Memory System Design for AI/ML Accelerators & ML/AI Techniques for Memory System Design

> Onur Mutlu omutlu@gmail.com https://people.inf.ethz.ch/omutlu 10 November 2022 Intel/SRC Research Program Review

Computing is Bottlenecked by Data

Data is Key for AI, ML, Genomics, ...

Important workloads are all data intensive

 They require rapid and efficient processing of large amounts of data

- Data is increasing
 - We can generate more than we can process
 - Our systems need to make more adaptive and better decisions

In This Task... (Task #2946.001)

We focus on designing memory systems to handle large amounts of data and emerging data-intensive workloads

Goal: solve two different yet related & synergistic problems

We explore (and exploit the synergy between)
Memory system design for AI/ML workloads/accelerators
AI/ML techniques for improving memory system designs

Anticipated Primary Results

 Realistic, practical and effective novel (memory) system designs for ML/AI accelerators

New ML-based techniques to improve (memory) system efficiency and performance

 Open-source workloads, metrics, methodologies & infrastructures to analyze such designs and techniques

Task Description

Description

Our major goals in this research are twofold. First, we aim to provide the first in-depth exploration of memory system designs for cutting-edge and emerging machine learning accelerators. To this end, we aim to develop much more efficient on-chip/on-die as well as off-chip memory system designs for such accelerators, along with open source models, metrics, simulators, prototypes & workload suites to evaluate existing and future ML/AI accelerators. Second, we would like to take a comprehensive look at memory system design and make it data driven, i.e., based on machine learning: we aim to design ML/AI techniques for on-chip cache/memory/prefetch/thread controllers and data/resource management/mapping/scheduling policies, to maximize efficiency, performance and QoS beyond levels that can be achievable by human-designed policies.

To this end, we will comprehensively examine a wide variety of key issues and bottlenecks in the entire memory system designs of modern ML/AI accelerators as well as general purpose processors, ranging from issues in SRAM buffers/caches, DRAM main memory, cache and memory controllers, interconnects, non-volatile memory, hybrid memories, prefetching mechanisms, and near-data acceleration mechanisms, with a special focus on cutting-edge data-intensive production ML/AI workloads (for Problem 1) and with a broader focus on key data-intensive workloads (for Problem 2).

To solve Problem 1, based on our analysis of bottlenecks in state-of-the-art ML/AI accelerators and workloads, we aim to develop new on-chip and off-chip memory designs, data organization techniques, data movement reduction mechanisms, request scheduling, caching, prefetching schemes, near-data and in-memory acceleration mechanisms, customized SRAM, DRAM, NVM designs for demands of ML/AI acceleration, and various other innovative techniques across the entire memory hierarchy. To solve Problem 2, based on our analysis of each controller and major policy in the memory hierarchy, we aim to find and design new ML-based policies that are best fit for each controller and its optimization goals.

Task Deliverables (2020)

Deliverables

Report on experimental performance and energy analysis & breakdown of ML/AI accelerator execution on key ML/AI workloads using rigorous evaluation metrics and methodologies

Original due date: 30-Jun-2020

Annual review presentation

```
Revised due date: 9-Sep-2020 (Original Due Date: 1-Sep-2020)
```

Report on description and analysis of new customized memory system designs for ML accelerators & complete ML accelerator designs with new data orchestration and memory management mechanisms

Original due date: 31-Dec-2020

Task Deliverables (2021)

Report on performance and energy analysis of control and management policies in the memory hierarchy & potential of machine learning based techniques to replace them

Original due date: 28-Feb-2021

Report on description and analysis of new ML-based memory system policies and designs & specification and coordination of various on-chip ML-based agents

Original due date: 31-Aug-2021

Annual review presentation

Original due date: 1-Sep-2021

Report on analysis of various different memory types, new on-chip/off-chip near-data processing designs, and shortterm & long-term options for near-data processing designs for ML/AI accelerators

Original due date: 31-Dec-2021

Task Deliverables (2022)

Report analyzing various new ML-based memory/cache/interconnect/prefetcher control mechanisms along with MLbased data mapping, address mapping, thread scheduling policies across the memory system

Original due date: 30-Jun-2022

Report on open source release of new ML/AI accelerator simulation infrastructures, their evaluation metrics and methodologies, and their analysis

Original due date: 31-Oct-2022

Report on open source release of ML/AI-based memory system evaluation infrastructures their evaluation metrics and methodologies, and their analysis

Original due date: 31-Oct-2022

Final report summarizing research accomplishments and future direction

Original due date: 31-Dec-2022

Task Information #2946.001 (2)

- Senior Researchers
 - Juan Gomez Luna (ETH)
 - Haiyu Mao (ETH)
 - Lois Orosa (ETH)
 - Jisung Park (ETH)
 - Gagandeep Singh (ETH)

More students/postdocs to be added as the task evolves

Task Information #2946.001 (1)

- Thrust: AI Hardware
- Task Leader: Onur Mutlu
 - <u>https://people.inf.ethz.ch/omutlu/</u>
 - onur.mutlu@inf.ethz.ch
- Students

- Rahul Bera (ETH)
- Joao Ferreira (ETH)
- Geraldo Francisco de Oliveira Junior (ETH)
- Konstantinos Kanellopoulos (ETH)
- Joel Lindegger (ETH)
- Aditya Manglik (ETH)
- Rakesh Nadig (ETH)

Industry Liaisons

- Charles Augustine, Intel
- Pradip Bose, IBM
- Alper Buyuktosunoglu, IBM
- Rosario Cammarota, Intel
- Ramesh Chauhan, Qualcomm
- Prokash Ghosh, NXP
- Jose Joao, ARM
- Arun Joseph, IBM
- Preetham Lobo, IBM
- Nithyakalyani Sampath, TI
- Willem Sanberg, NXP
- Pushkar Sareen, NXP
- Sreenivas Subramoney, Intel
- Xin Zhang, IBM
- We are having and will have regular and irregular meetings with all liaison companies
- Very open to other collaborators, feedback, internships, visits

1. (Memory) system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving (memory) system designs

Challenge and Opportunity for Future

Self-Optimizing (Data-Driven) Computing Architectures

System Architecture Design Today

- Human-driven
 - Humans design the policies (how to do things)
- Many (too) simple, short-sighted policies all over the system
- No automatic data-driven policy learning
- (Almost) no learning: cannot take lessons from past actions

Can we design fundamentally intelligent architectures?

