A Case for Efficient Hardware/Software
Cooperative Management of
Storage and Memory

Justin Meza®, Yixin Luo®, Samira Khan™', Jishen Zhaos,
Yuan Xie%*, and Onur Mutlu®

“Carnegie Mellon University
8Pennsylvania State University
"Intel Labs *AMD Research

SAFARI Carnegie Mellon

Overview

Traditional systems have a two-level storage model
o Access volatile data in memory with a load/store interface
o Access persistent data in storage with a file system interface

o Problem: Operating system (OS) and file system (FS) code and buffering
for storage lead to energy and performance inefficiencies

Opportunity: New non-volatile memory (NVM) technologies can help
provide fast (similar to DRAM), persistent storage (similar to Flash)

o Unfortunately, OS and FS code can easily become energy efficiency and
performance bottlenecks if we keep the traditional storage model

This work: makes a case for hardware/software cooperative
management of storage and memory within a single-level

o We describe the idea of a Persistent Memory Manager (PMM) for
efficiently coordinating storage and memory, and quantify its benefit

o And, examine questions and challenges to address to realize PMM

Talk Outline

Background: Storage and Memory Models
Motivation: Eliminating Operating/File System Bottlenecks

Our Proposal: Hardware/Software Coordinated Management of
Storage and Memory

o Opportunities and Benefits
Evaluation Methodology
Evaluation Results

Related Work

New Questions and Challenges

Conclusions

A Tale ot Two Storage Levels

= Traditional systems use a two-level storage model
o Volatile data is stored in DRAM

o Persistent data is stored in HDD and Flash
= Accessed through two vastly different interfaces

Load/Store fopen, fread, fwrite, ...

Processor
and caches

Main Memory Storage (SSD/HDD)

A Tale ot Two Storage Levels

Two-level storage arose in systems due to the widely different
access latencies and methods of the commodity storage devices

o Fast, low capacity, volatile DRAM - working storage
o Slow, high capacity, non-volatile hard disk drives - persistent storage

Data from slow storage media is buffered in fast DRAM

o After that it can be manipulated by programs = programs cannot
directly access persistent storage

o It is the programmer’s job to translate this data between the two
formats of the two-level storage (files and data structures)

Locating, transferring, and translating data and formats between
the two levels of storage can waste significant energy and
performance

Opportunity: New Non-Volatile Memoties

Emerging memory technologies provide the potential for unifying
storage and memory (e.g., Phase-Change, STT-RAM, RRAM)

Byte-addressable (can be accessed like DRAM)

Low latency (comparable to DRAM)

Low power (idle power better than DRAM)

High capacity (closer to Flash)

Non-volatile (can enable persistent storage)

May have limited endurance (but, better than Flash)

o 0o 0O O 0O O

Can provide fast access to both volatile data and persistent
storage

Question: if such devices are used, is it efficient to keep a
two-level storage model?

Eliminating Traditional Storage Bottlenecks

o Normalized Total Energy

1.0
Today
> (.8 (DRAM +
= HDD) and
LICJ two-level
— 0.6 storage
% model Replace HDD Replace HDD
— with NVM and DRAM
© 04 (PCM-like), with NVM
S keep two-level (PCM-like),
k= storage model eliminate all
= 09 OS+FS
0.065 overhead
0.013
0

HDD Baseline ~ NVM Baseline Persistent Memory

Results for PostMark 7

Eliminating Traditional Storage Bottlenecks

W User CPU [Syscall CPU W DRAM [NVM W HDD
1.0

o o o
~ o OO

Fraction of Total Energy

O
N

0.065

— 0.013
HDD Baseline ~ NVM Baseline Persistent Memory

Results for PostMark

Where 1s Energy Spent in Each Model?

W User CPU 7 Syscall CPU W DRAM [NVM W HDD

1.0
> 0.8
QL No FS/OS overhead
- 0.6 _RA No additiong| buffering
S ring (overhead in DRAM
o vel
|_
204 £S/0OS overhead
2 becomes important
S
- 0.2

0

HDD Baseline ~ NVM Baseline Persistent Memory

Results for PostMark 9

Outline

Our Proposal: Hardware/Software Coordinated Management of
Storage and Memory

o Opportunities and Benefits
Evaluation Methodology
Evaluation Results

Related Work

New Questions and Challenges

Conclusions

10

Our Proposal: Coordinated HW /SW

Memory and Storage Management

Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data

a Improve both energy and performance
o Simplify programming model as well

11

Our Proposal: Coordinated HW /SW
Memory and Storage Management

= Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data

a Improve both energy and performance
o Simplify programming model as well

— Before: Traditional Two-Level Store
Load/Store] fopen, fread, fwrite, ...

