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The Problem

Computing
is Bottlenecked by Data
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Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts 
of data

n Data is increasing
q We can generate more than we can process
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Data is Key for Future Workloads

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



Data Overwhelms Modern Machines 
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Data is Key for Future Workloads
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development of high-throughput 
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes 
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
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Example Data Generator: Genome Sequencing
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

Data → performance & energy bottleneck

https://arxiv.org/pdf/1711.08774.pdf


Data Overwhelms Modern Machines …

n Storage/memory capability

n Communication capability

n Computation capability

n Greatly impacts robustness, energy, performance, cost
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n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

Data Movement Overwhelms Modern Machines 

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Axiom

An Intelligent Architecture
Handles Data Well
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How to Handle Data Well

n Ensure data does not overwhelm the components
q via intelligent algorithms
q via intelligent architectures
q via whole system designs: algorithm-architecture-devices

n Take advantage of vast amounts of data and metadata
q to improve architectural & system-level decisions 

n Understand and exploit properties of (different) data
q to improve algorithms & architectures in various metrics
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Corollaries: Computing Systems Today …
n Are processor-centric vs. data-centric

n Make designer-dictated decisions vs. data-driven

n Make component-based myopic decisions vs. data-aware

18



Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
19



A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE
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In This Task… (Task #2946.001)

n We focus on designing memory systems to handle data well

n We aim to solve two different yet related and synergistic 
problems, both focusing on ML/AI and memory system 
design

n We explore (and exploit the synergy between)
q Memory system design for AI/ML workloads/accelerators
q AI/ML techniques for improving memory system designs

n Task Name: Memory System Design for AI/ML Accelerators 
& ML/AI Techniques for Memory System Design
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Our Goals in This Task
n Two Major Goals: 

1. Memory system design for AI/ML workloads/accelerators
à in-depth exploration of memory system designs for cutting-

edge and emerging machine learning accelerators 
à more efficient on-chip and off-chip memory systems

2. AI/ML techniques for improving memory system designs
à take a comprehensive look at memory system design and 

make it data driven, i.e., based on machine learning 
à more effective cache/memory/prefetch/thread controllers 

and data/resource management/mapping/scheduling policies

23



Anticipated Primary Results

n Realistic, practical and effective novel memory system 
designs for ML/AI accelerators

n New ML-based techniques to improve memory system 
efficiency and performance

n Open-source workloads, metrics, methodologies & 
infrastructures to analyze such designs and techniques.
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Task Description
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Task Deliverables (2020)
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Task Deliverables (2021)
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Task Deliverables (2022)
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Task Information #2946.001 (1)
n Thrust: AI Hardware

n Task Leader: Onur Mutlu
q https://people.inf.ethz.ch/omutlu/
q onur.mutlu@inf.ethz.ch

n Students
q Rahul Bera (ETH)
q Joao Ferreira (ETH)
q Geraldo Francisco de Oliveira Junior (ETH)
q Konstantinos Kanellopoulos (ETH)
q Joel Lindegger (ETH)
q Aditya Manglik (ETH)
q Rakesh Nadig (ETH)
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https://people.inf.ethz.ch/omutlu/
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Task Information #2946.001 (2)
n Senior Researchers

q Juan Gomez Luna (ETH)
q Haiyu Mao (ETH)
q Lois Orosa (ETH)
q Jisung Park (ETH)
q Gagandeep Singh (ETH)

n More students/postdocs to be added as the task evolves
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Recent PhD Graduate
n Minesh Patel

q October 2021
q Enabling Effective Error Mitigation in Memory Chips That Use

On-Die Error-Correcting Codes
q 2022 William C. Carter PhD Dissertation Award in Dependability
q Best Paper Awards at DSN 2019 & MICRO 2020
q https://www.youtube.com/watch?v=0c9bDr18jZE
q https://arxiv.org/abs/2204.10387
q https://www.mineshp.com/

31

https://www.youtube.com/watch?v=0c9bDr18jZE
https://arxiv.org/abs/2204.10387
https://www.mineshp.com/


Recent PostDoc Alumni
n Dr. Lois Orosa

q March 2022
q Director at the Galician Supercomputing Center

n Dr. Gagandeep Singh
q September 2022
q Joining AMD Research

n Dr. Jisung Park
q September 2022
q Joining POSTECH (South Korea) as Assistant Professor
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Soon to Finish PhD

n Hasan Hassan
q PhD Defense date: September 29, 2022
q Improving DRAM Performance, Reliability, and Security by 

Rigorously Understanding Intrinsic DRAM Operation
q https://drive.google.com/file/d/1E5mFYl_SMjCP-

7TQ8qt6kRALROGhZs9K/view
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https://drive.google.com/file/d/1E5mFYl_SMjCP-7TQ8qt6kRALROGhZs9K/view


Recent Internships
n Dr. Gagandeep Singh

q February-June 2022
q Visit to AMD Research

34



Upcoming TECHCON Presentation
n Dr. Juan Gomez-Luna

q Benchmarking Memory-Centric Computing Systems: Analysis of Real 
Processing-in-Memory Hardware

q Based on two major works
n https://arxiv.org/pdf/2105.03814.pdf
n https://arxiv.org/pdf/2207.07886.pdf

35https://www.youtube.com/watch?v=nphV36SrysA

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=nphV36SrysA


Industry Liaisons
n Charles Augustine, Intel
n Pradip Bose, IBM
n Alper Buyuktosunoglu, IBM
n Rosario Cammarota, Intel
n Ramesh Chauhan, Qualcomm
n Prokash Ghosh, NXP
n Jose Joao, ARM
n Arun Joseph, IBM
n Preetham Lobo, IBM
n Nithyakalyani Sampath, TI
n Willem Sanberg, NXP
n Pushkar Sareen, NXP
n Sreenivas Subramoney, Intel
n Xin Zhang, IBM

n We are having and will have regular and irregular meetings with all liaison companies
n Very open to other collaborators, feedback, internships, visits
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Industry Interactions (This Year I)
n Intel: Collaborative papers with as part of this task

q Sreenivas Subramoney, Gurpreet Kalsi, Anant Nori, Kamlesh Pillai, Shankar 
Balachandran, Bharathwaj Suresh

q SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph 
and Sequence-to-Sequence Mapping [ISCA 2022]

q pLUTo: Enabling Massively Parallel Computation In DRAM via Lookup Tables 
[MICRO 2022]

q Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based 
Off-Chip Load Prediction [MICRO 2022]

q ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
Efficient Genome Analysis [arXiv 2022]

n IBM: Collaborative papers
q Dionysios Diamantopoulos, Christoph Hagleitner
q Accelerating Weather Prediction Using Near-Memory Reconfigurable Fabric 

