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What Will You Learn in This Course?
n Memory Systems and Memory-Centric Computing

q July 15-19, 2024

n Topic 1: Memory Trends, Challenges, Opportunities, Basics
n Topic 2: Memory-Centric Computing
n Topic 3: Memory Robustness: RowHammer, RowPress & Beyond
n Topic 4: Machine Learning Driven Memory Systems
n Topic 5 (another course): Architectures for Genomics and ML
n Topic 6 (unlikely): Non-Volatile Memories and Storage
n Topic 7 (unlikely): Memory Latency, Predictability & QoS

n Major Overview Reading:
q Mutlu et al., “A Modern Primer on Processing in Memory,” Book 

Chapter on Emerging Computing and Devices, 2022.
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Data-Driven (Self-Optimizing) 
Architectures
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System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions
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Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents
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We need to rethink design 
(of all controllers)



Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.                                
Selected to the ISCA-50 25-Year Retrospective Issue covering 1996-
2020 in 2023 (Retrospective (pdf) Full Issue).
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/Retrospective__RL.pdf
https://sites.coecis.cornell.edu/isca50retrospective/


Self-Optimizing Memory Prefetchers
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

8https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

9https://arxiv.org/pdf/2205.07394.pdf 

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE


Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
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Pythia: Prefetching using
Reinforcement Learning 
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Self-Optimizing Memory Prefetchers
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia
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Mainly use one 
program context info. 

for prediction

Lack inherent system 
awareness

Lack in-silicon 
customizability

Why do prefetchers 
not perform well?
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Lack of In-silicon Customizability
• Feature statically selected at design time

- Rigid hardware designed specifically to exploit that feature

• No way to change program feature and/or change 
prefetcher’s objective in silicon
- Cannot adapt to a wide range of workload demands

Design from scratch Verify Fabricate
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Our Goal

A prefetching framework that can:

1.Learn to prefetch using multiple features and 
inherent system-level feedback information

2.Be easily customized in silicon to use different 
features and/or change prefetcher’s objectives
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Our Proposal

Pythia
Formulates prefetching as a 

reinforcement learning problem

Pythia is named after the oracle of Delphi, who is known for her accurate prophecies
https://en.wikipedia.org/wiki/Pythia
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Basics of Reinforcement Learning (RL)
• Algorithmic approach to learn to take an action in a 

given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pair
- Expected return for taking an action in a state
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)
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Formulating Prefetching as RL
Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor & 
Memory Subsystem

Reward
Prefetch from address 

A+offset (O)

Features of memory 
request to address A 

(e.g., PC)
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What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …



22

What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63] 
- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross 
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration
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What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache 

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth 
usage as the system-level feedback in the paper
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What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance
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Steering Pythia’s Objective via Reward Values
• Example reward configuration for

- Generating accurate prefetches
- Making bandwidth-aware prefetch decisions

+20+12-2-4-8-14

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Prefers not to prefetch if memory bandwidth usage is low

Strongly prefers not to prefetch if memory bandwidth usage is high
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Steering Pythia’s Objective via Reward Values
• Customizing reward values to make Pythia conservative 

towards prefetching

+20+12+2+1-20-22

RATRALRNP-HRNP-LRIN-LRIN-H
AT = Accurate & timely; AL = Accurate & late; NP = No-prefetching; IN = Inaccurate;

H = High mem. b/w; L = Low mem. b/w

Highly prefers to generate accurate prefetches

Otherwise prefers not to prefetch
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Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12
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More Detailed Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand 
Request

1
Assign reward to 

corresponding EQ entry

Look up 
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action & 
State-Action pair in EQ

6

Prefetch Fill 

A1 A2 A3

Memory 
Hierarchy

Generate
prefetch

Evict EQ entry and 
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max



29

Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019 ]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim
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1. Pythia consistently provides the highest 
performance in all core configurations

2. Pythia’s gain increases with core count
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Pythia outperforms prior best prefetchers for 
a wide range of DRAM bandwidth configurations
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Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables
• We also model functionally-accurate Pythia with full 

complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/
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Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia


Pythia Talk Video

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8 

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8


A Lot More in the Pythia Paper
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia


Hermes: Perceptron-Based 
Off-Chip Load Prediction 
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Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

