Scalable Many-Core Memory Systems

Topic 1: DRAM Basics and
DRAM Scaling

SAFARI

Prof. Onur Mutlu
http://www.ece.cmu.edu/~omutlu
onur@cmu.edu
HiIPEAC ACACES Summer School 2013
July 15-19, 2013

Carnegie Mellon

The Main Memory System

Processor
and caches

_

Main Memory

/

Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

SAFARI

Memory System: A Shared Resonrce View

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\
\
@) N
= =
Qo [<V]
= =
o (¢
(=W
\% =
\E\ E
(=] (=]
- =]
e
Shared Shared
Memory Memory
Control Control
Shared Memory

SAFARI 3

State of the Main Memory System

Recent technology, architecture, and application trends
o lead to new requirements
o exacerbate old requirements

DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

We need to rethink the main memory system
o to fix DRAM issues and enable emerging technologies
o to satisfy all requirements

SAFARI 4

Major Trends Atfecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

SAFARI 5

Major Trends Attecting Main Memory (II)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores
o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

SAFARI 6

Example Trend: Many Cores on Chip

= Simpler and lower power than a single large core
= Large scale parallelism on chip

Memory Controller

: Intel Core i7 IBM Cell BE
AM D“Barcelona 8 cores 8+1 cores 8 cores
4 cores

Nvidia Fermi Intel SCC Tilera TILE Gx
Sun Niagara ll 448 “cores” 48 cores, networked 100 cores, networked
8 cores

SAFARI 7

Consequence: The Memory Capacity Gap

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

1000

—— #Core

= DRAM
100 —

(@]

Relative capacity

p—
|

—_ —_— p— —_— — e pa—

£€00¢
G00¢
900¢
£00¢
800¢
600¢

Source: Lim et al., ISCA 2009.

Memory capacity per core expected to drop by 30% every two years
Trends worse for memory bandwidth per core!

Major Trends Attecting Main Memory (I1I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

o ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

o DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending

SAFARI)

Major Trends Attecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm

o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy

SAFARI 10

The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

WL BL

= |

CAP —— ;
- SENSE

V

DRAM capacity, cost, and energy/power hard to scale

SAFARI 1

Solutions to the DRAM Scaling Problem

Two potential solutions
o Tolerate DRAM (by taking a fresh look at it)

o Enable emerging memory technologies to eliminate/minimize
DRAM

Do both
o Hybrid memory systems

SAFARI 12

Solution 1: Tolerate DRAM

Overcome DRAM shortcomings with

o System-DRAM co-design

o Novel DRAM architectures, interface, functions
o Better waste management (efficient utilization)

Key issues to tackle

o Reduce refresh energy

a Improve bandwidth and latency

o Reduce waste

a Enable reliability at low cost

Liu, Jaiyen, Veras, Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA'13.
Seshadri+, "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013.

SAFARI 13

Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory

o Expected to scale to 9nm (2022 [ITRS])

o Expected to be denser than DRAM: can store multiple bits/cell

But, emerging technologies have shortcomings as well
o Can they be enabled to replace/augment/surpass DRAM?

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009, CACM 2010, Top Picks 2010.

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid
Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,”
ICCD 2012 Best Paper Award.

SAFARI 14

Hybrid Memory Systems

-

DRAM

\2

Ctrl

CM

Ctrl

/

_

Phase Change Memory (or Tech. X)

~

/

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD

2012 Best Paper Award.

SAFARI

An Orthogonal Issue: Memory Interference

Problem: Memory interference is uncontrolled >
uncontrollable, unpredictable, vulnerable system

Goal: We need to control it > Design a QoS-aware system

Solution: Hardware/software cooperative memory QoS

o Hardware designed to provide a configurable fairness substrate
Application-aware memory scheduling, partitioning, throttling

o Software designed to configure the resources to satisfy different
QoS goals

o E.g., fair, programmable memory controllers and on-chip

networks provide QoS and predictable performance
[2007-2012, Top Picks’09,'11a,’11b,'12]

SAFARI

Agenda for Today

What Will You Learn in This Course

Main Memory Basics (with a Focus on DRAM)
Major Trends Affecting Main Memory

DRAM Scaling Problem and Solution Directions
Solution Direction 1: System-DRAM Co-Design
Ongoing Research

Summary

SAFARI

17

What Will You Learn in This Course?

Scalable Many-Core Memory Systems
o July 15-19, 2013

Topic 1: Main memory basics, DRAM scaling

Topic 2: Emerging memory technologies and hybrid memories
Topic 3: Main memory interference and QoS

Topic 4 (unlikely): Cache management

Topic 5 (unlikely): Interconnects

Required Major Overview Reading:

o Mutlu, "Memory Scaling: A Systems Architecture Perspective,”
IMW 2013.

18

This Course

Will cover many problems and potential solutions related to
the design of memory systems in the many core era

The design of the memory system poses many
o Difficult research and engineering problems

o Important fundamental problems

o Industry-relevant problems

Many creative and insightful solutions are needed to solve
these problems

Goal: Acquire the basics to develop such solutions (by
covering fundamentals and cutting edge research)

SAFARI 19

Readings and Videos

Required Overview Reading

= Mutlu, "Memory Scaling: A Systems Architecture Perspective,”
IMW 2013.

= Onur Mutluy,
"Memory Scaling: A Systems Architecture
Perspective"

Proceedings of the 5th International Memory Workshop
(IMW), Monterey, CA, May 2013. Slides (pptx) (pdf)

21

Online Slides (Ilonger Versions)

= Topic 1: DRAM Basics and DRAM Scaling

o http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topicl-
dram-basics-and-scaling.pptx

o http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topicl-
dram-basics-and-scaling.pdf

= Topic 2: Emerging Technologies and Hybrid Memories

o http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic2-
emerging-and-hybrid-memory-technologies.pptx

o http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic2-
emerging-and-hybrid-memory-technologies.pdf

= Topic 3: Memory Interference and QoS-Aware Memory Systems

o http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic3-
memory-gos.pptx

o http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic3-
memory-qgos.pdf

22

Memory Lecture Videos

Memory Hierarchy (and Introduction to Caches)

o http://www.youtube.com/watch?
v=]BdfZ5i21cs&list=PL5PHmM?2jkkXmidJOd59RE0q9iDnPDTG61]&index=22

Main Memory

o http://www.youtube.com/watch?
v=ZLCy3pG7RcO&list=PL5PHM2jkkXmidJOd59RE0g9iDnPDTG6I]&index=25

Memory Controllers, Memory Scheduling, Memory QoS

o http://www.youtube.com/watch?
v=Z7SotvL3WXmARlist=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG6I]&index=26

o http://www.youtube.com/watch?
v=1xe2w3 NzmI&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG6I]&index=27

Emerging Memory Technologies

o http://www.youtube.com/watch?
v=LzfOghMKyAQ&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG6I]&index=35

Multiprocessor Correctness and Cache Coherence

o http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG61]&index=32

23

Readings for Topic 1 (DRAM Scaling)

Lee et al., "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM
Architecture,” HPCA 2013.

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA
2012.

Kim et al., "A Case for Exploiting Subarray-Level Parallelism in DRAM,”
ISCA 2012.

Liu et al., “"An Experimental Study of Data Retention Behavior in Modern
DRAM Devices,” ISCA 2013.

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” CMU CS Tech Report 2013.

David et al., "Memory Power Management via Dynamic Voltage/
Frequency Scaling,” ICAC 2011.

Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement
Learning Approach,” ISCA 2008.

24

Readings for Topic 2 (Emerging Technologies)

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009, CACM 2010, Top Picks 2010.

Qureshi et al., “Scalable high performance main memory system using
phase-change memory technology,” ISCA 20009.

