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Executive Summary
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 Problem: inter-application interference in on-chip networks (NoCs)

 In a multicore processor, interference can occur due to NoC contention

 Interference causes applications to slow down unfairly

 Goal: estimate NoC-level slowdown at runtime, and use slowdown information to 

improve system fairness and performance

 Our Approach

 NoC Application Slowdown Model (NAS): first online model to quantify 

inter-application interference in NoCs

 Fairness-Aware Source Throttling (FAST): throttle network injection rate of 

processor cores based on slowdown estimate from NAS

 Results

 NAS is very accurate and scalable: 4.2% error rate on average (8×8 mesh)

 FAST improves system fairness by 9.5%, and performance by 5.2%

(compared to a baseline without source throttling on a 8×8 mesh)



Motivation: Interference in NoCs
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Interference slows down applications and increases system unfairness

16 copies of each application run concurrently on a 64-core processor

Root cause: 

NoC bandwidth is shared
𝒔𝒍𝒐𝒘𝒅𝒐𝒘𝒏 =

𝒕𝒊𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒏𝒄𝒆

𝒕𝒏𝒐_𝒊𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒏𝒄𝒆
=
𝒕𝒔𝒉𝒂𝒓𝒆𝒅
𝒕𝒂𝒍𝒐𝒏𝒆



Challenges: 

 Flit-level delay ≠ slowdown

NAS: NoC Application Slowdown Model
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Online estimation of ∆𝑡𝑠𝑡𝑎𝑙𝑙: application stall time due to interference

talone: unknown at runtime

𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
𝑡𝑠ℎ𝑎𝑟𝑒𝑑
𝑡𝑎𝑙𝑜𝑛𝑒

=
𝑡𝑠ℎ𝑎𝑟𝑒𝑑

𝑡𝑠ℎ𝑎𝑟𝑒𝑑 − ∆𝑡𝑠𝑡𝑎𝑙𝑙

Node S Node D

request

response

Each request involves multiple packets

tshared: measured directly



Challenges: 

 Flit-level delay ≠ slowdown

 Random and distributive

 Overlapped delay

NAS: NoC Application Slowdown Model
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tshared: measured directly talone: unknown at runtime

𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =
𝑡𝑠ℎ𝑎𝑟𝑒𝑑
𝑡𝑎𝑙𝑜𝑛𝑒

=
𝑡𝑠ℎ𝑎𝑟𝑒𝑑

𝑡𝑠ℎ𝑎𝑟𝑒𝑑 − ∆𝑡𝑠𝑡𝑎𝑙𝑙

Node S Node D

A packet is formed by multiple flits

Basic idea: track delay and calculate ∆tstall

Online estimation of ∆𝑡𝑠𝑡𝑎𝑙𝑙: application stall time due to interference



Flit-Level Interference
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 Three interference events

 Injection

 Virtual channel arbitration

 Switch arbitration

 Each flit carries an additional field ∆tflit

 If arbitration loses, ∆tflit = ∆tflit + 1

Sum up arbitration delays due to interference

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Node

Core

L1

Router

Shared LLC 

Slice

MSHRs



Packet-Level Interference
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∆ treassembly= 𝑻𝒍𝒂𝒔𝒕_𝒂𝒓𝒓𝒊𝒗𝒂𝒍 − 𝑻𝒇𝒊𝒓𝒔𝒕_𝒂𝒓𝒓𝒊𝒗𝒂𝒍 −𝑴

∆𝒕𝒑𝒂𝒄𝒌𝒆𝒕 = ∆𝒕𝒇𝒊𝒓𝒔𝒕_𝒇𝒍𝒊𝒕 + ∆𝒕𝒓𝒆𝒂𝒔𝒔𝒆𝒎𝒃𝒍𝒚

Tfirst_arrival =3 Tlast_arrival=11

treassembly = M cycles (M=5)

1    2    3    4    5

f1

∆𝑡𝑓𝑖𝑟𝑠𝑡_𝑓𝑙𝑖𝑡
=2

Alone run:

Shared run:

f2 f3 f4 f5

f1 f2 f3 f4 f5

1    2    3    4    5    6    7    8    9   10   11

M-cycle 
reassembly

Packet’s flits arrive consecutively when there is no interference

∆𝑡𝑝𝑎𝑐𝑘𝑒𝑡 = 2 + 11 − 3 − 5 = 5 𝑐𝑦𝑐𝑙𝑒𝑠

∆𝑡𝑟𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦

Track increase in packet reassembly time



Request-Level Interference
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Node S Node D1 Request packet delayed by 5 cycles due 

to inter-application interference

0

 Leverage closed-loop packet behavior to accumulate ∆tpacket

 Inheritance Table: lump sum of ∆tpacket for associated packets



Request-Level Interference
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Node S Node D

NI LLC Slice

Inheritance Table

2 Register request packet info in

inheritance table (Δtpacket = 5)

4 Generate response packet,

inheriting Δtpacket from table

3 Cache

access

1 Request packet delayed by 5 cycles due 

to inter-application interference

reqID mshrID Δtpacket...
...

...

0

 Leverage closed-loop packet behavior to accumulate ∆tpacket

 Inheritance Table: lump sum of ∆tpacket for associated packets

5

5



Request-Level Interference
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Node S

3 Cache

access

1 Request packet delayed by 5 cycles due 

to inter-application interference

5 Response packet delayed by 3 cycles

due to inter-application interference

5

 Leverage closed-loop packet behavior to accumulate ∆tpacket

 Inheritance Table: lump sum of ∆tpacket for associated packets

Node D

NI LLC Slice

Inheritance Table

2 Register request packet info in

inheritance table (Δtpacket = 5)

4 Generate response packet,

inheriting Δtpacket from table

3 Cache

accessreqID mshrID Δtpacket...
...

...

5



Request-Level Interference
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∆𝒕𝒓𝒆𝒒𝒖𝒆𝒔𝒕= ∆𝒕𝒓𝒆𝒒𝒖𝒆𝒔𝒕_𝒑𝒂𝒄𝒌𝒆𝒕 + ∆𝒕𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆_𝒑𝒂𝒄𝒌𝒆𝒕

Node S 1 Request packet delayed by 5 cycles due 

to inter-application interference

5 Response packet delayed by 3 cycles

due to inter-application interference

Final value
of Δtpacket

is 8 cycles

 Leverage closed-loop packet behavior to accumulate ∆tpacket

 Inheritance Table: lump sum of ∆tpacket for associated packets
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Sum up delays of all associated packets

3 Cache

access

Node D

NI LLC Slice

Inheritance Table

2 Register request packet info in

inheritance table (Δtpacket = 5)

4 Generate response packet,

inheriting Δtpacket from table

3 Cache

accessreqID mshrID Δtpacket...
...

...

5



Application Stall Time
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A memory request becomes critical if

1) It is the oldest instruction at ROB and ROB is full, and/or

2) It is the oldest instruction at LSQ and LSQ is full when the next is a memory instruction

∆𝒕𝒔𝒕𝒂𝒍𝒍_𝒑𝒆𝒓_𝒓𝒆𝒒𝒖𝒆𝒔𝒕= 𝒎𝒊𝒏(𝑻𝒔𝒆𝒓𝒗𝒊𝒄𝒆 − 𝑻𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍, 𝒕𝒓𝒆𝒒𝒖𝒆𝒔𝒕 )

For all critical requests

Latency is hidden App. stalls

ignored

Latency of critical request

Tcritical Tservice

∆𝒕𝒔𝒕𝒂𝒍𝒍_𝒑𝒆𝒓_𝒓𝒆𝒒𝒖𝒆𝒔𝒕

∆𝒕𝒔𝒕𝒂𝒍𝒍= 

𝒊

∆𝒕𝒔𝒕𝒂𝒍𝒍_𝒑𝒆𝒓_𝒓𝒆𝒒𝒖𝒆𝒔𝒕,𝒊

ILP, MLP

Count only request delays on critical path of execution time



Using NAS to Improve Fairness
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 NAS provides online estimation of slowdown