Processor
and caches

Storage (SSD/HDD)

Main Memory

Our Proposal: Coordinated HW /SW

Memory and Storage Management

= Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data

a Improve both energy and performance
o Simplify programming model as well
— After: Coordinated HW/SW

nagement

Persistent Memory

Manager -
Processor
and caches

Load/Store ‘ * Feedback

i l
Persistent (e.g., Phase-Change) Memory

The Persistent Memory Manager (PMM)

= Exposes a load/store interface to access persistent data

o Applications can directly access persistent memory - no conversion,
translation, location overhead for persistent data

= Manages data placement, location, persistence, security
o To get the best of multiple forms of storage

= Manages metadata storage and retrieval
a This can lead to overheads that need to be managed

= Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

14

The Persistent Memory Manager

Persistent Memory Manager
o Exposes a load/store interface to access persistent data
[u Manages data placement, location, persistence, security]

o Manages metadata storage and retrieval
o Exposes hooks and interfaces for system software

Example program manipulating a persistent object:

1| int main (void) {

2 // data in file.dat 1s persistent

3 FILE myData = "file.dat"; Create persistent objeqt and its handle
4 myData = new int [64]; Allocate a persistent afray and assign
5|}

6| void updateValue (int n, int value) {

7 FILE myData = "file.dat";

8 myData[n] = value; // value 1s persistent

9

} Load/gtore interface

15

Putting Everything Together

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];
}
void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 0 1O\ N Wi -

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

I

| DRAM | Fiash | Nvm |[HDD]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

Outline

s Background: Storage and Memory Models
= Motivation: Eliminating Operating/File System Bottlenecks

s Our Proposal: Hardware/Software Coordinated Management of
Storage and Memory

o Opportunities and Benefits
= Evaluation Methodology
= Evaluation Results
= Related Work
= New Questions and Challenges

= Conclusions

17

Opportunities and Benetits

We've identified at least five opportunities and benefits of a unified
storage/memory system that gets rid of the two-level model:

1.

2
3
4,
5

Eliminating system calls for file operations

Eliminating file system operations

Efficient data mapping/location among heterogeneous devices
Providing security and reliability in persistent memories

Hardware/software cooperative data management

18

Eliminating System Calls for File Operations

A persistent memory can expose a large, linear, persistent
address space

o Persistent storage objects can be directly manipulated with load/
store operations

This eliminates the need for layers of operating system code
o Typically used for calls like open, read, and write

Also eliminates OS file metadata
o File descriptors, file buffers, and so on

19

Eliminating File System Operations

Locating files is traditionally done using a file system
o Runs code and traverses structures in software to locate files

Existing hardware structures for locating data in virtual memory
can be extended and adapted to meet the needs of persistent
memories

o Memory Management Units (MMUs), which map virtual addresses to
physical addresses

o Translation Lookaside Buffers (TLBs), which cache mappings of
virtual-to-physical address translations

Potential to eliminate file system code

At the cost of additional hardware overhead to handle persistent
data storage

20

Eftticient Data Mapping among Heterogeneous Devices

A persistent memory exposes a large, persistent address space
o But it may use many different devices to satisfy this goal

o From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash

o And other NVM devices in between

Performance and energy can benefit from good placement of

data among these devices

o Utilizing the strengths of each device and avoiding their weaknesses,
if possible

o For example, consider two important application characteristics:
locality and persistence

21

Eftticient Data Mapping among Heterogeneous Devices

A
Less Locality

More Locality
Ve >
Temporary Persistent

22

Eftticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

More Locality
Ve >
Temporary Persistent

23

Eftticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

Frequently-updated index for a
Content Delivery Network (CDN)
- place in DRAM

More Locality X
Ve >
Temporary Persistent

Applications or system software can provide hints for data placement

24

Providing Security and Reliability

= A persistent memory deals with data at the granularity of bytes
and not necessarily files

o Provides the opportunity for much finer-grained security and
protection than traditional two-level storage models provide/afford

o Need efficient techniques to avoid large metadata overheads

= A persistent memory can improve application reliability by
ensuring updates to persistent data are less vulnerable to failures

a Need to ensure that changes to copies of persistent data placed in
volatile memories become persistent

25

HW /SW Cooperative Data Management

Persistent memories can expose hooks and interfaces to
applications, the OS, and runtimes

o Have the potential to provide improved system robustness and
efficiency than by managing persistent data with either software or
hardware alone

Can enable fast checkpointing and reboots, improve application
reliability by ensuring persistence of data

o How to redesign availability mechanisms to take advantage of these?

