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What Will You Learn in This Course?

◼ Memory Systems and Memory-Centric Computing Systems

❑ July 9-13, 2018

◼ Topic 1: Main Memory Trends and Basics

◼ Topic 2: Memory Reliability & Security: RowHammer and Beyond

◼ Topic 3: In-memory Computation

◼ Topic 4: Low-Latency and Low-Energy Memory

◼ Topic 5 (unlikely): Enabling and Exploiting Non-Volatile Memory

◼ Topic 6 (unlikely): Flash Memory and SSD Scaling

◼ Major Overview Reading:

❑ Mutlu and Subramanian, “Research Problems and Opportunities 
in Memory Systems,” SUPERFRI 2014.
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Multiple Banks (Interleaving) and Channels

◼ Multiple banks

❑ Enable concurrent DRAM accesses

❑ Bits in address determine which bank an address resides in

◼ Multiple independent channels serve the same purpose

❑ But they are even better because they have separate data buses

❑ Increased bus bandwidth

◼ Enabling more concurrency requires reducing

❑ Bank conflicts

❑ Channel conflicts

◼ How to select/randomize bank/channel indices in address?

❑ Lower order bits have more entropy

❑ Randomizing hash functions (XOR of different address bits)
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How Multiple Banks Help
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Address Mapping (Single Channel)

◼ Single-channel system with 8-byte memory bus

❑ 2GB memory, 8 banks, 16K rows & 2K columns per bank

◼ Row interleaving

❑ Consecutive rows of memory in consecutive banks

❑ Accesses to consecutive cache blocks serviced in a pipelined manner

◼ Cache block interleaving

◼ Consecutive cache block addresses in consecutive banks

◼ 64 byte cache blocks

◼ Accesses to consecutive cache blocks can be serviced in parallel
5
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Bank Mapping Randomization

◼ DRAM controller can randomize the address mapping to 
banks so that bank conflicts are less likely

◼ Reading:

❑ Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.
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Address Mapping (Multiple Channels)

◼ Where are consecutive cache blocks?
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Interaction with Virtual→Physical Mapping

◼ Operating System influences where an address maps to in 
DRAM

◼ Operating system can influence which bank/channel/rank a 
virtual page is mapped to. 

◼ It can perform page coloring to 

❑ Minimize bank conflicts

❑ Minimize inter-application interference [Muralidhara+ MICRO’11]

❑ Minimize latency in the network [Das+ HPCA’13]
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Memory Channel Partitioning

◼ Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, 
Mahmut Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Application-to-Core Mapping

◼ Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx


More on Reducing Bank Conflicts

◼ Read Sections 1 through 4 of:

❑ Kim et al., “A Case for Exploiting Subarray-Level Parallelism in 
DRAM,” ISCA 2012.
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Subarray Level Parallelism

◼ Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in 
DRAM"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx


DRAM Refresh (I)

◼ DRAM capacitor charge leaks over time

◼ The memory controller needs to read each row periodically 
to restore the charge

❑ Activate + precharge each row every N ms

❑ Typical N = 64 ms

◼ Implications on performance?

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms 
the DRAM will be unavailable until refresh ends

◼ Burst refresh: All rows refreshed immediately after one 
another

◼ Distributed refresh: Each row refreshed at a different time, 
at regular intervals
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DRAM Refresh (II)

◼ Distributed refresh eliminates long pause times

◼ How else we can reduce the effect of refresh on 
performance?

❑ Can we reduce the number of refreshes?
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-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM density scaling 

Downsides of DRAM Refresh
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Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.



More on DRAM Refresh

◼ Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,
"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2012. 
Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf


DRAM Retention Analysis

◼ Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf


Data Retention in Memory [Liu et al., ISCA 2013]

◼ Data Retention Time Profile of DRAM looks like this:
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DRAM Refresh-Access Parallelization

◼ Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris 
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with 
Accesses"
Proceedings of the 20th International Symposium on High-Performance 
Computer Architecture (HPCA), Orlando, FL, February 2014. 
[Summary] [Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf


Memory Controllers



DRAM versus Other Types of Memories

◼ Long latency memories have similar characteristics that 
need to be controlled.