 Sum up flit-level arbitration delays due to interference

 Track increase in packet reassembly time

 Sum up delays of all associated packets

 Determine which request delays causes application stall

 Goal

 Use NAS to improve system fairness and performance

 FAST: Fairness-Aware Source Throttling



A New Metric: NoC Stall-Time Criticality
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𝑺𝑻𝑪𝒏𝒐𝒄 =
𝒔𝒍𝒐𝒘𝒅𝒐𝒘𝒏

𝑳𝟏𝒎𝒊𝒔𝒔

NoC Stall-Time Criticality

FAST utilizes STCnoc to proactively estimate 

the expected impact of each L1 miss

Lower STCnoc <==>   Less sensitive to NoC-level interference

Good candidate to be throttled down

Interference in NoCs

has uneven impact
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Key Knobs of FAST
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 Rank based on slowdown

 Classification based on network intensity

 Latency-sensitive: spends more time in the core

 Throughput-sensitive: network intensive

 Throttle Up

 Latency-sensitive applications: improve system performance

 Slower applications: optimize system fairness

 Throttle Down

 Throughput sensitive application with lower STCnoc: reduce 

interference with lower negative impact on performance

 Avoid throttling down the slowest application



Methodology
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 Processor

 Out-of-order, ROB / instruction window = 128

 Caches

 L1: 64KB, 16 MSHRs

 L2: perfect shared

 NoCs

 Topology: 4×4 and 8×8 mesh

 Router: conventional VC router with 8 VCs, 4 flits/VC

 Workloads: multiprogrammed SPEC CPU2006

 90 randomly-chosen workloads

 Categorized by network intensity (i.e., MPKI)



NAS is Accurate
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 Slowdown estimation error: 4.2% (2.6%) for 8×8 (4×4)

 Low estimated slowdown error consistently

 Good scalabilityNAS is highly accurate and scalable
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FAST Improves Performance 
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(a) Mixed workloads (b) Heavy workloads

 FAST has better performance than both HAT and NoST

 Inter-application interference is reduced

 Only throttles applications with low negative impact (i.e., lower STCnoc)
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FAST Reduces Unfairness
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- 4.7%

-9.5%

 FAST can improve fairness

 Source throttling allows slower applications to catch up

 Uses runtime slowdown to identify and avoid throttling the slowest application

(a) Mixed workloads (b) Heavy workloads



Conclusion
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 Problem: inter-application interference in on-chip networks (NoCs)

 In a multicore processor, interference can occur due to NoC contention

 Interference causes applications to slow down unfairly

 Goal: estimate NoC-level slowdown at runtime, and use slowdown information to 

improve system fairness and performance

 Our Approach

 NoC Application Slowdown Model (NAS): first online model to quantify 

inter-application interference in NoCs

 Fairness-Aware Source Throttling (FAST): throttle network injection rate of 

processor cores based on slowdown estimate from NAS

 Results

 NAS is very accurate and scalable: 4.2% error rate on average (8×8 mesh)

 FAST improves system fairness by 9.5%, and performance by 5.2%

(compared to a baseline without source throttling on a 8×8 mesh)
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Hardware Cost of NAS
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Location Components Costs

Router Interference delay of each flit 5.3% wider data path

NI

Timestamp of the first and last 
arrival flit of a packet

(16+16)×16 bits

Inheritance table (6+4+8)×20 bits

Core

Interference delay of the request 8 bits

Timestamp when processor stalls 16 bits

Estimated application stall time 16 bits

Total cost of NAS per node 114 Bytes + 5.3% router area 



NAS Error Distribution

Plot 7,200 application instances
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Slowdown Estimation Error (Binned)

66.0% of application instances with < 10% error

84.3% of application instances with < 20% error

5.6% of application instances with ≥ 40% error

 Plot 7,200 application instance

 NAS exhibits high accuracy most of the time 
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