Persistent locks and other persistent synchronization constructs
can enable more robust programs and systems

26

Quantifying Persistent Memory Benefits

We have identified several opportunities and benefits of using
persistent memories without the traditional two-level store model

We will next quantify:
o How do persistent memories affect system performance?
o How much energy reduction is possible?

o Can persistent memories achieve these benefits despite additional
access latencies to the persistent memory manager?

27

Outline

s Background: Storage and Memory Models
= Motivation: Eliminating Operating/File System Bottlenecks

s Our Proposal: Hardware/Software Coordinated Management of
Storage and Memory

o Opportunities and Benefits
= Evaluation Methodology
= Evaluation Results
= Related Work
= New Questions and Challenges

= Conclusions

28

Evaluation Methodology

Hybrid real system / simulation-based approach

o System calls are executed on host machine (functional correctness)
and timed to accurately model their latency in the simulator

o Rest of execution is simulated in Multi2Sim (enables hardware-level
exploration)

Power evaluated using McPAT and memory power models
16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz
Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency

Persistent memory

o HDD (measured): 4ms seek latency, 6Gbps bus rate

o NVM: (modeled after PCM) 4KB page size, 160-/480-cycle (read/
write) latency

29

FEwvaluated Systems

HDD Baseline (HB)

o Traditional system with volatile DRAM memory and persistent HDD storage
o Overheads of operating system and file system code and buffering

HDD without OS/FS (HW)

o Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads
o System calls take 0 cycles (but HDD access takes normal latency)
NVM Baseline (NB)

o Same as HDD Baseline, but HDD is replaced with NVM

o Still has OS/FS overheads of the two-level storage model
Persistent Memory (PM)

o Uses only NVM (no DRAM) to ensure full-system persistence

o All data accessed using loads and stores

o Does not waste energy on system calls

o Data is manipulated directly on the NVM device

30

Evaluated Workloads

Unix utilities that manipulate files

o cp: copy a large file from one location to another

a cp —r: copy files in a directory tree from one location to another
o grep: search for a string in a large file

o grep —r: search for a string recursively in a directory tree

PostMark: an I/O-intensive benchmark from NetApp
o Emulates typical access patterns for email, news, web commerce

MySQL Server: a popular database management system

o OLTP-style queries generated by Sysbench

o MySQL (simple): single, random read to an entry

o MySQL (complex): reads/writes 1 to 100 entries per transaction

31

Performance Results

©
~

=
)}

Normalized Execution Time

0

HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM

cp cp -r grep grep-r PostMark MySQL MySQL
(simple) (complex)

32

Performance Results: HDD w/o0 OS/FS

ap y @ @

.

o
oo

o o
EaN D

o
)}

Normalized Execution Time

0

HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM
cp cp -r grep grep-r PostMark MySQL MySQL
(simple) (complex)

For HDD-based systems, eliminating OS/FS overheads typically leads to small
performance improvements - execution time dominated by HDD access latency

33

Performance Results: HDD w/o0 OS/FS
i R'E N

HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM

cp cp -r grep grep-r PostMark MySQL MySQL
(simple) (complex)

Though, for more complex file system operations like directory traversal (seen with
cp -r and grep -r), eliminating the OS/FS overhead improves performance

©
~

Normalized Execution Time

=
)}

0

34

Performance Results: HDD to NVM

©
~

=
)}

Normalized Execution Time

V | |

HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM

cp cp -r grep grep-r PostMark MySQL MySQL
(simple) (complex)

Switching from an HDD to NVM greatly reduces execution time due to NVM’s much
faster access latencies, especially for I/O-intensive workloads (cp, PostMark, MySQL)

0

35

Performance Results: NVM to PMM

©
~

Normalized Execution Time

I

||| 1 ko -

HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNEBF HBHWNBPM HBHWNEBP
cp cp -r grep grep-r PostMark MySQL MySQL
(simple) (complex)
For most workloads, eliminating OS/FS code and buffering improves performance
greatly on top of the NVM Baseline system
(even when DRAM is eliminated from the system)

=
)}

0

36

Performance Results

W User CPU] User Memory W Syscall CPU [@ Syscall I/O

1.0

D

£ 0.8

|_

§ 0.6

n

B 04 ,f
2

: | I |

(SN | N

HBHWN BPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNEPM HBHWNBPM HBHWNEPT

cp - grep grep-r PostMark MySQL MySQL
(simple) (complex)

The workloads that see the greatest improvement from using a Persistent Memory
are those that spend a large portion of their time executing system call code due to
the two-level storage model

37

Energy Results

© o © —
~ o o) o

o
N

Normalized Energy Consumption

HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM

cp cp - grep grep-r PostMark MySQL MySQL
(simple) (complex)