[TRETS 2022]
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Industry Interactions (This Year II)
n IBM: Collaborative EU Horizon Project BioPIM

q Abu Sebastian, Irem Boybat (IBM Research Zurich)
q http://www.biopim.eu/
q BioPIM project aims to leverage the emerging processing-in-memory (PIM) 

technologies to enable powerful edge computing. 
q Synergistic with this task
q We will focus on co-designing algorithms and data structures commonly used 

in bioinformatics together with several types of PIM architectures to obtain the 
highest benefit in cost, energy, and time savings. 

q BioPIM will also impact other fields that employ similar algorithms. 
q Our designs and algorithms will not be limited to cheap hardware, and they 

will impact computation efficiency on all forms of computing environments 
including cloud platforms.

q The targeted breakthrough of BioPIM is to invent and leverage in-memory 
computing architectures to fundamentally improve the performance and 
energy efficiency of various important bioinformatics algorithms to make 
mobile genomics a reality

38
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Industry Interactions (This Year III)
n Qualcomm: In-person Visit & Talk

q Ramesh Chauhan
q May 2022

n IBM Research: In-person Visit & Talk
q Pradip Bose, Karthik Swaminathan, Alper Buyuktosunoglu, Krishnan Kailas
q May 2022

n Intel: Keynote Talk at the Intel Interconnect & Connectivity Summit 
q Debendra Das Sharma
q "Memory-Centric Computing"

Keynote Talk at the Intel Interconnect & Connectivity Summit (IICS), Virtual, 9 
February 2022.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/onur-IICS-Keynote-MemoryCentricComputing-February-9-2022.pptx
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Posters for Annual Review 2022
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using 

Online Reinforcement Learning [ISCA 2022]
q Gagandeep Singh

n SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and 
Sequence-to-Sequence Mapping [ISCA 2022]
q Damla Senol Cali, Joel Lindegger

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip 
Load Prediction [MICRO 2022]
q Rahul Bera

n Polynesia: Enabling High-Performance and Energy-Efficient Hybrid 
Transactional/Analytical Databases with Hardware/Software Co-Design [ICDE 2022]
q Geraldo Francisco de Oliveira Junior

n Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-
Memory Hardware [IEEE Access 2022]
q Juan Gómez-Luna

n Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine 
Learning Inference Bottlenecks [PACT 2021]
q Geraldo Francisco de Oliveira Junior
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Special Research Sessions & Courses
n Special Session at ISVLSI 2022: 9 cutting-edge talks

41https://www.youtube.com/watch?v=qeukNs5XI3g

https://www.youtube.com/watch?v=qeukNs5XI3g


Comp Arch (Fall’21)
n Fall 2021 Edition: 

q https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule

n Fall 2020 Edition: 
q https://safari.ethz.ch/architecture/fall2020/doku.

php?id=schedule

n Youtube Livestream (2021):
q https://www.youtube.com/watch?v=4yfkM_5EFg

o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
n Youtube Livestream (2020):

q https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN

n Master’s level course
q Taken by Bachelor’s/Masters/PhD students
q Cutting-edge research topics + fundamentals in 

Computer Architecture
q 5 Simulator-based Lab Assignments
q Potential research exploration
q Many research readings

42https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures


DDCA (Spring 2022)
n Spring 2022 Edition: 

q https://safari.ethz.ch/digitaltechnik/spring2022/do
ku.php?id=schedule

n Spring 2021 Edition: 
q https://safari.ethz.ch/digitaltechnik/spring2021/do

ku.php?id=schedule

n Youtube Livestream (Spring 2022):
q https://www.youtube.com/watch?v=cpXdE3HwvK

0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
n Youtube Livestream (Spring 2021):

q https://www.youtube.com/watch?v=LbC0EZY8yw
4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN

n Bachelor’s course
q 2nd semester at ETH Zurich
q Rigorous introduction into “How Computers Work”
q Digital Design/Logic
q Computer Architecture
q 10 FPGA Lab Assignments

43https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/onurmutlulectures


PIM Course (Spring 2022)

n Spring 2022 Edition: 
q https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=processing
_in_memory

n Youtube Livestream:
q https://www.youtube.com/watch?v=9e4

Chnwdovo&list=PL5Q2soXY2Zi-
841fUYYUK9EsXKhQKRPyX

n Project course
q Taken by Bachelor’s/Master’s students
q Processing-in-Memory lectures
q Hands-on research exploration
q Many research readings
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https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
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Genomics (Spring 2022)

n Spring 2022 Edition: 
q https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=bioinforma
tics

n Youtube Livestream:
q https://www.youtube.com/watch?v=DEL

_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR
1yRU_Cxxjw-u18

n Project course
q Taken by Bachelor’s/Master’s students
q Genomics lectures
q Hands-on research exploration
q Many research readings
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https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
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Hetero. Systems (Spring’22)

n Spring 2022 Edition: 
q https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=heterogen
eous_systems

n Youtube Livestream:
q https://www.youtube.com/watch?v=oFO

5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM
_FTjmY6h7Gzm

n Project course
q Taken by Bachelor’s/Master’s students
q GPU and Parallelism lectures
q Hands-on research exploration
q Many research readings
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https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
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HW/SW Co-Design (Spring 2022)

n Spring 2022 Edition: 
q https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=hw_sw_co
design

n Youtube Livestream:
q https://youtube.com/playlist?list=PL5Q2s

oXY2Zi8nH7un3ghD2nutKWWDk-NK

n Project course
q Taken by Bachelor’s/Master’s students
q HW/SW co-design lectures
q Hands-on research exploration
q Many research readings

47

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=hw_sw_codesign
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SSD Course (Spring 2022)

n Spring 2022 Edition: 
q https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=modern_s
sds

n Youtube Livestream:
q https://www.youtube.com/watch?v=_q4r

m71DsY4&list=PL5Q2soXY2Zi8vabcse1kL
22DEcgMl2RAq

n Project course
q Taken by Bachelor’s/Master’s students
q SSD Basics and Advanced Topics
q Hands-on research exploration
q Many research readings
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Two Major Thrusts

