
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
19 July 2024

HiPEAC ACACES Summer School 2024

Memory Systems and
Memory-Centric Computing
Topic 4: ML/AI-Driven Memory Systems

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

What Will You Learn in This Course?
n Memory Systems and Memory-Centric Computing

q July 15-19, 2024

n Topic 1: Memory Trends, Challenges, Opportunities, Basics
n Topic 2: Memory-Centric Computing
n Topic 3: Memory Robustness: RowHammer, RowPress & Beyond
n Topic 4: Machine Learning Driven Memory Systems
n Topic 5 (another course): Architectures for Genomics and ML
n Topic 6 (unlikely): Non-Volatile Memories and Storage
n Topic 7 (unlikely): Memory Latency, Predictability & QoS

n Major Overview Reading:
q Mutlu et al., “A Modern Primer on Processing in Memory,” Book

Chapter on Emerging Computing and Devices, 2022.
2

Data-Driven (Self-Optimizing)
Architectures

3

System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

4

Can we design
fundamentally intelligent architectures?

An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

5

We need to rethink design
(of all controllers)

Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).

6

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/

Self-Optimizing Memory Prefetchers

7

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

8https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

9https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]

10

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
11

Pythia: Prefetching using
Reinforcement Learning

12

Self-Optimizing Memory Prefetchers

13

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia

15

Mainly use one
program context info.

for prediction

Lack inherent system
awareness

Lack in-silicon
customizability

Why do prefetchers
not perform well?

16

Lack of In-silicon Customizability
• Feature statically selected at design time

- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate

17

Our Goal

A prefetching framework that can:

1.Learn to prefetch using multiple features and
inherent system-level feedback information

2.Be easily customized in silicon to use different
features and/or change prefetcher’s objectives

18

Our Proposal

Pythia
Formulates prefetching as a

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia

19

Basics of Reinforcement Learning (RL)
• Algorithmic approach to learn to take an action in a

given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

20

Formulating Prefetching as RL
Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor &
Memory Subsystem

Reward
Prefetch from address

A+offset (O)

Features of memory
request to address A

(e.g., PC)

21

What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …

22

What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63]
- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration

23

What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth
usage as the system-level feedback in the paper

24

What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance

25

Steering Pythia’s Objective via Reward Values
• Example reward configuration for

- Generating accurate prefetches
- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high

26

Steering Pythia’s Objective via Reward Values
• Customizing reward values to make Pythia conservative

towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch

27

Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12

28

More Detailed Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to

corresponding EQ entry

Look up
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action &
State-Action pair in EQ

6

Prefetch Fill

A1 A2 A3

Memory
Hierarchy

Generate
prefetch

Evict EQ entry and
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max

29

Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim

30

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

31

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4% 7.7%

1. Pythia consistently provides the highest
performance in all core configurations

2. Pythia’s gain increases with core count

32

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R
(Cascade Lake, 28C/6ch)

~AMD EPYC Rome 7702P
(Zen 2, 64C/8ch)

~AMD Threadripper 3990x (Zen 2, 64C/4ch)

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

33

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n

sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R
(Cascade Lake, 28C/6ch)

~AMD EPYC Rome 7702P
(Zen 2, 64C/8ch)

~AMD Threadripper 3990x (Zen 2, 64C/4ch)

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

Pythia outperforms prior best prefetchers for
a wide range of DRAM bandwidth configurations

34

1.0

1.2

1.4

1.6

1.8

2.0

Page
Rank

Page
RankD

elta CC
BFS BC

GEO
MEA

N

IP
C

no
rm

al
ize

d
to

 n
o

pr
ef

et
ch

in
g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1% 2.8% 3.4%

7.8%

5.2%

2%

Customize reward values for graph analytics workloads

35

1.0

1.2

1.4

1.6

1.8

2.0

Page
Rank

Page
RankD

elta CC
BFS BC

GEO
MEA

N

IP
C

no
rm

al
ize

d
to

 n
o

pr
ef

et
ch

in
g

Basic Pythia Strict Pythia

Performance Improvement via Customization

3.1% 2.8% 3.4%

7.8%

5.2%

2%Pythia can extract even higher performance
via customization without changing hardware