42https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Hermes Talk Video

https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s 
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Problem

Long-latency off-chip load requests

Often stall processor by 
blocking instruction retirement from 

Reorder Buffer (ROB)

Limit performance
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Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches
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Key Observation 1

50% 
successfully prefetched

# off-chip loads without any prefetcher

50% 
still go off-chip even with 

a state-of-the-art prefetcher

70% of the off-chip loads 
block the ROB

Many loads still go off-chip 
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40% of the stalls can be eliminated by removing 
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency 
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory
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Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007
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Improve processor performance 
by removing on-chip cache access latency 

from the critical path of off-chip loads

Our Goal



Predicts which load requests 
are likely to go off-chip

Starts fetching data directly from main memory 
while concurrently accessing the cache hierarchy
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Hermes: Key Contribution

Hermes employs the first 
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from 
multiple program context information
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB



54

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a  
Hermes 
request

Wait

Train

Perceptron-based 
off-chip load predictor



55

Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy 

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides 
both higher accuracy and higher performance 
than predictors inspired from these previous works
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POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]
- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

𝚺

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train
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Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

𝚺

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that 
the load 
would go 
off-chip
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Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

𝚺

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train

Predict that 
the load 
would go 
off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1



Evaluation
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Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]
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Single-Core Performance Improvement
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50% performance benefits of Pythia 
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Hermes on top of Pythia 
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Hermes provides nearly 90% performance benefit of 

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests
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Pythia

Hermes on top of Pythia
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2%
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0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia



63

Performance with Varying Memory Bandwidth
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Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance 
on top of a wide range of baseline prefetchers
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Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3
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A Lot More in the Hermes Paper 
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core systemhttps://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
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A New Approach to Latency Reduction

Hermes advocates for off-chip load prediction, 
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself 
or combined with load address prediction 

to provide performance improvement
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Hermes: Summary

Hermes employs the first 
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage 
overhead
(4KB/core)

High performance improvement 
over best prior baseline

(5.4%)

High performance 
per bandwidth
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Hermes is Open Source

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes
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Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class
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Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and 
coverage (stat name recall) out of the box
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Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip 
in cache queues and on-chip network routing

Better instruction scheduling 
of data-dependent instructions

Other ideas to improve performance and 
fairness in multi-core system design...



Learning-Based Off-Chip Load Predictors
n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, 

Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load 
Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 
October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.
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Reinforcement Learning Based 
DRAM Controllers

76



DRAM Controller: Functions
■ Ensure correct operation of DRAM (refresh and timing)

■ Service DRAM requests while obeying timing constraints of 
DRAM chips
❑ Constraints: resource conflicts (bank, bus, channel), minimum 

write-to-read delays
❑ Translate requests to DRAM command sequences

■ Buffer and schedule requests for high performance + QoS
❑ Reordering, row-buffer, bank, rank, bus management

■ Manage power consumption and thermals in DRAM
❑ Turn on/off DRAM chips, manage power modes
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Why Are DRAM Controllers Difficult to Design?

■ Need to obey DRAM timing constraints for correctness
❑ There are many (50+) timing constraints in DRAM
❑ tWTR: Minimum number of cycles to wait before issuing a read 

command after a write command is issued
❑ tRC: Minimum number of cycles between the issuing of two 

consecutive activate commands to the same bank
❑ …

■ Need to keep track of many resources to prevent conflicts
❑ Channels, banks, ranks, data bus, address bus, row buffers

■ Need to handle DRAM refresh
■ Need to manage power consumption
■ Need to optimize performance & QoS (in the presence of constraints)

❑ Reordering is not simple
❑ Fairness and QoS needs complicates the scheduling problem
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Many DRAM Timing Constraints

■ From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010.
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More on DRAM Operation
■ Kim et al., “A Case for Exploiting Subarray-Level Parallelism 

(SALP) in DRAM,” ISCA 2012.
■ Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 

Cost DRAM Architecture,” HPCA 2013.
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DRAM Scheduling Policies (I)
■ FCFS (first come first served)

❑ Oldest request first

■ FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate à maximize DRAM throughput



DRAM Scheduling Policies (II)
■ A scheduling policy is a request prioritization order

■ Prioritization can be based on
❑ Request age
❑ Row buffer hit/miss status
❑ Request type (prefetch, read, write)
❑ Requestor type (load miss or store miss)
❑ Request criticality

■ Oldest miss in the core?
■ How many instructions in core are dependent on it?
■ Will it stall the processor?

