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The Problem

Computing
is Bottlenecked by Data
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Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts 
of data

n Data is increasing
q We can generate more than we can process
q Our systems need to make more adaptive and better decisions
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In This Task… (Task #2946.001)

n We focus on designing memory systems to handle large 
amounts of data and emerging data-intensive workloads

n Goal: solve two different yet related & synergistic problems

n We explore (and exploit the synergy between)
q Memory system design for AI/ML workloads/accelerators
q AI/ML techniques for improving memory system designs
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Anticipated Primary Results

n Realistic, practical and effective novel (memory) system 
designs for ML/AI accelerators

n New ML-based techniques to improve (memory) system 
efficiency and performance

n Open-source workloads, metrics, methodologies & 
infrastructures to analyze such designs and techniques
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Task Description
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Task Deliverables (2020)
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Task Deliverables (2021)
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Task Deliverables (2022)
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Task Information #2946.001 (2)
n Senior Researchers

q Juan Gomez Luna (ETH)
q Haiyu Mao (ETH)
q Lois Orosa (ETH)
q Jisung Park (ETH)
q Gagandeep Singh (ETH)

n More students/postdocs to be added as the task evolves
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Task Information #2946.001 (1)
n Thrust: AI Hardware

n Task Leader: Onur Mutlu
q https://people.inf.ethz.ch/omutlu/
q onur.mutlu@inf.ethz.ch

n Students
q Rahul Bera (ETH)
q Joao Ferreira (ETH)
q Geraldo Francisco de Oliveira Junior (ETH)
q Konstantinos Kanellopoulos (ETH)
q Joel Lindegger (ETH)
q Aditya Manglik (ETH)
q Rakesh Nadig (ETH)
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Industry Liaisons
n Charles Augustine, Intel
n Pradip Bose, IBM
n Alper Buyuktosunoglu, IBM
n Rosario Cammarota, Intel
n Ramesh Chauhan, Qualcomm
n Prokash Ghosh, NXP
n Jose Joao, ARM
n Arun Joseph, IBM
n Preetham Lobo, IBM
n Nithyakalyani Sampath, TI
n Willem Sanberg, NXP
n Pushkar Sareen, NXP
n Sreenivas Subramoney, Intel
n Xin Zhang, IBM

n We are having and will have regular and irregular meetings with all liaison companies
n Very open to other collaborators, feedback, internships, visits
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Two Major Thrusts

1. (Memory) system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving (memory) system designs
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Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures
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System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions
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Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents
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We need to rethink design 
(of all controllers)



Self-Optimizing Memory Prefetchers
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Learning-Based Off-Chip Load Predictors
n Best Paper Award at MICRO 2022
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Self-Optimizing Hybrid SSD Controllers
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

19https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf


Self-Optimizing Memory Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
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Pythia: Prefetching using
Reinforcement Learning 
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Self-Optimizing Memory Prefetchers
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia
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Mainly use one
program context info. 

for prediction

Lack inherent system 
awareness

Lack in-silicon
customizability

Why do prefetchers 
not perform well?
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Autonomously learns to prefetch using 
multiple program context information

and system-level feedback

Can be customized in silicon to change 
program context information or 
prefetching objective on the fly

Pythia
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Brief Overview of Pythia
Pythia formulates prefetching as a reinforcement learning problem

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor & 
Memory Subsystem

Reward
Prefetch from address 

A+offset (O)

Features of memory 
request to address A 

(e.g., PC)
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What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow examples
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow examples
- Cacheline address
- Physical page number
- Delta between two cacheline addresses
- Last 4 deltas, …
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What is Action?
Given a demand access to address A
the action is to select prefetch offset “O”

• Action-space: 127 actions in the range [-63, +63] 
- For a machine with 4KB page and 64B cacheline

• Upper and lower limits ensure prefetches do not cross 
physical page boundary

• A zero offset means no prefetch is generated

• We further prune action-space by design-space exploration
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What is Reward?
• Defines the objective of Pythia

• Encapsulates two metrics:
- Prefetch usefulness (e.g., accurate, late, out-of-page, …)
- System-level feedback (e.g., mem. b/w usage, cache 

pollution, energy, …)

• We demonstrate Pythia with memory bandwidth 
usage as the system-level feedback in the paper
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What is Reward?
• Seven distinct reward levels

- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• With low memory b/w usage (RIN-L)
• With high memory b/w usage (RIN-H)

- No-prefetch
• With low memory b/w usage (RNP-L)
• With high memory b/w usage(RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance
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Basic Pythia Configuration
• Derived from automatic design-space exploration

• State: 2 features
- PC+Delta
- Sequence of last-4 deltas

• Actions: 16 prefetch offsets
- Ranging between -6 to +32. Including 0.

