
A Model for Application Slowdown Estimation
in On-Chip Networks and Its Use for Improving

System Fairness and Performance

Xiyue Xiang*, Saugata Ghose†, Onur Mutlu†§, Nian-Feng Tzeng*

*University of Louisiana at Lafayette
†Carnegie Mellon University

§ETH Zürich

http://www.louisiana.edu/
http://www.louisiana.edu/

Executive Summary

2

 Problem: inter-application interference in on-chip networks (NoCs)

 In a multicore processor, interference can occur due to NoC contention

 Interference causes applications to slow down unfairly

 Goal: estimate NoC-level slowdown at runtime, and use slowdown information to

improve system fairness and performance

 Our Approach

 NoC Application Slowdown Model (NAS): first online model to quantify

inter-application interference in NoCs

 Fairness-Aware Source Throttling (FAST): throttle network injection rate of

processor cores based on slowdown estimate from NAS

 Results

 NAS is very accurate and scalable: 4.2% error rate on average (8×8 mesh)

 FAST improves system fairness by 9.5%, and performance by 5.2%

(compared to a baseline without source throttling on a 8×8 mesh)

Motivation: Interference in NoCs

3

0

1

2

3

lbm leslie3d mcf GemsFDTD

S
lo

w
d

o
w

n

2.7×

1.6×

Interference slows down applications and increases system unfairness

16 copies of each application run concurrently on a 64-core processor

Root cause:

NoC bandwidth is shared
𝒔𝒍𝒐𝒘𝒅𝒐𝒘𝒏 =

𝒕𝒊𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒏𝒄𝒆

𝒕𝒏𝒐_𝒊𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒏𝒄𝒆
=
𝒕𝒔𝒉𝒂𝒓𝒆𝒅
𝒕𝒂𝒍𝒐𝒏𝒆

Challenges:

 Flit-level delay ≠ slowdown

NAS: NoC Application Slowdown Model

4

Online estimation of ∆𝑡𝑠𝑡𝑎𝑙𝑙: application stall time due to interference

talone: unknown at runtime

𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
𝑡𝑠ℎ𝑎𝑟𝑒𝑑
𝑡𝑎𝑙𝑜𝑛𝑒

=
𝑡𝑠ℎ𝑎𝑟𝑒𝑑

𝑡𝑠ℎ𝑎𝑟𝑒𝑑 − ∆𝑡𝑠𝑡𝑎𝑙𝑙

Node S Node D

request

response

Each request involves multiple packets

tshared: measured directly

Challenges:

 Flit-level delay ≠ slowdown

 Random and distributive

 Overlapped delay

NAS: NoC Application Slowdown Model

4

tshared: measured directly talone: unknown at runtime

𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
𝑡𝑠ℎ𝑎𝑟𝑒𝑑
𝑡𝑎𝑙𝑜𝑛𝑒

=
𝑡𝑠ℎ𝑎𝑟𝑒𝑑

𝑡𝑠ℎ𝑎𝑟𝑒𝑑 − ∆𝑡𝑠𝑡𝑎𝑙𝑙

Node S Node D

A packet is formed by multiple flits

Basic idea: track delay and calculate ∆tstall

Online estimation of ∆𝑡𝑠𝑡𝑎𝑙𝑙: application stall time due to interference

Flit-Level Interference

5

 Three interference events

 Injection

 Virtual channel arbitration

 Switch arbitration

 Each flit carries an additional field ∆tflit

 If arbitration loses, ∆tflit = ∆tflit + 1

Sum up arbitration delays due to interference

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Node

Core

L1

Router

Shared LLC

Slice

MSHRs

Packet-Level Interference

6

∆ treassembly= 𝑻𝒍𝒂𝒔𝒕_𝒂𝒓𝒓𝒊𝒗𝒂𝒍 − 𝑻𝒇𝒊𝒓𝒔𝒕_𝒂𝒓𝒓𝒊𝒗𝒂𝒍 −𝑴

∆𝒕𝒑𝒂𝒄𝒌𝒆𝒕 = ∆𝒕𝒇𝒊𝒓𝒔𝒕_𝒇𝒍𝒊𝒕 + ∆𝒕𝒓𝒆𝒂𝒔𝒔𝒆𝒎𝒃𝒍𝒚

Tfirst_arrival =3 Tlast_arrival=11

treassembly = M cycles (M=5)

1 2 3 4 5

f1

∆𝑡𝑓𝑖𝑟𝑠𝑡_𝑓𝑙𝑖𝑡
=2

Alone run:

Shared run:

f2 f3 f4 f5

f1 f2 f3 f4 f5

1 2 3 4 5 6 7 8 9 10 11

M-cycle
reassembly

Packet’s flits arrive consecutively when there is no interference

∆𝑡𝑝𝑎𝑐𝑘𝑒𝑡 = 2 + 11 − 3 − 5 = 5 𝑐𝑦𝑐𝑙𝑒𝑠

∆𝑡𝑟𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦

Track increase in packet reassembly time

Request-Level Interference

7

Node S Node D1 Request packet delayed by 5 cycles due

to inter-application interference

0

 Leverage closed-loop packet behavior to accumulate ∆tpacket

 Inheritance Table: lump sum of ∆tpacket for associated packets

Request-Level Interference

7

Node S Node D

NI LLC Slice

Inheritance Table

2 Register request packet info in

inheritance table (Δtpacket = 5)

4 Generate response packet,

inheriting Δtpacket from table

3 Cache

access

1 Request packet delayed by 5 cycles due

to inter-application interference

reqID mshrID Δtpacket...
...

