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Brief Self Introduction
n Onur Mutlu

q Full Professor @ ETH Zurich ITET (INFK), since Sept 2015  
q Strecker Professor @ Carnegie Mellon University ECE (CS), 2009-2016, 2016-…
q Started the Comp Arch Research Group @ Microsoft Research, 2006-2009
q Worked @ Google, VMware, Microsoft Research, Intel, AMD
q PhD in Computer Engineering from University of Texas at Austin in 2006
q BS in Computer Engineering & Psychology from University of Michigan in 2000
q https://people.inf.ethz.ch/omutlu/    omutlu@gmail.com

n Research and Teaching in:
q Computer architecture, systems, hardware security, bioinformatics
q Memory and storage systems
q Robust & dependable hardware systems: security, safety, predictability, reliability
q Hardware/software cooperation
q New computing paradigms; architectures with emerging technologies/devices
q Architectures for bioinformatics, genomics, health, medicine, AI/ML
q … 
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40+ Researchers

https://safari.ethz.ch

SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-april-2020/

http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-april-2020/


SAFARI Newsletter January 2021 Edition
n https://safari.ethz.ch/safari-newsletter-january-2021/ 
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SAFARI Newsletter December 2021 Edition
n https://safari.ethz.ch/safari-newsletter-december-2021/ 
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SAFARI Newsletter June 2023 Edition
n https://safari.ethz.ch/safari-newsletter-june-2023/
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SAFARI Newsletter July 2024 Edition
n https://safari.ethz.ch/safari-newsletter-july-2024/
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https://www.youtube.com/watch?v=mV2OuB2djEs 

SAFARI Introduction & Research
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://www.youtube.com/watch?v=mV2OuB2djEs


SAFARI PhD and Post-Doc Alumni
n https://safari.ethz.ch/safari-alumni/
n Hasan Hassan (Rivos), EDAA Outstanding Dissertation Award 2023; S&P 2020 Best Paper Award, 2020 Pwnie Award, IEEE Micro TP HM 2020
n Christina Giannoula (Univ. of Toronto), NTUA Best Dissertation Award 2023
n Minesh Patel (Rutgers, Asst. Prof.), DSN Carter Award Best Thesis 2022; ETH Medal 2023; MICRO’20 & DSN’20 Best Paper Awards; ISCA HoF 2021 
n Damla Senol Cali (Bionano Genomics), SRC TECHCON 2019 Best Student Presentation Award; RECOMB-Seq 2018 Best Poster Award
n Nastaran Hajinazar (Intel)
n Gagandeep Singh (AMD/Xilinx), FPL 2020 Best Paper Award Finalist
n Amirali Boroumand (Stanford Univ à Google), SRC TECHCON 2018 Best Presentation Award 
n Jeremie Kim (Apple), EDAA Outstanding Dissertation Award 2020; IEEE Micro Top Picks 2019; ISCA/MICRO HoF 2021
n Nandita Vijaykumar (Univ. of Toronto, Assistant Professor), ISCA Hall of Fame 2021
n Kevin Hsieh (Microsoft Research, Senior Researcher)
n Justin Meza (Facebook), HiPEAC 2015 Best Student Presentation Award; ICCD 2012 Best Paper Award
n Mohammed Alser (ETH Zurich), IEEE Turkey Best PhD Thesis Award 2018
n Yixin Luo (Google), HPCA 2015 Best Paper Session
n Kevin Chang (Facebook), SRC TECHCON 2016 Best Student Presentation Award
n Rachata Ausavarungnirun (KMUNTB, Assistant Professor), NOCS 2015 and NOCS 2012 Best Paper Award Finalist
n Gennady Pekhimenko (Univ. of Toronto, Assistant Professor), ISCA Hall of Fame 2021; ASPLOS 2015 SRC Winner
n Vivek Seshadri (Microsoft Research)
n Donghyuk Lee (NVIDIA Research, Senior Researcher), HPCA Hall of Fame 2018
n Yoongu Kim (Software Robotics à Google), IFIP JCL Award’24, TCAD’19 Top Pick Award; IEEE Micro Top Picks’10; HPCA’10 Best Paper Session
n Lavanya Subramanian (Intel Labs à Facebook)

n Samira Khan (Univ. of Virginia, Assistant Professor), HPCA 2014 Best Paper Session
n Saugata Ghose (Univ. of Illinois, Assistant Professor), DFRWS-EU 2017 Best Paper Award
n Jawad Haj-Yahya (Huawei Research Zurich, Principal Researcher)
n Lois Orosa (Galicia Supercomputing Center, Director)
n Jisung Park (POSTECH, Assistant Professor)
n Gagandeep Singh (AMD/Xilinx, Researcher)
n Juan Gomez-Luna (NVIDIA, Researcher), ISPASS 2023 Best Paper Session
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An Interview on Computing Futures

10https://www.youtube.com/watch?v=8ffSEKZhmvo 

https://www.youtube.com/watch?v=8ffSEKZhmvo


Computer architecture, HW/SW, systems, bioinformatics, security

Graphics and Vision Processing

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Build fundamentally better computers

Current Mission



Current Research Mission & Major Topics

n Data-centric arch. for low energy & high perf.
q Proc. in Mem/DRAM, NVM, unified mem/storage 

n Low-latency & predictable architectures
q Low-latency, low-energy yet low-cost memory
q QoS-aware and predictable memory systems 

n Fundamentally secure/reliable/safe arch.
q Tolerating all bit flips; patchable HW; secure mem 

n Architectures for ML/AI/Genomics/Health/Med 
q Algorithm/arch./logic co-design; full heterogeneity

n Data-driven and data-aware architectures
q ML/AI-driven architectural controllers and design
q Expressive memory and expressive systems
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Build fundamentally better computers