◼ The following discussion will use DRAM as an example, but 
many scheduling and control issues are similar in the 
design of controllers for other types of memories

❑ Flash memory

❑ Other emerging memory technologies

◼ Phase Change Memory

◼ Spin-Transfer Torque Magnetic Memory

❑ These other technologies can place other demands on the 
controller
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Flash Memory (SSD) Controllers

◼ Similar to DRAM memory controllers, except:

❑ They are flash memory specific

❑ They do much more: error correction, garbage collection, 
page remapping, …

22Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory 

Lifetime”, ICCD 2012.



Another View of the SSD Controller

23

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

https://arxiv.org/pdf/1711.11427.pdf

https://arxiv.org/pdf/1711.11427.pdf


On Modern SSD Controllers (I)

24https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


On Modern SSD Controllers (II)

◼ Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata 
Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern 
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim


On Modern SSD Controllers (III)

◼ Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, 
Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G. 
Luna and Onur Mutlu,
"FLIN: Enabling Fairness and Enhancing Performance in 
Modern NVMe Solid State Drives"
Proceedings of the 45th International Symposium on Computer 
Architecture (ISCA), Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]
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https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pdf
https://www.youtube.com/watch?v=eeR18a3_G_A


DRAM Types

◼ DRAM has different types with different interfaces optimized 
for different purposes

❑ Commodity: DDR, DDR2, DDR3, DDR4, …

❑ Low power (for mobile): LPDDR1, …, LPDDR5, …

❑ High bandwidth (for graphics): GDDR2, …, GDDR5, …

❑ Low latency: eDRAM, RLDRAM, …

❑ 3D stacked: WIO, HBM, HMC, …

❑ …

◼ Underlying microarchitecture is fundamentally the same

◼ A flexible memory controller can support various DRAM types 

◼ This complicates the memory controller

❑ Difficult to support all types (and upgrades)
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DRAM Types (circa 2015)

28

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.



DRAM Controller: Functions

◼ Ensure correct operation of DRAM (refresh and timing)

◼ Service DRAM requests while obeying timing constraints of 
DRAM chips

❑ Constraints: resource conflicts (bank, bus, channel), minimum 
write-to-read delays

❑ Translate requests to DRAM command sequences

◼ Buffer and schedule requests to for high performance + QoS

❑ Reordering, row-buffer, bank, rank, bus management

◼ Manage power consumption and thermals in DRAM

❑ Turn on/off DRAM chips, manage power modes
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A Modern DRAM Controller (I)

30
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A Modern DRAM Controller



DRAM Scheduling Policies (I)

◼ FCFS (first come first served)

❑ Oldest request first

◼ FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate → maximize DRAM throughput

❑ Actually, scheduling is done at the command level

◼ Column commands (read/write) prioritized over row commands 
(activate/precharge)

◼ Within each group, older commands prioritized over younger ones
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Review: DRAM Bank Operation
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DRAM Scheduling Policies (II)

◼ A scheduling policy is a request prioritization order

◼ Prioritization can be based on

❑ Request age

❑ Row buffer hit/miss status

❑ Request type (prefetch, read, write)

❑ Requestor type (load miss or store miss)

❑ Request criticality

◼ Oldest miss in the core?

◼ How many instructions in core are dependent on it?

◼ Will it stall the processor?

❑ Interference caused to other cores

❑ …
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Row Buffer Management Policies

◼ Open row
❑ Keep the row open after an access

+ Next access might need the same row → row hit

-- Next access might need a different row → row conflict, wasted energy

◼ Closed row
❑ Close the row after an access (if no other requests already in the request 

buffer need the same row)

+ Next access might need a different row → avoid a row conflict

-- Next access might need the same row → extra activate latency

◼ Adaptive policies

❑ Predict whether or not the next access to the bank will be to 
the same row and act accordingly

35



Open vs. Closed Row Policies

Policy First access Next access Commands 
needed for next 
access

Open row Row 0 Row 0 (row hit) Read 

Open row Row 0 Row 1 (row 
conflict)

Precharge + 
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in 
request buffer 
(row hit)

Read

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed)

Activate Row 0 + 
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge
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DRAM Power Management

◼ DRAM chips have power modes

◼ Idea: When not accessing a chip power it down

◼ Power states

❑ Active (highest power)

❑ All banks idle

❑ Power-down

❑ Self-refresh (lowest power)

◼ Tradeoff: State transitions incur latency during which the 
chip cannot be accessed

37



Difficulty of DRAM Control



Why are DRAM Controllers Difficult to Design?