An Intelligent Architecture

- Data-driven
 - Machine learns the "best" policies (how to do things)
- Sophisticated, workload-driven, changing, far-sighted policies
- Automatic data-driven policy learning
- All controllers are intelligent data-driven agents

We need to rethink design (of all controllers)

Self-Optimizing Memory Prefetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu, "Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning" *Proceedings of the <u>54th International Symposium on Microarchitecture</u> (<i>MICRO*), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (1.5 minutes)] [Pythia Source Code (Officially Artifact Evaluated with All Badges)] [arXiv version] *Officially artifact evaluated as available, reusable and reproducible.*

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Sreenivas Subramoney²

Rahul Bera¹ Konstantinos Kanellopoulos¹

Anant V. Nori² Taha Shahroodi^{3,1} Onur Mutlu¹

¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

https://arxiv.org/pdf/2109.12021.pdf

Learning-Based Off-Chip Load Predictors

Best Paper Award at MICRO 2022

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera1Konstantinos Kanellopoulos1Shankar Balachandran2David Novo3Ataberk Olgun1Mohammad Sadrosadati1Onur Mutlu1

¹ETH Zürich ²Intel Processor Architecture Research Lab ³LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2209.00188.pdf

Self-Optimizing Hybrid SSD Controllers

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu, "Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning" Proceedings of the <u>49th International Symposium on Computer</u> <u>Architecture (ISCA)</u>, New York, June 2022. [Slides (pptx) (pdf)] [arXiv version] [Sibyl Source Code] [Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh1Rakesh Nadig1Jisung Park1Rahul Bera1Nastaran Hajinazar1David Novo3Juan Gómez-Luna1Sander Stuijk2Henk Corporaal2Onur Mutlu11ETH Zürich2Eindhoven University of Technology3LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394.pdf

Self-Optimizing Memory Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning Approach"
Proceedings of the <u>35th International Symposium on Computer Architecture</u> (ISCA), pages 39-50, Beijing, China, June 2008.

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ípek^{1,2} Onur Mutlu² José F. Martínez¹ Rich Caruana¹

¹Cornell University, Ithaca, NY 14850 USA

² Microsoft Research, Redmond, WA 98052 USA

Pythia: Prefetching using Reinforcement Learning

Self-Optimizing Memory Prefetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu, "Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning" *Proceedings of the <u>54th International Symposium on Microarchitecture</u> (<i>MICRO*), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (1.5 minutes)] [Pythia Source Code (Officially Artifact Evaluated with All Badges)] [arXiv version] *Officially artifact evaluated as available, reusable and reproducible.*

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Rahul Bera¹ Konstantinos Kanellopoulos¹

Anant V. Nori² Taha Shahroodi^{3,1} Onur Mutlu¹

¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

Sreenivas Subramoney²

https://arxiv.org/pdf/2109.12021.pdf

Pythia

A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

<u>Rahul Bera</u>, Konstantinos Kanellopoulos, Anant V. Nori, Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

https://github.com/CMU-SAFARI/Pythia

Mainly use one program context info. for prediction 2 Lack inherent system awareness

Lack in-silicon customizability

Why do prefetchers not perform well?

Autonomously learns to prefetch using multiple program context information and system-level feedback Can be customized in silicon to change program context information or prefetching objective on the fly

Brief Overview of Pythia

Pythia formulates prefetching as a **reinforcement learning** problem

What is State?

k-dimensional vector of features

 $S \equiv \{\phi_S^1, \phi_S^2, \dots, \phi_S^k\}$

• Feature = control-flow + data-flow

Control-flow examples

- PC
- Branch PC
- Last-3 PCs, ...

Data-flow examples

- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, ...

What is Action?

Given a demand access to address A the action is to select prefetch offset "O"

- Action-space: 127 actions in the range [-63, +63]
 - For a machine with 4KB page and 64B cacheline
- Upper and lower limits ensure prefetches do not cross physical page boundary
- A zero offset means no prefetch is generated
- We further **prune** action-space by design-space exploration

SAFARI

Prefetcher

Reward

Prefetch from addres

A+offset (0)

Features of memory

request to address A

(e.g., PC)

What is Reward?

- Defines the **objective** of Pythia
- Encapsulates two metrics:

- Features of memory request to address A (e.g., PC) Processor & Memory subSystem
- Prefetch usefulness (e.g., accurate, late, out-of-page, ...)
- System-level feedback (e.g., mem. b/w usage, cache pollution, energy, ...)
- We demonstrate Pythia with memory bandwidth usage as the system-level feedback in the paper

What is Reward?

Seven distinct reward levels

- Accurate and timely (R_{AT})
- Accurate but late (R_{AL})
- Loss of coverage (R_{CL})
- Inaccurate
 - With low memory b/w usage (R_{IN}-L)
 - With high memory b/w usage (R_{IN}-H)
- No-prefetch
 - With low memory b/w usage (R_{NP}-L)
 - With high memory b/w usage(R_{NP}-H)
- Values are set at design time via automatic designspace exploration

- Can be customized further in silicon for higher performance SAFARI

Basic Pythia Configuration

• Derived from automatic design-space exploration

• State: 2 features

- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets

- Ranging between -6 to +32. Including 0.

• Rewards:

- $R_{AT} = +20$; $R_{AL} = +12$; R_{NP} -H=-2; R_{NP} -L=-4;
- R_{IN} -H=-14; R_{IN} -L=-8; R_{CL} =-12

More Detailed Pythia Overview

- Q-Value Store: Records Q-values for *all* state-action pairs
- Evaluation Queue: A FIFO queue of recently-taken actions

Simulation Methodology

- Champsim [3] trace-driven simulator
- **150** single-core memory-intensive workload traces
 - SPEC CPU2006 and CPU2017
 - PARSEC 2.1
 - Ligra
 - Cloudsuite
- Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers

- SPP [Kim+, MICRO'16]
- Bingo [Bakhshalipour+, HPCA'19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019]
- SPP+DSPatch [Bera+, MICRO'19]
- SPP+PPF [Bhatia+, ISCA'20]

Performance with Varying Core Count

Performance with Varying Core Count

Performance with Varying DRAM Bandwidth

Performance with Varying DRAM Bandwidth

Pythia outperforms prior best prefetchers for a wide range of DRAM bandwidth configurations

Performance Improvement via Customization

Performance Improvement via Customization

Pythia can extract even higher performance via customization without changing hardware

Pythia's Overhead

• 25.5 KB of total metadata storage per core

- Only simple tables
- We also model functionally-accurate Pythia with full complexity in Chisel [4] HDL

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)

Pythia is Open Source

https://github.com/CMU-SAFARI/Pythia

- MICRO'21 artifact evaluated
- Champsim source code + Chisel modeling code
- All traces used for evaluation

SAFAR

CMU-SAFARI / Pythia Public		 Unwat 	tch 👻 3 🛱 Sta	r 9 😵 Fork	2
<> Code ⊙ Issues îî Pull reques	its 💿 Actions 🔟 Projects 🖽 Wiki 🕕 Security	🗠 Insights 🛛 ಭ Set	ttings		
🐉 master 👻 🤔 1 branch 🛇 5 tags	Go to file	Add file - Code -	About		ş
rahulbera Github pages documentatio	n 🗸 diefc65 7 hours	s ago 🕚 40 commits	A customizable framework using learning as desc	hardware prefetch g online reinforcer cribed in the MICR	hing mer 20
branch	Initial commit for MICRO'21 artifact evaluation	2 months ago	2021 paper by E	Bera and	
config	Initial commit for MICRO'21 artifact evaluation	2 months ago	Kanellopoulos e	t al.	
docs	Github pages documentation	7 hours ago		2109.12021.pdf	
experiments	Added chart visualization in Excel template	2 months ago	machine-learning		
inc	Updated README	8 days ago	reinforcement-lea	rning	
prefetcher	Initial commit for MICRO'21 artifact evaluation	2 months ago	microarchitecture	cache-replaceme	ent
replacement	Initial commit for MICRO'21 artifact evaluation	2 months ago	branch-predictor	champsim-simulat	tor
scripts	Added md5 checksum for all artifact traces to verify download	2 months ago	champsim-tracer		
src	Initial commit for MICRO'21 artifact evaluation	2 months ago	🛱 Readme		
tracer	Initial commit for MICRO'21 artifact evaluation	2 months ago	View license		
🗅 .gitignore	Initial commit for MICRO'21 artifact evaluation	2 months ago	🖓 Cite this repo	sitory 🗸	
CITATION.cff	Added citation file	8 days ago			
	Updated LICENSE	2 months ago	Releases 5		
LICENSE.champsim	Initial commit for MICRO'21 artifact evaluation	2 months ago	V1.3 Latest		

41

Pythia Talk Video

Pythia: A Customizable Prefetching Framework Using Reinforcement Learning - MICRO'21 Long Talk

Full Conference Talk at MICRO 2021 by Rahul Bera

SAFARI https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8

A Lot More in the Pythia Paper

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu, "Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (MICRO), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (1.5 minutes)] [Pythia Source Code (Officially Artifact Evaluated with All Badges)] [arXiv version] Officially artifact evaluated as available, reusable and reproducible.