Broad research 
spanning apps, systems, logic
with architecture at the center



Five Key Current Directions

n Fundamentally Robust (Secure/Reliable/Safe) Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency and Predictable Architectures

n Fundamentally Intelligent and Evolving Architectures
q ML/AI-Assisted (Data-driven) and Data-aware Architectures

n Architectures for ML/AI, Genomics, Medicine, Health, …
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The Transformation Hierarchy

14

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Computer Architecture 
(narrow view)

Computer Architecture 
(expanded view)



Axiom
To achieve the highest efficiency, performance, robustness:

we must take the expanded view
of computer architecture
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Co-design across the hierarchy:
Algorithms to devices

Specialize as much as possible
within the design goals



Principle: Teaching and Research

…
Teaching drives Research
Research drives Teaching

… 
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Open Source Tools: SAFARI GitHub

17https://github.com/CMU-SAFARI/

https://github.com/CMU-SAFARI/


Referenced Papers, Talks, Artifacts

n All are available at

https://people.inf.ethz.ch/omutlu/projects.htm 

https://www.youtube.com/onurmutlulectures 

https://github.com/CMU-SAFARI/ 
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Quick Course Overview



What Will You Learn in This Course?
n Memory Systems and Memory-Centric Computing

q July 15-19, 2024

n Topic 1: Memory Trends, Challenges, Opportunities, Basics
n Topic 2: Memory-Centric Computing
n Topic 3: Memory Robustness: RowHammer, RowPress & Beyond
n Topic 4: Machine Learning Driven Memory Systems
n Topic 5 (another course): Architectures for Genomics and ML
n Topic 6 (unlikely): Non-Volatile Memories and Storage
n Topic 7 (unlikely): Memory Latency, Predictability & QoS

n Major Overview Reading:
q Mutlu et al., “A Modern Primer on Processing in Memory,” Book 

Chapter on Emerging Computing and Devices, 2022.
20



Course Website & Some Study Materials
n https://safari.ethz.ch/memory_systems/ACACES2024/ 

n “A Modern Primer on Processing in Memory” (Emerging Computing, 2022) 
https://arxiv.org/abs/2012.03112 

n “Fundamentally Understanding and Solving RowHammer” (ASP-DAC, 2023) 
https://arxiv.org/abs/2211.07613 

n “Intelligent Architectures for Intelligent Computing Systems” (DATE, 2021) 
https://arxiv.org/abs/2012.12381 

n “Accelerating Neural Network Inference With Processing-in-DRAM: From the Edge 
to the Cloud” (IEEE Micro, 2022) https://arxiv.org/abs/2209.08938 

n “Accelerating Genome Analysis via Algorithm-Architecture Co-Design” (DAC, 2023) 
https://arxiv.org/abs/2305.00492 

n “Memory-Centric Computing” (DAC, 2023) https://arxiv.org/abs/2305.20000 
n “RowHammer: A Retrospective” (TCAD, 2019) https://arxiv.org/abs/1904.09724 
n “Accelerating Genome Analysis: A Primer on an Ongoing Journey” (IEEE Micro, 

2020) https://arxiv.org/abs/2008.00961 
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Course Information

n My Contact Information
q Onur Mutlu
q omutlu@gmail.com 
q https://people.inf.ethz.ch/omutlu 
q +41-79-572-1444 (my cell phone)
q Find me during breaks and/or email any time.

n Website for Course Slides, Papers, Updates
q https://safari.ethz.ch/memory_systems/ACACES2024/ 

n For the curious – ACACES 2013 & 2018 courses:
q https://people.inf.ethz.ch/omutlu/acaces2013-memory.html 
q https://people.inf.ethz.ch/omutlu/acaces2018.html 

22

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
https://safari.ethz.ch/memory_systems/ACACES2024/
https://people.inf.ethz.ch/omutlu/acaces2013-memory.html
https://people.inf.ethz.ch/omutlu/acaces2018.html


This Course
n Will cover many problems and potential solutions related to 

the design of memory systems & memory-centric computers

n The design of memory systems poses many
q Difficult research and engineering problems
q Important fundamental problems
q Industry-relevant problems
q Problems whose solutions can revolutionize the world

n Many creative and insightful solutions are needed to solve 
these problems

n Goal: Acquire the basics to develop such solutions (by 
covering fundamentals and cutting-edge research)
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How To Make the Best Out of This Course
n Be alert during lectures – they will be fast paced

n Do the readings (and explore even more)
q I will provide many references

n Go back and reinforce fundamentals (as needed)
q I will provide pointers to basic computer architecture materials 

(lecture videos, slides, readings, exams, …)

n Remember “Chance favors the prepared mind.” (Pasteur)
24



Unfortunately, No Time For:
n Memory Latency

n Memory Interference and QoS, Predictable Performance
q QoS-aware Memory Systems

n Emerging Memory Technologies and Hybrid Memories

n Interconnects

n Caching, Prefetching, Memory Hierarchy Design

n You can find many materials on these at my online lectures
q https://people.inf.ethz.ch/omutlu/teaching.html 
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Links for Basic Materials
n Digital Design & Computer Architecture Course (Spring 2023): 

q https://safari.ethz.ch/digitaltechnik/spring2023/ 
q https://www.youtube.com/onurmutlulectures
q https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-EImKxYYY1SZuGiOAOBKaf 
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Links for More Advanced Materials
n Computer Architecture Course (Fall 2021): 

q https://safari.ethz.ch/architecture/fall2021/
q https://www.youtube.com/onurmutlulectures
q https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF 
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PIM Review and Open Problems

28

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems - 
Looking Beyond Moore and Von Neumann, Springer, to be published in 2023

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)

29

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Future Computing Platforms
Challenges and Opportunities



Why Do We Do Computing?