36

Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables
• We also model functionally-accurate Pythia with full

complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/

37

Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia

Pythia Talk Video

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8

A Lot More in the Pythia Paper

39

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia

Hermes: Perceptron-Based
Off-Chip Load Prediction

41

Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

42https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes

45

Problem

Long-latency off-chip load requests

Often stall processor by
blocking instruction retirement from

Reorder Buffer (ROB)

Limit performance

46

Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches

47

Key Observation 1

50%
successfully prefetched

off-chip loads without any prefetcher

50%
still go off-chip even with

a state-of-the-art prefetcher

70% of the off-chip loads
block the ROB

Many loads still go off-chip

48

40% of the stalls can be eliminated by removing
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory

49

Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007

O
n-

ch
ip

 C
ac

he
 S

ize
 (K

B)

0

512

1024

1536

2048

2560

Sk
yla

ke
 (2

015)

Su
nny C

ove
 (2

019)

W
illo

w Cove
 (2

020)

Golden Cove
 P-co

re (2
021)

Rap
tor L

ake
 P-co

re (2
022)

L2
 S

ize
 (K

B)

11

12

13

14

15

16

17

Sk
yla

ke
 (2

015)

Su
nny C

ove
 (2

019)

W
illo

w Cove
 (2

020)

Golden Cove
 P-co

re (2
021)

Rap
tor L

ake
 P-co

re (2
022)

L2
 L

at
en

cy
 (p

ro
ce

ss
or

 c
yc

le
s)

50

Improve processor performance
by removing on-chip cache access latency

from the critical path of off-chip loads

Our Goal

Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

52

Hermes: Key Contribution

Hermes employs the first
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from
multiple program context information

53

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB

54

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a
Hermes
request

Wait

Train

Perceptron-based
off-chip load predictor

55

Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides
both higher accuracy and higher performance
than predictors inspired from these previous works

56

POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]
- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

𝚺

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

57

Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

𝚺

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that
the load
would go
off-chip

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

Ex
tr

ac
t f

ea
tu

re
s f

ro
m

 th
e

lo
ad

re

qu
es

t

58

Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

𝚺

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

Predict that
the load
would go
off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1

Evaluation

60

Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]

61

Single-Core Performance Improvement

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%

20.3%
5.4%

Hermes alone provides nearly
50% performance benefits of Pythia

with only 1/5th storage overhead

Hermes on top of Pythia
outperforms Pythia alone in every workload category
Hermes provides nearly 90% performance benefit of

Ideal Hermes that has an ideal off-chip load predictor

62

Increase in Main Memory Requests

0%

10%

20%

30%

40%

50%

60%

70%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

%
 in

cr
ea

se
 in

 m
ai

n
m

em
or

y
re

qu
es

ts
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes

5.5%

38.5%
5.9%

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%
20.3% 5.4%

For every 1% performance benefit,
increase in main memory requests

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia

63

Performance with Varying Memory Bandwidth

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

200 400 800 1600 3200 6400 12800

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Main Memory Bandwidth (in MT/s)

~AMD Threadripper 3990x (Zen 2, 64C/4ch, 2020)

~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R
(Cascade Lake, 28C/6ch, 2020)

Pythia

Hermes

Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia
Hermes+Pythia outperforms Pythia

across all bandwidth configurations

Baseline

64

1

1.05

1.1

1.15

1.2

1.25

1.3

Pythia Bingo SPP MLOP SMS

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance
on top of a wide range of baseline prefetchers

65

Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3

66

A Lot More in the Hermes Paper
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core systemhttps://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf

67

A New Approach to Latency Reduction

Hermes advocates for off-chip load prediction,
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction

to provide performance improvement

68

Hermes: Summary

Hermes employs the first
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage
overhead
(4KB/core)

High performance improvement
over best prior baseline

(5.4%)

High performance
per bandwidth

69

Hermes is Open Source

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes

70

Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class

71

Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

72

Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun,

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

73https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes

Reinforcement Learning Based
DRAM Controllers

76

DRAM Controller: Functions
■ Ensure correct operation of DRAM (refresh and timing)