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs
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Thrust 1 Exploration Ideas
1.1. Comprehensive Energy and Performance Analysis of ML/AI Accelerator 
Execution on Key ML/AI Workloads

1.2. Cache/Buffer, On-Chip Memory, Interconnect, Memory Controller Designs for 
ML Accelerators and Their Interfaces

1.3. Complete on-chip ML/AI accelerator designs with careful data orchestration 
and on-chip memory management. 

1.4. On-chip & off-chip near-data processing (NDP) designs, interfaces, evaluation, 
programming for AI/ML workloads 

1.5. Evaluation and understanding of both short-term and long-term options for 
NDP for AI/ML Workloads

1.6. Use of NVM devices, simple customized DRAM and 3D-stacked Memory+Logic
for AI/ML Acceleration

1.7. High-Fidelity and Highly-Flexible Open Source Simulation & Modeling 
Infrastructures for ML/AI Memory Systems 

51
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Two Major Thrusts

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs
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Thrust 2 Exploration Ideas
2.1. Comprehensive performance and energy analysis of rigid policies in the 
memory hierarchy – how far are they from the ideal policies? What is the 
maximum potential ML techniques can achieve?

2.2. New caching, prefetching, mem. controller, runahead, compression policies 
that are directed with appropriate ML techniques

2.3. Rigorous specification and coordination of ML-based on-chip cache, prefetch, 
DRAM, NVM, hybrid mem. Controllers

2.4. Design and evaluation of new ML-based techniques to manage hybrid 
memories consisting of multiple different technologies

2.5. Design and evaluation of new ML-based data mapping policies across on-chip 
caches and memory controllers

2.6. Design and evaluation of new ML-based thread scheduling policies in both 
SMT and memory controllers

2.7. High-Fidelity and Highly-Flexible Open Source Simulation & Modeling 
Infrastructures for ML-Based Controllers
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System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions
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Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents
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Two Major Thrusts & Their Synergies

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs
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Agenda

n Problem and Background

n Task Overview

n Technical Challenges, Goals and Ideas

n Ideas, Results and Papers from the Past Year
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Initial Results in Year I (2020 Review)
n GenASM: A High-Performance, Low-Power Approximate String Matching

Acceleration Framework for Genome Sequence Analysis [MICRO 2020]

n NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather 
Prediction Modeling [FPL 2020]

n An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for 
Neural Network Acceleration [DSN 2020]

n NATSA: A Near-Data Processing Accelerator for Time Series Analysis 
[ICCD 2020]

n Robust Machine Learning Systems: Challenges, Current Trends, 
Perspectives, and the Road Ahead [IEEE D&T 2020]

n Accelerating Genome Analysis: A Primer on an Ongoing Journey [IEEE 
Micro 2020]

n SMASH Open Source Software Code Release [GitHub]
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Initial Results in Year I (2020 Ongoing)
n Efficiently Accelerating Edge ML Inference by Exploiting Layer 

Heterogeneity: An Empirical Study with Google Edge Models [Ongoing]
n A New Methodology and Open-Source Benchmark Suite for Evaluating Data 

Movement Bottlenecks: A Near-Data Processing Case Study [Ongoing]
n Accelerating Profile Hidden Markov Models in Computational Biology 

Applications [Ongoing]
n StenCache: A Near-Cache Accelerator for Stencil Computations [Ongoing]
n SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM 

[Ongoing]
n Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases 

with Specialized Hardware/Software Co-Design [Ongoing]
n Reinforcement Learning based Prefetch Generation [Ongoing]

n Benchmarking a New Paradigm: Understanding a Modern Processing-in-
Memory Architecture [Ongoing]
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Year II Results (2021 Annual Review I)
n Google Neural Network Models for Edge Devices: Analyzing and Mitigating 

Machine Learning Inference Bottlenecks [PACT 2021]

n Pythia: A Customizable Hardware Prefetching Framework Using Online 
Reinforcement Learning [MICRO 2021]

n Refresh Triggered Computation: Improving the Energy Efficiency of 
Convolutional Neural Network Accelerators [TACO 2020]

n SynCron: Efficient Synchronization Support for Near-Data-Processing 
Architectures [HPCA 2021]

n SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in 
DRAM [ASPLOS 2021]
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Year II Results (2021 Annual Review II)
n DAMOV: A New Methodology and Benchmark Suite for Evaluating Data 

Movement Bottlenecks [IEEE Access 2021]

n Benchmarking a New Paradigm: An Experimental Analysis of a Real 
Processing-in-Memory Architecture [Arxiv, 2021]

n FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications [IEEE Micro 2021]

n A Modern Primer on Processing in Memory [Arxiv, 2020]

n Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid 
Storage Systems [Ongoing]

61



Year III Results (2022 Annual Review 1)
n Benchmarking a New Paradigm: Experimental Analysis and 

Characterization of a Real Processing-in-Memory System [IEEE Access’22]
n Benchmarking Memory-Centric Computing Systems: Analysis of Real 

Processing-in-Memory Hardware [CUT 2021]

n An Experimental Evaluation of Machine Learning Training on a Real 
Processing-in-Memory System [arXiv 2022]

n SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real 
Processing-In-Memory Architectures [SIGMETRICS 2022]

n High-throughput Pairwise Alignment with the Wavefront Algorithm using 
Processing-in-Memory [HICOMB 2022]

n PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]
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Year III Results (2022 Annual Review 2)
n SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-

Graph and Sequence-to-Sequence Mapping [ISCA 2022]

n GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis [ASPLOS 2022]

n Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm 
[HICOMB 2022]

n Polynesia: Enabling High-Performance and Energy-Efficient Hybrid 
Transactional/Analytical Databases with Hardware/Software Co-Design 
[ICDE 2022]

n Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation 
Capability of NAND Flash Memory [MICRO 2022]
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Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems 

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based 
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration 
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup 
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique 
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
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Year III Results (2022 Annual Review 4)
n EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network 

Accelerators [arXiv 2022] https://arxiv.org/abs/2202.02310

n ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
Efficient Genome Analysis [arXiv 2022] https://arxiv.org/abs/2207.09765

n Accelerating Weather Prediction Using Near-Memory Reconfigurable Fabric 
[TRETS 2022] https://arxiv.org/abs/2107.08716
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Year III Results (2022 Annual Review 1)
n Benchmarking a New Paradigm: Experimental Analysis and 