31



Answer

To Solve Problems

32



Answer Reworded

To Gain Insight

33Hamming, “Numerical Methods for Scientists and Engineers,” 1962.



Answer Extended

To Enable 
a Better Life & Future

34



How Does a Computer 
Solve Problems?

35



Answer

Orchestrating Electrons

36
In today’s dominant technologies



How Do Problems 
 Get Solved by Electrons?
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The Transformation Hierarchy

38

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Computer Architecture 
(narrow view)

Computer Architecture 
(expanded view)



Computer Architecture

n is the science and art of designing computing platforms 
(hardware, interface, system SW, and programming model)

n to achieve a set of design goals
q E.g., highest performance on earth on workloads X, Y, Z
q E.g., longest battery life at a form factor that fits in your 

pocket with cost < $$$ CHF
q E.g., best average performance across all known workloads at 

the best performance/cost ratio
q …

q Designing a supercomputer is different from designing a 
smartphone à But, many fundamental principles are similar
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Different Platforms, Different Goals

40
Source: http://www.sia-online.org (semiconductor industry association)



Different Platforms, Different Goals

41
Source: https://iq.intel.com/5-awesome-uses-for-drone-technology/



Different Platforms, Different Goals

42Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg



Different Platforms, Different Goals

43Source: http://sm.pcmag.com/pcmag_uk/photo/g/google-self-driving-car-the-guts/google-self-driving-car-the-guts_dwx8.jpg



Different Platforms, Different Goals

44
SmidgION from ONT

MinION from ONT

44

Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” IEEE Micro, August 2020.

https://arxiv.org/pdf/2008.00961.pdf


An Example System in Your Pocket 

45https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php

Apple M1 Ultra System (2022)

Main Memory

SoC
with lots of
compute 
& caches

Storage Storage

Sensors

Main Memory



Different Platforms, Different Goals

46
Source: http://datacentervoice.com/wp-content/uploads/2015/10/data-center.jpg



Different Platforms, Different Goals

47Source: https://fossbytes.com/wp-content/uploads/2015/06/Supercomputer-TIANHE2-china.jpg



Different Platforms, Different Goals

48Source: https://www.itmagazine.ch/artikel/72401/Fugaku_Der_schnellste_Supercomputer_der_Welt.html



Different Platforms, Different Goals

49

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.



Different Platforms, Different Goals

50

250 TFLOPS per chip in 2021
vs 90 TFLOPS in TPU3

1 ExaFLOPS per board

New ML applications (vs. TPU3):
• Computer vision
• Natural Language Processing (NLP)
• Recommender system
• Reinforcement learning that plays Go

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests



Different Platforms, Different Goals

51

n ML accelerator: 260 mm2, 6 billion transistors, 
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

n Two redundant chips for better safety.

https://youtu.be/Ucp0TTmvqOE?t=4236

https://youtu.be/Ucp0TTmvqOE?t=4236


Different Platforms, Different Goals

52

n Tesla Dojo Chip & System

https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s 

https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s


Different Platforms, Different Goals

53

n Tesla Dojo Chip & System

https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s 

https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s


Different Platforms, Different Goals
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n Tesla Dojo Chip & System

https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s 

https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s


Different Platforms, Different Goals

55

NVIDIA is claiming a 7x improvement in dynamic programming 
algorithm (DPX instructions) performance on a single H100 
versus naïve execution on an A100.

https://www.nvidia.com/en-us/data-center/h100/ 

https://www.nvidia.com/en-us/data-center/h100/


Cerebras’s Wafer Scale Engine (2019)

56

Cerebras WSE               
1.2 Trillion transistors

46,225 mm2   

Largest GPU               
21.1 Billion transistors

815 mm2   

n The largest ML 
    accelerator chip

n 400,000 cores 

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Cerebras’s Wafer Scale Engine-2 (2021)
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Cerebras WSE-2               
2.6 Trillion transistors

46,225 mm2   

Largest GPU               
54.2 Billion transistors

826 mm2   

n The largest ML 
    accelerator chip (2021)

n 850,000 cores 

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Many (Other) (AI/ML) Chips

n Alibaba
n Amazon
n Facebook
n Google
n Huawei
n Intel
n Microsoft
n NVIDIA
n Tesla
n Many Others and Many Startups are Building Their Own Chips…

n Many More to Come…
58



Many (Other) AI/ML Chips (2019)

n Alibaba
n Amazon
n Facebook
n Google
n Huawei
n Microsoft
n NVIDIA
n Tesla
n Many Startups…

n Many More to Come…

59https://basicmi.github.io/AI-Chip/

https://basicmi.github.io/AI-Chip/


Many (Other) AI/ML Chips (2021)

n Alibaba
n Amazon
n Facebook
n Google
n Huawei
n Microsoft
n NVIDIA
n Tesla
n Many Startups…

n Many More to Come…

60https://basicmi.github.io/AI-Chip/

https://basicmi.github.io/AI-Chip/


UPMEM Processing-in-DRAM Engine (2019)

61

n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/


62

UPMEM Memory Modules
• E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz
• P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz

www.upmem.com

http://www.upmem.com/


2,560-DPU Processing-in-Memory System
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63https://arxiv.org/pdf/2105.03814.pdf 

https://arxiv.org/pdf/2105.03814.pdf


Experimental Analysis of the UPMEM PIM Engine

https://arxiv.org/pdf/2105.03814.pdf 

https://arxiv.org/pdf/2105.03814.pdf


Understanding a Modern PIM Architecture

65https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9 

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9


More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9 

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9


More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159 

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159


FPGA-based Processing Near Memory
n Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios 

Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications"
IEEE Micro (IEEE MICRO), to appear, 2021.

