predict the usefulness of speculatively-fetched
blocks, can be implemented at the expense of simplicity.
Such predictors are out of the scope of this paper and part
of our future work.

4.3. Implementation Considerations

The proposed techniques require that the processor
distinguish speculative memory references from non-
speculative memory references. This is easily done for
hardware prefetcher requests, but it requires more effort for
wrong-path requests. An implementation can, and our sim-
ulations do, assume that every request is non-speculative
until it is known to be speculative. Until an older mis-
predicted branch is resolved, a memory reference made
by a wrong-path instruction is considered non-speculative.
Such an implementation would probably bring in some un-
used speculative cache blocks into especially the first-level
caches. We find that mispredicted branches are resolved be-
fore 94% of wrong-path L2 misses complete. Therefore,
whether an L2 cache miss is speculative is usually known
before the block is placed into the L2 cache. A processor
implementing the proposed filtering techniques will place
most of the blocks fetched by wrong-path L2 cache misses
only into the first-level cache.

Most processors use a buffer, such as the MSHRs [9], to
keep track of the outstanding memory requests. This buffer

can be augmented to include the sequence number7 of the
oldest instruction that requires the data of the request. When
a mispredicted branch is resolved, the processor can com-
pare the sequence number associated with each entry to the
sequence number of the branch and mark the requests with
larger sequence numbers as speculative in the memory re-
quest buffer. This requires one bit per entry in the memory
request buffer. All prefetcher requests are initially marked
as speculative. If a non-speculative instruction requests a
block that is already in flight, the speculative bit associated
with the request is reset.

To mark the blocks as speculative or non-speculative, the
tag arrays of the first-level caches require one bit per entry8.
The speculative bit is set if the block placed into the cache
was marked speculative in the memory request buffer. At
retirement time, instructions reset the speculative bits of the
first-level cache blocks they access.

5. Experimental Methodology

We evaluate the proposed techniques on a simulator that
can simulate Alpha ISA binaries. We use an execution-
driven simulator capable of accurately modeling wrong-
path execution. The processor we model is an aggressive
superscalar, out-of-order processor. We evaluate two base-
line processors: one that uses an aggressive stream-based
prefetcher (stream-baseline) and another that employs runa-
head execution [14] (runahead-baseline). The configura-
tion common to both baselines is shown in Table 1.

Table 1. Baseline processor configuration.

Fetch/Issue/Retire width 8 instructions/cycle, 8 functional units
Pipeline length 20 stages
Instruction window size 128-entry instruction window, 128-entry ld-st queue
Cond. branch predictor 64K-entry gshare, 64K-entry PAs [18] hybrid
Indirect predictors 64K-entry, 4-way [3], 32-entry return address stack
L1 Instruction Cache 64KB, 4-way, LRU replacement
L1 Data Cache 64KB, 4-way, 8 banks, 2-cycle, LRU repl.
L2 Unified Cache 512KB, 8-way, 8 banks, 12-cycle, LRU repl.
Cache block size 64 bytes for all caches
Memory request buffers 128 buffers that hold L1 and L2 miss requests
Processor-memory bus 32-byte, split-transaction, 100-cycle one-way latency
Main memory 32 banks, 300-cycle bank access latency

Bandwidth, port contention, bank conflicts, and queuing
effects are modeled at all levels in the memory hierarchy.
L1 and L2 caches are inclusive. Stream-baseline employs
an aggressive stream-based prefetcher similar to the one de-
scribed in [16] that can detect and generate prefetches for
16 different streams. The prefetcher prefetches into the L2
cache. Memory system gives priority to load and store in-
struction requests over prefetcher requests.