Meza et al., “Enabling Efficient and Scalable Hybrid Memories,” IEEE
Comp. Arch. Letters 2012.

Yoon et al., “"Row Buffer Locality Aware Caching Policies for Hybrid
Memories,” ICCD 2012 Best Paper Award.

Meza et al., “A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory,” WEED 2013.

Kultursay et al., "Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative,” ISPASS 2013.

25

Readings for Topic 3 (Memory QQoS)

Moscibroda and Mutlu, "Memory Performance Attacks,” USENIX
Security 2007.

Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling,”
MICRO 2007.

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA
2008, IEEE Micro 20009.

Kim et al., "ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers,” HPCA 2010.

Kim et al., "Thread Cluster Memory Scheduling,” MICRO 2010, IEEE
Micro 2011.

Muralidhara et al., *Memory Channel Partitioning,” MICRO 2011.
Ausavarungnirun et al., "Staged Memory Scheduling,” ISCA 2012.

Subramanian et al., "MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems,” HPCA 2013.

Das et al., “"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems,” HPCA 2013.

26

Readings for Topic 3 (Memory QQoS)

Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS 2010, ACM
TOCS 2012.

Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008, IEEE TC
2011.

Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.

Ebrahimi et al., “Prefetch-Aware Shared Resource Management for
Multi-Core Systems,” ISCA 2011.

27

Readings in Flash Memory

Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,
"Error Analysis and Retention-Aware Error Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.

Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,

"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization,
Analysis and Modeling"

Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble,
France, March 2013. Slides (ppt)

Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken
Mai,

"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased
Flash Memory Lifetime"

Proceedings of the 30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)

Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,

"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization,
and Analysis"

Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden,
Germany, March 2012. Slides (ppt)

28

Online Lectures and More Information

= Online Computer Architecture Lectures

a http://www.youtube.com/playlist?
list=PL5PHmM2jkkXmidJOd59RE0g9iDNPDTG6I]

= Online Computer Architecture Courses
a Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php
o Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php
o Advanced: http://www.ece.cmu.edu/~ece742/doku.php

= Recent Research Papers
a http://users.ece.cmu.edu/~omutlu/projects.htm

o http://scholar.google.com/citations?
user=7/XyGUGKAAAAJ&hl=en

29

Agenda for Today

What Will You Learn in This Mini-Lecture Series
Main Memory Basics (with a Focus on DRAM)
Major Trends Affecting Main Memory

DRAM Scaling Problem and Solution Directions
Solution Direction 1: System-DRAM Co-Design
Ongoing Research

Summary

30

Main Memory in the System

g >
> m- I!lc"! cn fr m'l 1
¥
] o
i am
=3
g AT o
CONTRO R
o
s ORE::2: COR
| 1 :

?????

Ideal Memory

Zero access time (latency)

Infinite capacity

Zero cost

Infinite bandwidth (to support multiple accesses in parallel)

32

The Problem

Ideal memory’s requirements oppose each other

Bigger is slower
o Bigger - Takes longer to determine the location

Faster is more expensive
o Memory technology: SRAM vs. DRAM

Higher bandwidth is more expensive

o Need more banks, more ports, higher frequency, or faster
technology

33

Memory Technology: DRAM

Dynamic random access memory
Capacitor charge state indicates stored value

o Whether the capacitor is charged or discharged indicates
storage of 1 or O

o 1 capacitor

o 1 access transistor row enable
Capacitor leaks through the RC path o _|£

o DRAM cell loses charge over time El L

o DRAM cell needs to be refreshed \V4

o Read Liu et al., "RAIDR: Retention-aware Intelligent DRAM
Refresh,” ISCA 2012.

34

Memory Technology: SRAM

Static random access memory
Two cross coupled inverters store a single bit
o Feedback path enables the stored value to persist in the “cell”

o 4 transistors for storage
o 2 transistors for access

row select

bitline

bitline

I%_L

35

Memory Bank: A Fundamental Concept

Interleaving (banking)

o Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

o Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

o Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

Each bank is smaller than the entire memory storage
Accesses to different banks can be overlapped

o Issue: How do you map data to different banks? (i.e., how do

you interleave data across banks?)
36

Memory Bank Organization and Operation

Read access sequence:

o
/ 2D Storage 1. Decode row address
o T Array & drive word-lines
k% Ly
o 2 e o
8 o | MS blt§ S 2. Selected bits drive
O— 2 -
kS, o O I bit-lines
< = S e Enti d
S o ntire row rea
< o
BN 3. Amplify row data
: YVvVYwY v v 4. Decode column
L5 IS \,\Column Decoder/ address & select subset
l of row
e Send to output
Data Out

5. Precharge bit-lines
e For next access

37

Why Memory Hierarchy?

We want both fast and large
But we cannot achieve both with a single level of memory

Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

38

Caching Basics: Exploit Temporal Locality

Idea: Store recently accessed data in automatically
managed fast memory (called cache)

Anticipation: the data will be accessed again soon

Temporal locality principle

o Recently accessed data will be again accessed in the near
future

o This is what Maurice Wilkes had in mind:

Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

“The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

39

Caching Basics: Exploit Spatial Locality

Idea: Store addresses adjacent to the recently accessed
one in automatically managed fast memory

o Logically divide memory into equal size blocks
o Fetch to cache the accessed block in its entirety
Anticipation: nearby data will be accessed soon

Spatial locality principle

o Nearby data in memory will be accessed in the near future
E.g., sequential instruction access, array traversal

o This is what IBM 360/85 implemented
16 Kbyte cache with 64 byte blocks

Liptay, “Structural aspects of the System/360 Model 85 II: the
cache,” IBM Systems Journal, 1968.

40

A Note on Manual vs. Automatic Management

Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs
a core” vs “drum” memory in the 50's

o still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache)

Automatic: Hardware manages data movement across levels,
transparently to the programmer

++ programmer’s life is easier

o simple heuristic: keep most recently used items in cache

o the average programmer doesn’t need to know about it

You don't need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)

41

Automatic Management in Memory E

Wilkes, “Slave Memories and Dynamic Storage
IEEE Trans. On Electronic Computers, 1965.

terarchy

Allocation,”

Slave Memories and Dynamic Storage Allocation

M. V. WILKES
SUMMARY

The use is discussed of a fast core memory of, say,

32 000 words as

a slave to a slower core memory of, say, one million words in such a
way that in practical cases the effective access time is nearer that of

the fast memory than that of the slow memory.

"By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory

access to be incurred again.”

42

A Modern Memory Hierarchy

Memory
Abstraction

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,

manual/compiler

register spilling

Automatic
HW cache
management

Main memory (DRAM),
GB, ~100 nsec

automatic

Swap Disk
100 GB, ~10 msec

demand
paging

43

The DRAM Subsystem

Page Mode DRAM

A DRAM bank is a 2D array of cells: rows x columns
A “DRAM row” is also called a “DRAM page”
“Sense amplifiers” also called “row buffer”

Each address is a <row,column> pair

Access to a “closed row”

o Activate command opens row (placed into row buffer)

o Read/write command reads/writes column in the row buffer

o Precharge command closes the row and prepares the bank for
next access

Access to an “open row”

o No need for activate command

45

DRAM Bank Operation

Access Address:
(Row 0, Column 0)

(Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row address @ —»

Row decoder

Columns

—————————————————————————

Column address 65—»\ Column mux/

l

Data

Row Buffer EONFLICT !