68

https://arxiv.org/pdf/2106.06433.pdf
https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/


Samsung Function-in-Memory DRAM (2021)

69https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power


Samsung Function-in-Memory DRAM (2021)

70



Samsung AxDIMM (2021)
n DDRx-PIM

q DLRM recommendation system

71

Baseline System

AxDIMM System

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)



SK Hynix Accelerator-in-Memory (2022)

72https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/ 

https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/


AliBaba PIM Recommendation System (2022)

73



SK Hynix CXL Processing Near Memory (2023)

74



Samsung CXL Processing Near Memory (2023)

75https://www.servethehome.com/samsung-processing-in-memory-technology-at-hot-chips-2023/ 

https://www.servethehome.com/samsung-processing-in-memory-technology-at-hot-chips-2023/


Processing-in-Memory Landscape (2022)

76

[UPMEM	2019][Samsung	2021][SK	Hynix	2022]

[Samsung	2021]

And, many other experimental chips and startups

[Alibaba	2022]



Future of Genome Sequencing & Analysis
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SmidgION from ONT

MinION from ONT
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Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” IEEE Micro, August 2020.

https://arxiv.org/pdf/2008.00961.pdf


Axiom
To achieve the highest efficiency, performance, robustness:

we must take the expanded view
of computer architecture

78

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Co-design across the hierarchy:
Algorithms to devices

Specialize as much as possible
within the design goals



What Kind of a Future 
    Do We Want?

79



How Reliable/Secure/Safe is This Bridge?

80Source: http://www.technologystudent.com/struct1/tacom1.png



Collapse of the “Galloping Gertie”

81Source: AP
http://www.wsdot.wa.gov/tnbhistory/connections/connections3.htm



Another View

82Source: AP Source: http://www.seattlepi.com/science/article/A-Tacoma-Narrows-Galloping-Gertie-bridge-6617030.php



How Secure Are These People?

83Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

Security is about preventing unforeseen consequences



How Safe & Secure Is This Platform?

84Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg



How Robust Are These Platforms Really?

85https://www.kennedyspacecenter.com/explore-attractions/nasa-now
https://www.cnet.com/pictures/nasas-wildest-rides-extreme-vehicles-for-earth-and-beyond/7/



Challenge and Opportunity for Future

Robust
(Reliable, Secure, Safe)

86



Do We Want This?

87Source: V. Milutinovic



Or This?

88Source: V. Milutinovic



Challenge and Opportunity for Future

Sustainable
and

Energy Efficient

89



Many Difficult Problems: Climate

90
Source: https://farm9.staticflickr.com/8571/16376102935_8628150df8_o.jpg 

https://farm9.staticflickr.com/8571/16376102935_8628150df8_o.jpg


Many Difficult Problems: Congestion

91Source: https://blogs-images.forbes.com/jimgorzelany/files/2015/10/China-G4-backup-this-oct-reuters.jpg



Many Difficult Problems: Intelligence 

92Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



Many Difficult Problems: Public Health 

93Source: https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/



Many Difficult Problems: Genome Analysis 

94

development of high-throughput 
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped 

Number of Genomes 
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped


We Need Faster & Scalable Genome Analysis

95

Predicting the presence and relative 
abundance of microbes in a sample

Understanding genetic variations, 
species, evolution, …

Rapid surveillance of disease outbreaks Developing personalized medicine

And, many, many other applications …



New Genome Sequencing Technologies

96

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Open arxiv.org version]

Oxford Nanopore MinION

https://arxiv.org/pdf/1711.08774.pdf


Accelerating Genome Analysis [DAC 2023]

n Onur Mutlu and Can Firtina,
"Accelerating Genome Analysis via Algorithm-Architecture 
Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design 
Automation Conference (DAC), San Francisco, CA, USA, July 2023.
[arXiv version]

97https://arxiv.org/pdf/2305.00492.pdf 

https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://www.dac.com/
https://www.dac.com/
https://arxiv.org/abs/2305.00492
https://arxiv.org/pdf/2305.00492.pdf


Accelerating Genome Analysis [IEEE MICRO 2020]

n Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can 
Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]

98

https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A


Beginner Reading on Genome Analysis

99

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, 
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu
“From Molecules to Genomic Variations to Scientific Discovery:    
Intelligent Algorithms and Architectures for Intelligent Genome Analysis” 
Computational and Structural Biotechnology Journal, 2022
[Source code]

https://arxiv.org/pdf/2205.07957.pdf 

https://arxiv.org/abs/2205.07957
https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations
https://arxiv.org/pdf/2205.07957.pdf


Future of Genome Sequencing & Analysis

100
SmidgION from ONT

MinION from ONT
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Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” IEEE Micro, August 2020.

https://arxiv.org/pdf/2008.00961.pdf


More on Fast & Efficient Genome Analysis …

101https://www.youtube.com/watch?v=NCagwf0ivT0 

https://www.youtube.com/watch?v=NCagwf0ivT0


Genomics Course (Fall 2022)
n Fall 2022 Edition: 

q https://safari.ethz.ch/projects_and_seminars/fall2022/do
ku.php?id=bioinformatics 

n Spring 2022 Edition: 
q https://safari.ethz.ch/projects_and_seminars/spring2022

/doku.php?id=bioinformatics  

n Youtube Livestream (Fall 2022):
q https://www.youtube.com/watch?v=nA41964-

9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV 
n Youtube Livestream (Spring 2022):

q https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=
PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18 

n Project course
q Taken by Bachelor’s/Master’s students
q Genomics lectures
q Hands-on research exploration
q Many research readings

102

https://www.youtube.com/onurmutlulectures 

https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/onurmutlulectures


BIO-Arch Workshop at RECOMB 2023
n April 14, 2023

103https://safari.ethz.ch/recomb23-arch-workshop/ 
https://www.youtube.com/watch?v=2rCsb4-nLmg 

https://safari.ethz.ch/recomb23-arch-workshop/
https://www.youtube.com/watch?v=2rCsb4-nLmg