...

0

 Leverage closed-loop packet behavior to accumulate ∆tpacket

 Inheritance Table: lump sum of ∆tpacket for associated packets

5

5

Request-Level Interference

7

Node S

3 Cache

access

1 Request packet delayed by 5 cycles due

to inter-application interference

5 Response packet delayed by 3 cycles

due to inter-application interference

5

 Leverage closed-loop packet behavior to accumulate ∆tpacket

 Inheritance Table: lump sum of ∆tpacket for associated packets

Node D

NI LLC Slice

Inheritance Table

2 Register request packet info in

inheritance table (Δtpacket = 5)

4 Generate response packet,

inheriting Δtpacket from table

3 Cache

accessreqID mshrID Δtpacket...
...

...

5

Request-Level Interference

7

∆𝒕𝒓𝒆𝒒𝒖𝒆𝒔𝒕= ∆𝒕𝒓𝒆𝒒𝒖𝒆𝒔𝒕_𝒑𝒂𝒄𝒌𝒆𝒕 + ∆𝒕𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆_𝒑𝒂𝒄𝒌𝒆𝒕

Node S 1 Request packet delayed by 5 cycles due

to inter-application interference

5 Response packet delayed by 3 cycles

due to inter-application interference

Final value
of Δtpacket

is 8 cycles

 Leverage closed-loop packet behavior to accumulate ∆tpacket

 Inheritance Table: lump sum of ∆tpacket for associated packets

8

Sum up delays of all associated packets

3 Cache

access

Node D

NI LLC Slice

Inheritance Table

2 Register request packet info in

inheritance table (Δtpacket = 5)

4 Generate response packet,

inheriting Δtpacket from table

3 Cache

accessreqID mshrID Δtpacket...
...

...

5

Application Stall Time

8

A memory request becomes critical if

1) It is the oldest instruction at ROB and ROB is full, and/or

2) It is the oldest instruction at LSQ and LSQ is full when the next is a memory instruction

∆𝒕𝒔𝒕𝒂𝒍𝒍_𝒑𝒆𝒓_𝒓𝒆𝒒𝒖𝒆𝒔𝒕= 𝒎𝒊𝒏(𝑻𝒔𝒆𝒓𝒗𝒊𝒄𝒆 − 𝑻𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍, 𝒕𝒓𝒆𝒒𝒖𝒆𝒔𝒕)

For all critical requests

Latency is hidden App. stalls

ignored

Latency of critical request

Tcritical Tservice

∆𝒕𝒔𝒕𝒂𝒍𝒍_𝒑𝒆𝒓_𝒓𝒆𝒒𝒖𝒆𝒔𝒕

∆𝒕𝒔𝒕𝒂𝒍𝒍=

𝒊

∆𝒕𝒔𝒕𝒂𝒍𝒍_𝒑𝒆𝒓_𝒓𝒆𝒒𝒖𝒆𝒔𝒕,𝒊

ILP, MLP

Count only request delays on critical path of execution time

Using NAS to Improve Fairness

9

 NAS provides online estimation of slowdown

 Sum up flit-level arbitration delays due to interference

 Track increase in packet reassembly time

 Sum up delays of all associated packets

 Determine which request delays causes application stall

 Goal

 Use NAS to improve system fairness and performance

 FAST: Fairness-Aware Source Throttling

A New Metric: NoC Stall-Time Criticality

10

𝑺𝑻𝑪𝒏𝒐𝒄 =
𝒔𝒍𝒐𝒘𝒅𝒐𝒘𝒏

𝑳𝟏𝒎𝒊𝒔𝒔

NoC Stall-Time Criticality

FAST utilizes STCnoc to proactively estimate

the expected impact of each L1 miss

Lower STCnoc <==> Less sensitive to NoC-level interference

Good candidate to be throttled down

Interference in NoCs

has uneven impact

0

20

40

60

80

100

120

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lbm leslie3d mcf GemsFDTD

N
e

tw
o

rk
 I

n
te

n
si

ty
 (

M
P

K
I)

S
lo

w
d

o
w

n

Slowdown Network Intensity

1.0

Key Knobs of FAST

11

 Rank based on slowdown

 Classification based on network intensity

 Latency-sensitive: spends more time in the core

 Throughput-sensitive: network intensive

 Throttle Up

 Latency-sensitive applications: improve system performance

 Slower applications: optimize system fairness

 Throttle Down

 Throughput sensitive application with lower STCnoc: reduce

interference with lower negative impact on performance

 Avoid throttling down the slowest application

Methodology

12

 Processor

 Out-of-order, ROB / instruction window = 128

 Caches

 L1: 64KB, 16 MSHRs

 L2: perfect shared

 NoCs

 Topology: 4×4 and 8×8 mesh

 Router: conventional VC router with 8 VCs, 4 flits/VC

 Workloads: multiprogrammed SPEC CPU2006

 90 randomly-chosen workloads

 Categorized by network intensity (i.e., MPKI)