◼ Need to obey DRAM timing constraints for correctness

❑ There are many (50+) timing constraints in DRAM

❑ tWTR: Minimum number of cycles to wait before issuing a read 
command after a write command is issued

❑ tRC: Minimum number of cycles between the issuing of two 
consecutive activate commands to the same bank

❑ …

◼ Need to keep track of many resources to prevent conflicts

❑ Channels, banks, ranks, data bus, address bus, row buffers

◼ Need to handle DRAM refresh

◼ Need to manage power consumption

◼ Need to optimize performance & QoS (in the presence of constraints)

❑ Reordering is not simple

❑ Fairness and QoS needs complicates the scheduling problem

39



Many DRAM Timing Constraints

◼ From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010.
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More on DRAM Operation

◼ Kim et al., “A Case for Exploiting Subarray-Level Parallelism 
(SALP) in DRAM,” ISCA 2012.

◼ Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,” HPCA 2013.
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Why So Many Timing Constraints? (I)

42

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.



Why So Many Timing Constraints? (II)

43

Lee et al., “Tiered-Latency DRAM: A Low Latency 
and Low Cost DRAM Architecture,” HPCA 2013.



DRAM Controller Design Is Becoming More Difficult

◼ Heterogeneous agents: CPUs, GPUs, and HWAs 

◼ Main memory interference between CPUs, GPUs, HWAs

◼ Many timing constraints for various memory types

◼ Many goals at the same time: performance, fairness, QoS, 
energy efficiency, …

44
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Reality and Dream

◼ Reality: It difficult to optimize all these different constraints 
while maximizing performance, QoS, energy-efficiency, … 

◼ Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?
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Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

◼ Problem: DRAM controllers difficult to design → It is difficult for 

human designers to design a policy that can adapt itself very well 
to different workloads and different system conditions

◼ Idea: Design a memory controller that adapts its scheduling 
policy decisions to workload behavior and system conditions 
using machine learning.

◼ Observation: Reinforcement learning maps nicely to memory 
control.

◼ Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy.



Self-Optimizing DRAM Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 
Caruana, 
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008.

47

Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … ( 0   < 1) 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers

◼ Dynamically adapt the memory scheduling policy via 
interaction with the system at runtime 

❑ Associate system states and actions (commands) with long term 
reward values: each action at a given state leads to a learned reward

❑ Schedule command with highest estimated long-term reward value in 
each state

❑ Continuously update reward values for <state, action> pairs based on 
feedback from system
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Self-Optimizing DRAM Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


States, Actions, Rewards
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❖ Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
long-term       
data bus 
utilization

❖ State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP



Performance Results
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Self Optimizing DRAM Controllers

◼ Advantages

+ Adapts the scheduling policy dynamically to changing workload 
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling 
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

◼ Disadvantages and Limitations

-- Black box: designer much less likely to implement what she  
cannot easily reason about

-- How to specify different reward functions that can achieve 
different objectives? (e.g., fairness, QoS)

-- Hardware complexity?
52



More on Self-Optimizing DRAM Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Simulating Memory
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Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed
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Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards

57



Case Study: Comparison of DRAM Standards

58

Across 22 
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Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator


Optional Assignment

◼ Review the Ramulator paper

❑ Email me your review (omutlu@gmail.com) 

◼ Download and run Ramulator

❑ Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

❑ Email me your report (omutlu@gmail.com) 

◼ This may help you get into memory systems research 
quickly

60

mailto:omutlu@gmail.com
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Topics We Will Not Cover
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No Time, Unfortunately, for:

◼ Memory Interference and QoS

◼ Predictable Performance

❑ QoS-aware Memory Controllers

◼ Emerging Memory Technologies and Hybrid Memories

◼ Cache Management

◼ Interconnects

◼ You can find many materials on these at my online lectures

❑ https://people.inf.ethz.ch/omutlu/teaching.html
62

https://people.inf.ethz.ch/omutlu/teaching.html


Some More Suggested Readings
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Some Key Readings on DRAM (I)

◼ DRAM Organization and Operation

❑ Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,” HPCA 2013.