Huge Demand for Performance & Efficiency

104Source: https://youtu.be/Bh13Idwcb0Q?t=283



Challenge and Opportunity for Future

High Performance

(to solve 
the toughest & all problems)

105



Personalization: Medicine

106Source: Jane Ades, NHGRI



Comparative Genomics & Medicine

107Source: By Aaron E. Darling, István Miklós, Mark A. Ragan - Figure 1 from Darling AE, Miklós I, Ragan MA (2008). 
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950 

https://commons.wikimedia.org/w/index.php?curid=30550950


Personalized Medical Technologies

108

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

https://arxiv.org/pdf/1711.08774.pdf


Personalized Robotics

109
Source: https://www.asme.org/topics-resources/content/five-personal-robots-coming-home-soon 

https://www.asme.org/topics-resources/content/five-personal-robots-coming-home-soon


Challenge and Opportunity for Future

Personalized and Private

(in every aspect of life: 
health, medicine, 

spaces, devices, robotics, …)
110



What Limits Us 
  in Computing Today?

111



This Course is About …

n Questioning what limits us in designing the 
best computing architectures for the future

n Providing directions for fundamentally better 
designs

n Advocating principled approaches

112



Increasingly Demanding Applications

Dream…

and, they will come

113

As applications push boundaries, computing platforms become increasingly strained



Key Realization

114



Realization

Modern Systems are 
Bottlenecked by 

Data Storage 
and Movement

115



Focus is on Data Storage Systems (Memory)

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

116

Processors
and caches

Main Memory Storage (SSD/HDD)



Focus is on Data Storage Systems (Memory)

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits
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Main Memory Storage (SSD/HDD)FPGAs



Focus is on Data Storage Systems (Memory)

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits
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Main Memory Storage (SSD/HDD)GPUs



Focus is on Data Storage Systems (Memory)

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

119

Main Memory Storage (SSD/HDD)Accelerators



Memory & Storage

120



Why Is Memory So Important? 
(Especially Today)



Importance of Main Memory
n Performance Perspective

n Energy Perspective

n Scaling & Robustness (Reliability/Security/Safety) 
Perspective

n Trends/Challenges/Opportunities in Main Memory

122



Perils of Processor-Centric Design

123

Most of the system is dedicated to storing and moving data 
Yet, system is still bottlenecked by memory



The Problem

Computing
is Bottlenecked by Data

124



Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts 
of data

n Data is increasing
q We can generate more than we can process
q We need to perform more sophisticated analyses on more data

125



Memory Is Critical for Performance (I)

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
 Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



Memory Is Critical for Performance (I)

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
 Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Memory → bottleneck



Memory Is Critical for Performance (II)

128

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec 

Video Capture
Google’s video codec 



Memory Is Critical for Performance (II)
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Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec 

Video Capture
Google’s video codec 

Memory → bottleneck



Genome 
Analysis
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Memory → bottleneck



New Genome Sequencing Technologies

132

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Open arxiv.org version]

Oxford Nanopore MinION

https://arxiv.org/pdf/1711.08774.pdf


New Genome Sequencing Technologies

133

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

Memory → bottleneck

https://arxiv.org/pdf/1711.08774.pdf


State of the Main Memory System
n Recent technology, architecture, and application trends

q lead to new requirements
q exacerbate old requirements

n DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

n Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

n We need to rethink the main memory system
q to fix DRAM issues and enable emerging technologies 
q to satisfy all requirements

134



Major Trends Affecting Main Memory (I)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (II)
n Need for main memory capacity, bandwidth, QoS increasing 

q Data-intensive applications: increasing demand/hunger for data
q Multi-core: increasing number of cores/agents
q Consolidation: cloud computing, GPUs, mobile, heterogeneity

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 

136



Consequence: The Memory Capacity Gap

n Memory capacity per core expected to drop by 30% every two years
n Trends worse for memory bandwidth per core!

137

Core count doubling ~ every 2 years 
DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009
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Memory Capacity Has Improved Greatly

>1,000,000x Capacity Improvement

139

https://arxiv.org/pdf/2204.10378 

https://arxiv.org/pdf/2204.10378


Memory Latency Lags Behind

>8x Latency Improvement

140

https://arxiv.org/pdf/2204.10378 

https://arxiv.org/pdf/2204.10378


Memory Latency Lags Behind
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https://arxiv.org/pdf/2204.10378 

https://arxiv.org/pdf/2204.10378


Memory Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
 Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



Memory Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
 Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Memory → performance bottleneck



Memory Is Critical for Performance
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Memory Is Critical for Performance
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Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec 

Video Capture
Google’s video codec 

Memory → performance bottleneck



It’s the Memory, Stupid!
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

146http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf 

http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf


The Performance Perspective 

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction Windows 
for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance Computer 
Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)  
One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.
HPCA Test of Time Award (awarded in 2021).

148

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


The Memory Bottleneck
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.