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Rahul Bera¹ Konstantinos Kanellopoulos¹

Anant V. Nori² Taha Shahroodi^{3,1} Onur Mutlu¹

¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

Sreenivas Subramoney²

https://arxiv.org/pdf/2109.12021.pdf

Pythia

A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

<u>Rahul Bera</u>, Konstantinos Kanellopoulos, Anant V. Nori, Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

https://github.com/CMU-SAFARI/Pythia

Hermes: Perceptron-Based Off-Chip Load Prediction

Learning-Based Off-Chip Load Predictors

Best Paper Award at MICRO 2022

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera1Konstantinos Kanellopoulos1Shankar Balachandran2David Novo3Ataberk Olgun1Mohammad Sadrosadati1Onur Mutlu1

¹ETH Zürich ²Intel Processor Architecture Research Lab ³LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2209.00188.pdf

Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

https://github.com/CMU-SAFARI/Hermes

Problem

Long-latency off-chip load requests

Often **stall** processor by **blocking instruction retirement** from Reorder Buffer (ROB)

Traditional Solutions

ر Employ sophisticated prefetchers

Increase size of on-chip caches

Key Observation 1

off-chip loads without any prefetcher

On-chip cache access latency significantly contributes to off-chip load latency

40% of the stalls can be eliminated by removing on-chip cache access latency from critical path

Caches are Getting Bigger and Slower...

Our Goal

Improve processor performance by **removing on-chip cache access latency** from the **critical path of off-chip loads**

Predicts which load requests are likely to go off-chip

Starts **fetching** data **directly** from **main memory** while concurrently accessing the cache hierarchy

Hermes: Key Contribution

Hermes employs the first perceptron-based off-chip load predictor That predicts which loads are likely to **go off-chip**

By learning from multiple program context information

Hermes Overview

Designing the Off-Chip Load Predictor

History-based prediction

HMP [Yoaz+, ISCA'99] for the **L1-D cache**

Using **branch-predictor-like** hybrid predictor:

POPET provides both higher accuracy and higher performance than predictors inspired from these previous works

- Metadata size increases with cache hierarchy size
- X May need to track **all** cache operations
 - Gets complex depending on the cache hierarchy configuration (e.g., inclusivity, bypassing,...)

Learning from program behavior

Correlate different program features with off-chip loads

Low storage overhead 🛛 🐼

Low design complexity

POPET: Perceptron-Based Off-Chip Predictor

- Multi-feature hashed perceptron model^[1]
 - Each feature has its own weight table
 - Stores correlation between feature value and off-chip prediction

Predicting using POPET

Training POPET

Evaluation

Simulation Methodology

- ChampSim trace driven simulator
- **110 single-core** memory-intensive traces
 - SPEC CPU 2006 and 2017
 - PARSEC 2.1
 - Ligra
 - Real-world applications

• **220 eight-core** memory-intensive trace mixes

LLC Prefetchers

- Pythia [Bera+, MICRO'21]
- Bingo [Bakshalipour+, HPCA'19]
- MLOP [Shakerinava+, 3rd Prefetching Championship'19]
- SPP + Perceptron filter [Bhatia+, ISCA'20]
- SMS [Somogyi+, ISCA'06]

Off-Chip Predictors

- History-based: HMP [Yoaz+, ISCA'99]
- Tracking-based: Address Tag-Tracking based Predictor (TTP)
- Ideal Off-chip Predictor

Single-Core Performance Improvement

Hermes provides nearly 90% performance benefit of Ideal Hermes that has an ideal off-chip load predictor

Increase in Main Memory Requests

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

Hermes is more **bandwidth-efficient** than even an efficient prefetcher like Pythia

Performance with Varying Memory Bandwidth

Hermes+Pythia outperforms Pythia across all bandwidth configurations

Performance with Varying Baseline Prefetcher

Overhead of Hermes

*On top of an Intel Alder Lake-like performance-core ^[2] configuration

A Lot More in the Hermes Paper

Performance sensitivity to:

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera¹ Konstantinos Kanellopoulos¹ Shankar Balachandran² David Novo³ Ataberk Olgun¹ Mohammad Sadrosadati¹ Onur Mutlu¹

¹ETH Zürich ²Intel Processor Architecture Research Lab ³LIRMM, Univ. Montpellier, CNRS

Long-latency load requests continue to limit the performance of modern high-performance processors. To increase the latency tolerance of a processor, architects have primarily relied on two key techniques: sophisticated data prefetchers and large on-chip caches. In this work, we show that: (1) even a sophisticated stateof-the-art prefetcher can only predict half of the off-chip load requests on average across a wide range of workloads, and (2) due to the increasing size and complexity of on-chip caches, a large fraction of the latency of an off-chip load request is spent accessing the on-chip cache hierarchy to solely determine that it needs to go off-chip.

The goal of this work is to accelerate off-chip load requests by removing the on-chip cache access latency from their critical path. To this end, we propose a new technique called Hermes, whose key idea is to: (1) accurately predict which load requests off-chip main memory (i.e., an *off-chip load*) often stalls the processor core by blocking the instruction retirement from the reorder buffer (ROB), thus limiting the core's performance [88, 91, 92]. To increase the latency tolerance of a core, computer architects primarily rely on two key techniques. First, they employ increasingly sophisticated hardware prefetchers that can learn complex memory address patterns and fetch data required by future load requests before the core demands them [28, 32, 33, 35, 75]. Second, they significantly scale up the size of the on-chip cache hierarchy with each new generation of processors [10, 11, 16].