■ Service DRAM requests while obeying timing constraints of
DRAM chips
❑ Constraints: resource conflicts (bank, bus, channel), minimum

write-to-read delays
❑ Translate requests to DRAM command sequences

■ Buffer and schedule requests for high performance + QoS
❑ Reordering, row-buffer, bank, rank, bus management

■ Manage power consumption and thermals in DRAM
❑ Turn on/off DRAM chips, manage power modes

77

Why Are DRAM Controllers Difficult to Design?

■ Need to obey DRAM timing constraints for correctness
❑ There are many (50+) timing constraints in DRAM
❑ tWTR: Minimum number of cycles to wait before issuing a read

command after a write command is issued
❑ tRC: Minimum number of cycles between the issuing of two

consecutive activate commands to the same bank
❑ …

■ Need to keep track of many resources to prevent conflicts
❑ Channels, banks, ranks, data bus, address bus, row buffers

■ Need to handle DRAM refresh
■ Need to manage power consumption
■ Need to optimize performance & QoS (in the presence of constraints)

❑ Reordering is not simple
❑ Fairness and QoS needs complicates the scheduling problem

78

Many DRAM Timing Constraints

■ From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

79

More on DRAM Operation
■ Kim et al., “A Case for Exploiting Subarray-Level Parallelism

(SALP) in DRAM,” ISCA 2012.
■ Lee et al., “Tiered-Latency DRAM: A Low Latency and Low

Cost DRAM Architecture,” HPCA 2013.

80

DRAM Scheduling Policies (I)
■ FCFS (first come first served)

❑ Oldest request first

■ FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate à maximize DRAM throughput

DRAM Scheduling Policies (II)
■ A scheduling policy is a request prioritization order

■ Prioritization can be based on
❑ Request age
❑ Row buffer hit/miss status
❑ Request type (prefetch, read, write)
❑ Requestor type (load miss or store miss)
❑ Request criticality

■ Oldest miss in the core?
■ How many instructions in core are dependent on it?
■ Will it stall the processor?

❑ Interference caused to other cores
❑ …

82

Memory Performance Attacks [USENIX SEC’07]
n Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX
SECURITY), pages 257-274, Boston, MA, August 2007. Slides
(ppt)

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt

STFM [MICRO’07]

n Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on
Microarchitecture (MICRO), pages 146-158, Chicago, IL,
December 2007. [Summary] [Slides (ppt)]

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt

PAR-BS [ISCA’08]

n Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

On PAR-BS

n Variants implemented in Samsung SoC memory controllers

Review from ISCA 2008

ATLAS Memory Scheduler [HPCA’10]

n Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers"
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India,
January 2010. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx

Thread Cluster Memory Scheduling [MICRO’10]

n Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter,
"Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior"
Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 65-76, Atlanta, GA,
December 2010. Slides (pptx) (pdf)

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf

BLISS [ICCD’14, TPDS’16]

n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha
Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

Staged Memory Scheduling: CPU-GPU [ISCA’12]

n Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,
Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx

DASH: Heterogeneous Systems [TACO’16]

n Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and
Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware
Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HiPEAC Conference, Prague, Czech Republic,
January 2016.
[Slides (pptx) (pdf)]
[Source Code]

https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

MISE: Predictable Performance [HPCA’13]

n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

ASM: Predictable Performance [MICRO’15]

n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

The Future

Memory Controllers
are critical to research

They will become
even more important

Memory Control is Getting More Complex

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Many goals, many constraints, many metrics …

Reality and Dream
■ Reality: It is difficult to design a policy that maximizes

performance, QoS, energy-efficiency, …
❑ Too many things to think about
❑ Continuously changing workload and system behavior

■ Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

96

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
■ Problem: DRAM controllers are difficult to design

❑ It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

■ Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

■ Observation: Reinforcement learning maps nicely to memory
control.

■ Design: Memory controller is a reinforcement learning agent
❑ It dynamically and continuously learns and employs the best

scheduling policy to maximize long-term performance.