149

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383


More on Runahead Execution (I)

150https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34 

https://www.youtube.com/watch?v=zPewo6IaJ_8&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=34


More on Runahead Execution (II)

151https://www.youtube.com/watch?v=KFCOecRQTIc 

https://www.youtube.com/watch?v=KFCOecRQTIc


The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015): 

152Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Memory Bottleneck
n All of Google’s Data Center Workloads (2015): 

153Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



Memory in a Modern System
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A Large Fraction of Modern Systems is Memory

155
By Moshen - http://en.wikipedia.org/wiki/Image:Pentiumpro_moshen.jpg, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2262471

Processor chip Level 2 cache chip

Multi-chip module package

Intel Pentium Pro, 1995



A Large Fraction of Modern Systems is Memory

156https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium_4_6xx-die.jpg 

L2 Cache

Intel Pentium 4, 2000

https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium_4_6xx-die.jpg


Deeper and Larger Cache Hierarchies

157Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 

Apple M1,
2021

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


Deeper and Larger Cache Hierarchies

158https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches: 
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared



Deeper and Larger Cache Hierarchies

159https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared



Deeper and Larger Cache Hierarchies

160https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon

Nvidia Ampere, 2020

Cores:
128 Streaming Multiprocessors

L1 Cache or 
Scratchpad: 
192KB per SM 
Can be used as L1 Cache 
and/or Scratchpad

L2 Cache:
40 MB shared



AMD’s 3D Last Level Cache (2021)

161https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/

https://community.microcenter.com/discussion/5
134/comparing-zen-3-to-zen-2

Additional 64 MB L3 cache die 
stacked on top of the processor die 
- Connected using Through Silicon Vias (TSVs)
- Total of 96 MB L3 cache

AMD increases the L3 size of their 8-core Zen 3 
processors from 32 MB to 96 MB 

https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2


Deeper and Larger Memory Hierarchies

162https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php

Apple M1 Ultra System (2022)

DRAM DRAM
A lot of
SRAMStorage Storage



Memory System: Most of the Platform

163

Storage

Most of the system is dedicated to storing and moving data 
Yet, system is still bottlenecked by memory



Major Trends Affecting Main Memory (III)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern
q ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]
q DRAM consumes power even when not used (periodic refresh)

n DRAM technology scaling is ending 
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Data Movement vs. Computation Energy

165

Dally, HiPEAC 2015

A memory access consumes ~100-1000X 
the energy of a complex addition 



Data Movement vs. Computation Energy
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Han+, “EIE: Efficient Inference Engine on Compressed Deep Neural Network,” ISCA 2016.



Data Movement vs. Computation Energy
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Han+, “EIE: Efficient Inference Engine on Compressed Deep Neural Network,” ISCA 2016.

6400X

A memory access consumes 6400X 
the energy of a simple integer addition 



Energy Waste in Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/


Memory is Critical for Energy
n Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, 

Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine 
Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]
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> 90% of the total system energy 
is spent on memory in large ML models

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178
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Example Energy Breakdowns

In LSTMs and Transducers used by Google, 
>90% energy spent on off-chip interconnect and DRAM 

https://arxiv.org/pdf/2109.14320 

https://arxiv.org/pdf/2109.14320


We Do Not Want to Move Data!

171

Dally, HiPEAC 2015

A memory access consumes ~100-1000X 
the energy of a complex addition 



We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric
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Process Data Where It Makes Sense 

173https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php

Apple M1 Ultra System (2022)

DRAM DRAM
A lot of
SRAMStorage Storage

Sensors



Goal: Processing Inside Memory/Storage

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processors & communication units?
q software & hardware interfaces?
q system software, compilers, languages?
q algorithms & theoretical foundations?

Cache

Processor
Core

Interconnect

Memory/Storage Database

Graphs

Media 
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



Major Trends Affecting Main Memory (IV)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
q ITRS projects DRAM will not scale easily below X nm 
q Scaling has provided many benefits: 

n higher capacity (density), lower cost, lower energy
q Difficiulties in scaling create robustness problems
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An “Early” Position Paper [IMW’13]
n Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Proceedings of the 5th International Memory 
Workshop (IMW), Monterey, CA, May 2013. Slides 
(pptx) (pdf)
EETimes Reprint

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf 

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_imw13.pdf
http://www.ewh.ieee.org/soc/eds/imw/
http://www.ewh.ieee.org/soc/eds/imw/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pdf
http://www.eetimes.com/document.asp?doc_id=1280950
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf


The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high 

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
177



The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high 

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
178http://in4.iue.tuwien.ac.at/pdfs/sispad2021/P03.pdf 

http://in4.iue.tuwien.ac.at/pdfs/sispad2021/P03.pdf


Limits of Charge Memory
n Difficult charge placement and control

q Flash: floating gate charge
q DRAM: capacitor charge, transistor leakage

n Data retention and reliable sensing becomes 
difficult as charge storage unit size reduces
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As Memory Scales, It Becomes Unreliable
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.
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Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of 

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field" 
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] [DRAM Error Model] 
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http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html


Infrastructures to Understand Such Issues

182

An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study 
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi 
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf


Infrastructures to Understand Such Issues

183Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 
    github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC: Open Source DRAM Infrastructure

185https://github.com/CMU-SAFARI/SoftMC 

n Hasan Hassan, Nandita Vijaykumar, Samira Khan, Saugata Ghose, Kevin Chang, 
Gennady Pekhimenko, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,
"SoftMC: A Flexible and Practical Open-Source Infrastructure for 
Enabling Experimental DRAM Studies"
Proceedings of the 23rd International Symposium on High-Performance Computer 
Architecture (HPCA), Austin, TX, USA, February 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture (39 minutes)]
[Source Code]

https://github.com/CMU-SAFARI/SoftMC
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://hpca2017.org/
https://hpca2017.org/
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17-lightning-talk.pdf
https://www.youtube.com/watch?v=tnSPEP3t-Ys
https://github.com/CMU-SAFARI/SoftMC


DRAM Bender 

186https://github.com/CMU-SAFARI/DRAM-Bender 

n Ataberk Olgun, Hasan Hassan, A Giray Yağlıkçı, Yahya Can Tuğrul, Lois Orosa, 
Haocong Luo, Minesh Patel, Oğuz Ergin, and Onur Mutlu,
"DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure 
to Easily Test State-of-the-art DRAM Chips"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems (TCAD), 2023.
[Extended arXiv version]
[DRAM Bender Source Code]
[DRAM Bender Tutorial Video (43 minutes)]

https://github.com/CMU-SAFARI/DRAM-Bender
https://arxiv.org/pdf/2211.05838.pdf
https://arxiv.org/pdf/2211.05838.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/abs/2211.05838
https://github.com/CMU-SAFARI/DRAM-Bender
https://www.youtube.com/watch?v=FklVEsfdZCI
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DRAM	Bender:	Prototypes