46

The DRAM Chip

Consists of multiple banks (2-16 in Synchronous DRAM)
Banks share command/address/data buses
The chip itself has a narrow interface (4-16 bits per read)

47

128M x 8-bit DRAM Chip

ODT —¢
1
1
CKE —0— Control
CK—>?— logic
1
s callis ,,
RAS# —»o— gg IJBa_nkT , ODT control ~ (VadQ
CAS# —»0—E & Bank 0 | COLo, CoL1 ‘ swl sw2 sw3
WE#-.é— S® 14 1 row- M 8 ' l
_ g address emory array il > k L k
| Mode || Refresh @ Row- latch 1638471 (16,384 x 256 x 32)| | | 8 sw 1 sw2 \sw3
! registers ! counter |- address and iin 3_2’ Read | 8§ +>8 R1$ R2$ RB%
E s , g decoder |-] | latch é: > MUX| Dpata DA I ¢
! 14 > Sense amplifers g : : X
| ! DQS 2
! ! generator [";pq3 UDQS#
| : 32 Input LDQS, LDQS# m
H E 7T Zregisirs 5 SW1 N sw2 hsw3
! o ya
X i 2 110 gating' 721__‘3 R % RZ% R3%
AO-A13,:>{~E"> Address I ! 4> Bank DM mask logic WRITE . 4 72/—_1 5 2 R1 %\ RZ{;\ R3%\
BAO-BA2—/Y/] reqister h e o] control FIFO | a- K7 <
! S 3 logic = bl ad | "2 172] Hrams
7 > b————» <~
| . 2)} <« drivers _?{_ — | 8 Y m
| <+~
' % Column |k out 32 8 [1.8 |g swip SW2 \sw3
| Column- | 8 decoder | | chc CKO:Jn «F T—:{; R1$- R2$ R3$
} 10 > address |7, A Datair— |er R1%! R2%! R3S
i counter/ |z _§_ « §, . .
! latch 33 2
1 COLo, COL1 7+
! _
E VssQ
1

DRAM Rank and Module

Rank: Multiple chips operated together to form a wide
interface

All chips comprising a rank are controlled at the same time

o Respond to a single command
o Share address and command buses, but provide different data

A DRAM module consists of one or more ranks
o E.g., DIMM (dual inline memory module)
o This is what you plug into your motherboard

If we have chips with 8-bit interface, to read 8 bytes in a
single access, use 8 chips in a DIMM

49

A 64-bit Wide DIMM (One Rank)

A 64-bit Wide DIMM (One Rank)

__

' DIMM i
| RAM CHIP 7 |
| DRAM CHIP 1 5
| DRAM CHIP 0 :
i BANK 0 BANK 7 E
2] [Rewo
i Row 2 - g : i
| Address| 5 _z E |
| =z < - |
i = Réow R—l i
i N H : ; i : :
|] |
i | ROW BUFFER | | | i
i Column — - § i
i Address _ Column Decoder j (] :
| {z % g !
| - !
| 8 !
| [8 64 |
s I RRREanEEEE e L LR P L PP 1___________,'

DRAM T

Command Bus 64—bit wide

] - channel
|

DRAM Address Bus ‘ DRAM MEMORY CONTROLLER

DRAM Data Bus

Advantages:

o Acts like a high-
capacity DRAM chip
with a wide
interface

o Flexibility: memory
controller does not
need to deal with
individual chips

Disadvantages:

o Granularity:
Accesses cannot be
smaller than the
interface width

51

Multiple DIMMs

lDimmi, Dimm2 Dimm3, Pimm4,

j L |
I | N |
wi
| I | I
: I I :
Single | I I
Channel , = :
SDRAM I I I
Controller | Ifi !
| I
| I | I
| Il I
I | (N [
L Iq |
| I
_— | I | I

Addr & Cmd

“Mesh Topology” Data Bus

Chip (DIMM) Select

= Advantages:

o Enables even
higher capacity

= Disadvantages:

o Interconnect
complexity and
energy
consumption
can be high

52

DRAM Channels

‘DIMM
| [DRAM CHIP 7 ,

[DRAM CHIP 1

DRAM CHIP 0
BANK 0

ess Decoder |
J

Row

Address| 5
=z
ROW BUFFER
Column I N
Address Column Decoder /|

BANK 7

Command Bus

DRAM Address Bus S A A DRAM Data Bus

64—bit wide
channel

‘DIMM
i [DRAM CHIP 7 ,

[DRAM CHIP 1

DRAM CHIP 0
BANK 7

BANK 0

ess Decoder |
J

Row

Address| 5
=z
2 REO\\';Rflé
—
Column o .
Address Column Decoder) (—]
v g
T 8
[8 64
E BT Y R -~
| Command Bus 64-bit wide
channel

DRAM Address Bus DRAMMEMORY CONTROLLER DRAM Data Bus

2 Independent Channels: 2 Memory Controllers (Above)

2 Dependent/Lockstep Channels: 1 Memory Controller with
wide interface (Not Shown above)

53

Generalized Memory Structure

Processor |

Rank

Rank

Bank a

Bank _j

Rank

Bank ﬂ

Channel

_.<—data bus—)

................................

- —cmd bus— i

—addr bus—)

......

54

DRAM Subsystem Organization

= Channel

= DIMM

= Rank

N Chu)

= Bank

= Row/Column

55

The DRAM subsystem

“Channel” DIMM (Dual in-line memory module)

Memory channel Memory channel

Breaking down a DIMM

SEEN

DIMM (Dual in-line memory module)

Front of DIMM Back of DIMM

Breaking down a DIMM

DIMM (Dual in-line memory module)

Front of DIMM Back of DIMM

= LT, "

I L | I I
N

Rank

Rank O (Front) Rank 1 (Back)

‘ Addr/Cmd CS <0:1> Data <0:63> ’

Memory channel

Breaking down a Rank

Data <0:63>

Breaking down a Chip

Breaking down a Bank

1B (column)

2kB

R¢

>w-|auﬂ]er

~

row 16k-1

row 0

DRAM Subsystem Organization

= Channel

= DIMM

= Rank

N Chu)

= Bank

= Row/Column

63

Example: Transferring a cache block

Physical memory space

OXFFFF...F

Channel 0

0x40 A

64B
cache block

0x00 v

Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

|

OXFFFF...F

<0:7>

0x40 A

64B
D <0:63>
cache block ata <0:63

0x00 v

Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

OXFFFF...F

<0:7>

0x40 A

64B
D <0:63>
cache block ata <0:63

0x00 v

Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

OXFFFF...F

<0:7>

0x40 A

64B
cache block

Data <0:63>

8B

0x00 v

Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

o o |

OXFFFF...F

<0:7>

0x40 A

64B
D <0:63>
cache block ata <0:63

8B

0x00 v

Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

o o |

OXFFFF...F

<0:7>

0x40 A

64B
cache block

Data <0:63>

8B

8B

0x00 v

Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
P P Rank O P

o o |

OXFFFF...F

<0:7>

0x40 A

64B
o8 D <0:63>
cache block ata <0:63

8B

0x00 v

A 64B cache block takes 8 1/O cycles to transfer.

During the process, 8 columns are read sequentially.

Latency Components: Basic DRAM Operation

CPU — controller transfer time

Controller latency

o Queuing & scheduling delay at the controller

o Access converted to basic commands

Controller — DRAM transfer time

DRAM bank latency

o Simple CAS if row is “open” OR

o RAS + CAS if array precharged OR

o PRE + RAS + CAS (worst case)

DRAM — CPU transfer time (through controller)

71

Multiple Banks (Interleaving) and Channels

Multiple banks

o Enable concurrent DRAM accesses

o Bits in address determine which bank an address resides in
Multiple independent channels serve the same purpose

o But they are even better because they have separate data buses
a Increased bus bandwidth

Enabling more concurrency requires reducing

o Bank conflicts

o Channel conflicts

How to select/randomize bank/channel indices in address?

o Lower order bits have more entropy
o Randomizing hash functions (XOR of different address bits)

72

Address Mapping (Single Channel)

Single-channel system with 8-byte memory bus
o 2GB memory, 8 banks, 16K rows & 2K columns per bank

Row interleaving
o Consecutive rows of memory in consecutive banks

| Row (14 bits) | Bank (3 bits) | Column (11 bits) | Byte in bus (3 bits) |

Cache block interleaving
Consecutive cache block addresses in consecutive banks
64 byte cache blocks

| Row (14 bits) | High Column | Bank (3 bits) | Low Col. | Byte in bus (3 bits) |
8 bits 3 bits

Accesses to consecutive cache blocks can be serviced in parallel
How about random accesses? Strided accesses?