Key problem. Despite recent advances in processor core design, we observe two key trends in new processor designs that leave a significant opportunity for performance improvement on the table. First, even a sophisticated state-of-the-art

https://arxiv.org/pdf/2209.00188.pdf

A New Approach to Latency Reduction

Hermes advocates for **off-chip load prediction**, a **different** form of speculation than **load address prediction** employed by prefetchers

Off-chip load prediction can be applied **by itself** or **combined with load address prediction** to provide performance improvement

Hermes: Summary

Hermes employs the first perceptron-based off-chip load predictor

Hermes is Open Source

All workload traces

SAFARI

13 prefetchers

- Stride [Fu+, MICRO'92]
- Streamer [Chen and Baer, IEEE TC'95]
- SMS [Somogyi+, ISCA'06]
- AMPM [Ishii+, ICS'09]
- Sandbox [Pugsley+, HPCA'14]
- BOP [Michaud, HPCA'16]
- SPP [Kim+, MICRO'16]
- Bingo [Bakshalipour+, HPCA'19]
- SPP+PPF [Bhatia+, ISCA'19]
- DSPatch [Bera+, MICRO'19]
- MLOP [Shakerinava+, DPC-3'19]
- IPCP [Pakalapati+, ISCA'20]
- Pythia [Bera+, MICRO'21]

off-chip predictors

Predictor type	Description	
Base	Always NO	
Basic	Simple confidence counter-based threshold	
Random	Random Hit-miss predictor with a given positive probability	
HMP-Local	Hit-miss predictor [Yoaz+, ISCA'99] with local prediction	
HMP-GShare	Hit-miss predictor with GShare prediction	
HMP-GSkew	Hit-miss predictor with GSkew prediction	
HMP-Ensemble	Hit-miss predictor with all three types combined	
ТТР	Tag-tracking based predictor	
Perc	Perceptron-based OCP used in this paper	

https://github.com/CMU-SAFARI/Hermes
Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class

```
class OffchipPredBase
 8
    {
 9
    public:
10
         uint32_t cpu;
11
12
         string type;
        uint64_t seed;
13
         uint8 t dram bw; // current DRAM bandwidth bucket
14
15
         OffchipPredBase(uint32_t _cpu, string _type, uint64_t _seed) : cpu(_cpu), type(_type), seed(_seed)
16
         {
17
             srand(seed);
18
             dram_bw = 0;
19
20
         }
         ~OffchipPredBase() {}
21
         void update_dram_bw(uint8_t _dram_bw) { dram_bw = _dram_bw; }
22
23
         virtual void print_config();
24
         virtual void dump_stats();
25
26
         virtual void reset_stats();
         virtual void train(ooo model instr *arch instr, uint32 t data index, LSQ ENTRY *lq entry);
27
28
         virtual bool predict(ooo model instr *arch instr, uint32 t data index, LSQ ENTRY *lq entry);
29
    };
30
31
    #endif /* OFFCHIP PRED BASE H */
32
```

Easy To Define Your Own Off-Chip Predictor

Define your own train() and predict() functions

```
void OffchipPredBase::train(ooo_model_instr *arch_instr, uint32_t data_index, LSQ_ENTRY *lq_entry)
19
     {
20
        // nothing to train
21
    }
22
23
24
    bool OffchipPredBase::predict(ooo_model_instr *arch_instr, uint32_t data_index, LSQ_ENTRY *lq_entry)
25
    {
        // predict randomly
26
        // return (rand() % 2) ? true : false;
27
        return false;
28
29
   }
```

 Get statistics like accuracy (stat name precision) and coverage (stat name recall) out of the box

> Core_0_offchip_pred_true_pos 2358716 Core_0_offchip_pred_false_pos 276883 Core_0_offchip_pred_false_neg 132145 Core_0_offchip_pred_precision 89.49 Core_0_offchip_pred_recall 94.69

Off-Chip Prediction Can Further Enable...

Prioritizing loads that are likely go off-chip in cache queues and on-chip network routing

Better instruction scheduling of data-dependent instructions

Other ideas to improve **performance** and **fairness** in multi-core system design...

Learning-Based Off-Chip Load Predictors

Best Paper Award at MICRO 2022

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera1Konstantinos Kanellopoulos1Shankar Balachandran2David Novo3Ataberk Olgun1Mohammad Sadrosadati1Onur Mutlu1

¹ETH Zürich ²Intel Processor Architecture Research Lab ³LIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2209.00188.pdf

Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

https://github.com/CMU-SAFARI/Hermes

1. (Memory) system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving (memory) system designs

Challenge and Opportunity for Future

Accelerating Emerging Workloads

Data is Key for Future Workloads

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

80

Data → performance & energy bottleneck

reau4:	COCITCCAT
read5:	CCATGACGC
read6:	TTCCATGAC

Scientific Discovery

3 Variant Calling

We Need Faster & Scalable Genome Analysis

Understanding genetic variations, species, evolution, ...

Rapid surveillance of **disease outbreaks**

Predicting the presence and relative abundance of **microbes** in a sample

Developing personalized medicine

SAFARI

And, many, many other applications ...

New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions

Damla Senol Cali 🖾, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼

Oxford Nanopore MinION

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions," Briefings in Bioinformatics, 2018. [Open arxiv.org version]

New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions

Damla Senol Cali 🖾, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017Published:02 April 2018Article history ▼

Oxford Nanopore MinION

Data → performance & energy bottleneck

Problems with (Genome) Analysis Today

Special-Purpose Machine for Data Generation General-Purpose Machine for Data Analysis

FAST

SLOW

Slow and inefficient processing capability Large amounts of data movement

SAFARI This picture is similar for many "data generators & analyzers" today ⁸⁵

Accelerating Genome Analysis [IEEE MICRO 2020]

 Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu,
 "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
 [Slides (pptx)(pdf)]
 [Talk Video (1 hour 2 minutes)]

Accelerating Genome Analysis: A Primer on an Ongoing Journey

Mohammed Alser ETH Zürich

Zülal Bingöl Bilkent University

Damla Senol Cali Carnegie Mellon University

Jeremie Kim ETH Zurich and Carnegie Mellon University Saugata Ghose University of Illinois at Urbana–Champaign and Carnegie Mellon University

Can Alkan Bilkent University

Onur Mutlu ETH Zurich, Carnegie Mellon University, and Bilkent University

Beginner Reading on Genome Analysis

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu "From Molecules to Genomic Variations to Scientific Discovery: Intelligent Algorithms and Architectures for Intelligent Genome Analysis" Computational and Structural Biotechnology Journal, 2022 [Source code]

Review

From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures

Mohammed Alser*, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu*

ETH Zurich, Gloriastrasse 35, 8092 Zürich, Switzerland

SAFARI https://arxiv.org/pdf/2205.07957.pdf

Accelerating Approximate String Matching

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" *Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (<i>MICRO*), Virtual, October 2020.
 [Lighting Talk Video (1.5 minutes)]
 [Lighting Talk Slides (pptx) (pdf)]
 [Talk Video (18 minutes)]
 [Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Damla Senol Cali[†][™] Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[◊] Lavanya Subramanian[‡] Jeremie S. Kim^{◊†} Rachata Ausavarungnirun[⊙] Mohammed Alser[◊] Juan Gomez-Luna[◊] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{◊†▽} [†]Carnegie Mellon University [™]Processor Architecture Research Lab, Intel Labs [¬]Bilkent University [◊]ETH Zürich [‡]Facebook [⊙]King Mongkut's University of Technology North Bangkok ^{*}University of Illinois at Urbana–Champaign 88

Accelerating Sequence-to-Graph Mapping

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
 "SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping"
 Proceedings of the <u>49th International Symposium on Computer Architecture</u> (ISCA), New York, June 2022.

