
Prof. Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

10 July 2018

HiPEAC ACACES Summer School 2018

Memory Systems

and Memory-Centric Computing Systems

Lecture 2, Topic 1: Memory Trends and Basics

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

What Will You Learn in This Course?

◼ Memory Systems and Memory-Centric Computing Systems

❑ July 9-13, 2018

◼ Topic 1: Main Memory Trends and Basics

◼ Topic 2: Memory Reliability & Security: RowHammer and Beyond

◼ Topic 3: In-memory Computation

◼ Topic 4: Low-Latency and Low-Energy Memory

◼ Topic 5 (unlikely): Enabling and Exploiting Non-Volatile Memory

◼ Topic 6 (unlikely): Flash Memory and SSD Scaling

◼ Major Overview Reading:

❑ Mutlu and Subramanian, “Research Problems and Opportunities
in Memory Systems,” SUPERFRI 2014.

2

Multiple Banks (Interleaving) and Channels

◼ Multiple banks

❑ Enable concurrent DRAM accesses

❑ Bits in address determine which bank an address resides in

◼ Multiple independent channels serve the same purpose

❑ But they are even better because they have separate data buses

❑ Increased bus bandwidth

◼ Enabling more concurrency requires reducing

❑ Bank conflicts

❑ Channel conflicts

◼ How to select/randomize bank/channel indices in address?

❑ Lower order bits have more entropy

❑ Randomizing hash functions (XOR of different address bits)

3

How Multiple Banks Help

4

Address Mapping (Single Channel)

◼ Single-channel system with 8-byte memory bus

❑ 2GB memory, 8 banks, 16K rows & 2K columns per bank

◼ Row interleaving

❑ Consecutive rows of memory in consecutive banks

❑ Accesses to consecutive cache blocks serviced in a pipelined manner

◼ Cache block interleaving

◼ Consecutive cache block addresses in consecutive banks

◼ 64 byte cache blocks

◼ Accesses to consecutive cache blocks can be serviced in parallel
5

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

Bank Mapping Randomization

◼ DRAM controller can randomize the address mapping to
banks so that bank conflicts are less likely

◼ Reading:

❑ Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

6

Column (11 bits)3 bits Byte in bus (3 bits)

XOR

Bank index

(3 bits)

Address Mapping (Multiple Channels)

◼ Where are consecutive cache blocks?

7

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Interaction with Virtual→Physical Mapping

◼ Operating System influences where an address maps to in
DRAM

◼ Operating system can influence which bank/channel/rank a
virtual page is mapped to.

◼ It can perform page coloring to

❑ Minimize bank conflicts

❑ Minimize inter-application interference [Muralidhara+ MICRO’11]

❑ Minimize latency in the network [Das+ HPCA’13]

8

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)

Page offset (12 bits)Virtual Page number (52 bits) VA

PA

PA

Memory Channel Partitioning

◼ Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,
Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

9

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Application-to-Core Mapping

◼ Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

10

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

More on Reducing Bank Conflicts

◼ Read Sections 1 through 4 of:

❑ Kim et al., “A Case for Exploiting Subarray-Level Parallelism in
DRAM,” ISCA 2012.

11

Subarray Level Parallelism

◼ Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

12

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx

DRAM Refresh (I)

◼ DRAM capacitor charge leaks over time

◼ The memory controller needs to read each row periodically
to restore the charge

❑ Activate + precharge each row every N ms

❑ Typical N = 64 ms

◼ Implications on performance?

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

◼ Burst refresh: All rows refreshed immediately after one
another

◼ Distributed refresh: Each row refreshed at a different time,
at regular intervals

13

DRAM Refresh (II)

◼ Distributed refresh eliminates long pause times

◼ How else we can reduce the effect of refresh on
performance?

❑ Can we reduce the number of refreshes?

14

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM density scaling

Downsides of DRAM Refresh

15

Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.

More on DRAM Refresh

◼ Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,
"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2012.
Slides (pdf)

16

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

DRAM Retention Analysis

◼ Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

17

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Data Retention in Memory [Liu et al., ISCA 2013]

◼ Data Retention Time Profile of DRAM looks like this:

18

Location dependent
Stored value pattern dependent

Time dependent

DRAM Refresh-Access Parallelization

◼ Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with
Accesses"
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014.
[Summary] [Slides (pptx) (pdf)]

19

http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Memory Controllers

DRAM versus Other Types of Memories

◼ Long latency memories have similar characteristics that
need to be controlled.