Runahead-baseline employs runahead execution (a
method of speculative pre-execution triggered when a long-

7e.g. the inums used in Alpha 21264 [7]
8Physically, these bits can be separate from the tag array.
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latency L2 miss instruction blocks retirement from the in-
struction window) as a means to achieve the performance of
a larger instruction window [14]. Requests generated during
runahead mode are considered speculative. No prefetcher
exists in the runahead-baseline. We use the runahead-
baseline to evaluate the performance of our filtering tech-
niques in the presence of very aggressive speculation with-
out stream prefetching. On this baseline, the proposed tech-
niques eliminate pollution only due to wrong-path refer-
ences.

The experiments were run using the 12 SPEC2000 in-
teger benchmarks compiled for the Alpha ISA with the
-fast optimizations and profiling feedback enabled. The
benchmarks were run to completion with a reduced input
set [8] to reduce simulation time.

Figure 5 shows the IPC (retired Instructions Per Cycle)
performance of both baseline processors. The IPC of a pro-
cessor that employs neither stream-prefetching nor runa-
head execution is also shown for reference. We note that
both stream prefetching and runahead execution are very
effective in improving IPC. We evaluate the proposed tech-
niques on the stream-baseline and runahead-baseline as-
suming that high-performance processors will employ ei-
ther method. Unless otherwise noted, all IPC results re-
ported in this paper are relative to the corresponding base-
line in Figure 5. Average IPC values are calculated as the
harmonic mean of the IPC values for benchmarks.
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Figure 5. Baseline IPC performance.

6. Experimental Results

Figure 6 shows the percent change in IPC compared to
the stream-baseline when the filtering techniques discussed
in Section 4.2 are applied. no-spec-L2fill policy reduces
performance significantly on gap and bzip2, because these
two benchmarks have many speculatively-fetched cache
blocks that are needed after they are evicted from the first-
level caches, as explained in Section 3.1. spec-L2fill-lru
policy recovers most of the performance loss incurred by
these two benchmarks. Gcc, parser, and vortex, three
benchmarks which suffer the most from L2 cache pollu-
tion as was shown in Figure 1, benefit significantly from

both policies with a maximum performance improvement of
4.7% for parser. These results show that using the first-level
caches as filters improves performance and spec-L2fill-lru
is an effective filtering policy.
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Figure 6. Performance improvement of filtering mecha-
nisms on the stream-baseline.

Figure 7 shows the percent change in IPC compared to
the runahead-baseline when the two filtering techniques are
applied. The maximum performance improvement is 9.2%
for mcf. A performance degradation is observed only for
bzip2 (-0.7%). In mcf, runahead execution results in many
wrong-path requests that are either never needed or needed
by correct-path execution after being evicted from caches.
The proposed filtering mechanism is very effective in filter-
ing out these speculatively-fetched blocks.
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Figure 7. Performance improvement of filtering mecha-
nisms on the runahead-baseline.

In contrast to the stream-baseline, the performance im-
provements corresponding to the two filtering policies are
quite similar on the runahead-baseline. We find this is due
to two reasons:

1. If wrong-path requests are not used while they are in
the first-level cache, they are more likely to be never
used than prefetcher requests. This behavior is also
the reason why performance improvement of the filter-
ing mechanism on the runahead-baseline is more posi-
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tive than the performance improvement on the stream-
baseline.

2. Runahead execution is better able to tolerate the extra
misses caused by the no-spec-L2fill filtering policy.

6.1. Filtering in Exclusive Cache Hierarchies

The proposed filtering techniques violate the inclusion
property [1] in the cache hierarchy. Although non-inclusive
hierarchies can be implemented, we would also like to know
the performance of these techniques on exclusive hierar-
chies [6]. An exclusive hierarchy can tolerate pollution bet-
ter than an inclusive hierarchy, because exclusion increases
the total effective cache size by eliminating redundancy in
caches. Therefore, we hypothesize that filtering would be
less effective on exclusive hierarchies.