[arXiv version]

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali¹ Konstantinos Kanellopoulos² Joël Lindegger² Zülal Bingöl³ Gurpreet S. Kalsi⁴ Ziyi Zuo⁵ Can Firtina² Meryem Banu Cavlak² Jeremie Kim² Nika Mansouri Ghiasi² Gagandeep Singh² Juan Gómez-Luna² Nour Almadhoun Alserr² Mohammed Alser² Sreenivas Subramoney⁴ Can Alkan³ Saugata Ghose⁶ Onur Mutlu²

¹Bionano Genomics ²ETH Zürich ³Bilkent University ⁴Intel Labs ⁵Carnegie Mellon University ⁶University of Illinois Urbana-Champaign

SAFARI https://arxiv.org/pdf/2205.05883.pdf

Accelerating Basecalling + Read Mapping

Appears at MICRO 2022

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of Basecalling and Read Mapping

Haiyu Mao¹ Mohammed Alser¹ Mohammad Sadrosadati¹ Can Firtina¹ Akanksha Baranwal¹ Damla Senol Cali² Aditya Manglik¹ Nour Almadhoun Alserr¹ Onur Mutlu¹ ¹ETH Zürich ²Bionano Genomics

SAFARI https://arxiv.org/pdf/2209.08600.pdf

Designing & Accelerating Basecallers

A Framework for Designing Efficient Deep Learning-Based Genomic Basecallers

Gagandeep Singh^a Mohammed Alser^{*a} Alireza Khodamoradi^{*b} Kristof Denolf^b Can Firtina^a Meryem Banu Cavlak^a Henk Corporaal^c Onur Mutlu^a ^aETH Zürich ^bAMD ^cEindhoven University of Technology

Nanopore sequencing is a widely-used high-throughput genome sequencing technology that can sequence long fragments of a genome. Nanopore sequencing generates noisy electrical signals that need to be converted into a standard string of DNA nucleotide bases (i.e., A, C, G, T) using a computational step called *basecalling*. The accuracy and speed of basecalling have critical implications for every subsequent step in genome analysis. Currently, basecallers are developed mainly based on deep learning techniques to provide high sequencing accuracy without considering the compute demands of such tools. We observe that state-of-the-art basecallers (i.e., Guppy, Bonito, Fast-Bonito) are slow, inefficient, and memory-hungry

SAFARI https://arxiv.org/pdf/2211.03079.pdf

In-Storage Genome Filtering [ASPLOS 2022]

- Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
 "GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis"
 Proceedings of the 27th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 2022.
 [Talk Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Lightning Talk Video (90 seconds)]
 - [<u>Talk Video</u> (17 minutes)]

[<u>laik video</u> (17 minutes)]

GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto

Accelerating Climate Modeling

 Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling" Proceedings of the <u>30th International Conference on Field-Programmable Logic</u> and Applications (FPL), Gothenburg, Sweden, September 2020.
 [Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (23 minutes)] Nominated for the Stamatis Vassiliadis Memorial Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling

Gagandeep Singh^{*a,b,c*} Dionysios Diamantopoulos^{*c*} Christoph Hagleitner^{*c*} Juan Gómez-Luna^{*b*} Sander Stuijk^{*a*} Onur Mutlu^{*b*} Henk Corporaal^{*a*} ^{*a*}Eindhoven University of Technology ^{*b*}ETH Zürich ^{*c*}IBM Research Europe, Zurich

Accelerating Time Series Analysis

 Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
 "NATSA: A Near-Data Processing Accelerator for Time Series Analysis" Proceedings of the <u>38th IEEE International Conference on Computer</u> Design (ICCD), Virtual, October 2020.
 [Slides (pptx) (pdf)]
 [Talk Video (10 minutes)]
 [Source Code]

NATSA: A Near-Data Processing Accelerator for Time Series Analysis

Ivan FernandezRicardo QuislantChristina GiannoulaMohammed AlserJuan Gómez-LunaEladio GutiérrezOscar PlataOnur Mutlu§University of Malaga†National Technical University of Athens‡ETH Zürich

Accelerating Graph Pattern Mining

Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler,
 <u>"SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems"</u>
 Proceedings of the <u>54th International Symposium on Microarchitecture</u> (<i>MICRO), Virtual, October 2021.
 [Slides (pdf)]
 [Talk Video (22 minutes)]
 [Lightning Talk Video (1.5 minutes)]
 [Full arXiv version]

SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems

Maciej Besta¹, Raghavendra Kanakagiri², Grzegorz Kwasniewski¹, Rachata Ausavarungnirun³, Jakub Beránek⁴, Konstantinos Kanellopoulos¹, Kacper Janda⁵, Zur Vonarburg-Shmaria¹, Lukas Gianinazzi¹, Ioana Stefan¹, Juan Gómez-Luna¹, Marcin Copik¹, Lukas Kapp-Schwoerer¹, Salvatore Di Girolamo¹, Nils Blach¹, Marek Konieczny⁵, Onur Mutlu¹, Torsten Hoefler¹ ¹ETH Zurich, Switzerland ²IIT Tirupati, India ³King Mongkut's University of Technology North Bangkok, Thailand ⁴Technical University of Ostrava, Czech Republic ⁵AGH-UST, Poland

Accelerating HTAP Database Systems

Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu, "Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with Hardware/Software Co-Design" Proceedings of the <u>38th International Conference on Data Engineering</u> (ICDE), Virtual, May 2022. [arXiv version] [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)]

Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with Hardware/Software Co-Design

Amirali Boroumand[†]

Saugata Ghose^{\lambda} Geraldo F. Oliveira[‡] Onur Mutlu[‡] [†]Google [•]Univ. of Illinois Urbana-Champaign [‡]ETH Zürich

https://arxiv.org/pdf/2204.11275.pdf SAFARI

Accelerating Neural Network Inference

Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
 "Google Neural Network Models for Edge Devices: Analyzing and

 <u>Mitigating Machine Learning Inference Bottlenecks</u>"
 Proceedings of the 30th International Conference on Parallel Architectures and
 Compilation Techniques (PACT), Virtual, September 2021.

 [Slides (pptx) (pdf)]
 [Talk Video (14 minutes)]

Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand**Saugata Ghose*Berkin Akin*Ravi Narayanaswami*Geraldo F. Oliveira*Xiaoyu Ma*Eric Shiu*Onur Mutlu*** Carnegie Mellon Univ.* Stanford Univ.* Univ. of Illinois Urbana-Champaign * Google * ETH Zürich

Appears in IEEE Micro

Accelerating Neural Network Inference with Processing-in-DRAM: From the Edge to the Cloud

Geraldo F. Oliveira ETH Zürich

Juan Gómez-Luna ETH Zürich

Saugata Ghose University of Illinois Urbana-Champaign

Amirali Boroumand Google

Onur Mutlu ETH Zürich

SAFARI https://arxiv.org/pdf/2209.08938.pdf

FPGA-based Near-Memory Analytics

 Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications" IEEE Micro (IEEE MICRO), 2021.

FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications

Gagandeep Singh[◊] Mohammed Alser[◊] Damla Senol Cali[⋈]

Dionysios Diamantopoulos[∇] **Juan Gómez-Luna**[◊]

Henk Corporaal[★] Onur Mutlu^{◊ ⋈}

◇ETH Zürich [™]Carnegie Mellon University
 *Eindhoven University of Technology [▽]IBM Research Europe

GenASM: Approximate String Matching Accelerator for Genomics

GenASM Framework [MICRO 2020]

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" *Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (<i>MICRO*), Virtual, October 2020.
 [Lighting Talk Video (1.5 minutes)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (18 minutes)]
 [Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Damla Senol Cali[†][™] Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[◊] Lavanya Subramanian[‡] Jeremie S. Kim^{◊†} Rachata Ausavarungnirun[⊙] Mohammed Alser[◊] Juan Gomez-Luna[◊] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{◊†▽} [†]Carnegie Mellon University [™]Processor Architecture Research Lab, Intel Labs [¬]Bilkent University [◊]ETH Zürich [‡]Facebook [⊙]King Mongkut's University of Technology North Bangkok ^{*}University of Illinois at Urbana–Champaign 101 GenASM: A High Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

> Damla Senol Cali Carnegie Mellon University (dsenol@andrew.cmu.edu)

Gurpreet S. Kalsi², Zulal Bingol³, Can Firtina⁴, Lavanya Subramanian⁵, Jeremie Kim^{1,4}, Rachata Ausavarungnirun^{6,1}, Mohammed Alser⁴, Juan Gomez-Luna⁴, Amirali Boroumand¹, Anant Nori², Allison Scibisz¹, Sreenivas Subramoney², Can Alkan³, Saugata Ghose^{7,1}, and Onur Mutlu^{4,1,3}

Genome Sequencing

- Genome sequencing: Enables us to determine the order of the DNA sequence in an organism's genome
 - Plays a pivotal role in:
 - Personalized medicine
 - Outbreak tracing
 - Understanding of evolution

• • • • •

Modern genome sequencing machines extract smaller randomized fragments of the original DNA sequence, known as reads

- Short reads: a few hundred base pairs, error rate of ~0.1%
- Long reads: thousands to millions of base pairs, error rate of 10–15%

Genome Sequence Analysis

Read mapping: *First key step* in genome sequence analysis (GSA)

- Aligns reads to one or more possible locations within the reference genome, and
- Finds the matches and differences between the read and the reference genome segment at that location

Multiple steps of read mapping require *approximate string matching*

 Approximate string matching (ASM) enables read mapping to account for sequencing errors and genetic variations in the reads

Bottlenecked by the computational power and memory bandwidth limitations of existing systems

GenASM: ASM Framework for GSA

Our Goal:

Accelerate approximate string matching by designing a fast and flexible framework, which can accelerate *multiple steps* of genome sequence analysis

GenASM: *First* ASM acceleration framework for GSA

- ο Based upon the *Bitαp* algorithm
 - Uses fast and simple bitwise operations to perform ASM
- Modified and extended ASM algorithm
 - Highly-parallel Bitap with long read support
 - Bitvector-based novel algorithm to perform traceback
- Co-design of our modified scalable and memory-efficient algorithms with low-power and area-efficient hardware accelerators

Damla Senol Cali

GenASM: Hardware Design

GenASM-DC:

generates bitvectors and performs edit **Distance** Calculation

GenASM-TB: performs TraceBack and assembles the optimal alignment

GenASM: Hardware Design

Our specialized compute units and on-chip SRAMs help us to: → Match the rate of computation with memory capacity and bandwidth → Achieve high performance and power efficiency → Scale linearly in performance with the number of parallel compute units that we add to the system

Damla Senol Cali

GenASM-DC: Hardware Design

- Linear cyclic systolic array based accelerator
 - Designed to maximize parallelism and minimize memory bandwidth and memory footprint

GenASM-TB: Hardware Design

□ Very simple logic:

1 Reads the bitvectors from one of the TB-SRAMs using the computed address

2 Performs the required bitwise comparisons to find the traceback output for the current position

3 Computes the next TB-SRAM address to read the new set of bitvectors

Key Results – Area and Power

 Based on our synthesis of GenASM-DC and GenASM-TB accelerator datapaths using the Synopsys Design Compiler with a 28nm LP process:
 Both GenASM-DC and GenASM-TB operate (a) 1GHz

Key Results – Area and Power

 Based on our synthesis of GenASM-DC and GenASM-TB accelerator datapaths using the Synopsys Design Compiler with a 28nm LP process:
 Both GenASM-DC and GenASM-TB operate (a) 1GHz

GenASM has low area and power overheads

Use Cases of GenASM

Damla Senol Cali

Use Cases of GenASM (cont'd.)

(1) Read Alignment Step of Read Mapping

 Find the optimal alignment of how reads map to candidate reference regions

(2) Pre-Alignment Filtering for Short Reads

 Quickly identify and filter out the unlikely candidate reference regions for each read

(3) Edit Distance Calculation

• Measure the similarity or distance between two sequences

□ Other possible use cases of GenASM in our paper:

 Read-to-read overlap finding, hash-table based indexing, whole genome alignment, generic text search

Key Results

(1) Read Alignment

- 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)
- □ 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)
- **3.9× better throughput, 2.7× less power than Darwin** (state-of-the-art HW)
- 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering

3.7× speedup, **1.7**× less power than **Shouji** (state-of-the-art HW)

(3) Edit Distance Calculation

- □ 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)
- **9.3–400×** speedup, 67× less power than ASAP (state-of-the-art HW)

Damla Senol Cali

More on GenASM Framework [MICRO 2020]

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" *Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (<i>MICRO*), Virtual, October 2020.
 [Lighting Talk Video (1.5 minutes)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (18 minutes)]
 [Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Damla Senol Cali[†][™] Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[◊] Lavanya Subramanian[‡] Jeremie S. Kim^{◊†} Rachata Ausavarungnirun[⊙] Mohammed Alser[◊] Juan Gomez-Luna[◊] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{◊†▽} [†]Carnegie Mellon University [™]Processor Architecture Research Lab, Intel Labs [¬]Bilkent University [◊]ETH Zürich [‡]Facebook [⊙]King Mongkut's University of Technology North Bangkok ^{*}University of Illinois at Urbana–Champaign 115

GenASM Talk Video

Key Results – Use Case 3

SAFARI

https://www.youtube.com/watch?v=NFU2GANPJNU

GenASM: A High Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

> Damla Senol Cali Carnegie Mellon University (dsenol@andrew.cmu.edu)

Gurpreet S. Kalsi², Zulal Bingol³, Can Firtina⁴, Lavanya Subramanian⁵, Jeremie Kim^{1,4}, Rachata Ausavarungnirun^{6,1}, Mohammed Alser⁴, Juan Gomez-Luna⁴, Amirali Boroumand¹, Anant Nori², Allison Scibisz¹, Sreenivas Subramoney², Can Alkan³, Saugata Ghose^{7,1}, and Onur Mutlu^{4,1,3}

SeGraM: Sequence-to-Graph Mapping Accelerator for Genomics

Accelerating Sequence-to-Graph Mapping

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
 "SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping"
 Proceedings of the <u>49th International Symposium on Computer Architecture</u> (ISCA), New York, June 2022.

[arXiv version]

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali¹ Konstantinos Kanellopoulos² Joël Lindegger² Zülal Bingöl³ Gurpreet S. Kalsi⁴ Ziyi Zuo⁵ Can Firtina² Meryem Banu Cavlak² Jeremie Kim² Nika Mansouri Ghiasi² Gagandeep Singh² Juan Gómez-Luna² Nour Almadhoun Alserr² Mohammed Alser² Sreenivas Subramoney⁴ Can Alkan³ Saugata Ghose⁶ Onur Mutlu²

¹Bionano Genomics ²ETH Zürich ³Bilkent University ⁴Intel Labs ⁵Carnegie Mellon University ⁶University of Illinois Urbana-Champaign

SAFARI https://arxiv.org/pdf/2205.05883.pdf

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali, Ph.D.

damlasenolcali@gmail.com https://damlasenolcali.github.io/

Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

Problem: Sequence-to-Graph Mapping

Mapping the reads to a reference genome (i.e., *read mapping*) is a critical step in genome sequence analysis

Sequence-to-graph mapping results in notable quality improvements. However, it is a more difficult computational problem, with no prior hardware design.