Self-Optimizing DRAM Controllers
■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich

Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

98

Goal: Learn to choose actions to maximize r0 + γr1 + γ2r2 + … (0 ≤ γ < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers
■ Dynamically adapt the memory scheduling policy via

interaction with the system at runtime
❑ Associate system states and actions (commands) with long term

reward values: each action at a given state leads to a learned reward
❑ Schedule command with highest estimated long-term reward value in

each state
❑ Continuously update reward values for <state, action> pairs based on

feedback from system

99

Self-Optimizing DRAM Controllers
■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

100

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

101

● Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

● State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative
ROB order

● Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

102

Large, robust performance improvements
over many human-designed policies

Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:
 1) What system variables might be useful
 2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow

103

More on Self-Optimizing DRAM Controllers (I)
■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

104

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

More on Self-Optimizing DRAM Controllers (II)
■ Janani Mukundan and José F. Martinez

“MORSE: Multi-Objective Reconfigurable Self-Optimizing Memory Scheduler”
Proceedings of the 18th International Symposium on High Performance
Computer Architecture (HPCA), New Orleans, Louisiana, February 2012.

105

https://ieeexplore.ieee.org/abstract/document/6168945
https://www.ece.lsu.edu/hpca-18/
https://www.ece.lsu.edu/hpca-18/

The Future

Memory Controllers
are critical to research

They will become
even more important

Sibyl: Reinforcement Learning based
Data Placement in Hybrid SSDs

107

Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

108https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Sibyl
Adaptive and Extensible Data Placement

in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu

109109

Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to

provide high and scalable storage capacity at high performance
• Problem: Two key shortcomings of prior data placement policies:

- Lack of adaptivity to:
• Workload changes
• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device

characteristics
- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:
- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in

dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 110

https://github.com/CMU-SAFARI/Sibyl

Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View)

111

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system
highly depends on the

storage management layer’s ability to
manage diverse devices and workloads

112

Key Shortcomings in Prior Techniques
We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices

113

Lack of Extensibility (1/2)
Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration

Dual-HSS

114

Lack of Extensibility (2/2)
Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration Design a new policy

Tri-HSS

115

Our Goal

A data-placement mechanism
that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying

device characteristics
2.Easy extensibility to incorporate a wide

range of hybrid storage configurations

116

Our Proposal

Sibyl
Formulates data placement in

hybrid storage systems as a
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 117

Basics of Reinforcement Learning (RL)

Agent learns to take an action in a given state
to maximize a numerical reward

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

118

Formulating Data Placement as RL
Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage
System

Sibyl

Features of the
current request

and system

Request latency
(of last served request)

Select storage device to
place the current page

119

What is State?
• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to
reduce storage overhead

120

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the

latency of garbage collection, queuing delays, …)
- Throughput
- Evictions

• More details in the paper
121

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

What is Action?
• At every new page request, the

action is to select a storage device

• Action can be easily extended to any number of
storage devices

• Sibyl evicts a page when the fast device utilization is
100%

• Sibyl promotes a page when there is an update from
the application

122

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion

123

RL Decision
Thread

Sibyl Execution

Storage
Request

(from OS)

RL Training
Thread

Periodic Policy
Weight Update

State, Reward,
and Action

Information

Data
Placement
Decision

Asynchronous
Execution

Sibyl

124

Sibyl Design: Overview

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

Periodic Weights
update 10

Training
Network

RL Training
ThreadBatchTraining

Dataset
Periodic Policy
Weight Update

125

RL Decision Thread

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

126

RL Decision Thread

Observation
Vector

Storage
Request

(from OS)

State

State

RL Decision
Thread

127

RL Decision Thread

Inference
Network

Max

HSS

State Action

RL Decision
Thread

Sibyl Policy

128

RL Decision Thread

HSS Collect
Experiences

Observation
Vector

Storage
Request

(from OS)

State

Reward

RL Decision
Thread

129

RL Decision Thread

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

Reward

RL Decision
Thread

130

RL Training Thread

Periodic Weights
update 10

RL Training
ThreadBatchTraining

Dataset

Experience Buffer
(in host DRAM)