Figure 8 shows the percent change in IPC compared to
the stream-baseline of three processors: one with an ex-
clusive hierarchy, one with an exclusive hierarchy that em-
ploys the no-spec-L2fill policy, and one with an exclusive
hierarchy that employs the spec-L2fill-lru policy. Note that
the exclusive hierarchy outperforms the inclusive hierarchy
by more than 2% on the six benchmarks that suffer from
L2 cache pollution, confirming the intuition that an exclu-
sive hierarchy is more tolerant to pollution than an inclusive
one. The spec-L2fill-lru filtering policy improves the per-
formance of the exclusive hierarchy for vpr, gcc, crafty, and
parser, but it reduces performance for mcf, gap, and bzip2.
As hypothesized, filtering is less effective on the exclusive
hierarchy that is more tolerant to pollution. In bzip2 and
gap, many prefetched cache blocks are used after they are
evicted from the data cache. Therefore, using the data cache
to filter useless prefetch requests is not effective for these
two benchmarks in either inclusive or exclusive hierarchies.

-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11

P
er

ce
nt

 I
P

C
 c

ha
ng

e 
ov

er
 s

tr
ea

m
-b

as
el

in
e 

(%
)

exclusive without filtering
exclusive with no-spec-L2fill policy
exclusive with spec-L2fill-lru policy

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf average

Figure 8. Performance improvement of exclusive
caching and filtering mechanisms on exclusive caching
over the stream-baseline.

Figure 9 shows the percent change in IPC compared to
the runahead-baseline of the corresponding four proces-
sors that employ runahead execution. Filtering on runahead

processors with exclusive caches is generally beneficial for
performance, especially for gcc and parser. This shows
that filtering techniques are more successful for specula-
tive wrong-path requests than they are for prefetch requests,
even on exclusive cache hierarchies.
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Figure 9. Performance improvement of exclusive
caching and filtering mechanisms on exclusive caching
over the runahead-baseline.

6.2. Sensitivity to L1 Cache Size

The proposed techniques use the first-level caches as fil-
ters. Therefore, the effectiveness of these techniques de-
pend on the sizes of the first-level caches. We would expect
the filtering techniques to be more successful on processors
with larger L1 caches, because the proposed techniques rely
on monitoring the speculatively-fetched cache blocks while
they reside in the L1 caches. Increasing the L1 cache size
increases the time these blocks stay in the L1 cache, hence,
gives more time to the processor to evaluate the usefulness
of a speculatively-fetched block and make more accurate
filtering decisions.

To determine the sensitivity of performance to the L1
cache size, we evaluate the effect of using spec-L2fill-lru
policy on processors with four different L1 (data and in-
struction) cache sizes: 16KB, 32KB, 64KB, and 128KB.
All other parameters of these processors are the same as the
baseline described in Section 5.

Figure 10 shows the percent change in IPC compared to
the stream-baseline with the respective L1 cache size when
the spec-L2fill-lru filtering technique is applied. Even with
32KB L1 caches, more than 1% IPC improvement is ob-
served for gcc, parser, and vortex.

Figure 11 shows the percent change in IPC compared
to the runahead-baseline with the respective L1 cache
size when the spec-L2fill-lru filtering technique is applied.
Runahead processors also show the same trend of increased
IPC improvement provided by filtering with increased L1
cache sizes. Filtering techniques improve average IPC even
on runahead processors with small (16KB) L1 caches.
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Figure 10. Performance improvement of the spec-L2fill-
lru filtering policy on four stream-baseline processors
with different L1 cache sizes.
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Figure 11. Performance improvement of the spec-L2fill-
lru filtering policy on four runahead-baseline processors
with different L1 cache sizes.