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

❑ Kim et al., “A Case for Subarray-Level Parallelism (SALP) in 
DRAM,” ISCA 2012.

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

❑ Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO 2016.

https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-
3d-stacked-memory_taco16.pdf
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https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-3d-stacked-memory_taco16.pdf


Some Key Readings on DRAM (II)
◼ DRAM Refresh

❑ Liu et al., “RAIDR: Retention-Aware Intelligent DRAM 
Refresh,” ISCA 2012. 
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf

❑ Chang et al., “Improving DRAM Performance by Parallelizing 
Refreshes with Accesses,” HPCA 2014.

https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-
parallelization_hpca14.pdf

❑ Patel et al., “The Reach Profiler (REAPER): Enabling the 
Mitigation of DRAM Retention Failures via Profiling at 
Aggressive Conditions,” ISCA 2017.

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-
profiling-lpddr4_isca17.pdf
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https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
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Reading on Simulating Main Memory

◼ How to evaluate future main memory systems?

◼ An open-source simulator and its brief description

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 
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Some Key Readings on Memory Control 1
❑ Mutlu+, “Parallelism-Aware Batch Scheduling: Enhancing both Performance 

and Fairness of Shared DRAM Systems,” ISCA 2008. 

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf

❑ Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in 
Memory Access Behavior,” MICRO 2010.

https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf

❑ Subramanian et al., “BLISS: Balancing Performance, Fairness and 
Complexity in Memory Access Scheduling,” TPDS 2016.

https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-
tpds16.pdf

❑ Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler 
for Heterogeneous Systems with Hardware Accelerators,” TACO 2016.

https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-
heterogeneous-memory-scheduler_taco16.pdf
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Some Key Readings on Memory Control 2
❑ Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning 

Approach,” ISCA 2008. 

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf

❑ Ebrahimi et al., “Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory Systems,” ASPLOS 
2010.

https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf

❑ Subramanian et al., “The Application Slowdown Model: Quantifying and 
Controlling the Impact of Inter-Application Interference at Shared Caches 
and Main Memory,” MICRO 2015.

https://people.inf.ethz.ch/omutlu/pub/application-slowdown-
model_micro15.pdf

❑ Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic 
by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf
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More Readings

◼ To come as we cover the future topics

◼ Search for “DRAM” or “Memory” in:

❑ https://people.inf.ethz.ch/omutlu/projects.htm
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Inside A DRAM Chip
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DRAM Module and Chip
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Goals

• Cost

• Latency

• Bandwidth

• Parallelism

• Power

• Energy

• Reliability

• …

74



DRAM Chip
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Sense Amplifier
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Sense Amplifier – Two Stable States
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Sense Amplifier Operation
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DRAM Cell – Capacitor
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Capacitor to Sense Amplifier
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DRAM Cell Operation
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DRAM Subarray – Building Block for 
DRAM Chip
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DRAM Bank
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DRAM Chip
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DRAM Operation
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Evaluating New Ideas 

for New (Memory) Architectures



Potential Evaluation Methods

◼ How do we assess an idea will improve a target metric X?

◼ A variety of evaluation methods are available:

❑ Theoretical proof

❑ Analytical modeling/estimation

❑ Simulation (at varying degrees of abstraction and accuracy)

❑ Prototyping with a real system (e.g., FPGAs)

❑ Real implementation
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The Difficulty in Architectural Evaluation

◼ The answer is usually workload dependent

❑ E.g., think caching

❑ E.g., think pipelining

❑ E.g., think any idea we talked about (RAIDR, Mem. Sched., …)

◼ Workloads change

◼ System has many design choices and parameters

❑ Architect needs to decide many ideas and many parameters 
for a design

❑ Not easy to evaluate all possible combinations!