Characterization of a Real Processing-in-Memory System [IEEE Access’22]
n Benchmarking Memory-Centric Computing Systems: Analysis of Real 

Processing-in-Memory Hardware [CUT 2021]

n An Experimental Evaluation of Machine Learning Training on a Real 
Processing-in-Memory System [arXiv 2022]

n SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real 
Processing-In-Memory Architectures [SIGMETRICS 2022]

n High-throughput Pairwise Alignment with the Wavefront Algorithm using 
Processing-in-Memory [HICOMB 2022]

n PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]
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Eliminating the Adoption Barriers

Processing-in-Memory 
in the Real World
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Processing-in-Memory Landscape Today
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[UPMEM	2019][Samsung	2021][SK	Hynix	2022]

[Samsung	2021]

This does not include many experimental chips and startups

[Alibaba	2022]



UPMEM Processing-in-DRAM Engine (2019)
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n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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UPMEM Memory Modules
• E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz
• P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz

www.upmem.com

http://www.upmem.com/


2,560-DPU Processing-in-Memory System
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More on the UPMEM PIM System

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26


Experimental Analysis of the UPMEM PIM Engine

https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf


Juan Gómez Luna, Izzat El Hajj, 
Ivan Fernandez, Christina Giannoula, 

Geraldo F. Oliveira, Onur Mutlu

Understanding a Modern 
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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Executive Summary
• Data movement between memory/storage units and compute units is a major 

contributor to execution time and energy consumption
• Processing-in-Memory (PIM) is a paradigm that can tackle the data movement 

bottleneck
- Though explored for +50 years, technology challenges prevented the successful materialization

• UPMEM has designed and fabricated the first publicly-available real-world PIM 
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

• Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

• Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture
- PrIM (Processing-In-Memory) benchmarks: 

• 16 workloads that are memory-bound in conventional processor-centric systems
• Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

• Takeaways:
- Workload characteristics for PIM suitability
- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems



Upcoming TECHCON Presentation
n Dr. Juan Gomez-Luna

q Benchmarking Memory-Centric Computing Systems: Analysis of Real 
Processing-in-Memory Hardware

q Based on two major works
n https://arxiv.org/pdf/2105.03814.pdf
n https://arxiv.org/pdf/2207.07886.pdf

77https://www.youtube.com/watch?v=nphV36SrysA

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=nphV36SrysA
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Observations, Recommendations, Takeaways
GENERAL	PROGRAMMING	RECOMMENDATIONS
1. Execute	on	the	DRAM	Processing	Units (DPUs)	

portions	of	parallel	code that	are	as	long	as possible.	
2. Split	the	workload	into	independent	data	blocks,	

which	the	DPUs	operate	on	independently.	
3. Use	as	many	working	DPUs	in	the	system	as	possible.
4. Launch	at	least	11	tasklets (i.e.,	software	threads)

per	DPU.	

PROGRAMMING	RECOMMENDATION	1
For	data	movement	between	the	DPU’s	MRAM	bank	and	the	
WRAM,	use	large	DMA	transfer	sizes	when	all	the	accessed	
data	is	going	to	be	used.	

KEY	OBSERVATION	7

Larger	CPU-DPU	and	DPU-CPU	
transfers	between	the	host	main	
memory	and	the	DRAM	Processing	
Unit’s	Main	memory	(MRAM)	banks	
result	in	higher	sustained	bandwidth.	 KEY	TAKEAWAY	1

The	UPMEM	PIM	architecture	is	fundamentally	compute	
bound.	As	a	result,	the	most	suitable	work- loads	are	
memory-bound.
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Outline
• Introduction

- Accelerator Model
- UPMEM-based PIM System Overview

• UPMEM PIM Programming
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication
- CPU-DPU/DPU-CPU Transfer Bandwidth

• DRAM Processing Unit
- Arithmetic Throughput
- WRAM and MRAM Bandwidth

• PrIM Benchmarks
- Roofline Model
- Benchmark Diversity

• Evaluation
- Strong and Weak Scaling
- Comparison to CPU and GPU

• Key Takeaways
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Key Takeaway 1

12345678910111213141516
12345678910111213141516

12345678910111213141516
12345678910111213141516 1

2345678910111213141516 1
2345678910111213141516

1
2
345678910111213141516

1
2
34
5678910111213141516

1
2
34
56
78910111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

0.03
0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

    
1/4

096

    
1/2

048

    
1/1

024

    
1/5

12

    
1/2

56

    
1/1

28

    
1/6

4

    
1/3

2

    
1/1

6
    

1/8
    

1/4
    

1/2
1 2 4 8

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t (
M

O
PS

, l
og

 sc
al

e)

Operational Intensity (OP/B)

(a) INT32, ADD (1 DPU)

21 84

Memory-bound 
region

Compute-bound 
region

The throughput 
saturation point is as low 

as ¼ OP/B, 
i.e., 1 integer addition per 

every 32-bit element 
fetched

KEY	TAKEAWAY	1
The	UPMEM	PIM	architecture	is	fundamentally	compute	bound.	
As	a	result,	the	most	suitable	workloads	are	memory-bound.
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Key Takeaway 2
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KEY	TAKEAWAY	2
The	most	well-suited	workloads	for	the	UPMEM	PIM	architecture	
use	no	arithmetic	operations	or	use	only	simple	operations (e.g.,	
bitwise	operations	and	integer	addition/subtraction).	
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Key Takeaway 3
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KEY	TAKEAWAY	3
The	most	well-suited	workloads	for	the	UPMEM	PIM	
architecture	require	little	or	no	communication	across	DPUs	
(inter-DPU	communication).		
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Key Takeaway 4

KEY	TAKEAWAY	4
•	UPMEM-based	PIM	systems	outperform	state-of-the-art	CPUs	in	
terms	of	performance	and	energy	efficiency	on	most	of	PrIM
benchmarks.

•	UPMEM-based	PIM	systems	outperform	state-of-the-art	GPUs	on	
a	majority	of PrIM benchmarks,	and	the	outlook	is	even	more	
positive	for	future	PIM	systems.	