38

Energy Results: HDD to NVM

© o © —
~ o o) o

o
N

Normalized Energy Consumption

|

HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM

cp cp - grep grep-r PostMark MySQL MySQL
(simple) (complex)

Between HDD-based and NVM-based systems, lower NVM energy leads to greatly
reduced energy consumption

39

Energy Results: NVM to PMM

@ User CPU [Syscall CFU m DRAM [NVM @ HDD

<@ <_] = D=0 BN

HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM HBHWNBPM

cp cp -r grep grep-r PostMark MySQL MySQL
(simple) (complex)

Between systems with and without OS/FS code, energy improvements come from:
1. reduced code footprint, 2. reduced data movement

—
o

o
fo's

o
o

©
~

o
N

Normalized Energy Consumption

Large energy reductions with a PMM over the NVM based system

Scalability Analysis: Effect of PMM ILatency

M User CPU [User Memory M Syscall CPU [Syscall I/O 1D53PMM
1.25 - _

—
o
o

0.75

0.50

0.25

Normalized Execution Time

o

cp

cp -
cp

|
cp -1
cp
cp-r

cp -r
grep
grep -
PostMark

MySQL (simple)
grep

grep

grep -

PostMark
grep -
PostMark

MySQL (simple)
grep

grep -r
PostMark

MySQL (complex)
MySQL (simple)
MySQL (complex)
MySQL (complex)
MySQL (simple)
MySQL (complex)

NB 10 cycles 50 cycles

Even if each PMM access takes a non-overlapped 50 cycles (conservative),
PMM still provides an overall improvement compared to the NVM baseline

1 cycle

Future research should target keeping PMM latencies in check

T L

Outline

s Background: Storage and Memory Models
= Motivation: Eliminating Operating/File System Bottlenecks

s Our Proposal: Hardware/Software Coordinated Management of
Storage and Memory

o Opportunities and Benefits
= Evaluation Methodology
= Evaluation Results
= Related Work
= New Questions and Challenges

= Conclusions

42

Related Work

We provide a comprehensive overview of past work related to
single-level stores and persistent memory techniques

1. Integrating file systems with persistent memory

Need optimized hardware to fully take advantage of new technologies
2. Programming language support for persistent objects

Incurs the added latency of indirect data access through software

3. Load/store interfaces to persistent storage

Lack efficient and fast hardware support for address translation, efficient
file indexing, fast reliability and protection guarantees

4. Analysis of OS overheads with Flash devices

Our study corroborates findings in this area and shows even larger
consequences for systems with emerging NVM devices

The goal of our work is to provide cheap and fast hardware support
for memories to enable high energy efficiency and performance

43

Outline

s Background: Storage and Memory Models
s Motivation: Eliminating Operating/File System Bottlenecks

s Our Proposal: Hardware/Software Coordinated Management of
Storage and Memory

o Opportunities and Benefits
= Evaluation Methodology
m Evaluation Results
m Related Work
= New Questions and Challenges

= Conclusions

44

New Questions and Challenges

We identify and discuss several open research questions

Q1. How to tailor applications for systems with persistent
memory?

Q2. How can hardware and software cooperate to support a
scalable, persistent single-level address space?

Q3. How to provide efficient backward compatibility (for two-
level stores) on persistent memory systems?

Q4. How to mitigate potential hardware performance and energy
overheads?

45

Outline

s Background: Storage and Memory Models
s Motivation: Eliminating Operating/File System Bottlenecks

s Our Proposal: Hardware/Software Coordinated Management of
Storage and Memory

o Opportunities and Benefits
= Evaluation Methodology
m Evaluation Results
m Related Work
= New Questions and Challenges

= Conclusions

46

Summary and Conclusions

Traditional two-level storage model is inefficient in terms of
performance and energy

o Due to OS/FS code and buffering needed to manage two models
o Especially so in future devices with NVM technologies, as we show

New non-volatile memory based persistent memory designs that
use a single-level storage model to unify memory and storage can
alleviate this problem

We quantified the performance and energy benefits of such a
single-level persistent memory/storage design

o Showed significant benefits from reduced code footprint, data
movement, and system software overhead on a variety of workloads

Such a design requires more research to answer the questions we
have posed and enable efficient persistent memory managers

- can lead to a fundamentally more efficient storage system

47

Thank you.

A Case for Efficient Hardware/Software
Cooperative Management of
Storage and Memory

Justin Meza®, Yixin Luo®, Samira Khan™', Jishen Zhaos,
Yuan Xie%*, and Onur Mutlu®

“Carnegie Mellon University
8Pennsylvania State University
"Intel Labs *AMD Research

SAFARI Carnegie Mellon