• Rewards:
- RAT = +20; RAL = +12; RNP-H=-2; RNP-L=-4;
- RIN-H=-14; RIN-L=-8; RCL=-12
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More Detailed Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs
• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to 

corresponding EQ entry

Look up 
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action & 
State-Action pair in EQ

6

Prefetch Fill 

A1 A2 A3

Memory 
Hierarchy

Generate
prefetch

Evict EQ entry and 
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max
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Simulation Methodology
• Champsim [3] trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Homogeneous and heterogeneous multi-core mixes

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]
- Bingo [Bakhshalipour+, HPCA’19]
- MLOP [Shakerinava+, 3rd Prefetching Championship, 2019 ]
- SPP+DSPatch [Bera+, MICRO’19]
- SPP+PPF [Bhatia+, ISCA’20]

[3] https://github.com/ChampSim/ChampSim

https://github.com/ChampSim/ChampSim
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1. Pythia consistently provides the highest 
performance in all core configurations

2. Pythia’s gain increases with core count
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Pythia outperforms prior best prefetchers for
a wide range of DRAM bandwidth configurations
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Pythia’s Overhead
• 25.5 KB of total metadata storage per core

- Only simple tables
• We also model functionally-accurate Pythia with full 

complexity in Chisel [4] HDL

1.03% area overhead

Satisfies prediction latency

0.4% power overhead

of a desktop-class 4-core Skylake processor (Xeon D2132IT, 60W)
[4] https://www.chisel-lang.org

https://www.chisel-lang.org/
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Pythia is Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated
• Champsim source code + Chisel modeling code
• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia


Pythia Talk Video

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8

https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=8


A Lot More in the Pythia Paper
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Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]
Officially artifact evaluated as available, reusable and reproducible.

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning

https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia


Hermes: Perceptron-Based 
Off-Chip Load Prediction 

45



Learning-Based Off-Chip Load Predictors
n Best Paper Award at MICRO 2022

46https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf


Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,
David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes
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Problem

Long-latency off-chip load requests

Often stall processor by 
blocking instruction retirement from 

Reorder Buffer (ROB)

Limit performance



49

Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches
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Key Observation 1

50%
successfully prefetched

# off-chip loads without any prefetcher

50%
still go off-chip even with 

a state-of-the-art prefetcher

70% of the off-chip loads 
block the ROB

Many loads still go off-chip
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40% of the stalls can be eliminated by removing 
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory
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Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007
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Improve processor performance 
by removing on-chip cache access latency

from the critical path of off-chip loads

Our Goal



Predicts which load requests 
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy
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Hermes: Key Contribution

Hermes employs the first 
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from 
multiple program context information
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a  
Hermes 
request

Wait

Train

Perceptron-based 
off-chip load predictor
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Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy 

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides 
both higher accuracy and higher performance
than predictors inspired from these previous works
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POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]

- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC
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Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight 
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hash

index
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.....

...
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Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12
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3 3 >= -2

-5
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Evaluation
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Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]
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Single-Core Performance Improvement
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Hermes alone provides nearly 
50% performance benefits of Pythia

with only 1/5th storage overhead

Hermes on top of Pythia 
outperforms Pythia alone in every workload category 
Hermes provides nearly 90% performance benefit of 

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests
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For every 1% performance benefit, 
increase in main memory requests

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia



66

Performance with Varying Memory Bandwidth
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~AMD Threadripper 3990x (Zen 2, 64C/4ch, 2020) 

~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R 
(Cascade Lake, 28C/6ch, 2020)

Pythia

Hermes

Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia
Hermes+Pythia outperforms Pythia 

across all bandwidth configurations

Baseline
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Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance 
on top of a wide range of baseline prefetchers
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Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3
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A Lot More in the Hermes Paper 
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core systemhttps://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
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A New Approach to Latency Reduction

Hermes advocates for off-chip load prediction, 
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself 
or combined with load address prediction

to provide performance improvement
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Hermes: Summary

Hermes employs the first
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage 
overhead
(4KB/core)

High performance improvement
over best prior baseline

(5.4%)

High performance 
per bandwidth
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Hermes is Open Source

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes
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Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class
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Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and 
coverage (stat name recall) out of the box
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Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip 
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and 
fairness in multi-core system design...