•	UPMEM-based	PIM	systems	are	more	energy-efficient	than	state-
of-the-art	CPUs	and	GPUs	on	workloads	that	they	provide	
performance	improvements	over	the	CPUs	and	the	GPUs.	
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https://arxiv.org/pdf/2105.03814.pdf
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https://arxiv.org/pdf/2105.03814.pdf
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UPMEM PIM System Summary & Analysis
n Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo 

F. Oliveira, and Onur Mutlu,
"Benchmarking Memory-Centric Computing Systems: Analysis of Real 
Processing-in-Memory Hardware"
Invited Paper at Workshop on Computing with Unconventional 
Technologies (CUT), Virtual, October 2021.
[arXiv version]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Talk Video (37 minutes)]
[Lightning Talk Video (3 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152
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PrIM Benchmarks: Application Domains
Domain Benchmark Short name

Dense linear algebra
Vector Addition VA

Matrix-Vector Multiply GEMV

Sparse linear algebra Sparse Matrix-Vector Multiply SpMV

Databases
Select SEL

Unique UNI

Data analytics
Binary Search BS

Time Series Analysis TS

Graph processing Breadth-First Search BFS

Neural networks Multilayer Perceptron MLP

Bioinformatics Needleman-Wunsch NW

Image processing
Image histogram (short) HST-S

Image histogram (large) HST-L

Parallel primitives

Reduction RED

Prefix sum (scan-scan-add) SCAN-SSA

Prefix sum (reduce-scan-scan) SCAN-RSS

Matrix transposition TRNS
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PrIM Benchmarks are Open Source
• All microbenchmarks, benchmarks, and scripts
• https://github.com/CMU-SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks
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Understanding a Modern PIM Architecture

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks


Understanding a Modern PIM Architecture

89https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9


More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9


More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159


More on PRIM Benchmarks
n Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina 

Giannoula, Geraldo F. Oliveira, and Onur Mutlu,
"Benchmarking a New Paradigm: An Experimental 
Analysis of a Real Processing-in-Memory 
Architecture"
Preprint in arXiv, 9 May 2021.
[arXiv preprint]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Long Talk Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[SAFARI Live Seminar Slides (pptx) (pdf)]
[SAFARI Live Seminar Video (2 hrs 57 mins)]
[Lightning Talk Video (3 minutes)]
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https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/abs/2105.03814
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pptx
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Invited Paper at Workshop on Computing with Unconventional 
Technologies (CUT), Virtual, October 2021.
[arXiv version]
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ML Training on a Real PIM System

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://arxiv.org/pdf/2206.06022.pdf
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Machine Learning Training
on a Real Processing-in-Memory System

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s
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Executive Summary
• Training machine learning (ML) algorithms is a computationally expensive process, 

frequently memory-bound due to repeatedly accessing large training datasets
• Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities, 

can alleviate this data movement bottleneck
• Real-world PIM systems have only recently been manufactured and commercialized

- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

• Our goal is to understand the potential of modern general-purpose PIM architectures to 
accelerate machine learning training

• Our main contributions:
- PIM implementation of several classical machine learning algorithms: linear regression, logistic 

regression, decision tree, K-means clustering
- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

• Experimental evaluation on a real-world PIM system with 2,524 PIM cores @ 425 MHz 
and 158 GB of DRAM memory

• New observations and insights:
- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3) 

hybrid precision implementations
- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without 

native support for those activation functions
- Data can be placed and laid out for PIM cores to access nearby memory banks in streaming, thus 

maximizing PIM memory bandwidth
- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to 

memory banks



ML Training on Real PIM Talk Video

98https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s


99

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Key observations and insights



100

Machine Learning Workloads
• Machine learning training 

with large amounts of data 
is a computationally 
expensive process, which 
requires many iterations to 
update an ML model’s 
parameters

Machine learning

Supervised 
learning

Unsupervised 
learning

Reinforcement 
learning

Regression Classification
Neural 

Networks
Clustering

Dimensionality 
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least 
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector 
machine
Naive Bayes

K-means
K-median
Hierarchical 
clustering
Mean shift

• Frequent data movement between memory and processing 
elements to access training data
• The amount of computation is not enough to amortize the 

cost of moving training data to the processing elements
- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses
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Machine Learning Workloads: Our Goal
• Our goal is to study and analyze 

how real-world general-purpose 
PIM can accelerate ML training
• Four representative ML 

algorithms: linear regression, 
logistic regression, decision tree, 
K-means

Machine learning

Supervised 
learning

Unsupervised 
learning

Reinforcement 
learning

Regression Classification
Neural 

Networks
Clustering

Dimensionality 
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least 
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector 
machine
Naive Bayes

K-means
K-median
Hierarchical 
clustering
Mean shift
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• Roofline model to 
quantify the memory 
boundedness of CPU 
versions of the four 
workloads

All workloads fall in the memory-bound area of the Roofline
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Processing-in-Memory (PIM)
• PIM is a computing paradigm that advocates for memory-

centric computing systems, where processing elements are 
placed near or inside the memory arrays
• Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AxDIMM, SK Hynix AiM, 
Alibaba HB-PNM

• These PIM systems have some common characteristics:
1. There is a host processor (CPU or GPU) with access to (1) standard 

main memory, and (2) PIM-enabled memory
2. PIM-enabled memory contains multiple PIM processing elements

(PEs) with high bandwidth and low latency memory access
3. PIM PEs run only at a few hundred MHz and have a small number 

of registers and small (or no) cache/scratchpad
4. PEs may need to communicate via the host processor
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A State-of-the-Art PIM System

• In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing 

Units (DPUs)
• Up to 24 PIM threads, called tasklets
• 32-bit integer arithmetic, but multiplication/division are 

emulated, as well as floating-point operations
- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)
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Machine learning

Supervised 
learning

Unsupervised 
learning

Reinforcement 
learning

Regression Classification
Neural 

Networks
Clustering

Dimensionality 
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least 
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector 
machine
Naive Bayes

K-means
K-median
Hierarchical 
clustering
Mean shift

ML Training Workloads
• Four widely-used machine learning 

workloads:
- Linear regression (LIN)
- Logistic regression (LOG)
- Decision tree (DTR)
- K-means clustering (KME)

• Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Host CPU

S
h

ar
ed

 C
ac

h
e

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

DRAM 
Chip

Standard Main Memory

xN

xM

PIM-enabled Memory

PIM-Host

Host-PIM

C
ac

h
e

C
ac

h
e

C
o

re
C

o
re Memory 

Array

PIM PE

Memory 
Array

PIM PE

Memory 
Array

PIM PE

Memory 
Array

PIM PE

Memory Array 
(Rank or Bank)

PIM Processing Elements

Instruction 
Memory

Scratchpad/ 
Cache

Figure 3: High-level view of a state-of-the-art processing-in-memory system. The host CPU has access to" standard memory
modules and # PIM-enabled memory modules.