S2S vs. S2G Alignment

Sequence-to-Sequence (S2S) Alignment

S2S vs. S2G Alignment

Sequence-to-Graph (S2G) Alignment

In contrast to S2S alignment,

S2G alignment must incorporate non-neighboring characters as well whenever there is an edge (i.e., *hop*) from the non-neighboring character to the current character

SeGraM: First Graph Mapping Accelerator

Our Goal:

Specialized, high-performance, scalable, and low-cost algorithm/hardware co-design that alleviates bottlenecks in **multiple steps** of sequence-to-graph mapping

SeGraM: First universal algorithm/hardware co-designed genomic mapping accelerator that can effectively and efficiently support:

- Sequence-to-graph mapping
- Sequence-to-sequence mapping
- Both short and long reads

Sequence-to-Graph Mapping Pipeline

SeGraM Hardware Design

126

Overall System Design of SeGraM

Use Cases of SeGraM

(1) Sequence-to-Graph Mapping

(2) Sequence-to-Graph Alignment

(3) Sequence-to-Sequence Alignment

SAFARI

(4) Seeding

Damla Senol Cali

Use Cases & Key Results

(1) Sequence-to-Graph (S2G) Mapping

□ 5.9×/106× speedup, 4.1×/3.0× less power than GraphAligner

for long and short reads, respectively (state-of-the-art SW)

□ 3.9×/742× speedup, 4.4×/3.2× less power than vg

for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (S2G) Alignment

41×–**539**× speedup over **PaSGAL** with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (S2S) Alignment

□ 1.2×/4.8× higher throughput than GenASM and GACT of Darwin

for long reads (state-of-the-art HW)

1.3×/2.4× higher throughput than GenASM and SillaX of GenAX

for short reads (state-of-the-art HW)

SeGraM is Open Source

https://github.com/CMU-SAFARI/SeGraM

۲	damlasenolcali Update README.md		45d20dc 6 days ago	3 26 commits
	src	BitAlign source files		6 days ago
۵	LICENSE	Initial commit		7 months ago
۵	README.md	Update README.md		6 days ago
:=	README.md			R

SeGraM: A Universal Genomic Mapping Accelerator for both Sequence-to-Graph Mapping and Sequence-to-Sequence Mapping

SeGraM is a universal genomic mapping accelerator that supports both sequence-to-graph mapping and sequence-to sequence mapping, for both short and long reads. SeGraM consists of two main components: (1) MinSeed, the first minimizer-based seeding accelerator, which finds the candidate mapping locations (i.e., subgraphs) in a given genome graph; and (2) BitAlign, the first bitvector-based sequence-to-graph alignment accelerator, which performs alignment between a given read and the subgraph identified by MinSeed. MinSeed is built upon a memory-efficient minimizer-based seeding algorithm, and BitAlign is built upon our novel bitvectorbased, highly-parallel sequence-to-graph alignment algorithm.

In MinSeed, the minimizer-based seeding approach decreases the memory footprint of the index and provides speedup during seed queries. MinSeed logic requires only basic operations (e.g., comparisons, simple arithmetic operations, scratchpad read-write operations) that are implemented with simple logic. Due to frequent memory accesses required for fetching the seeds, we couple MinSeed with High-Bandwidth Memory (HBM) to enable lowlatency and highly-parallel memory access, which alleviates the memory latency bottleneck.

In BitAlign, we design a new bitvector-based alignment approach, which is amenable to efficient hardware acceleration. BitAlign employs a systolic-array-based design to circulate the internal data (i.e., bitvectors) generated by different processing elements, which provides scalability and reduces both memory bandwidth and memory footprint. In order to handle hops (i.e., non-neighbor nodes in the graph-based reference), BitAlign provides a simple design that contains queue structures between each processing element, which store the most recently generated bitvectors.

BitAlign

After MinSeed or any seeding tool determines the subgraphs to perform alignment for each query read, for each (read, subgraph) pair, BitAlign calculates the edit distance and the corresponding alignment between the two. In order to provide an efficient, hardware-friendly, and low-cost solution, we modify the sequence alignment algorithm of GenASM, which is bitvector-based, to support sequence-to-graph alignment, and we exploit the bitparallelism that the GenASM algorithm provides.

GenASM

GenASM makes the bitvector-based Bitap algorithm suitable for efficient hardware implementation. GenASM shares a common characteristic with the well-known DP-based algorithms: both algorithms operate on tables. The key difference between GenASM-based alignment and DP-based alignment is that cell values are bitvectors in

Running SeGraM

Call the following two functions in src/graph.c and src/align.c files in your C code, respectively, or update the existing main() function in src/main.c file:

struct SeqNode* generateGraphFromGFA(char *filename, int *numNodes, int *numEdges); bitalign_aligner(struct SeqNode *nodes, char *pattern, int startNode, int startOffset, int endNode,

For example:

#include "graph.c"
#include "align.c"

...

int numNodes, numEdges;

struct SeqNode *nodes = generateGraphFromGFA("test.gfa", &numNodes, &numEdges); bitalign_aligner(nodes, "ACGTCATGCAGTCGTAACGTAGTCGTCACAGTCGTAGCTAGTCATA", 0, 0, 3, 41, 1, 5, 200, (

deleteGraph(nodes, numNodes);

...

Limitations

- The current implementation follows the divide-and-conquer approach, and does not have the ability to disable it.
- The current implementation expects the start node and the start offset within the start node, along with the
 possible end node and the end offset within the end node to perform the alignment. In order to run BitAlign as
 a standalone tool without the need of an initial seeding approach, this requirement should be removed.
- The current implementation expects the graph representation of the reference text to be generated using the struct SeqNode* generateGraphFromGFA(char *filename, int *numNodes, int *numEdges) function in graph.c file under src/.

Datasets

We evaluate SeGraM using the latest major release of the human genome assembly, GRCh38, as the starting reference genome. To incorporate known genetic variations and thus form a genome graph, we use 7 VCF files for HG001-007 from the GIABproject (v3.3.2). Across the 24 graphs generated (one for each chromosome; 1–22, X, Y), in total, we have 20.4M nodes, Z7.9 M edges, 3.1B sequence characters, and 7.1M variations.

For the read datasets, we generate four sets of long reads (i.e., PacBio and ONT datasets) using PBSIM2 and three sets of short reads (i.e., Illumina datasets) using Mason. For the PacBio and ONT datasets, we have reads of length 10kbp, each simulated with 5% and 10% error rates. The Illumina datasets have reads of length 100bp, 150bp, and 250bp, each simulated with a 1% error rate. Each dataset has 10,000 reads.

All our prepared datasets can be downloaded from this link. The unzipped directory has the following structure:

Damla Senol Cali

SeGraM Talk Video

452 views 2 months ago

Talk at the 49th The International Symposium on Computer Architecture (ISCA), New York, NY, United States. Title: SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

SAFARI

https://www.youtube.com/watch?v=gyjqYoyDP9s

More on SeGraM

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
 "SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping"
 Proceedings of the <u>49th International Symposium on Computer Architecture</u> (ISCA), New York, June 2022.