❑ Interference caused to other cores
❑ …
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Memory Performance Attacks [USENIX SEC’07]  
n Thomas Moscibroda and Onur Mutlu, 

"Memory Performance Attacks: Denial of Memory Service 
in Multi-Core Systems" 
Proceedings of the 16th USENIX Security Symposium (USENIX 
SECURITY), pages 257-274, Boston, MA, August 2007. Slides 
(ppt) 

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt


STFM [MICRO’07] 

n Onur Mutlu and Thomas Moscibroda, 
"Stall-Time Fair Memory Access Scheduling for Chip 
Multiprocessors" 
Proceedings of the 40th International Symposium on 
Microarchitecture (MICRO), pages 146-158, Chicago, IL, 
December 2007. [Summary] [Slides (ppt)] 

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt


PAR-BS [ISCA’08] 

n Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer 
Architecture (ISCA), pages 63-74, Beijing, China, June 2008. 
[Summary] [Slides (ppt)]

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt


On PAR-BS

n Variants implemented in Samsung SoC memory controllers

Review from ISCA 2008



ATLAS Memory Scheduler [HPCA’10] 

n Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling 
Algorithm for Multiple Memory Controllers" 
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India, 
January 2010. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx


Thread Cluster Memory Scheduling [MICRO’10] 

n Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter,
"Thread Cluster Memory Scheduling: Exploiting 
Differences in Memory Access Behavior" 
Proceedings of the 43rd International Symposium on 
Microarchitecture (MICRO), pages 65-76, Atlanta, GA, 
December 2010. Slides (pptx) (pdf) 

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf


BLISS [ICCD’14, TPDS’16] 

n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha 
Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High 
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on 
Computer Design (ICCD), Seoul, South Korea, October 2014. 
[Slides (pptx) (pdf)] 

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf


Staged Memory Scheduling: CPU-GPU [ISCA’12] 

n Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, 
Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High 
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx) 

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx


DASH: Heterogeneous Systems [TACO’16] 

n Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and 
Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory 
Scheduler for Heterogeneous Systems with Hardware 
Accelerators" 
ACM Transactions on Architecture and Code Optimization (TACO), 
Vol. 12, January 2016. 
Presented at the 11th HiPEAC Conference, Prague, Czech Republic, 
January 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 

https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim


MISE: Predictable Performance [HPCA’13] 

n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems" 
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)  

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


ASM: Predictable Performance [MICRO’15] 

n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture 
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code] 

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


The Future

Memory Controllers
are critical to research

They will become 
even more important



Memory Control is Getting More Complex

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Many goals, many constraints, many metrics …



Reality and Dream
■ Reality: It is difficult to design a policy that maximizes 

performance, QoS, energy-efficiency, … 
❑ Too many things to think about
❑ Continuously changing workload and system behavior

■ Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?
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Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
■ Problem: DRAM controllers are difficult to design

❑ It is difficult for human designers to design a policy that can adapt 
itself very well to different workloads and different system conditions

■ Idea: A memory controller that adapts its scheduling policy to 
workload behavior and system conditions using machine learning.

■ Observation: Reinforcement learning maps nicely to memory 
control.

■ Design: Memory controller is a reinforcement learning agent
❑ It dynamically and continuously learns and employs the best 

scheduling policy to maximize long-term performance.



Self-Optimizing DRAM Controllers
■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 

Caruana, 
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008.
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Goal: Learn to choose actions to maximize r0 + γr1 + γ2r2 + … ( 0 ≤ γ < 1) 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers
■ Dynamically adapt the memory scheduling policy via 

interaction with the system at runtime 
❑ Associate system states and actions (commands) with long term 

reward values: each action at a given state leads to a learned reward
❑ Schedule command with highest estimated long-term reward value in 

each state
❑ Continuously update reward values for <state, action> pairs based on 

feedback from system

99



Self-Optimizing DRAM Controllers
■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


States, Actions, Rewards
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● Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
long-term       
data bus 
utilization

 

● State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 
ROB order

 

● Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

 



Performance Results
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Large, robust performance improvements 
over many human-designed policies 



Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy. 
Designer specifies:
 1) What system variables might be useful
 2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow
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More on Self-Optimizing DRAM Controllers (I)
■ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


More on Self-Optimizing DRAM Controllers (II)
■ Janani Mukundan and José F. Martinez 

“MORSE: Multi-Objective Reconfigurable Self-Optimizing Memory Scheduler”
Proceedings of the 18th International Symposium on High Performance 
Computer Architecture (HPCA), New Orleans, Louisiana, February 2012.
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https://ieeexplore.ieee.org/abstract/document/6168945
https://www.ece.lsu.edu/hpca-18/
https://www.ece.lsu.edu/hpca-18/


The Future

Memory Controllers
are critical to research

They will become 
even more important



Sibyl: Reinforcement Learning based
Data Placement in Hybrid SSDs
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Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

108https://arxiv.org/pdf/2205.07394.pdf 

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


Sibyl 
Adaptive and Extensible Data Placement 

in Hybrid Storage Systems 
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park, 
Rahul Bera, Nastaran Hajinazar, David Novo, 

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,  
Onur Mutlu

109109



Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to 

provide high and scalable storage capacity at high performance 
• Problem: Two key shortcomings of prior data placement policies:

- Lack of adaptivity to:
• Workload changes
• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device 

characteristics
- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in 
hybrid storage systems that:
- Provides adaptivity to changing workload demands and underlying device characteristics 
- Can easily extend to any number of storage devices 
- Provides ease of design and implementation that requires only a small computation overhead                                          

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in 

dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2% 
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 110

https://github.com/CMU-SAFARI/Sibyl


Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View) 
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Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system 
highly depends on the 

storage management layer’s ability to 
manage diverse devices and workloads
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Key Shortcomings in Prior Techniques
We observe two key shortcomings that significantly 
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices 
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Lack of Extensibility (1/2)
Rigid techniques that require significant effort to 
accommodate more than two devices

Change in storage configuration

Dual-HSS
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Lack of Extensibility (2/2)
Rigid techniques that require significant effort to 
accommodate more than two devices

Change in storage configuration Design a new policy

Tri-HSS
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Our Goal

A data-placement mechanism 
that can provide:

1.Adaptivity, by continuously learning and 
adapting to the application and underlying 

device characteristics
2.Easy extensibility to incorporate a wide 

range of hybrid storage configurations
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Our Proposal

Sibyl
Formulates data placement in 

hybrid storage systems as a 
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 117



Basics of Reinforcement Learning (RL)

Agent learns to take an action in a given state 
to maximize a numerical reward

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)
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Formulating Data Placement as RL
Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage 
System

Sibyl

Features of the 
current request 

and system

Request latency
(of last served request)

Select storage device to 
place the current page
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What is State?
• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to 
reduce storage overhead
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Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page



What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the     
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the 

latency of garbage collection, queuing delays, …)
- Throughput
- Evictions
 

• More details in the paper
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Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page



What is Action?
• At every new page request, the                                     

action is to select a storage device

• Action can be easily extended to any number of 
storage devices

• Sibyl evicts a page when the fast device utilization is 
100%

• Sibyl promotes a page when there is an update from 
the application
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Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page



Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sibyl: Overview

Evaluation of Sibyl and Key Results

Conclusion
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RL Decision 
Thread

Sibyl Execution

Storage
Request

(from OS)

RL Training 
Thread

Periodic Policy
Weight Update

State, Reward, 
and Action 

Information

Data 
Placement 
Decision

Asynchronous 
Execution

Sibyl
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Sibyl Design: Overview

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy

Periodic Weights 
update 10

Training 
Network

RL Training 
ThreadBatchTraining 

Dataset
Periodic Policy 
Weight Update
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RL Decision Thread

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy
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RL Decision Thread

Observation 
Vector

Storage
Request

(from OS)

State

State

RL Decision 
Thread
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RL Decision Thread

Inference 
Network

Max

HSS

State Action

RL Decision 
Thread

Sibyl Policy
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RL Decision Thread

HSS Collect
Experiences

Observation 
Vector

Storage
Request

(from OS)

State

Reward

RL Decision 
Thread
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RL Decision Thread