Five	out	of	the	box	FPGA-based	prototypes

https://github.com/CMU-SAFARI/DRAM-Bender	

https://github.com/CMU-SAFARI/DRAM-Bender


Data Retention in Memory [Liu et al., ISCA 2013]

n Retention Time Profile of DRAM looks like this:
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Location dependent
Stored value pattern dependent

Time dependent

Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



RAIDR: Heterogeneous Refresh [ISCA’12]
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pdf)
[Invited Retrospective at 50 Years of ISCA, 2023 (pdf)]
Selected to the ISCA-50 25-Year Retrospective Issue covering 
1996-2020 in 2023 (Retrospective (pdf) Full Issue).

https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/liu_isca12_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/RAIDR_50YearsOfISCA-Retrospective_isca23.pdf
https://people.inf.ethz.ch/omutlu/pub/RAIDR_50YearsOfISCA-Retrospective_isca23.pdf
https://sites.coecis.cornell.edu/isca50retrospective/


n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-
Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
[Invited Retrospective at 50 Years of ISCA, 2023 (pdf)]
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-2020 in 
2023 (Retrospective (pdf) Full Issue).
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Analysis of Data Retention Failures [ISCA’13]

https://people.inf.ethz.ch/omutlu/pub/dram-retention-time-characterization_isca13.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca13_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca13_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/DRAMDataRetention_50YearsOfISCA-Retrospective_isca23.pdf
https://people.inf.ethz.ch/omutlu/pub/DRAMDataRetention_50YearsOfISCA-Retrospective_isca23.pdf
https://sites.coecis.cornell.edu/isca50retrospective/


A Curious Phenomenon



A Curious Phenomenon [Kim et al., ISCA 2014]

One can 
predictably induce errors 
in DRAM memory chips
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Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf


An Example: The RowHammer Problem
n One can predictably induce bit flips in commodity DRAM chips

q All recent DRAM chips are fundamentally vulnerable

n First example of how a simple hardware failure mechanism 
can create a widespread system security vulnerability
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First RowHammer Analysis

194

• Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris 
Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An Experimental 
Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer Architecture 
(ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and 
Data] [Lecture Video (1 hr 49 mins), 25 September 2020]
One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and 
Embedded Security for IEEE TCAD (link). Selected to the ISCA-50 25-
Year Retrospective Issue covering 1996-2020 in 2023 (Retrospective 
(pdf) Full Issue). Winner of the 2024 IFIP Jean-Claude Laprie Award in 
dependable computing (link).

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
https://www.youtube.com/watch?v=KDy632z23UE
https://wp.nyu.edu/toppicksinhardwaresecurity/
https://people.inf.ethz.ch/omutlu/pub/RowHammer_50YearsOfISCA-Retrospective_isca23.pdf
https://people.inf.ethz.ch/omutlu/pub/RowHammer_50YearsOfISCA-Retrospective_isca23.pdf
https://sites.coecis.cornell.edu/isca50retrospective/
https://safari.ethz.ch/rowhammer-paper-wins-the-2024-jean-claude-laprie-award/




196https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf 

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser" 
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

The Robustness Perspective (I)

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


The Robustness Perspective (II)
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems (TCAD) Special Issue on Top Picks in Hardware and 
Embedded Security, 2019.
[Preliminary arXiv version]
[Slides from COSADE 2019 (pptx)]
[Slides from VLSI-SOC 2020 (pptx) (pdf)]
[Talk Video (1 hr 15 minutes, with Q&A)]

197https://arxiv.org/pdf/1904.09724.pdf 

https://people.inf.ethz.ch/omutlu/pub/RowHammer-Retrospective_ieee_tcad19.pdf
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-COSADE-Keynote-April-4-2019.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-RowHammer-VLSI-SOC-October-9-2020.pdf
https://www.youtube.com/watch?v=sgd7PHQQ1AI&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=39
https://arxiv.org/pdf/1904.09724.pdf


Major Trends Affecting Main Memory (V)
n DRAM scaling has already become very difficult

q Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron) lower power higher latency

higher cost
Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 3D 
Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron) lower power higher latency

higher cost
Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 3D 
Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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Major Trend: Hybrid Main Memory

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



One Foreshadowing

Main Memory Needs 
Intelligent Controllers
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Industry Is Writing Papers About It, Too
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Call for Intelligent Memory Controllers
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An Orthogonal Issue: Memory Interference

Main 
Memory
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Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory
Uncontrolled interference leads to many problems (QoS, performance)



Goal: Predictable Performance in Complex Systems

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs
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CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 

Many goals, many constraints, many metrics …



The Future

Memory Controllers
are critical to research

They will become 
even more important



Memory Control w/ Machine Learning [ISCA’08] 
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/ipek_isca08_talk.pptx


Solving the Memory Problem



n Fix it: Make memory and controllers more intelligent
q New interfaces, functions, architectures: system-mem codesign

n Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology
q New technologies and system-wide rethinking of memory & 

storage

n Embrace it: Design heterogeneous memories (none of which 
are perfect) and map data intelligently across them
q New models for data management and maybe usage

n …
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Solutions (to memory scaling) require 
software/hardware/device cooperation
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Solutions (to memory scaling) require 
software/hardware/device cooperation

Microarchitecture
ISA

Programs
Algorithms
Problems

Logic
Devices

Runtime System
(VM, OS, MM)

User

How Do We Solve The Memory Problem?