Learning-Based Off-Chip Load Predictors
n Best Paper Award at MICRO 2022

76https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf


Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,
David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes


Two Major Thrusts

1. (Memory) system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving (memory) system designs

78



Challenge and Opportunity for Future

Accelerating
Emerging Workloads

79



Data is Key for Future Workloads

80

development of high-throughput 
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes 
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped


Genome 
Analysis

A C T T A G C A C T
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Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Data → performance & energy bottleneck



We Need Faster & Scalable Genome Analysis

82

Predicting the presence and relative 
abundance of microbes in a sample

Understanding genetic variations, 
species, evolution, …

Rapid surveillance of disease outbreaks Developing personalized medicine

And, many, many other applications …



New Genome Sequencing Technologies

83

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Open arxiv.org version]

Oxford Nanopore MinION

https://arxiv.org/pdf/1711.08774.pdf


New Genome Sequencing Technologies

84

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

Data → performance & energy bottleneck

https://arxiv.org/pdf/1711.08774.pdf


Problems with (Genome) Analysis Today
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Special-Purpose Machine
for Data Generation

General-Purpose Machine
for Data Analysis

FAST                        SLOW
Slow and inefficient processing capability

This picture is similar for many “data generators & analyzers” today

Large amounts of data movement



Accelerating Genome Analysis [IEEE MICRO 2020]

n Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can 
Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]

86

https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A


Beginner Reading on Genome Analysis
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Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, 
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu
“From Molecules to Genomic Variations to Scientific Discovery:    
Intelligent Algorithms and Architectures for Intelligent Genome Analysis”
Computational and Structural Biotechnology Journal, 2022
[Source code]

https://arxiv.org/pdf/2205.07957.pdf

https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations
https://arxiv.org/pdf/2205.07957.pdf


Accelerating Approximate String Matching
n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


Accelerating Sequence-to-Graph Mapping
n Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. 

Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, 
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, 
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph 
and Sequence-to-Sequence Mapping"
Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New 
York, June 2022.
[arXiv version]

89https://arxiv.org/pdf/2205.05883.pdf

https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
https://arxiv.org/pdf/2205.05883.pdf
https://arxiv.org/pdf/2205.05883.pdf


Accelerating Basecalling + Read Mapping

n Appears at MICRO 2022

90https://arxiv.org/pdf/2209.08600.pdf

https://arxiv.org/pdf/2209.08600.pdf


Designing & Accelerating Basecallers

91https://arxiv.org/pdf/2211.03079.pdf

https://arxiv.org/pdf/2211.03079.pdf


In-Storage Genome Filtering [ASPLOS 2022]
n Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid

Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
[Talk Video (17 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://www.youtube.com/watch?v=bv7hgXOOMjk


Accelerating Climate Modeling
n Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan 

Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for 
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic 
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.
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https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0


Accelerating Time Series Analysis
n Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan 

Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer 
Design (ICCD), Virtual, October 2020.
[Slides (pptx) (pdf)]
[Talk Video (10 minutes)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20-talk.pdf
https://www.youtube.com/watch?v=PwhtSAVa_W4
https://github.com/CMU-SAFARI/NATSA


Accelerating Graph Pattern Mining
n Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub 

Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, 
Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, 
Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler,
"SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-
Memory Systems"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, 
October 2021.
[Slides (pdf)]
[Talk Video (22 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Full arXiv version]
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https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21-talk.pdf
https://www.youtube.com/watch?v=VL5K1t2qTDU&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=9
https://www.youtube.com/watch?v=6k89Ph2qgRA&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=4
https://arxiv.org/abs/2104.07582


Accelerating HTAP Database Systems
n Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu,

"Polynesia: Enabling High-Performance and Energy-Efficient Hybrid 
Transactional/Analytical Databases with Hardware/Software Co-Design"
Proceedings of the 38th International Conference on Data Engineering (ICDE), 
Virtual, May 2022.
[arXiv version]
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

96https://arxiv.org/pdf/2204.11275.pdf

https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22.pdf
https://icde2022.ieeecomputer.my/
https://arxiv.org/pdf/2204.11275.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pdf
https://arxiv.org/pdf/2204.11275.pdf


Accelerating Neural Network Inference
n Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo 

F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and 
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and 
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178


Accelerating Neural Network Inference
n Appears in IEEE Micro

98https://arxiv.org/pdf/2209.08938.pdf

https://arxiv.org/pdf/2209.08938.pdf


FPGA-based Near-Memory Analytics
n Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios

Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications"
IEEE Micro (IEEE MICRO), 2021.
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https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/


GenASM: Approximate String 
Matching Accelerator for Genomics

100



GenASM Framework [MICRO 2020]
n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf
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Genome Sequencing
q Genome sequencing: Enables us to determine the order of the DNA 

sequence in an organism’s genome

o Plays a pivotal role in:
§ Personalized medicine
§ Outbreak tracing
§ Understanding of evolution
§ …

q Modern genome sequencing machines extract smaller randomized 
fragments of the original DNA sequence, known as reads

o Short reads: a few hundred base pairs, error rate of ∼0.1%
o Long reads: thousands to millions of base pairs, error rate of 10–15%

103

Genome DNA



Damla Senol Cali

Genome Sequence Analysis
q Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within          
the reference genome, and

o Finds the matches and differences between the read and 
the reference genome segment at that location 

q Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to 
account for sequencing errors and genetic variations in the reads

q Bottlenecked by the computational power and memory bandwidth 
limitations of existing systems
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GenASM: ASM Framework for GSA

q GenASM: First ASM acceleration framework for GSA

o Based upon the Bitap algorithm 
§ Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm
§ Highly-parallel Bitap with long read support
§ Bitvector-based novel algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms 
with low-power and area-efficient hardware accelerators

Our Goal:
Accelerate approximate string matching 

by designing a fast and flexible framework, 
which can accelerate multiple steps of genome sequence analysis
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GenASM-DC GenASM-TB

GenASM: Hardware Design
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GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
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optimal alignment 
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GenASM-DC GenASM-TB

GenASM: Hardware Design
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GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

Our specialized compute units and on-chip SRAMs help us to: 
à Match the rate of computation with memory capacity and bandwidth 

à Achieve high performance and power efficiency
à Scale linearly in performance with                                                                    

the number of parallel compute units that we add to the system
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GenASM-DC: Hardware Design
q Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint
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Bitwise 
Comparisons

CIGAR string

Last CIGAR
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match

CIGAR
out

1

2
.
.

64

192 insertion

deletion

subs

64

64

64

64

1

2

Next Rd 
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

q Very simple logic: 
❶Reads the bitvectors from one of the TB-SRAMs using the computed 
address 
❷Performs the required bitwise comparisons to find the traceback output 
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors
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Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

Total (1 vault): 0.334 mm2 0.101 W
Total (32 vaults): 10.69 mm2 3.23 W

% of a Xeon CPU core: 1% 1%
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Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz
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GenASM has low area and power overheads
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Use Cases of GenASM

112
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Use Cases of GenASM (cont’d.)
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 
reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate reference 

regions for each read

(3) Edit Distance Calculation
o Measure the similarity or distance between two sequences

q Other possible use cases of GenASM in our paper:
o Read-to-read overlap finding, hash-table based indexing, whole 

genome alignment, generic text search
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Key Results

114

(1) Read Alignment
q 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

q 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

q 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

q 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering
q 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
q 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

q 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)



More on GenASM Framework [MICRO 2020]

n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
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"GenASM: A High-Performance, Low-Power Approximate String Matching 
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Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
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[Slides (pptx) (pdf)]

115

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


GenASM Talk Video

116https://www.youtube.com/watch?v=NFU2GANPJNU

https://www.youtube.com/watch?v=NFU2GANPJNU


Damla Senol Cali
Carnegie Mellon University
(dsenol@andrew.cmu.edu)

Gurpreet S. Kalsi2, Zulal Bingol3, Can Firtina4, Lavanya Subramanian5,
Jeremie Kim1,4, Rachata Ausavarungnirun6,1, Mohammed Alser4, 

Juan Gomez-Luna4, Amirali Boroumand1, Anant Nori2, Allison Scibisz1, 
Sreenivas Subramoney2, Can Alkan3, Saugata Ghose7,1, and Onur Mutlu4,1,3

1 2 3 4

5 6 7 1,4

GenASM: A High Performance, Low-Power 
Approximate String Matching Acceleration 
Framework for Genome Sequence Analysis

mailto:dsenol@andrew.cmu.edu


SeGraM: Sequence-to-Graph Mapping 
Accelerator for Genomics
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Accelerating Sequence-to-Graph Mapping
n Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. 

Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, 
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, 
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph 
and Sequence-to-Sequence Mapping"
Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New 
York, June 2022.
[arXiv version]
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Sequence-to-Sequence (S2S) Mapping Sequence-to-Graph (S2G) Mapping

Problem: Sequence-to-Graph Mapping

121

Sequence-to-graph mapping results in notable quality improvements.
However, it is a more difficult computational problem, 

with no prior hardware design.

q Mapping the reads to a reference genome (i.e., read mapping) is a 
critical step in genome sequence analysis

Linear Reference: ACGTACGT

Read: ACGG

Alternative Sequence: ACGGACGT

Alternative Sequence: ACGTTACGT

Alternative Sequence: ACG‒ACGT

Graph-based Reference:

Read: ACGG
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S2S vs. S2G Alignment
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S2S vs. S2G Alignment

123

In contrast to S2S alignment, 
S2G alignment must incorporate non-neighboring characters 

as well whenever there is an edge (i.e., hop) 
from the non-neighboring character to the current character
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SeGraM: First universal algorithm/hardware co-designed genomic 
mapping accelerator that can effectively and efficiently support: 

q Sequence-to-graph mapping 

q Sequence-to-sequence mapping

q Both short and long reads

SeGraM: First Graph Mapping Accelerator

124

Our Goal:

Specialized, high-performance, scalable, and low-cost 
algorithm/hardware co-design that alleviates bottlenecks in

multiple steps of sequence-to-graph mapping
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Sequence-to-Graph Mapping Pipeline
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Pre-Processing 
Steps (Offline)

Seed-and-Extend 
Steps (Online)

Indexing
(index the nodes of the graph)

Seeding
(query the index & find the seed matches)

Filtering/Chaining/Clustering
(filter out dissimilar query read and subgraph pairs)

S2G Alignment
(perform distance/score calculation & traceback)

Linear reference 
genome

Known genetic 
variations

Reads from 
sequenced 

genome

0.2

1

2

3

Genome Graph Construction
(construct the graph using a linear reference genome and variations)

0.1

Genome graph

Hash-table-based index (of graph nodes)

Candidate mapping locations (subgraphs)

Remaining candidate mapping locations (subgraphs)

Optimal alignment between read & subgraph
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Host 
CPU

Main Memory (graph-based reference & index)Main Memory (graph-based reference & index)

SeGraM Hardware Design
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SeGraM Accelerator
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Minimizer-based Seeding
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sequence-to-graph Alignment
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SeGraM Module (1 x per HBM2E stack)SeGraM Module (1 x per HBM2E stack)

High Bandwidth Memory (HBM2E) Stack

Host

. . .

Overall System Design of SeGraM
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Use Cases of SeGraM
(1) Sequence-to-Graph 

Mapping

(2) Sequence-to-Graph
Alignment

(3) Sequence-to-Sequence 
Alignment

(4) Seeding
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Use Cases & Key Results

129

(1) Sequence-to-Graph (S2G) Mapping
q 5.9×/106× speedup, 4.1×/3.0× less power than GraphAligner

for long and short reads, respectively (state-of-the-art SW)

q 3.9×/742× speedup, 4.4×/3.2× less power than vg 
for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (S2G) Alignment
q 41×–539× speedup over PaSGAL with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (S2S) Alignment
q 1.2×/4.8× higher throughput than GenASM and GACT of Darwin 

for long reads (state-of-the-art HW)

q 1.3×/2.4× higher throughput than GenASM and SillaX of GenAX
for short reads (state-of-the-art HW)
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SeGraM is Open Source
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https://github.com/CMU-SAFARI/SeGraM
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Summary: Two Major Thrusts

1. (Memory) system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving (memory) system designs
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Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures
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Challenge and Opportunity for Future

Accelerating
Emerging Workloads
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Our Goals in This Task
n Two Major Goals: 

1. Memory system design for AI/ML workloads/accelerators
à in-depth exploration of memory system designs for cutting-

edge and emerging machine learning accelerators 
à more efficient on-chip and off-chip memory systems

2. AI/ML techniques for improving memory system designs
à take a comprehensive look at memory system design and 

make it data driven, i.e., based on machine learning 
à more effective cache/memory/prefetch/thread controllers 

and data/resource management/mapping/scheduling policies
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Performance Improvement via Customization

• Reward value customization

• Strict Pythia configuration
- Increasing the rewards for no prefetching
- Decreasing the rewards for inaccurate prefetching

• Strict Pythia is more conservative in generating 
prefetch requests than the basic Pythia

• Evaluate on all Ligra graph processing workloads
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More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features and 
hyperparameter values