73

Address Mapping (Multiple Channels)

4 Row (14 bits) | Bank (3 bits) | Column (11 bits) | Byte in bus (3 bits) |
Row (14 bits)	d Bank (3 bits)	Column (11 bits)	Byte in bus (3 bits)
Row (14 bits)	Bank (3 bits)	G Column (11 bits)	Byte in bus (3 bits)
Row (14 bits)	Bank (3 bits)	Column (11 bits)	d Byte in bus (3 bits)

= Where are consecutive cache blocks?

4 Row (14 bits) | High Column | Bank (3 bits) | Low Col. | Byte in bus (3 bits) |
8 bits 3 bits
| Row (14 bits) | d High Column | Bank (3 bits) | Low Col. | Byte in bus (3 bits) |
8 bits 3 bits
| Row (14 bits) | High Column | d Bank (3 bits) | Low Col. | Byte in bus (3 bits) |
8 bits 3 bits
| Row (14 bits) | High Column | Bank (3 bits) | G| Low Col. | Byte in bus (3 bits) |
8 bits 3 bits
| Row (14 bits) | High Column | Bank (3 bits) | Low Col. E Byte in bus (3 bits) |
8 bits 3 bits

74

Interaction with Virtual=2 Physical Mapping

= Operating System influences where an address maps to in
DRAM

Virtual Page number (52 bits) | Page offset (12 bits) | VA
I Physical Frame number (19 bits) I Page offset (12 bits) I PA
| Row (14 bits) | Bank (3 bits) Column (11 bits) | Byte in bus (3 bits) | PA

= Operating system can control which bank/channel/rank a
virtual page is mapped to.

= It can perform page coloring to minimize bank conflicts
= Or to minimize inter-application interference

75

DRAM Retresh (I)

DRAM capacitor charge leaks over time

The memory controller needs to read each row periodically
to restore the charge

WL BL

o Activate + precharge each row every N ms L
a Typical N = 64 ms ae ,
Implications on performance? 1 V

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

Burst refresh: All rows refreshed immediately after one
another

Distributed refresh: Each row refreshed at a different time,
at regular intervals

76

DRAM Reftresh (II)

reren |00

sl 111 LI
Refresh \ :
y Time ——= ;

Each pulse represents Required time to
a refresh cycle complete refresh of all rows

Distributed refresh eliminates long pause times

How else we can reduce the effect of refresh on
performance?

o Can we reduce the number of refreshes?

77

Downsides of DRAM Refresh

Downsides of refresh
-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling

CAP

hi SENSE

78

Memory Controllers

DRAM versus Other Types of Memories

Long latency memories have similar characteristics that
need to be controlled.

The following discussion will use DRAM as an example, but
many issues are similar in the design of controllers for other
types of memories

o Flash memory

o Other emerging memory technologies
Phase Change Memory
Spin-Transfer Torque Magnetic Memory

80

DRAM Controller: Functions

Ensure correct operation of DRAM (refresh and timing)

Service DRAM requests while obeying timing constraints of
DRAM chips

o Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

o Translate requests to DRAM command sequences

Buffer and schedule requests to improve performance
o Reordering, row-buffer, bank, rank, bus management

Manage power consumption and thermals in DRAM
o Turn on/off DRAM chips, manage power modes

81

DRAM Controller: Where to Place

In chipset
+ More flexibility to plug different DRAM types into the system

+ Less power density in the CPU chip

On CPU chip

+ Reduced latency for main memory access
+ Higher bandwidth between cores and controller

More information can be communicated (e.g. request’s
importance in the processing core)

82

A Modern DRAM Controller

L2 Cache 0
To/From Cores Requests

A }

L2 Cache N-1
Requests

e P e ——

Bank B—-1
Scheduler

DEAM Bus Scheduler

A

] Bank 0
:i Scheduler
=
- .
el ;
=) .

\

Y
To/From DEAM Banks

Selected Address and DEAM Command

DEAM Address/Command Bus

To DRAM Banks

= (™
ﬁ Crossbar
= - J
= — * _____________________________ " _______ | Memory Request
? : ! Buffer
1 BANK 0) BANK B-1 |
[REQUEST REQUEST :
= BUFFER BUFFER !
| |
I |

Memory Access
| Scheduler

83

DRAM Scheduling Policies (I)

FCFS (first come first served)
o Oldest request first

FR-FCFS (first ready, first come first served)
1. Row-hit first

2. Oldest first
Goal: Maximize row buffer hit rate - maximize DRAM throughput

o Actually, scheduling is done at the command level

Column commands (read/write) prioritized over row commands
(activate/precharge)

Within each group, older commands prioritized over younger ones

84

DRAM Scheduling Policies (I1I)

A scheduling policy is essentially a prioritization order

Prioritization can be based on

o Request age

Row buffer hit/miss status

Request type (prefetch, read, write)
Requestor type (load miss or store miss)

Request criticality
Oldest miss in the core?
How many instructions in core are dependent on it?

85

Row Butter Management Policies

Open row

o Keep the row open after an access

+ Next access might need the same row - row hit

-- Next access might need a different row = row conflict, wasted energy

Closed row

o Close the row after an access (if no other requests already in the request
buffer need the same row)

+ Next access might need a different row = avoid a row conflict
-- Next access might need the same row - extra activate latency

Adaptive policies

o Predict whether or not the next access to the bank will be to
the same row

86

Open vs. Closed Row Policies

Policy

Open row
Open row

Closed row

Closed row

Closed row

Row 0
Row 0

Row 0O

Row 0

Row 0O

Row 0 (row hit)

Row 1 (row
conflict)

Row 0 — access in
request buffer
(row hit)

Row 0 — access not
in request buffer
(row closed)

Row 1 (row closed)

Commands
needed for next
access

Read

Precharge +
Activate Row 1 +
Read

Read

Activate Row 0 +
Read + Precharge

Activate Row 1 +
Read + Precharge

87

Why are DRAM Controllers Ditficult to Design?

Need to obey DRAM timing constraints for correctness
o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued

o tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

a ...

Need to keep track of many resources to prevent conflicts
o Channels, banks, ranks, data bus, address bus, row buffers

Need to handle DRAM refresh
Need to optimize for performance (in the presence of constraints)

o Reordering is not simple
o Predicting the future?

88

Many DRAM Timing Constraints

Latency | Symbol | DRAM cyeles H Latency | Symbol | DRAM cycles |

Precharge ‘RP 11 Activate to read/write ‘RCD 11

Read column address strobe CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39

Activate to precharge ‘RAS 28 Read to precharge ‘RTP 6

Burst length ‘BL 4 Column address strobe to column address strobe | ‘CC D 4
Activate to activate (different bank) | *RRD 6 Four activate windows ‘FAW 24
Write to read ‘WTR 6 Write recovery ‘WR 12

Table 4. DDR3 1600 DRAM timing specifications

= From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,

April 2010.