Solution 1: New Memory Architectures

n Overcome memory shortcomings with
q Memory-centric system design
q Novel memory architectures, interfaces, functions
q Better waste management (efficient utilization)

n Key issues to tackle
q Enable reliability at low cost à high capacity
q Reduce energy
q Reduce latency 
q Improve bandwidth
q Reduce waste (capacity, bandwidth, latency)
q Enable computation close to data
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Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)

n Example: Phase Change Memory
q Data stored by changing phase of material 
q Data read by detecting material’s resistance
q Expected to scale to 9nm (2022 [ITRS 2009])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have (many) shortcomings
q Can they be enabled to replace/augment/surpass DRAM?
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Solution 2: Emerging Memory Technologies
n Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
n Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 
n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
n Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
n Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
n Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
n Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.
n Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
n Tavakkol+, “MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices,” FAST 2018.
n Tavakkol+, “FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives,” ISCA 2018.
n Sadrosadati+. “LTRF: Enabling High-Capacity Register Files for GPUs via Hardware/Software Cooperative Register Prefetching,” 

ASPLOS 2018.
n Salkhordeh+, “An Analytical Model for Performance and Lifetime Estimation of Hybrid DRAM-NVM Main Memories,” TC 2019.
n Wang+, “Panthera: Holistic Memory Management for Big Data Processing over Hybrid Memories,” PLDI 2019.
n Song+, “Enabling and Exploiting Partition-Level Parallelism (PALP) in Phase Change Memories,” CASES 2019.
n Liu+, “Binary Star: Coordinated Reliability in Heterogeneous Memory Systems for High Performance and Scalability,” MICRO’19.
n Song+, “Improving Phase Change Memory Performance with Data Content Aware Access,” ISMM 2020.
n Yavits+, “WoLFRaM: Enhancing Wear-Leveling and Fault Tolerance in Resistive Memories using Programmable Address 

Decoders,” ICCD 2020.
n Song+, “Aging-Aware Request Scheduling for Non-Volatile Main Memory,” ASP-DAC 2021.
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Combination: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Technology X (e.g., PCM)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



App/Data A App/Data B App/Data C
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Vulnerable 
data

Tolerant 
data

Exploiting Memory Error Tolerance 
with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]

Low-cost memoryReliable memory

Vulnerable 
data

Tolerant 
data

Vulnerable 
data

Tolerant 
data

• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips
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On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %



Heterogeneous-Reliability Memory

App 1 
data A

App 1 
data B

App 2 
data A

App 2 
data B

App 3 
data A

App 3 
data B

Step 2: Map application data to the HRM system 
enabled by SW/HW cooperative solutions

Step 1: Characterize and classify 
application memory error tolerance

Reliable 
memory

Parity memory 
+ software recovery (Par+R)

Low-cost memory

UnreliableReliable

Vulnerable Tolerant

App 1 
data A

App 2 
data A

App 2 
data B

App 3 
data A

App 3 
data B

App 1 
data B
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Evaluation Results
Typical Server
Consumer PC
HRM
Less-Tested (L)
HRM/L

Bigger area means better tradeoff 218

Outer is betterInner is worse



More on Heterogeneous Reliability Memory
n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman 

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize 
Data Center Cost via Heterogeneous-Reliability Memory" 
Proceedings of the 44th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] 
[Slides (pptx) (pdf)] [Coverage on ZDNet] 
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http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/


HRM is an Example of Our Axiom
To achieve the highest energy efficiency and performance:

we must take the expanded view
of computer architecture
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Co-design across the hierarchy:
Algorithms to devices

Specialize as much as possible
within the design goals



Another Example: EDEN for DNNs
n Deep Neural Network evaluation is very DRAM-intensive 

(especially for large networks)

1. Some data and layers in DNNs are very tolerant to errors

2. Reduce DRAM latency and voltage on such data and layers

3. While still achieving a user-specified DNN accuracy target 
by making training DRAM-error-aware

Data-aware management of DRAM latency and voltage 
for Deep Neural Network Inference
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Mapping	example	of	ResNet-50:

Example	DNN	Data	Type	to	DRAM	Mapping

Map	more	error-tolerant	DNN	layers	
to	DRAM	partitions	with	lower	voltage/latency

1

2 3
4

<2%	BER

<5%	BER <6%	BER
<8%	BER

4	DRAM	partitions	with	different	error	rates
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Key	idea:	Enable	accurate,	efficient	DNN	inference	using	
approximate	DRAM	

EDEN	is	an	iterative	process	that	has	3	key	steps

EDEN:	Overview
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CPU:	DRAM	Energy	Evaluation

Average	21%	DRAM	energy	reduction	
maintaining	accuracy	within	1%	of	original
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Average	8%	system	speedup
Some	workloads	achieve	17%	speedup

CPU:	Performance	Evaluation

EDEN	achieves	close	to	the	ideal	speedup
possible	via	tRCD	latency	reduction

Ideal
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GPU,	Eyeriss,	and	TPU:		Energy	Evaluation

• GPU:	average	37%	energy	reduction

• Eyeriss:	average	31%	energy	reduction

• TPU:	average	32%	energy	reduction



EDEN: Data-Aware Efficient DNN Inference
n Skanda Koppula, Lois Orosa, A. Giray Yaglikci, Roknoddin Azizi, Taha 

Shahroodi, Konstantinos Kanellopoulos, and Onur Mutlu,
"EDEN: Enabling Energy-Efficient, High-Performance Deep 
Neural Network Inference Using Approximate DRAM"
Proceedings of the 52nd International Symposium on 
Microarchitecture (MICRO), Columbus, OH, USA, October 2019.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
http://www.microarch.org/micro52/
http://www.microarch.org/micro52/
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-lightning-talk.pdf
https://www.youtube.com/watch?v=oS-bKY75gXQ
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