◼ The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories

❑ Flash memory

❑ Other emerging memory technologies

◼ Phase Change Memory

◼ Spin-Transfer Torque Magnetic Memory

❑ These other technologies can place other demands on the
controller

21

Flash Memory (SSD) Controllers

◼ Similar to DRAM memory controllers, except:

❑ They are flash memory specific

❑ They do much more: error correction, garbage collection,
page remapping, …

22Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory

Lifetime”, ICCD 2012.

Another View of the SSD Controller

23

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

https://arxiv.org/pdf/1711.11427.pdf

https://arxiv.org/pdf/1711.11427.pdf

On Modern SSD Controllers (I)

24https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

On Modern SSD Controllers (II)

◼ Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

25

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

On Modern SSD Controllers (III)

◼ Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim,
Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G.
Luna and Onur Mutlu,
"FLIN: Enabling Fairness and Enhancing Performance in
Modern NVMe Solid State Drives"
Proceedings of the 45th International Symposium on Computer
Architecture (ISCA), Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

26

https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pdf
https://www.youtube.com/watch?v=eeR18a3_G_A

DRAM Types

◼ DRAM has different types with different interfaces optimized
for different purposes

❑ Commodity: DDR, DDR2, DDR3, DDR4, …

❑ Low power (for mobile): LPDDR1, …, LPDDR5, …

❑ High bandwidth (for graphics): GDDR2, …, GDDR5, …

❑ Low latency: eDRAM, RLDRAM, …

❑ 3D stacked: WIO, HBM, HMC, …

❑ …

◼ Underlying microarchitecture is fundamentally the same

◼ A flexible memory controller can support various DRAM types

◼ This complicates the memory controller

❑ Difficult to support all types (and upgrades)

27

DRAM Types (circa 2015)

28

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.

DRAM Controller: Functions

◼ Ensure correct operation of DRAM (refresh and timing)

◼ Service DRAM requests while obeying timing constraints of
DRAM chips

❑ Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

❑ Translate requests to DRAM command sequences

◼ Buffer and schedule requests to for high performance + QoS

❑ Reordering, row-buffer, bank, rank, bus management

◼ Manage power consumption and thermals in DRAM

❑ Turn on/off DRAM chips, manage power modes

29

A Modern DRAM Controller (I)

30

31

A Modern DRAM Controller

DRAM Scheduling Policies (I)

◼ FCFS (first come first served)

❑ Oldest request first

◼ FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate → maximize DRAM throughput

❑ Actually, scheduling is done at the command level

◼ Column commands (read/write) prioritized over row commands
(activate/precharge)

◼ Within each group, older commands prioritized over younger ones

32

Review: DRAM Bank Operation

33

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

DRAM Scheduling Policies (II)

◼ A scheduling policy is a request prioritization order

◼ Prioritization can be based on

❑ Request age

❑ Row buffer hit/miss status

❑ Request type (prefetch, read, write)

❑ Requestor type (load miss or store miss)

❑ Request criticality

◼ Oldest miss in the core?

◼ How many instructions in core are dependent on it?

◼ Will it stall the processor?

❑ Interference caused to other cores

❑ …

34

Row Buffer Management Policies

◼ Open row
❑ Keep the row open after an access

+ Next access might need the same row → row hit

-- Next access might need a different row → row conflict, wasted energy

◼ Closed row
❑ Close the row after an access (if no other requests already in the request

buffer need the same row)

+ Next access might need a different row → avoid a row conflict

-- Next access might need the same row → extra activate latency

◼ Adaptive policies

❑ Predict whether or not the next access to the bank will be to
the same row and act accordingly

35

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

36

DRAM Power Management

◼ DRAM chips have power modes

◼ Idea: When not accessing a chip power it down

◼ Power states

❑ Active (highest power)

❑ All banks idle

❑ Power-down

❑ Self-refresh (lowest power)

◼ Tradeoff: State transitions incur latency during which the
chip cannot be accessed

37

Difficulty of DRAM Control

Why are DRAM Controllers Difficult to Design?

◼ Need to obey DRAM timing constraints for correctness

❑ There are many (50+) timing constraints in DRAM

❑ tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

❑ tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

❑ …

◼ Need to keep track of many resources to prevent conflicts

❑ Channels, banks, ranks, data bus, address bus, row buffers

◼ Need to handle DRAM refresh

◼ Need to manage power consumption

◼ Need to optimize performance & QoS (in the presence of constraints)

❑ Reordering is not simple

❑ Fairness and QoS needs complicates the scheduling problem

39

Many DRAM Timing Constraints

◼ From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

40

More on DRAM Operation

◼ Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

◼ Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

41

Why So Many Timing Constraints? (I)

42

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.