89

More on DRAM Operation

= Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

= Lee et al., "Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

Q .| Q
® & & Gi N Table 2. Timing Constraints (DDR3-1066) [43]
< 3 Q < 3
N tRC | Phase Commands Name Value
——tRAS——— | < tRP—| ACT o READ
; time —
Subarray —{ 1. Activation Pre 1. Activation — 1 ACT — WRITE CRCD 15ns
| |
peripheral & | < tRCD S5 | ¢tRCD> N time ACT — PRE tRAS 37.5ns
|/0-Circuitry READ — data tCL 15ns
«—tCcL— | «<tCL—~> ! time 2 WRITE — data tCWL 11.25ns
Bus data >
' ! : data burst tBL 7.5ns
_ 'EBLy tBL| 3 PRE— ACT tRP 15ms
<—first access latency—> | i TRC
second access latency | 1&3 ACT — ACT (tRAS+LRP) 52.5ns

Figure 5. Three Phases of DRAM Access

90

Selt-Optimizing DRAM Controllers

Problem: DRAM controllers difficult to design - It is difficult for
human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

Observation: Reinforcement learning maps nicely to memory
control.

Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

91

Selt-Optimizing DRAM Controllers

’ I ENVIRONMENT

Action a(t+1) Agent

’ I SYSTEM

<— Data Bus Utilization (t)
<— State Attributes (t)

— Scheduled Command (t+1) 1 Scheduler

Figure 2: (a) Intelligent agent based on reinforcement learning
principles; (b) DRAM scheduler as an RL-agent

Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

N\

/State\ yti ‘
Transaction Queue o
= 3
(o 8 :
S &
P ~)
- o Coaa
- ~
- - ~ ~ \
Valid |Bank | Row | Col | Data | Fequest Rewa\rd/
State

Figure 4: High-level overview of an RL-based scheduler.

Performance Results

BORON BOOON
COO0COO0OCO00O

Speedup over FR-FCFS
COORREEEENN

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN
B In-Order W FR-FCFS MWRL M Optimistic

Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

Speedup over
1-Channel FR-FCFS

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN

M FR-FCFS-1Channel = RL-1Channel M FR-FCFS-2 Channels M RL-2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak
DRAM bandwidth

94

DRAM Power Management

DRAM chips have power modes
Idea: When not accessing a chip power it down

Power states

o Active (highest power)

o All banks idle

o Power-down

o Self-refresh (lowest power)

State transitions incur latency during which the chip cannot
be accessed

95

Agenda for Today

What Will You Learn in This Mini-Lecture Series
Main Memory Basics (with a Focus on DRAM)
Major Trends Affecting Main Memory

DRAM Scaling Problem and Solution Directions
Solution Direction 1: System-DRAM Co-Design
Ongoing Research

Summary

SAFARI

96

Solution 1: Tolerate DRAM

Overcome DRAM shortcomings with

o System-DRAM co-design

o Novel DRAM architectures, interface, functions
o Better waste management (efficient utilization)

Key issues to tackle

o Reduce refresh energy

a Improve bandwidth and latency

o Reduce waste

a Enable reliability at low cost

Liu, Jaiyen, Veras, Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA'13.
Seshadri+, "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013.

SAFARI 7

New DRAM Architectures

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization

98

RAIDR: Reducing
DRAM Retresh Impact

Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,
"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012. Slides (pdf)

DRAM Refresh

DRAM capacitor charge leaks over time

The memory controller needs to refresh each row
periodically to restore charge

o Activate + precharge each row every N ms
o Typical N = 64 ms

Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling

SAFARI 100

Refresh Today: Auto Refresh

Columns

——————————————————————————

[}

SMOY

Row Buffer

l

BANK 1 BANK 2

BANK 3

!

lDRAM Bus

A batch of rows are
periodically refreshed

l

DRAM CONTROLLER

via the auto-refresh command

SAFARI

101

Refres

h Overhead: Performance

100

% time spent refreshing

o0
S

A
S

B
-

()
S

Present i Future

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

SAFARI

102

Retresh Overhead: Energy

100

% DRAM energy spent refreshing

o0
S

o)
S

I~
)

()
S

-

T

Present i Future

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

SAFARI

103

Problem with Conventional Refresh

= Today: Every row is refreshed at the same rate

;‘-'.; -lollm
£ 1ot
e, 110° &
: i
= | sp)
E 110° =
= < 1000 cell failures @ 256 ms | e
210710 | .-
= i | .28
6 10 10—2 10—1 100 101 102 103 104 2

Refresh interval (s)

= Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL'09]

= Problem: No support in DRAM for different refresh rates per row

SAFARI 104

Retention Time of DRAM Rows

= Observation: Only very few rows need to be refreshed at the
worst-case rate

= =
= 10-5
= 10 _106§
S 107° a
1103
g 1032
107 O
= 110*
= 1075 ~ 1000 cells @ 256 ms -
: 10—9j __ 10“;
S 1010l ~30cells @128 ms ~ | 103
2 T 110''S
310 Cutoff @ 64 ms 1002
S 10 12— ittt ettt =
g 107 10! 100 2

Refresh interval (s)

= Can we exploit this to reduce refresh operations at low cost?

SAFARI 105

Reducing DRAM Retresh Operations

Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be refreshed

(Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin

o e.g., a bin for 64-128ms, another for 128-256ms, ...

Observation: Only very few rows need to be refreshed very
frequently [64-128ms] - Have only a few bins > Low HW
overhead to achieve large reductions in refresh operations

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

SAFARI 106

RAIDR: Mechanism
04-128ms

1.25KB storage in controller for 32GB DRAM memory

128-250ms

bins at different rates
- probe Bloom Filters to determine refresh rate of a row

SAFARI 107

1. Profiling

To profile a row:

1. Write data to the row
2. Prevent it from being refreshed
3. Measure time before data corruption

Row 1 Row 2 Row 3
Initially 11111111... 11111111... 11111111...

After64 ms 11111111... 11111111... 11111111...

After 128 ms 11011111... 11111111... 11111111...
(64-128ms)

After 256 ms 11111011... 11111111..

(128- 256ms) (>256ms)

SAFARI 108

2. Binning

= How to efficiently and scalably store rows into retention
time bins?

= Use Hardware Bloom Filters [Bloom, CACM 1970]

Example with 64-128ms bin:

0]1]0]1(0]21])]0]0}10]0

N —

Hash function 1 Hash function 2 Hash function 3

Insert Row 1

SAFARI 109

Benefits of Bloom Filters as Bins

False positives: a row may be declared present in the
Bloom filter even if it was never inserted

o Not a problem: Refresh some rows more frequently than
needed

No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

Efficient: No need to store info on a per-row basis; simple
hardware - 1.25 KB for 2 filters for 32 GB DRAM system

SAFARI 10

3. Refreshing (RAIDR Retresh Controller)

SAFARI i

3. Refreshing (RAIDR Retresh Controller)

Memory controller
chooses each row
as a refresh candidate
every 64ms

:

Row in 64-128ms bin?—> Row in 128-256ms bin?
(First Bloom filter: 256B) (Second Bloom filter: 1KB)

| | |

Refresh the row Every other 64ms window, Every 4th 64ms window,
refresh the row refresh the row

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
SAFARI 12

Tolerating Temperature Changes

» Change in temperature causes retention time of all cells to
change by a uniform and predictable factor

» Refresh rate scaling: increase the refresh rate for all rows
uniformly, depending on the temperature

» Implementation: counter with programmable period

» Lower temperature = longer period = less frequent refreshes
» Higher temperature = shorter period = more frequent
refreshes

SAFARI 13

RAIDR Results

Baseline:
o 32 GB DDR3 DRAM system (8 cores, 512KB cache/core)

o 64ms refresh interval for all rows

RAIDR:

0 64-128ms retention range: 256 B Bloom filter, 10 hash functions
o 128-256ms retention range: 1 KB Bloom filter, 6 hash functions
o Default refresh interval: 256 ms

Results on SPEC CPU2006, TPC-C, TPC-H benchmarks
a 74.6% refresh reduction

o ~16%/20% DRAM dynamic/idle power reduction

o ~9% performance improvement

SAFARI 14

RAIDR Refresh Reduction

32 GB DDR3 DRAM system

4,010’

B Auto B Smart
[Distributed [__1RAIDR

"
I

)
o O

o

74.6%

—_—
.

of refreshes performed
()
N O

—_—
N o

o O

=)

Normal temperature Extended temperature

SAFARI 5

RAIDR: Performance

8.5
8.0'6'1%

B Auto [1RAIDR
[Distributed I No Refresh
B Smart

9.3%

40%0% 25% 50% 75% 100% Ave
Memory-intensive benchmarks in workload

RAIDR performance benefits increase with workload’s memory intensity

SAFARI 16

RAIDR: DRAM Energy Etficiency

100
I Auto [TRAIDR
18.9% 1 Distributed [No Refresh

- 20 I Smart
o
p—
@)
O
3 60
S
-
D)
S 40
S
20
=
S 20

0%0% 25% 50% 75% 100% Avg
Memory-intensive benchmarks in workload
RAIDR energy benefits increase with memory idleness

SAFARI 7

DRAM Device Capacity Scaling: Performance

8
Bl Auto
7} I RAIDR
o,
= 6
b5
§5
= 4
L
j§03
=2
|

0%4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

RAIDR performance benefits increase with DRAM chip capacity

SAFARI 118

DRAM Device Capacity Scaling: Energy

160
E
=120}

S0%

Bl Auto
T RAIDR

[E—
= N 0o O
S S S S

Energy per acces

DO
-

0%4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

RAIDR energy benefits increase with DRAM chip capacity RAIDR slides
SAFARI 119

New DRAM Architectures

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization

SAFARI 120

Tiered-Latency DRAM:
Reducing DRAM Latency

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu,

"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture”
19th International Symposium on High-Performance Computer Architecture (HPCA),
Shenzhen, China, February 2013. Slides (pptx)

Historical DRAM Latency-Capacity Trend

#*Capacity *Llatency (tRC)

2.5 100
16X
2.0 80 —
© — £
.‘?1.5 — \/ . 60 3
o) c
8 -20% 0 2
S 05 20 -
0.0 I | | 0
2000 2003 2006 2008 2011
Year

DRAM latency continues to be a critical bottleneck
122

What Causes the Long Latency?
DRAM Chip subarray

subarray

cell
Yo gt —y
t ,/,,/” \\\\\\'u,t'
Ch anne I 8 , /,_ \\\
% = I access |
| ® transistor i| c
3 “\ % l" E
YO / o)
E \\\ I /,/

sense amplifier 123

What Causes the Long Latency?

|
MilL__subarray || \ g'
Il Y
|)
n
S
Q
(7,
I/0 mlux /
channel ‘ i

DRAM Latency {Subarray Lattemay ¥+ [)/D latt=moy

Dominant 14

Why is the Subarray So Slow?

Subarray Cell
cell N
© w5 wordline
. prrr—
T m /”’ Ss &
3 g % 7 L. | B
° N 8 II/ \\\ $
S ™~ ;= - —
Y) U [2 ‘ access | o,
RS o i s transistor || & g
1 @© | ==
g .S 3 ‘\\ 1 5= (@
E E E \ / —Q &
= <
U
....... (7
sense amplifier large sense amplifier

* Long bitline
— Amortizes sense amplifier cost = Small area

— Large bitline capacitance 2 High latency & power
125

Trade-Off: Area (Die Size) vs. Latency
Long Bitline Short Bitline

—
%%%%

AYAYAYA
Trade-Off. Area vs. Latency

126

Trade-Off: Area (Die Size) vs. Latency

I

32

w

FENIE] LAY Commodity

64 Short Bitline DRAM
Long Bitline

(B

512 cells/bitline

0
Normalized DRAM Area
N

50 60 70

o

Latency (ns)

127

Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area __lorgeAreq

' N7 N/ \/ \

M Low Latency

Need Add Isolatlon
Isolation Transistors

tline = Fast

128

Approximating the Best of Both Worlds

Long Bitlir Tiered-Latency DRAM ort Bitline

Small Area Small Area M

' N/ N/ N/ \

M Low Latency Low Latency

SmaII area
using long

bitline §

129

Tiered-Latency DRAM

* Divide a bitline into two segments with an
isolation transistor

Far Segment

Isolation Transistor

Near Segment

Sense Amplifier
130

Near Segment Access

* Turn off the isolation transistor

Reduced bitline length
Reduced bitline capacitance
=» Low latency & low power

)

Isolation Transistor (Off)

Near Segment

Sense Amplifier
131

Far Segment Access

e Turn on the isolation transistor

Long bitline length

Large bitline capacitance

Additional resistance of isolation transistor
=» High latency & high power

Isolation Transistor (ON)

Near Segment

Sense Amplifier
132

Latency, Power, and Area Evaluation

 Commodity DRAM: 512 cells/bitline

* TL-DRAM: 512 cells/bitline

— Near segment: 32 cells
— Far segment: 480 cells

* Latency Evaluation
— SPICE simulation using circuit-level DRAM model
* Power and Area Evaluation

— DRAM area/power simulator from Rambus
— DDR3 energy calculator from Micron

133

Commodity DRAM vs. TL-DRAM
 DRAM Latency (tRC) - DRAM Power

150% 150%
> o - 0
G 100% L+ 100%
Q S
T o
- 50% - Q. 50%
0% 0%
Commodity Near | Far Commodity Near | Far
DRAM TL-DRAM DRAM TL-DRAM

 DRAM Area Overhead

~3%: mainly due to the isolation transistors 134

Latency vs. Near Segment Length

(o]
o

B Near Segment

(o)
o

Latency (ns)
N o
o o

1‘2‘4‘8‘16‘32‘64‘128‘256 512

o

Near Segment Length (Cells) Ref.

Longer near segment length leads to

higher near segment latency 135

Latency vs. Near Segment Length

(o]
o

B Near Segment M Far Segment

‘ 8 ‘16 32 ‘ 64 128 256 512
f

Near Segment Length (Cells)
Far Segment Length = 512 — Near Segment Length

(o)
o

Latency (ns)
-
o

N
o
|

o
|

Far segment latency is higher than
commodity DRAM latency

136

Trade-Off: Area (Die-Area) vs. Latency

I

32

w

64

128
256 512 cells/bitline

® ®
& Near Segment Far Segment

0 10 20 30 40 50 60 /70
Latency (ns)

0
Normalized DRAM Area
S N

o

137

Leveraging Tiered-Latency DRAM

* TL-DRAM is a substrate that can be leveraged
by the hardware and/or software

 Many potential uses

1. Use near segment as hardware-managed inclusive |
cache to far segment)

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM

\.

J

138

Near Segment as Hardware-Managed Cache
TL-DRAM

main
memory
hearsegmentyiry-Te -
sense amplifier

far segment

I/0

channel‘

[° Challenge 1: How to efficiently migrate a row between}
segments?

* Challenge 2: How to efficiently manage the cache?