• Detailed single-core and four-core performance
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More in the Paper
• Performance comparison with unseen traces

- Pythia provides equally high performance benefits

• Comparison against multi-level prefetchers
- Pythia outperforms prior best multi-level prefetchers

• Understanding Pythia’s learning with a case study
- We reason towards the correctness of Pythia’s decision

• Performance sensitivity towards different features 
and hyperparameter values

• Detailed single-core and four-core performance

https://arxiv.org/pdf/2109.12021.pdf
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Latency Configuration

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Issue 
Hermes 
request

Wait

• Cache round-trip latency
• L1-D: 5 cycles
• L2: 15 cycles
• LLC: 55 cycles

• Hermes request issue latency 
(incurred after address translation)

Depends on
• Interconnect between POPET and MC

0 cycles 24 cycles

6 cycles
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More in the Paper 
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version on arXiv)
- LLC size (in extended version on arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis on an eight-core system
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Genome Graphs
Genome graphs:

q Combine the linear reference genome with the known genetic 
variations in the entire population as a graph-based data structure

q Enable us to move away from aligning with a single linear reference 
genome (reference bias) and more accurately express the genetic 
diversity in a population
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ACG ACGT

T

G

T

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Sequence #4: ACGACGT
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Based on our analysis with GraphAligner and vg:

Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates

Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable 
for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle 
S2G alignment

Analysis of State-of-the-Art Tools
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SW

HW

SeGraM: Universal Genomic Mapping Accelerator

q First universal genomic mapping accelerator that can support both
sequence-to-graph mapping and sequence-to-sequence mapping, 
for both short and long reads

q First algorithm/hardware co-design for accelerating 
sequence-to-graph mapping

q We base SeGraM upon a minimizer-based seeding algorithm

q We propose a novel bitvector-based alignment algorithm to   perform 
approximate string matching between a read and                     a graph-
based reference genome

q We co-design both algorithms with high-performance, scalable,    
and efficient hardware accelerators
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SeGraM Hardware Design
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SeGraM Accelerator
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MinSeed: first hardware 
accelerator for 

Minimizer-based Seeding

BitAlign: first hardware 
accelerator for (Bitvector-based) 

sequence-to-graph Alignment
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Host 
CPU

Main Memory (graph-based reference & index)Main Memory (graph-based reference & index)

SeGraM Hardware Design
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SeGraM Accelerator
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Main Memory (High Bandwidth Memory)
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Read
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q MinSeed = 3 computation modules + 3 scratchpads + memory interface

o Computation modules: Implemented with simple logic
o Scratchpads: 50kB in total; employ double buffering technique to 

hide the latency of MinSeed

o High-Bandwidth Memory (HBM): Enables low-latency and     
highly-parallel memory access
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SeGraM Module (1 x per HBM2E stack)SeGraM Module (1 x per HBM2E stack)

High Bandwidth Memory (HBM2E) Stack

Host

. . .

Overall System Design of SeGraM
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. . .

High Bandwidth Memory (HBM2E) Stack
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Use Cases of SeGraM
(1) Sequence-to-Graph 

Mapping

(2) Sequence-to-Graph
Alignment

(3) Sequence-to-Sequence 
Alignment

(4) Seeding
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MS
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Key Results – Area & Power
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q Based on our synthesis of MinSeed and BitAlign accelerator datapaths 
using the Synopsys Design Compiler with a 28nm process (@ 1GHz):
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Key Results – SeGraM with Long Reads

157

SeGraM provides 5.9× and 3.9× throughput improvement
over GraphAligner and vg, 

while reducing the power consumption by 4.1× and 4.4×
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Key Results – SeGraM with Short Reads

SeGraM provides 106× and 742× throughput improvement
over GraphAligner and vg, 

while reducing the power consumption by 3.0× and 3.2×
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BitAlign provides 41×-539× speedup over PaSGAL

Key Results – BitAlign (S2G Alignment)
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Conclusion
q SeGraM: First universal algorithm/hardware co-designed genomic 

mapping accelerator that supports:
§ Sequence-to-graph (S2G) & sequence-to-sequence (S2S) mapping
§ Short & long reads

o MinSeed: First minimizer-based seeding accelerator

o BitAlign: First (bitvector-based) S2G alignment accelerator

q SeGraM supports multiple use cases:

o End-to-end S2G mapping

o S2G alignment

o S2S alignment

o Seeding

q SeGraM outperforms state-of-the-art software & hardware solutions
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