7. Related Work

7.1. Reducing the Negative Effects of Prefetching

Zhuang and Lee propose a filtering mechanism to reduce
the cache pollution caused by useless prefetches [19]. This
mechanism predicts the usefulness of a prefetch based on
past history. Prefetches predicted to be useless are never
requested from the memory system, thereby reducing L1
pollution and bandwidth contention caused by prefetches.
Srinivasan et. al. propose a static filter to reduce the number
of useless prefetch requests that consume bandwidth [15].
In their approach, the compiler identifies which load in-
structions trigger prefetch requests based on profile infor-
mation. Our filtering mechanism differs from these ap-
proaches in two aspects:

1. We apply filtering after prefetches bring data into
the L1 cache, not before requesting a prefetch.
This choice is based on the observations that band-
width/resource contention and L1 cache pollution
caused by prefetches are much less detrimental to per-

formance than L2 cache pollution.

2. Our mechanism is a general approach that targets all
speculative memory references, including wrong-path
references and prefetches.

Lai et. al. introduce a predictor that predicts that a cache
block is dead (i.e. not going to be needed by the proces-
sor) [10]. Prefetched cache blocks replace those blocks that
are predicted to be dead. If the prediction is correct, pol-
lution caused by useless prefetches is reduced. This tech-
nique is orthogonal to the filtering technique we propose
and both techniques can be combined for increased perfor-
mance. For example, a filtering policy can use dead block
prediction to decide which block in the L2 cache should
be evicted when an unused speculatively-fetched first-level
cache block needs to be written into the L2 cache.

Software schemes have been proposed to reduce cache
pollution caused by prefetching by improving the cache re-
placement decisions [4, 17]. These techniques can also be
combined with our technique for improved performance.

A prefetch buffer [11] eliminates cache pollution caused
by prefetching. Prefetches are placed into the prefetch
buffer instead of the caches. Unfortunately, adding a
prefetch buffer increases the design complexity of the mem-
ory system. A prefetch buffer that provides good perfor-
mance may require a large size in the presence of aggres-
sive prefetching. Our purpose in this paper is to improve
the performance of prefetching into the caches without sig-
nificantly increasing the complexity of the memory system.

7.2. Reducing the Negative Effects of Wrong Path

Bahar and Albera [2] claim that data fetched by wrong-
path memory references are likely to pollute the caches.
In order to alleviate this pollution, they introduce a small
fully-associative structure, accessed in parallel with the L1
data cache. Data blocks fetched by instructions that are pre-
dicted to be on the wrong path using a confidence predictor
are placed into this structure instead of the L1 data cache.
The performance improvement provided by this mechanism
comes partly from the additional associativity provided by
the separate structure.

Mutlu et al. analyze the effects of wrong-path memory
references on processor performance [13]. They find that
L2 cache pollution caused by useless wrong-path references
is sometimes detrimental for performance. Our work builds
on this work by proposing a mechanism to reduce the L2
cache pollution caused by wrong-path references as well as
prefetcher references.

7.3. Related Cache Management Techniques

Johnson and Hwu present a heuristic to prevent the most
frequently used cache blocks from being evicted out of the
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first-level data cache [5]. Their mechanism keeps track of
the number of accesses to individual memory blocks and
when the number of accesses to the missed block is less than
some constant times the number of accesses to the block
that would be evicted, the miss data is serviced directly to
the register file, bypassing the cache.

Mekhiel proposes a scheme wherein a miss to memory
is serviced to the second-level cache and must be accessed
a second time before the block is moved to the first-level
cache [12]. This scheme is intended to prevent an infre-
quently used block from replacing a frequently used block
in the first-level cache. We find that, in light of longer mem-
ory latencies , it is more important to protect the contents of
the second-level cache from pollution than it is to protect
the first-level cache.

8. Conclusion and Future Work

This paper makes two main contributions:

1. It shows that the dominant negative effect of specula-
tive memory references is the pollution they cause in
the L2 cache.

2. It proposes a novel and simple technique that uses the
first-level caches as filters to filter out useless specula-
tive memory references and thus reduce the L2 cache
pollution caused by them.

Future work in reducing the negative performance im-
pact of speculative memory references includes the devel-
opment of more accurate filtering policies. Filtering mech-
anisms on exclusive hierarchies also warrant more analysis.
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