Why So Many Timing Constraints? (II)

43

Lee et al., “Tiered-Latency DRAM: A Low Latency
and Low Cost DRAM Architecture,” HPCA 2013.

DRAM Controller Design Is Becoming More Difficult

◼ Heterogeneous agents: CPUs, GPUs, and HWAs

◼ Main memory interference between CPUs, GPUs, HWAs

◼ Many timing constraints for various memory types

◼ Many goals at the same time: performance, fairness, QoS,
energy efficiency, …

44

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Reality and Dream

◼ Reality: It difficult to optimize all these different constraints
while maximizing performance, QoS, energy-efficiency, …

◼ Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

45

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

◼ Problem: DRAM controllers difficult to design → It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

◼ Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

◼ Observation: Reinforcement learning maps nicely to memory
control.

◼ Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

Self-Optimizing DRAM Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

47

Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … (0   < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers

◼ Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

❑ Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

❑ Schedule command with highest estimated long-term reward value in
each state

❑ Continuously update reward values for <state, action> pairs based on
feedback from system

48

Self-Optimizing DRAM Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

49

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

50

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

51

Self Optimizing DRAM Controllers

◼ Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

◼ Disadvantages and Limitations

-- Black box: designer much less likely to implement what she
cannot easily reason about

-- How to specify different reward functions that can achieve
different objectives? (e.g., fairness, QoS)

-- Hardware complexity?
52

More on Self-Optimizing DRAM Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

53

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Simulating Memory

54

Ramulator: A Fast and Extensible

DRAM Simulator

[IEEE Comp Arch Letters’15]

55

Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed

56

Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards

57

Case Study: Comparison of DRAM Standards

58

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator

59

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Optional Assignment

◼ Review the Ramulator paper

❑ Email me your review (omutlu@gmail.com)

◼ Download and run Ramulator

❑ Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

❑ Email me your report (omutlu@gmail.com)

◼ This may help you get into memory systems research
quickly

60

mailto:omutlu@gmail.com
mailto:omutlu@gmail.com

Topics We Will Not Cover

61

No Time, Unfortunately, for:

◼ Memory Interference and QoS

◼ Predictable Performance

❑ QoS-aware Memory Controllers

◼ Emerging Memory Technologies and Hybrid Memories

◼ Cache Management

◼ Interconnects

◼ You can find many materials on these at my online lectures

❑ https://people.inf.ethz.ch/omutlu/teaching.html
62

https://people.inf.ethz.ch/omutlu/teaching.html

Some More Suggested Readings

63

Some Key Readings on DRAM (I)

◼ DRAM Organization and Operation

❑ Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

❑ Kim et al., “A Case for Subarray-Level Parallelism (SALP) in
DRAM,” ISCA 2012.

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

❑ Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO 2016.

https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-
3d-stacked-memory_taco16.pdf

64

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-3d-stacked-memory_taco16.pdf

Some Key Readings on DRAM (II)
◼ DRAM Refresh

❑ Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf

❑ Chang et al., “Improving DRAM Performance by Parallelizing
Refreshes with Accesses,” HPCA 2014.

https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-
parallelization_hpca14.pdf

❑ Patel et al., “The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at
Aggressive Conditions,” ISCA 2017.

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-
profiling-lpddr4_isca17.pdf

65

https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf

Reading on Simulating Main Memory

◼ How to evaluate future main memory systems?

◼ An open-source simulator and its brief description

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

66

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator

Some Key Readings on Memory Control 1
❑ Mutlu+, “Parallelism-Aware Batch Scheduling: Enhancing both Performance

and Fairness of Shared DRAM Systems,” ISCA 2008.

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf

❑ Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior,” MICRO 2010.

https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf

❑ Subramanian et al., “BLISS: Balancing Performance, Fairness and
Complexity in Memory Access Scheduling,” TPDS 2016.

https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-
tpds16.pdf

❑ Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators,” TACO 2016.

https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-
heterogeneous-memory-scheduler_taco16.pdf

67

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf

Some Key Readings on Memory Control 2
❑ Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning

Approach,” ISCA 2008.