NAS is Accurate

0%

5%

10%

15%

S
lo

w
d

o
w

n
E

st
im

a
ti

o
n

E
rr

o
r

4x4

8x8

31.7% 4.2%2.6%Network saturation

 Slowdown estimation error: 4.2% (2.6%) for 8×8 (4×4)

 Low estimated slowdown error consistently

 Good scalabilityNAS is highly accurate and scalable

13

FAST Improves Performance

14

(a) Mixed workloads (b) Heavy workloads

 FAST has better performance than both HAT and NoST

 Inter-application interference is reduced

 Only throttles applications with low negative impact (i.e., lower STCnoc)

0.90

0.95

1.00

1.05

1.10

NoST HAT FAST NoST HAT FAST

4×4 8×8

N
o

rm
a

li
ze

d
W

ei
g

h
te

d
 S

p
ee

d
u

p

0.90

0.95

1.00

1.05

1.10

NoST HAT FAST NoST HAT FAST

4×4 8×8

N
o

rm
a

li
ze

d
W

ei
g

h
te

d
 S

p
ee

d
u

p

+5.2%+5.0%

0.85

0.90

0.95

1.00

1.05

1.10

NoST HAT FAST NoST HAT FAST

4×4 8×8

N
o

rm
a

li
ze

d
U

n
fa

ir
n

es
s

0.85

0.90

0.95

1.00

1.05

1.10

NoST HAT FAST NoST HAT FAST

4×4 8×8

N
o

rm
a

li
ze

d
U

n
fa

ir
n

es
s

FAST Reduces Unfairness

15

- 4.7%

-9.5%

 FAST can improve fairness

 Source throttling allows slower applications to catch up

 Uses runtime slowdown to identify and avoid throttling the slowest application

(a) Mixed workloads (b) Heavy workloads

Conclusion

16

 Problem: inter-application interference in on-chip networks (NoCs)

 In a multicore processor, interference can occur due to NoC contention

 Interference causes applications to slow down unfairly

 Goal: estimate NoC-level slowdown at runtime, and use slowdown information to

improve system fairness and performance

 Our Approach

 NoC Application Slowdown Model (NAS): first online model to quantify

inter-application interference in NoCs

 Fairness-Aware Source Throttling (FAST): throttle network injection rate of

processor cores based on slowdown estimate from NAS

 Results

 NAS is very accurate and scalable: 4.2% error rate on average (8×8 mesh)

 FAST improves system fairness by 9.5%, and performance by 5.2%

(compared to a baseline without source throttling on a 8×8 mesh)

A Model for Application Slowdown Estimation
in On-Chip Networks and Its Use for Improving

System Fairness and Performance

Xiyue Xiang*, Saugata Ghose†, Onur Mutlu†§, Nian-Feng Tzeng*

*University of Louisiana at Lafayette
†Carnegie Mellon University

§ETH Zürich

http://www.louisiana.edu/
http://www.louisiana.edu/

Backup Slides

Xiyue Xiang*, Saugata Ghose†, Onur Mutlu†§, Nian-Feng Tzeng*

*University of Louisiana at Lafayette
†Carnegie Mellon University

§ETH Zürich

http://www.louisiana.edu/
http://www.louisiana.edu/

Related Works

19

 Slowdown modeling
 Fine grained: [Mutlu+ MICRO ’07], [Ebrahimi+ ASPLOS ’10], [Bois+ TACO ’13]

 Coarse grained: [Subramanian+ HPCA ’13], [Subramanian MICRO ’15]

 Source throttling

 [Chang+ SBAC-PAD ’12], [Nychis+ SIGCOMM ’12], [Nychis+ HotNet ’10]

 Application mapping

 [Chou+ ICCD ’08], [Das+ HPCA ’13]

 Prioritization

 [Das+ MICRO ’09], [Das ISCA ’10]

 Scheduling
 [Kim+ MICRO’10]

 QoS
 [Grot+ MICRO ’09], [Grot+ ISCA ’11], [Lee+ ISCA ’08]

Hardware Cost of NAS

20

Location Components Costs

Router Interference delay of each flit 5.3% wider data path

NI

Timestamp of the first and last
arrival flit of a packet

(16+16)×16 bits

Inheritance table (6+4+8)×20 bits

Core

Interference delay of the request 8 bits

Timestamp when processor stalls 16 bits

Estimated application stall time 16 bits

Total cost of NAS per node 114 Bytes + 5.3% router area

NAS Error Distribution

Plot 7,200 application instances

0%

10%

20%

30%

40%

50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

F
ra

ct
io

n
 o

f
A

p
p

li
ca

ti
o

n
 I

n
st

a
n

ce
s

Slowdown Estimation Error (Binned)

66.0% of application instances with < 10% error

84.3% of application instances with < 20% error

5.6% of application instances with ≥ 40% error

 Plot 7,200 application instance

 NAS exhibits high accuracy most of the time

21