RL Decision
Thread

Periodic Policy
Weight Update

Training
Network

131

Periodic Weight Transfer

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

Periodic Weights
update 10

Training
Network

Periodic Policy
Weight Update

RL Training
ThreadBatchTraining

Dataset

132

Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
AMD	Ryzen7	
2700G	CPU

Seagate	HDD	
ST1000DM010

Intel	Optane	
SSD	P4800X

Intel	SSD									
D3-S4510

ADATA	
SU630	SSD	

133

Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 134

Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17]

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based

135

Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

136

Performance Analysis

Sibyl consistently outperforms all the baselines
for all the workloads

Cost-Oriented HSS Configuration
Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

137

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD

138

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy

High-end SSD Mid-end SSD

139

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD

140

Sibyl achieves 80% of the performance
of an oracle policy that has

complete knowledge of future access patterns

Performance on Tri-HSS
Extending Sibyl for more devices:

SibylTri-hybridHeuristicTri-hybrid

High-end SSD Low-end HDDMid-end SSD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state feature

141

Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state feature

High-end SSD Low-end HDDMid-end SSD

142

Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state featureSibyl outperforms the state-of-the-art
data placement policy by

48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD

143

Sibyl’s Overhead
• 124.4 KiB of total storage cost

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small inference overhead

Satisfies prediction latency

144

More in the Paper (1/3)
• Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it
indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
- Sibyl provides equally-high performance benefits as in single

workloads

145

More in the Paper (2/3)
• Evaluation on different features

- Sibyl autonomously decides which features are important to
maximize the performance

• Evaluation with different hyperparameter values

• Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to

available storage size

• Explainability analysis of Sibyl's decision making
- Explain Sibyl’s actions for different workload characteristics and

device configurations

146

More in the Paper (3/3)

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
147

https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl

Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage
systems that provides
- Adaptivity
- Easily extensibility
- Ease of design and implementation

•We evaluated Sibyl on real systems using many
different workloads
- Sibyl improves performance by 21.6% compared to the best prior

data placement policy in a dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-

data placement policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with a

storage overhead of only 124.4 KiB
https://github.com/CMU-SAFARI/Sibyl 148

https://github.com/CMU-SAFARI/Sibyl

Major Directions
• Consider other optimization objectives

- Energy consumption, endurance of storage devices…..
- Design better reward structures

• Optimize data migration in hybrid storage systems
- Explore machine learning (ML) techniques to make

data migration adaptive and extensible
- How do we coordinate multiple ML techniques?

• How do we improve these policies in other
heterogeneous memory systems?
- DRAM + NVM, CPU Caches + DRAM
- Design RL models keeping latency constraints in mind

149

ISCA 2022 Paper, Slides, Videos
n Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,

David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

150https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

SSD Course (Spring 2023)
n Spring 2023 Edition:

q https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

n Fall 2022 Edition:
q https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds

n Youtube Livestream (Spring 2023):
q https://www.youtube.com/watch?v=4VTwOMmsnJY&list

=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
n Youtube Livestream (Fall 2022):

q https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

n Project course
q Taken by Bachelor’s/Master’s students
q SSD Basics and Advanced Topics
q Hands-on research exploration
q Many research readings

151https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/onurmutlulectures

Comp Arch (Fall 2021)
n Fall 2021 Edition:

q https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule

n Fall 2020 Edition:
q https://safari.ethz.ch/architecture/fall2020/doku.

php?id=schedule

n Youtube Livestream (2021):
q https://www.youtube.com/watch?v=4yfkM_5EFg

o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
n Youtube Livestream (2020):

q https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN

n Master’s level course
q Taken by Bachelor’s/Masters/PhD students
q Cutting-edge research topics + fundamentals in

Computer Architecture
q 5 Simulator-based Lab Assignments
q Potential research exploration
q Many research readings

152https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
19 July 2024

HiPEAC ACACES Summer School 2024

Memory Systems and
Memory-Centric Computing
Topic 4: ML/AI-Driven Memory Systems

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