[arXiv version]

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali¹ Konstantinos Kanellopoulos² Joël Lindegger² Zülal Bingöl³ Gurpreet S. Kalsi⁴ Ziyi Zuo⁵ Can Firtina² Meryem Banu Cavlak² Jeremie Kim² Nika Mansouri Ghiasi² Gagandeep Singh² Juan Gómez-Luna² Nour Almadhoun Alserr² Mohammed Alser² Sreenivas Subramoney⁴ Can Alkan³ Saugata Ghose⁶ Onur Mutlu²

¹Bionano Genomics ²ETH Zürich ³Bilkent University ⁴Intel Labs ⁵Carnegie Mellon University ⁶University of Illinois Urbana-Champaign

SAFARI https://arxiv.org/pdf/2205.05883.pdf

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali, Ph.D.

damlasenolcali@gmail.com https://damlasenolcali.github.io/

Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

Summary: Two Major Thrusts

1. (Memory) system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving (memory) system designs

Challenge and Opportunity for Future

Self-Optimizing (Data-Driven) Computing Architectures

Challenge and Opportunity for Future

Accelerating Emerging Workloads

Memory System Design for AI/ML Accelerators & ML/AI Techniques for Memory System Design

> Onur Mutlu omutlu@gmail.com https://people.inf.ethz.ch/omutlu 10 November 2022 Intel/SRC Research Program Review

Backup Slides: SRC Task

Our Goals in This Task

Two Major Goals:

1. Memory system design for AI/ML workloads/accelerators

 \rightarrow in-depth exploration of memory system designs for cuttingedge and emerging machine learning accelerators

 \rightarrow more efficient on-chip and off-chip memory systems

2. AI/ML techniques for improving memory system designs

 \rightarrow take a comprehensive look at memory system design and make it data driven, i.e., based on machine learning

→ more effective cache/memory/prefetch/thread controllers and data/resource management/mapping/scheduling policies

Backup Slides: Pythia

Performance Improvement via Customization

Reward value customization

• Strict Pythia configuration

- Increasing the rewards for no prefetching
- **Decreasing** the rewards for **inaccurate prefetching**
- Strict Pythia is more conservative in generating prefetch requests than the basic Pythia
- Evaluate on all Ligra graph processing workloads

More in the Paper

- Performance comparison with **unseen traces**
 - Pythia provides equally high performance benefits
- Comparison against multi-level prefetchers
 - Pythia outperforms prior best multi-level prefetchers
- Understanding Pythia's learning with a case study
 - We reason towards the correctness of Pythia's decision
- Performance sensitivity towards different features and hyperparameter values
- Detailed single-core and four-core performance

More in the Paper

 Performance comparison with unseen traces - Pythia provides equally high performance benefits

amparison against multi-level prefetchers

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Taha Shahroodi^{3,1} Anant V. Nori² Rahul Bera¹ Konstantinos Kanellopoulos¹ Sreenivas Subramoney² Onur Mutlu¹ ¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

 Performance sets in the set of and hyperparameter values

Detailed single-core and four-core performance

Backup Slides: Hermes
Latency Configuration

Cache round-trip latency

- L1-D: 5 cycles
- L2: **15** cycles
- LLC: **55** cycles
- Hermes request issue latency (incurred after address translation)

Depends on

Interconnect between POPET and MC

More in the Paper

- Performance sensitivity to:
 - Cache hierarchy access latency
 - Hermes request issue latency
 - Activation threshold
 - ROB size (in extended version on arXiv)
 - LLC size (in extended version on arXiv)
- Accuracy, coverage, and performance analysis against HMP and TTP
- Understanding usefulness of each program feature
- Effect on stall cycle reduction
- Performance analysis on an eight-core system

Backup Slides: SeGraM

Genome Graphs

Genome graphs:

- Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure
- Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic diversity in a population

Sequence #1: ACGTACGT Sequence #2: ACGGACGT Sequence #3: ACGTTACGT Sequence #4: ACGACGT

Analysis of State-of-the-Art Tools

Based on our analysis with **GraphAligner** and **vg**:

Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates

Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle S2G alignment

Damla Senol Cali

HW

SW

SeGraM: Universal Genomic Mapping Accelerator

First universal genomic mapping accelerator that can support both sequence-to-graph mapping and sequence-to-sequence mapping, for both short and long reads

First algorithm/hardware co-design for accelerating sequence-to-graph mapping

□ We base SeGraM upon a minimizer-based seeding algorithm

We propose a novel bitvector-based alignment algorithm to perform approximate string matching between a read and a graphbased reference genome

We co-design both algorithms with high-performance, scalable, and efficient hardware accelerators

НW

SeGraM Hardware Design

Damla Senol Cali

Host

CPU

SeGraM Hardware Design

152

MinSeed HW

MinSeed = 3 computation modules + 3 scratchpads + memory interface

- Computation modules: Implemented with simple logic
- Scratchpads: 50kB in total; employ double buffering technique to hide the latency of MinSeed
- High-Bandwidth Memory (HBM): Enables low-latency and highly-parallel memory access

Overall System Design of SeGraM

Use Cases of SeGraM

(1) Sequence-to-Graph Mapping

(2) Sequence-to-Graph Alignment

(3) Sequence-to-Sequence Alignment

SAFARI

(4) Seeding

MS BA

Key Results – Area & Power

Based on our synthesis of MinSeed and BitAlign accelerator datapaths using the Synopsys Design Compiler with a 28nm process (@ 1GHz):

Component	Area (mm²)	Power (mW)
MinSeed – Logic	0.017	10.8
Read Scratchpad (6 kB)	0.012	7.9
Minimizer Scratchpad (40 kB)	0.055	22.7
Seed Scratchpad (4 kB)	0.008	6.4
BitAlign – Edit Distance Calculation Logic with Hop Queue Registers (64 PEs)	0.393	378.0
BitAlign – Traceback Logic	0.020	2.7
Input Scratchpad (24 kB)	0.033	13.3
Bitvector Scratchpads (128 kB)	0.329	316.2
Total – 1 SeGraM Accelerator	0.867	758.0 (0.8 W)
Total – 4 SeGraM Modules (32 SeGraM Accelerators)	27.744	24.3 W
HBM2E (4 stacks)		3.8 W

Key Results – SeGraM with Long Reads

SeGraM provides **5.9× and 3.9× throughput improvement** over GraphAligner and vg,

while reducing the power consumption by 4.1× and 4.4×

Key Results – SeGraM with Short Reads

SeGraM provides **106× and 742× throughput improvement** over GraphAligner and vg,

while reducing the power consumption by 3.0× and 3.2×

Key Results – BitAlign (S2G Alignment)

BitAlign provides 41×-539× speedup over PaSGAL

Damla Senol Cali

Conclusion

SeGraM: First universal algorithm/hardware co-designed genomic mapping accelerator that supports:

- Sequence-to-graph (S2G) & sequence-to-sequence (S2S) mapping
- Short & long reads
- **MinSeed:** First minimizer-based seeding accelerator
- **BitAlign:** *First (bitvector-based)* S2G alignment accelerator
- SeGraM supports multiple use cases:
 - End-to-end S2G mapping
 - S2G alignment
 - S2S alignment
 - Seeding

□ SeGraM outperforms state-of-the-art software & hardware solutions