Table 1: Machine learning workloads.

Learning Application Algorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach Sequential Strided Random Operations Datatype Intra PIM Core Inter PIM Core

Supervised
Regression Linear Regression LIN Yes No No mul, add �oat, int32_t barrier Yes

Classi�cation Logistic Regression LOG Yes No No mul, add, exp, div �oat, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add �oat barrier, mutex Yes

Unsupervised Clustering K-Means KME Yes No No mul, compare, add int16_t, int64_t barrier, mutex Yes

and PUs in AiM [163] have 16-bit �oating point arithmetic
units. Second, ML models and hardware with adaptive preci-
sion are becoming widely-used [163, 180].

• LIN-BUI replaces compiler-generated 16-bit and 32-bit mul-
tiplications with a custom multiplication based on 8-bit built-
in multiplication functions (this optimization is speci�c to
the UPMEM PIM architecture). Listing 1 shows the default
integer multiplication code (C-based (a) and compiled code
(b)) and our custom integer multiplication code (C-based (c)
and compiled code (d)).

In Section 4, we evaluate all LIN versions in terms of accuracy
(Section 4.2), performance for di�erent numbers of threads per
PIM core (Section 4.3), and performance scaling characteristics
(Section 4.4).

3.2 Logistic Regression
Logistic regression [165, 167] is a supervised learning algorithm
used for classi�cation, which outputs probability values for each
input observation variable or vector. This probability values repre-
sent the likelihood of belonging to a certain class or event. Logistic
regression is used in various �elds (e.g., medical, marketing, engi-
neering, economics, etc.) [167].

Logistic regression uses the sigmoid function to map predicted
values (output vector ~ obtained from an input matrix - and a
weights vectorF ) to probabilities. Our implementation of logistic
regression uses gradient descent, same as our linear regression
implementation (Section 3.1). In the beginning of each training

iteration, we obtain the dot product of row vectors G8 and weights
F . Then, we apply the sigmoid function to the dot product results.
Next, we calculate the gradient to evaluate the error of the pre-
dicted probability. Finally, we update the weightsF according to
the gradients.

Our PIM implementation of logistic regression follows the same
workload distribution pattern as our linear regression implemen-
tation. First, row vectors G8 are distributed across PIM cores and
threads in each PIM core. Second, each thread computes the dot
product of a row vector and the weights (G8 ·F ), and applies the
sigmoid function to the dot product result. Third, the thread com-
putes partial gradient values. Fourth, partial gradient values from
di�erent threads are reduced, and the results return to the host.
Finally, the host computes the �nal reductions, and updates the
weights before redistributing them to the PIM cores.

We implement six di�erent versions of logistic regression with
di�erent input datatypes and optimizations: (1) 32-bit �oating
point (LOG-FP32), (2) 32-bit �xed point (LOG-INT32), (3) 32-bit
�xed point with LUT-based sigmoid calculation and LUT in DRAM
(LOG-INT32-LUT (MRAM)), (4) 32-bit �xed point with LUT-based sig-
moid calculation and LUT in scratchpad (LOG-INT32-LUT (WRAM)),
(5) �xed point with hybrid precision and LUT-based sigmoid calcula-
tion (LOG-HYB-LUT), and (6) �xed point with hybrid precision, LUT-
based sigmoid calculation, and built-in functions (LOG-BUI-LUT).

5
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Evaluation Methodology
• Synthetic and real datasets

• Evaluated systems
- UPMEM PIM system with 2,524 PIM cores @ 425 MHz and 158 GB of 

DRAM
- Intel Xeon Silver 4215 CPU (16 hardware threads)
- NVIDIA A100 GPU

• We evaluate:
- Metrics
- Performance of PIM kernels
- Performance scaling
- Comparison to CPU and GPU

Table 2: Evaluated PIM system, baseline CPU, and baseline GPU.

System Process Processor Cores Memory TDPNode Total Cores Frequency Peak Performance Capacity Total Bandwidth
UPMEM PIM System [153] 2x nm 2,560⇧ 425 MHz 1,088 GOPS 160 GB 2.1 TB/s 280 W†

Intel Xeon Silver 4215 CPU [221] 14 nm 8 (16 threads) 2.5 GHz 40 GFLOPS¢ 256 GB 37.5 GB/s 85 W
NVIDIA A100 GPU [222] 7 nm 108 (6,912 SIMD lanes) 1.4 GHz 19,500 GFLOPS 40 GB 1555 GB/s 250 W
⇧ There are several faulty PIM cores in the PIM system where we run our experiments.
†⇢BC8<0C43 )⇡% = )>C0; %�" 2>A4B

%�" 2>A4B/⇡�"" ⇥ 14, /⇡�"" [153].
¢⇢BC8<0C43 ⌧�!$%( = 2.5 ⌧�I ⇥ 8 2>A4B ⇥ 2 8=BCAD2C8>=B ?4A 2~2;4 .

Table 3: Datasets.

ML Workload Synthetic Datasets Real DatasetStrong Scaling (1 PIM core | 256-2048 PIM cores) Weak Scaling (per PIM core)
Linear regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) SUSY [223, 224]
Logistic regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) Skin segmentation [225]
Decision tree 60,000 samples, 16 attr. (3.84 MB) | 153,600,000 samples, 16 attr. (9830 MB) 600,000 samples, 16 attr. (38.4 MB) Higgs boson [223, 226]
K-Means 10,000 samples, 16 attr. (0.64 MB) | 25,600,000 samples, 16 attr. (1640 MB) 100,000 samples, 16 attr. (6.4 MB) Higgs boson [223, 226]

low and close to that of the 32-bit �oating point version, as shown
in the �gure.

0.55 1.02 1.29

0
2
4
6
8

1 30 70 17
0

50
0

10
00 10 50 10

0

25
0

70
0 1 30 70 17
0

50
0

10
00

LIN-FP32 LIN-INT32 LIN-HYB & LIN-BUI

Tr
ai

ni
ng

 Er
ro

r R
at

e 
(%

)

LIN Versions
52.56 53.16 53.70

Figure 6: Training error rate (%) of LIN versions.