◼ System parameters may change
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Simulation: The Field of Dreams



Dreaming and Reality

◼ An architect is in part a dreamer, a creator

◼ Simulation is a key tool of the architect

◼ Simulation enables

❑ The exploration of many dreams

❑ A reality check of the dreams

❑ Deciding which dream is better

◼ Simulation also enables

❑ The ability to fool yourself with false dreams
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Why High-Level Simulation?

◼ Problem: RTL simulation is intractable for design space 
exploration → too time consuming to design and evaluate

❑ Especially over a large number of workloads

❑ Especially if you want to predict the performance of a good 
chunk of a workload on a particular design

❑ Especially if you want to consider many design choices

◼ Cache size, associativity, block size, algorithms

◼ Memory control and scheduling algorithms

◼ In-order vs. out-of-order execution

◼ Reservation station sizes, ld/st queue size, register file size, …

◼ …

◼ Goal: Explore design choices quickly to see their impact on 
the workloads we are designing the platform for
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Different Goals in Simulation
◼ Explore the design space quickly and see what you want to

❑ potentially implement in a next-generation platform

❑ propose as the next big idea to advance the state of the art

❑ the goal is mainly to see relative effects of design decisions

◼ Match the behavior of an existing system so that you can

❑ debug and verify it at cycle-level accuracy

❑ propose small tweaks to the design that can make a difference in 
performance or energy

❑ the goal is very high accuracy

◼ Other goals in-between:

❑ Refine the explored design space without going into a full 
detailed, cycle-accurate design

❑ Gain confidence in your design decisions made by higher-level 
design space exploration
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Tradeoffs in Simulation

◼ Three metrics to evaluate a simulator

❑ Speed

❑ Flexibility

❑ Accuracy

◼ Speed: How fast the simulator runs (xIPS, xCPS, slowdown)

◼ Flexibility: How quickly one can modify the simulator to 
evaluate different algorithms and design choices?

◼ Accuracy: How accurate the performance (energy) numbers 
the simulator generates are vs. a real design (Simulation 
error)

◼ The relative importance of these metrics varies depending 
on where you are in the design process (what your goal is)
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Trading Off Speed, Flexibility, Accuracy

◼ Speed & flexibility affect:

❑ How quickly you can make design tradeoffs

◼ Accuracy affects:

❑ How good your design tradeoffs may end up being

❑ How fast you can build your simulator (simulator design time)

◼ Flexibility also affects:

❑ How much human effort you need to spend modifying the 
simulator

◼ You can trade off between the three to achieve design 
exploration and decision goals
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High-Level Simulation

◼ Key Idea: Raise the abstraction level of modeling to give up 
some accuracy to enable speed & flexibility (and quick 
simulator design)

◼ Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can 
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not 
exact performance numbers

◼ Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
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Simulation as Progressive Refinement

◼ High-level models (Abstract, C)

◼ …

◼ Medium-level models (Less abstract)

◼ …

◼ Low-level models (RTL with everything modeled)

◼ …

◼ Real design

◼ As you refine (go down the above list)

❑ Abstraction level reduces

❑ Accuracy (hopefully) increases (not necessarily, if not careful)

❑ Flexibility reduces; Speed likely reduces except for real design

❑ You can loop back and fix higher-level models
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Making The Best of Architecture

◼ A good architect is comfortable at all levels of refinement

❑ Including the extremes

◼ A good architect knows when to use what type of 
simulation 

❑ And, more generally, what type of evaluation method

◼ Recall: A variety of evaluation methods are available:

❑ Theoretical proof

❑ Analytical modeling

❑ Simulation (at varying degrees of abstraction and accuracy)

❑ Prototyping with a real system (e.g., FPGAs)

❑ Real implementation
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Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed
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Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards
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Across 22 
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Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator
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Optional Assignment

◼ Review the Ramulator paper

❑ Email me your review

◼ Download and run Ramulator

❑ Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

❑ Email me your report

◼ This may help you get into memory systems research 
quickly
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