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf

❑ Ebrahimi et al., “Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory Systems,” ASPLOS
2010.

https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf

❑ Subramanian et al., “The Application Slowdown Model: Quantifying and
Controlling the Impact of Inter-Application Interference at Shared Caches
and Main Memory,” MICRO 2015.

https://people.inf.ethz.ch/omutlu/pub/application-slowdown-
model_micro15.pdf

❑ Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic
by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf
68

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf
https://people.inf.ethz.ch/omutlu/pub/application-slowdown-model_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf

More Readings

◼ To come as we cover the future topics

◼ Search for “DRAM” or “Memory” in:

❑ https://people.inf.ethz.ch/omutlu/projects.htm

69

https://people.inf.ethz.ch/omutlu/projects.htm

Prof. Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

10 July 2018

HiPEAC ACACES Summer School 2018

Memory Systems

and Memory-Centric Computing Systems

Lecture 2, Topic 1: Memory Trends and Basics

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Backup Slides

71

Inside A DRAM Chip

72

DRAM Module and Chip

73

Goals

• Cost

• Latency

• Bandwidth

• Parallelism

• Power

• Energy

• Reliability

• …

74

DRAM Chip

75

Row Decoder

A
rray o

f Se
n

se
 A

m
p

lifie
rs

C
e

ll A
rray

C
e

ll A
rray

Row Decoder

A
rray o

f Se
n

se
 A

m
p

lifie
rs

C
e

ll A
rray

C
e

ll A
rray

B
an

k I/O

Sense Amplifier

76

enable

top

bottom

Inverter

Sense Amplifier – Two Stable States

77

1 1

0

0VDD

VDD

Logical “1” Logical “0”

Sense Amplifier Operation

78

0

VT

VB

VT > VB1

0

VDD

DRAM Cell – Capacitor

79

Empty State Fully Charged State

Logical “0” Logical “1”

1

2

Small – Cannot drive circuits

Reading destroys the state

Capacitor to Sense Amplifier

80

1

0

VDD

1

VDD

0

DRAM Cell Operation

81

½VDD

½VDD

01

0

VDD½VDD+δ

DRAM Subarray – Building Block for
DRAM Chip

82

R
o

w
 D

e
co

d
e

r

Cell Array

Cell Array

Array of Sense Amplifiers (Row Buffer) 8Kb

DRAM Bank

83

R
o

w
 D

e
co

d
e

r

Array of Sense Amplifiers (8Kb)

Cell Array

Cell Array

R
o

w
 D

e
co

d
e

r

Array of Sense Amplifiers

Cell Array

Cell Array

Bank I/O (64b)

A
d

d
re

ss

Address
Data

DRAM Chip

84

Row Decoder

A
rray o

f Se
n

se
A

m
p

lifie
rs

C
e

ll A
rray

C
e

ll A
rray

Row Decoder

A
rray o

f Se
n

se
A

m
p

lifie
rs

C
e

ll A
rray

C
e

ll A
rray

B
an

k I/O

Row Decoder

A
rray o

f Se
n

se

A
m

p
lifie

rs

C
e

ll A
rray

C
e

ll A
rray

Row Decoder

A
rray o

f Se
n

se

A
m

p
lifie

rs

C
e

ll A
rray

C
e

ll A
rray

B
an

k I/O

Row Decoder

A
rray o

f Sen
se

A
m

p
lifie

rs

C
e

ll A
rray

C
ell A

rray

Row Decoder

A
rray o

f Sen
se

A
m

p
lifie

rs

C
e

ll A
rray

C
ell A

rray

B
an

k I/O

Row Decoder

A
rray o

f Sen
se

A
m

p
lifiers

C
ell A

rray

C
ell A

rray

Row Decoder

A
rray o

f Sen
se

A
m

p
lifiers

C
ell A

rray

C
ell A

rray

B
an

k I/O

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

B
an

k
I/

O

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
el

l A
rr

ay

C
el

l A
rr

ay

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
el

l A
rr

ay

C
el

l A
rr

ay

B
an

k
I/

O

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

B
an

k
I/

O

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

Row Decoder
A

rr
ay

 o
f

Se
n

se

A
m

p
lif

ie
rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

B
an

k
I/

O

Shared internal bus

Memory channel - 8bits

DRAM Operation

85

R
o

w
 D

e
co

d
e

r
R

o
w

 D
e

co
d

e
r

Array of Sense Amplifiers

Cell Array

Cell Array

Bank I/O

Data

1

2

ACTIVATE Row

READ/WRITE Column

3 PRECHARGE

R
o

w
 A

d
d

re
ss

Column Address

Evaluating New Ideas

for New (Memory) Architectures

Potential Evaluation Methods

◼ How do we assess an idea will improve a target metric X?