LOG. Figure 7(a) presents the training error rate of our six
versions of LOG for numbers of training iterations between 1
and 1000. The training error of LOG-FP32, which we use as
the comparison point for the integer versions (i.e., LOG-INT32,
LOG-INT32-LUT (MRAM), LOG-INT32-LUT (WRAM), LOG-HYB-LUT
(WRAM), LOG-BUI-LUT (WRAM)), is almost �at after 100 iterations,
and is as low as 1.20% after 1000 iterations (same as the CPU ver-
sion). We observe that the training error rate of LOG-INT32 is
higher than that of LOG-INT32-LUT (MRAM) and LOG-INT32-LUT
(WRAM). The reason is that LOG-INT32 approximates exponenti-
ation (hence, sigmoid) with Taylor series, while LOG-INT32-LUT
(MRAM) and LOG-INT32-LUT (WRAM) store exact sigmoid values in a
LUT. LOG-HYB-LUT (WRAM) and LOG-BUI-LUT (WRAM) increase the
training error rate signi�cantly (14.12%) due to the use of reduced-
precision datatypes. In another experiment using samples with 2
decimal numbers (Figure 7(b)), the training error rate of these two
versions decreases to 4.49%.

DTR. We limit the tree depth to 10. The tree is built by splitting
leaf nodes until no node can be split. A node cannot be split if
it holds fewer than two data points, or if it contains only points
belonging to the same class, or if its depth exceeds the maximum
tree depth. To account for the e�ect of di�erent random number
generation on both implementations, we restart the algorithm 10
times, and average the resulting accuracies. We register a training
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Figure 7: Training error rate (%) of LOG versions.

accuracy of 0.90008 for the PIM implementation, against 0.90175
for the Scikit-learn CPU version.

KME. We perform a K-Means clustering with 16 clusters to
match the dataset generation. The clustering iterates for a maxi-
mum of 300 iterations, or until the relative Frobenius norm between
the cluster centers of two consecutive iterations is lower than 0.0001.
In practice, the clustering always converges after less than 40 itera-
tions on both the PIM and Scikit-learn CPU implementations. To
account for randomness in the loss of precision due to quantization,
we average the metrics on 10 runs with di�erent random seeds.
We register an average Calinski-Harabasz scores of 82200 for both
implementations. The adjusted Rand index between the PIM and
Scikit-learn CPU clusterings is 0.999347 on average, showing that
the clusterings are nearly identical despite the quantization.

4.3 Performance Analysis of PIM Kernels
We analyze in this section the performance of the di�erent PIM
kernel versions of our ML workloads on a single PIM core (i.e., an
UPMEM DPU). This way, we understand the e�ect of (1) di�er-
ent optimizations we apply, and (2) increasing the number of PIM
threads.

LIN. Figure 8 shows the PIM kernel time of our four versions
of LIN. The upper plot (Figure 8(a)) represents the PIM kernel time
of LIN-FP32. The lower plot (Figure 8(b)) shows the PIM kernel
time of the integer versions. We make four observations. First, all
LIN versions result in their best performance with 11 or more PIM
threads. Eleven is the minimum number of PIM threads that keep

9
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2,560-DPU System (I)
• UPMEM-based PIM 

system with 20 UPMEM 
DIMMs of 16 chips each 
(40 ranks)
- P21 DIMMs
- Dual x86 socket

• UPMEM DIMMs
coexist with regular 
DDR4 DIMMs

• 2 memory 
controllers/socket (3 
channels each)

• 2 conventional DDR4 
DIMMs on one 
channel of one 
controller

2560 DPUs*

* There are some faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,524

160 GB
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Evaluation: Metrics
• Linear regression

- Training error rate of LIN-FP32 is the same as the CPU 
version

- For integer versions, it remains low and close to that of LIN-
FP32

• Logistic regression
- LUT-based versions obtain lower training error rates that 
LOG-INT32, since they use exact values, not approximations

• Decision tree
- Training accuracy only slightly lower than that of the CPU 

version
• K-means

- Same Calinski-Harabasz score and adjusted Rand index of PIM 
and CPU versions
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Evaluation: Analysis of PIM Kernels (I)
• Linear regression
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Evaluation: Analysis of PIM Kernels (II)
• Logistic regression

Very high kernel 
time of LOG-FP32
and LOG-INT32

due to sigmoid 
approximation

LOG-INT32-
LUT(MRAM) is 53x 
faster than LOG-

INT32

LOG-HYB-LUT is 28% faster 
than LOG-INT32-LUT

LOG-BUI-LUT provides an 
additional 43% speedup
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Evaluation: Analysis of PIM Kernels (III)
• Decision tree & K-means
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Evaluation: Performance Scaling
• Strong scaling: 256 to 2,048 PIM cores
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Comparison to CPU and GPU (I)
• Linear regression and logistic regression
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PIM versions are heavily 
burdened when they use 
operations that are not 

natively supported by the 
hardware

Several optimizations 
reduce the execution time 
considerably and close the 

gap with GPU 
performance
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Comparison to CPU and GPU (II)
• Decision tree and K-means
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(a) Decision Tree (b) K-means

PIM version of DTR is 27x 
faster than the CPU

version and 1.34x faster 
than the GPU version

PIM version of KME is 2.8x 
faster than the CPU 

version and 3.2x faster 
than the GPU version
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Key Observations and Insights
• ML training workloads can greatly benefit from (1) fixed-

point data representation, (2) quantization, and (3) 
hybrid precision implementation in PIM systems
• ML training workloads that require complex activation 

functions (e.g., sigmoid) can take advantage of lookup 
tables (LUTs) in PIM systems instead of function 
approximation
• Data can be placed and laid out such that memory 

accesses of PIM cores are streaming
• ML training workloads with large training datasets 

benefit from scaling the size of PIM-enabled memory 
with PIM cores attached to memory arrays



Juan Gómez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira, 

Gagandeep Singh, Onur Mutlu

Machine Learning Training
on a Real Processing-in-Memory System

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://arxiv.org/pdf/2206.06022.pdf


Year III Results (2022 Annual Review 1)
n Benchmarking a New Paradigm: Experimental Analysis and 

Characterization of a Real Processing-in-Memory System [IEEE Access’22]
n Benchmarking Memory-Centric Computing Systems: Analysis of Real 