139

Inter-Segment Migration

* Goal: Migrate source row into destination row

* Naive way: Memory controller reads the source row
byte by byte and writes to destination row byte by byte
-> High latency

Far Segment

Isolation Transistor

Destination

Near Segment

Sense Amplifier
140

Inter-Segment Migration

* Our way:
— Source and destination cells share bitlines

— Transfer data from source to destination across
shared bitlines concurrently

\

Far Segment

Isolation Transistor

Near Segment

Sense Amplifier
141

Inter-Segment Migration

* Our way:
— Source and destination cells share bitlines

— Transfer data from so
shared bitlines concu

Step 1: Activate source row

Migration is overlapped with source row access
Additional ~4ns over row access latency

Step 2: Activate destination

S i d g i @l oW to connect cell and bitline
Yoo 0 o

Near Segment

Sense Amplifier

142

Near Segment as Hardware-Managed Cache
TL-DRAM

main
memory
hearsegmentyiry-Te -
sense amplifier

far segment

I/0

channel‘

* Challenge 1: How to efficiently migrate a row between
segments?

* Challenge 2: How to efficiently manage the cache?

143

Evaluation Methodology

e System simulator
— CPU: Instruction-trace-based x86 simulator
— Memory: Cycle-accurate DDR3 DRAM simulator

* Workloads
— 32 Benchmarks from TPC, STREAM, SPEC CPU2006

* Performance Metrics
— Single-core: Instructions-Per-Cycle
— Multi-core: Weighted speedup

144

Configurations

e System configuration
— CPU: 5.3GHz
— LLC: 512kB private per core

— Memory: DDR3-1066
e 1-2 channel, 1 rank/channel

* 8 banks, 32 subarrays/bank, 512 cells/bitline
* Row-interleaved mapping & closed-row policy

 TL-DRAM configuration
— Total bitline length: 512 cells/bitline
— Near segment length: 1-256 cells
— Hardware-managed inclusive cache: near segment
145

Performance & Power Consumption

Q 120% 792 4% 11.5% 10.7% 120%

c —720/ _294A9. _9€O

g 100% gloo% 23% —-24% —-26%

1 &
o) o o)

_c:> 80% o 80%

o D

o 60% Q 60%

© —_—

) (]

N 40% & 40%

= | 9

© o

£ 2% 2 20%

1 &

o

= 0% T T | 0% T T |

1 (1-ch) 2 (2-ch) 4 (4-ch) 1 (1-ch) 2 (2-ch) 4 (4-ch)

Core-Count (Channel) Core-Count (Channel)

Using near segment as a cache improves

performance and reduces power consumption
146

Single-Core: Varying Near Segment Length

Maximum IPC
~—\Improvement

14%
12%
10%

8%
Larger cache capacity

6%
gl I E R E R REERE

4%
2; Higher cache access latency
0

0%

Performance Improvement

1 2 4 8 16 32 64 128 256
Near Segment Length (cells)

By adjusting the near segment length, we can
trade off cache capacity for cache latency

147

Other Mechanisms & Results

* More mechanisms for leveraging TL-DRAM
— Hardware-managed exclusive caching mechanism
— Profile-based page mapping to near segment

— TL-DRAM improves performance and reduces power
consumption with other mechanisms

* More than two tiers
— Latency evaluation for three-tier TL-DRAM

* Detailed circuit evaluation
for DRAM latency and power consumption

— Examination of tRC and tRCD

* Implementation details and storage cost analysis
in memory controller

148

Summary of TL-DRAM

* Problem: DRAM latency is a critical performance bottleneck

* Qur Goal: Reduce DRAM latency with low area cost

* Observation: Long bitlines in DRAM are the dominant source
of DRAM latency

* Key Idea: Divide long bitlines into two shorter segments

—Fast and slow segments
* Tiered-latency DRAM: Enables latency heterogeneity in DRAM

—Can leverage this in many ways to improve performance
and reduce power consumption

* Results: When the fast segment is used as a cache to the slow
segment =2 Significant performance improvement (>12%) and
power reduction (>23%) at low area cost (3%)

149

New DRAM Architectures

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization

SAFARI 150

Subarray-Level Parallelism:
Reducing Bank Conflict Impact

Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM"
Proceedings of the 39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012. Slides (pptx)

The Memory Bank Conflict Problem

Two requests to the same bank are serviced serially
Problem: Costly in terms of performance and power

Goal: We would like to reduce bank conflicts without
increasing the number of banks (at low cost)

Idea: Exploit the internal sub-array structure of a DRAM bank
to parallelize bank conflicts

o By reducing global sharing of hardware between sub-arrays

Kim, Seshadri, Lee, Liu, Mutlu, “A Case for Exploiting
Subarray-Level Parallelism in DRAM,"” ISCA 2012.

SAFARI 152

The Problem with Memory Bank Contlicts
* Two BankW» Served in parallel

Wr .>

Goal

* Goal: Mitigate the detrimental effects of
bank conflicts in a cost-effective manner

* Naive solution: Add more banks
— Very expensive

* Cost-effective solution: Approximate the
benefits of more banks without adding
more banks

154

Key Observation #1
A DRAM bank is divided into subarrays
Logical Bank Physical Bank

Subarray,

32k ro

Global Row-Buf

A single row-buffer Many local row-buffers,
cannot drive all rows one at each subarray

155

Key Observation #2

Each subarray is mostly independent...
— except occasionally sharing global structures

156

Key Idea: Reduce Sharing of Globals
1. Parallel access to subarrays

—
Local Row-Buf

—
Local Row-Buf

Global Row-Buf

2. Utilize multiple local row- buffers

S
v
3
O
O
O
O
(O
lo!
RS,
O

000
--------_,

I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\~

157

Overview of Our Mechanism

Subarray,

1. Parallelize

G5 [Raa) 1 Red)
Tosdme\bankers

but diff. subarrays

Subarray,

----------_,

Global Row-Buf

——————————————

‘----------

Challenges: Global Structures
1. Global Address Latch

Challenge #1. Global Address Latch

Latch

Global Decoder

/
w-buffer

Global
row-buffer

160

Solution #1. Subarray Address Latch

O

S /

8 w-buffer

Q

)

2

L, Voo

X Fifdb
ow-buffer

Global
Global latch = : row-buffer

local latches

Challenges: Global Structures

1. Global Address Latch
* Problem: Only one raised wordline

* Solution: Subarray Address Latch
2. Global Bitlines

Challenge #2. Global Bitlines
Global bitlines

bLoca/ -_-
row-bujier AT/ switch
-

Solution #2. Designated-Bit Latch
Global bitlines

S
S

D

local be————
[rer

ro

.« Y 4

—71 Switch

—

D 7171 Switch

| —
Global
READ row-bgﬁ‘gr A—

Selectively connect local to global

Challenges: Global Structures

1. Global Address Latch
* Problem: Only one raised wordline

* Solution: Subarray Address Latch

2. Global Bitlines

* Problem: Collision during access
* Solution: Designhated-Bit Latch

MASA (Multitude of Activated Subarrays)

MASA: Advantages

e Baseline (Subarray-Oblivious)
1. Seria/izat'ion

Wr23-23 Rd 3 &

->
time
2 Wr/te 3. Thrashing
Penalty
* MASA . Saved .
—D >
(] time
| wr | Rd >

!