◼ A variety of evaluation methods are available:

❑ Theoretical proof

❑ Analytical modeling/estimation

❑ Simulation (at varying degrees of abstraction and accuracy)

❑ Prototyping with a real system (e.g., FPGAs)

❑ Real implementation

87

The Difficulty in Architectural Evaluation

◼ The answer is usually workload dependent

❑ E.g., think caching

❑ E.g., think pipelining

❑ E.g., think any idea we talked about (RAIDR, Mem. Sched., …)

◼ Workloads change

◼ System has many design choices and parameters

❑ Architect needs to decide many ideas and many parameters
for a design

❑ Not easy to evaluate all possible combinations!

◼ System parameters may change

88

Simulation: The Field of Dreams

Dreaming and Reality

◼ An architect is in part a dreamer, a creator

◼ Simulation is a key tool of the architect

◼ Simulation enables

❑ The exploration of many dreams

❑ A reality check of the dreams

❑ Deciding which dream is better

◼ Simulation also enables

❑ The ability to fool yourself with false dreams

90

Why High-Level Simulation?

◼ Problem: RTL simulation is intractable for design space
exploration → too time consuming to design and evaluate

❑ Especially over a large number of workloads

❑ Especially if you want to predict the performance of a good
chunk of a workload on a particular design

❑ Especially if you want to consider many design choices

◼ Cache size, associativity, block size, algorithms

◼ Memory control and scheduling algorithms

◼ In-order vs. out-of-order execution

◼ Reservation station sizes, ld/st queue size, register file size, …

◼ …

◼ Goal: Explore design choices quickly to see their impact on
the workloads we are designing the platform for

91

Different Goals in Simulation
◼ Explore the design space quickly and see what you want to

❑ potentially implement in a next-generation platform

❑ propose as the next big idea to advance the state of the art

❑ the goal is mainly to see relative effects of design decisions

◼ Match the behavior of an existing system so that you can

❑ debug and verify it at cycle-level accuracy

❑ propose small tweaks to the design that can make a difference in
performance or energy

❑ the goal is very high accuracy

◼ Other goals in-between:

❑ Refine the explored design space without going into a full
detailed, cycle-accurate design

❑ Gain confidence in your design decisions made by higher-level
design space exploration

92

Tradeoffs in Simulation

◼ Three metrics to evaluate a simulator

❑ Speed

❑ Flexibility

❑ Accuracy

◼ Speed: How fast the simulator runs (xIPS, xCPS, slowdown)

◼ Flexibility: How quickly one can modify the simulator to
evaluate different algorithms and design choices?

◼ Accuracy: How accurate the performance (energy) numbers
the simulator generates are vs. a real design (Simulation
error)

◼ The relative importance of these metrics varies depending
on where you are in the design process (what your goal is)

93

Trading Off Speed, Flexibility, Accuracy

◼ Speed & flexibility affect:

❑ How quickly you can make design tradeoffs

◼ Accuracy affects:

❑ How good your design tradeoffs may end up being

❑ How fast you can build your simulator (simulator design time)

◼ Flexibility also affects:

❑ How much human effort you need to spend modifying the
simulator

◼ You can trade off between the three to achieve design
exploration and decision goals

94

High-Level Simulation

◼ Key Idea: Raise the abstraction level of modeling to give up
some accuracy to enable speed & flexibility (and quick
simulator design)

◼ Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not
exact performance numbers

◼ Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
95

Simulation as Progressive Refinement

◼ High-level models (Abstract, C)

◼ …

◼ Medium-level models (Less abstract)

◼ …

◼ Low-level models (RTL with everything modeled)

◼ …

◼ Real design

◼ As you refine (go down the above list)

❑ Abstraction level reduces

❑ Accuracy (hopefully) increases (not necessarily, if not careful)

❑ Flexibility reduces; Speed likely reduces except for real design

❑ You can loop back and fix higher-level models
96

Making The Best of Architecture

◼ A good architect is comfortable at all levels of refinement

❑ Including the extremes

◼ A good architect knows when to use what type of
simulation

❑ And, more generally, what type of evaluation method

◼ Recall: A variety of evaluation methods are available:

❑ Theoretical proof

❑ Analytical modeling

❑ Simulation (at varying degrees of abstraction and accuracy)

❑ Prototyping with a real system (e.g., FPGAs)

❑ Real implementation

97

Ramulator: A Fast and Extensible

DRAM Simulator

[IEEE Comp Arch Letters’15]

98

Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed

99

Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards

100

Case Study: Comparison of DRAM Standards

101

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator

102

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Optional Assignment

◼ Review the Ramulator paper

❑ Email me your review

◼ Download and run Ramulator

❑ Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

❑ Email me your report

◼ This may help you get into memory systems research
quickly

103

End of Backup Slides

104