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

Reward

RL Decision 
Thread
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RL Training Thread

Periodic Weights 
update 10

RL Training 
ThreadBatchTraining 

Dataset

Experience Buffer 
(in host DRAM)

RL Decision 
Thread

Periodic Policy 
Weight Update

Training 
Network
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Periodic Weight Transfer

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy

Periodic Weights 
update 10

Training 
Network

Periodic Policy 
Weight Update

RL Training 
ThreadBatchTraining 

Dataset
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Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
AMD	Ryzen7	
2700G	CPU

Seagate	HDD	
ST1000DM010

Intel	Optane	
SSD	P4800X

Intel	SSD									
D3-S4510

ADATA	
SU630	SSD	

133



Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 134



Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17] 

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based
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Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

Sibyl consistently outperforms all the baselines 
for all the workloads

Cost-Oriented HSS Configuration
Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by 
dynamically adapting its data placement policy 

High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD

140

Sibyl achieves 80% of the performance 
of an oracle policy that has 

complete knowledge of future access patterns



Performance on Tri-HSS
Extending Sibyl for more devices:

SibylTri-hybridHeuristicTri-hybrid

High-end SSD Low-end HDDMid-end SSD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature

141



Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature

High-end SSD Low-end HDDMid-end SSD

142



Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state featureSibyl outperforms the state-of-the-art 
data placement policy by 

48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden 
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD
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Sibyl’s Overhead
• 124.4 KiB of total storage cost 

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small inference overhead

Satisfies prediction latency
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More in the Paper (1/3)
• Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it 
indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
- Sibyl provides equally-high performance benefits as in single 

workloads
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More in the Paper (2/3)
• Evaluation on different features

- Sibyl autonomously decides which features are important to 
maximize the performance

• Evaluation with different hyperparameter values

• Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to 

available storage size

• Explainability analysis of Sibyl's decision making
- Explain Sibyl’s actions for different workload characteristics and 

device configurations
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More in the Paper (3/3)

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
147

https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl


Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage 
systems that provides
- Adaptivity 
- Easily extensibility 
- Ease of design and implementation

•We evaluated Sibyl on real systems using many 
different workloads
- Sibyl improves performance by 21.6% compared to the best prior 

data placement policy in a dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-

data placement policy by 48.2% 
- Sibyl achieves 80% of the performance of an oracle policy with a 

storage overhead of only 124.4 KiB
https://github.com/CMU-SAFARI/Sibyl 148
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Major Directions
• Consider other optimization objectives

- Energy consumption, endurance of storage devices….. 
- Design better reward structures 

• Optimize data migration in hybrid storage systems
- Explore machine learning (ML) techniques to make 

data migration adaptive and extensible
- How do we coordinate multiple ML techniques?

• How do we improve these policies in other 
heterogeneous memory systems?
- DRAM + NVM, CPU Caches + DRAM
- Design RL models keeping latency constraints in mind
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ISCA 2022 Paper, Slides, Videos
n Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 

David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

150https://arxiv.org/pdf/2205.07394.pdf 

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


SSD Course (Spring 2023)
n Spring 2023 Edition: 

q https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

n Fall 2022 Edition: 
q https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds 

n Youtube Livestream (Spring 2023):
q https://www.youtube.com/watch?v=4VTwOMmsnJY&list

=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
n Youtube Livestream (Fall 2022):

q https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

n Project course
q Taken by Bachelor’s/Master’s students
q SSD Basics and Advanced Topics
q Hands-on research exploration
q Many research readings

151https://www.youtube.com/onurmutlulectures 
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https://www.youtube.com/onurmutlulectures


Comp Arch (Fall 2021)
n Fall 2021 Edition: 

q https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule 

n Fall 2020 Edition: 
q https://safari.ethz.ch/architecture/fall2020/doku.

php?id=schedule 

n Youtube Livestream (2021):
q https://www.youtube.com/watch?v=4yfkM_5EFg

o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF 
n Youtube Livestream (2020):

q https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN 

n Master’s level course
q Taken by Bachelor’s/Masters/PhD students
q Cutting-edge research topics + fundamentals in 

Computer Architecture
q 5 Simulator-based Lab Assignments
q Potential research exploration
q Many research readings
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