MASA: Overhead

* DRAM Die Size: Only 0.15% increase

— Subarray Address Latches
— Designated-Bit Latches & Wire

* DRAM Static Energy: Small increase
— 0.56mW for each activated subarray
— But saves dynamic energy

* Controller: Small additional storage

— Keep track of subarray status (< 256B)
— Keep track of new timing constraints

167

sulyseayl ‘¢
Ajeuad-iM '

uonezi|eras I

Cheaper Mechanisms

Latches

System Configuration

e System Configuration
— CPU: 5.3GHz, 128 ROB, 8 MSHR
— LLC: 512kB per-core slice

* Memory Configuration
— DDR3-1066
— (default) 1 channel, 1 rank, 8 banks, 8 subarrays-per-bank
— (sensitivity) 1-8 chans, 1-8 ranks, 8-64 banks, 1-128 subarrays

* Mapping & Row-Policy
— (default) Line-interleaved & Closed-row
— (sensitivity) Row-interleaved & Open-row

* DRAM Controller Configuration

— 64-/64-entry read/write queues per-channel
— FR-FCFS, batch scheduling for writes

169

SALP: Single-core Results
80% " "

'IE 70% . MASA . ldﬂa]
£ 60%
S 50%
O 40%
£ 30%
S 20%
& 10%
0%

Q Xe; [e;
T 5 0
S S

S Le; Q %) ™M

g 9 & & &
S S & <
< W 3 S

N

MASA achieves most of the benefit
of having more banks (“Ideal”)

SALP: Single-Core Results

SALP-1 B SALP-2 B MASA B "|deal”

13%_11%

>

30%

20%

10%

IPC Increase

0%

DRAM
Die Area

SALP-1, SALP-2, MASA improve

<0.15%

20%

0.15%

36.3%

performance at low cost

171

Subarray-Level Parallelism: Results

B Baseline N MASA B Baseline H MASA
1.2 100%

)
> ©

= %01.0 ml 80%
¥ 203 =

.TTS Ll L 60%
Q0.6 0

£ °E £ 40%
O ©(04 >
2 S (a8)

50, L 20%
o

0.0 e 0%

MASA increases energy-efficiency

172

New DRAM Architectures

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization

SAFARI 173

RowClone: Fast Bulk Data
Copy and Initialization

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun,
Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry,
"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data"

CMU Computer Science Technical Report, CMU-CS-13-108, Carnegie Mellon University, April 2013.

Today’s Memory: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

175

Future: RowClone (In-Memory Copy)

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” CMU Tech Report 2013.

176

DRAM operation (load one byte)

4 Kbits

I 1. Activate row

2. Transfer DRAM array
row

CITTTTTT PP TTTTTTTITTTTTTT] Row Buffer (4 Kbits)

3.Transfer
byte onto bus

Data pins (8 bits)

Memory Bus

RowClone: in-DRAM Row Copy (and Initialization)

4 Kbits

1. Activate row A

3. Activate row B

2. Transfer DRAM array
row

ransfer
row

CLET PV PV PP PP PP PP PP PPV PRV E 0] RowBuffer (4 Kbits)

Data pins (8 bits)

Memory Bus

Our Approach: Key Idea

* DRAM banks contain
1. Mutiple rows of DRAM cells — row = 8KB
2. A row buffer shared by the DRAM rows

* Large scale copy
1. Copy data from source row to row buffer
2. Copy data from row buffer to destination row

DRAM Subarray Microarchitecture

DRAM Row

(share wordline)
(~8Kb)

Sense
Amplifiers

(row buffer)

DRAM Cell

wordline

o

rF

180

DRAM Operation

Raise wordline

Sense
Amplifiers

(row buffer)

Activate (src) — Precharge

%2
—
@)

dst

181

RowClone: Intra-subarray Copy

(row buffer)

dst

Deactivate

Activate (src) —— —> Activate (dst)
(our proposal)

182

RowClone: Inter-bank Copy

dst

SIrc

Read Write

/O Bus

Transfer
(our proposal)

183

RowClone: Inter-subarray Copy

dst

SIrc

temp

/O Bus
1. Transfer (src to temp)

2. Transfer (temp to dst)

184

Fast Row Initialization

v

Fix a row at Zero
(0.5% loss in capacity)

185

RowClone: Latency and Energy Savings

1.2 W Baseline ¥ Intra-Subarray
¥ Inter-Subarray

A

"~ Inter-Bank

=
|

74X

o
0e]
|

Normalized Savings
o o
IN o

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” CMU Tech Report 2013. e

Summary

Major problems with DRAM scaling and design: high refresh
rate, high latency, low parallelism, bulk data movement

Four new DRAM designs

o RAIDR: Reduces refresh impact

o TL-DRAM: Reduces DRAM latency at low cost

o SALP: Improves DRAM parallelism

o RowClone: Reduces energy and performance impact of bulk data copy

All four designs

o Improve both performance and energy consumption

a Are low cost (low DRAM area overhead)

o Enable new degrees of freedom to software & controllers

Rethinking DRAM interface and design essential for scaling
o Co-design DRAM with the rest of the system

SAFARI 187

Scalable Many-Core Memory Systems

Topic 1: DRAM Basics and
DRAM Scaling

SAFARI

Prof. Onur Mutlu
http://www.ece.cmu.edu/~omutlu
onur@cmu.edu
HiIPEAC ACACES Summer School 2013
July 15-19, 2013

Carnegie Mellon

Additional Material

Three Papers

= Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal,
and Ken Mai,

"Error Analysis and Retention-Aware Error Management for NAND Flash
Memory"

Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No.
1, May 2013.

= Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and Onur Mutlu,
"Memory Power Management via Dynamic Voltage/Frequency Scaling”
Proceedings of the 8th International Conference on Autonomic Computing
(ICAC), Karlsruhe, Germany, June 2011. Slides (pptx) (pdf)

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

SAFARI 190

Aside: Scaling Flash Memory [Cai+, ICCD’12]

NAND flash memory has low endurance: a flash cell dies after 3k P/E
cycles vs. 50k desired - Major scaling challenge for flash memory
Flash error rate increases exponentially over flash lifetime

Problem: Stronger error correction codes (ECC) are ineffective and
undesirable for improving flash lifetime due to

o diminishing returns on lifetime with increased correction strength

o prohibitively high power, area, latency overheads

Our Goal: Develop techniques to tolerate high error rates w/o strong ECC

Observation: Retention errors are the dominant errors in MLC NAND flash
o flash cell loses charge over time; retention errors increase as cell gets worn out
Solution: Flash Correct-and-Refresh (FCR)

o Periodically read, correct, and reprogram (in place) or remap each flash page
before it accumulates more errors than can be corrected by simple ECC

o Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles)

Results: FCR improves flash memory lifetime by 46X with no hardware
changes and low energy overhead; outperforms strong ECCs

SAFARI 191

DRAM Experiments: Summary (I)

DRAM requires periodic refresh to avoid data loss

o Refresh wastes energy, reduces performance, limits DRAM density scaling

Many past works observed that different DRAM cells can retain data for

different times without being refreshed; proposed reducing refresh rate

for strong DRAM cells

a Problem: These techniques require an accurate profile of the retention time of
all DRAM cells

Our goal: To analyze the retention time behavior of DRAM cells in modern

DRAM devices to aid the collection of accurate profile information

Our experiments: We characterize 248 modern commodity DDR3 DRAM

chips from 5 manufacturers using an FPGA based testing platform

Two Key Issues:

1. Data Pattern Dependence: A cell’s retention time is heavily dependent on data
values stored in itself and nearby cells, which cannot easily be controlled.

2. Variable Retention Time: Retention time of some cells change unpredictably
from high to low at large timescales.

SAFARI

DRAM Experiments: Summary (II)

Key findings on Data Pattern Dependence

o There is no observed single data pattern that elicits the lowest
retention times for a DRAM device - very hard to find this pattern

o DPD varies between devices due to variation in DRAM array circuit
design between manufacturers

a DPD of retention time gets worse as DRAM scales to smaller feature
sizes

Key findings on Variable Retention Time
o VRT is common in modern DRAM cells that are weak

o The timescale at which VRT occurs is very large (e.g., a cell can stay
in high retention time state for a day or longer) - finding minimum
retention time can take very long

Future work on retention time profiling must address these
issues

SAFARI 193