Processing-in-Memory Hardware [CUT 2021]

n An Experimental Evaluation of Machine Learning Training on a Real 
Processing-in-Memory System [arXiv 2022]

n SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real 
Processing-In-Memory Architectures [SIGMETRICS 2022]

n High-throughput Pairwise Alignment with the Wavefront Algorithm using 
Processing-in-Memory [HICOMB 2022]

n PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]
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SpMV Multiplication on Real PIM Systems

n Appears in SIGMETRICS 2022
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https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP

https://www.youtube.com/watch?v=5kaOsJKlGrE

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP
https://www.youtube.com/watch?v=5kaOsJKlGrE


SparseP
Towards Efficient Sparse Matrix Vector Multiplication 

on Real Processing-In-Memory Architectures

Christina Giannoula
Ivan Fernandez, Juan Gomez-Luna, 

Nectarios Koziris, Georgios Goumas, Onur Mutlu



SparseP Summary
Efficient Algorithmic Designs
• The first open-source Sparse Matrix Vector Multiplication 

(SpMV) software package, SparseP, for real Processing-In-
Memory (PIM) systems

Extensive Characterization
• The first comprehensive analysis of SpMV on the first real 

commercial PIM architecture

Full Paper: https://arxiv.org/pdf/2201.05072.pdf

Recommendations for Architects and Programmers

SparseP: https://github.com/CMU-SAFARI/SparseP

SparseP is Open-Source

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP


SparseP: SpMV Library for Real PIMs
Our Contributions:
1. Design efficient SpMV kernels for current and future PIM 

systems
§ 25 SpMV kernels

§ 4 compressed matrix formats (CSR, COO, BCSR, BCOO)
§ 6 data types
§ 4 data partitioning techniques
§ Various load balancing schemes among PIM cores/threads
§ 3 synchronization approaches

2. Provide a comprehensive analysis of SpMV on the first 
commercially-available real PIM system 
§ 26 sparse matrices
§ Comparisons to state-of-the-art CPU and GPU systems
§ Recommendations for software, system and hardware 

designers



SparseP Talk Video

122https://www.youtube.com/watch?v=5kaOsJKlGrE

https://www.youtube.com/watch?v=5kaOsJKlGrE


Sparse Matrix Vector Multiplication
Sparse Matrix Vector Multiplication (SpMV):
§ Widely-used kernel in graph processing,   

machine learning, scientific computing … 

§ A highly memory-bound kernel
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Real Processing-In-Memory Systems
Real Near-Bank Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth
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Real Processing-In-Memory Systems
Real Near-Bank Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth
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https://www.upmem.com



SpMV Execution on a PIM System
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SparseP Software Package
25 SpMV kernels for PIM Systems à

https://github.com/CMU-SAFARI/SparseP

Load-balance 
across PIM cores/threads:
* row-granularity (CSR)
^ block-row-granularity (BCSR)

Synchronization 
among threads of a PIM core:
▵ lb-cg, lb-fb, lf (COO, BCOO)

Data Types:
• 8-bit integer
• 16-bit integer
• 32-bit integer
• 64-bit integer
• 32-bit float
• 64-bit float

Partitioning Matrix Format Load-Balancing

9x 
1D

Kernels

CSR rows, nnzs *

COO▵ rows, nnzs *, nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnzs

4x
2D 

Equally-Sized Tiles

CSR --

COO▵ --

BCSR --

BCOO▵ --

6x 
2D 

Equally-Wide Tiles

CSR nnzs *

COO▵ nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnzs

6x 
2D 

Variable-Sized Tiles

CSR nnzs *

COO▵ nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnz

https://github.com/CMU-SAFARI/SparseP


2048 PIM Cores, 32-bit integer
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Comparison of Compressed Formats
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The compressed matrix format used to store the input matrix 
determines the data partitioning across DRAM banks of PIM-enabled 
memory. As a result, it affects the load-balance across PIM cores (and 
threads of a PIM core) with corresponding performance implications. 

Key Takeaway 1

Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing high 
computation balance across PIM cores (and threads of a PIM core).

Recommendation 1



COO format, 32-bit integer
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Scalability

The 1D-partitioned kernels are severely bottlenecked by the high 
data transfer costs to broadcast the whole input vector into DRAM 
banks of all PIM cores, through the narrow off-chip memory bus.

Key Takeaway 2

Optimize the broadcast collective collective in data transfers to 
PIM-enabled memory to efficiently copy the input data into DRAM 
banks in the PIM system.

Recommendation 2



COO format, 32-bit integer
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Scalability

88.6% 88.0%

Optimize the gather collective operation at DRAM bank granularity
in data transfers from PIM-enabled memory to efficiently retrieve 
the output results to the host CPU.

Recommendation 3

The 2D equally-wide and variable-sized kernels need fine-grained 
parallel data transfers at DRAM bank granularity (zero padding) to 
be supported by the PIM system to achieve high performance.

Key Takeaway 3



2528 PIM Cores, 32-bit float

1D vs 2D
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Expensive data transfers to/from PIM-enabled memory performed 
via the narrow memory bus impose significant performance 
overhead to end-to-end SpMV execution. Thus, it is hard to fully 
exploit all available PIM cores of the system.

Key Takeaway 4

Design high-speed communication channels and optimized libraries
in data transfers to/from PIM-enabled memory, provide hardware
support to effectively overlap computation with data transfers in 
the PIM system, and/or integrate PIM-enabled memory as the main 
memory of the system.

Recommendation 4



CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W  

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.      
• GPU = 0.21% of Peak Perf.     
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU =  4.08 GFlop/s
• GPU =  1.92 GFlop/s       
• PIM (1D) =  0.11 GFlop/s



CPU/GPU Comparisons
• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.      
• GPU = 0.21% of Peak Perf.     
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU =  4.08 GFlop/s
• GPU =  1.92 GFlop/s       
• PIM (1D) =  0.11 GFlop/s

Many more results in the full paper: 
https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf


SparseP
Towards Efficient Sparse Matrix Vector Multiplication 

on Real Processing-In-Memory Architectures

Christina Giannoula
Ivan Fernandez, Juan Gomez-Luna, 
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Year III Results (2022 Annual Review 1)
n Benchmarking a New Paradigm: Experimental Analysis and 

Characterization of a Real Processing-in-Memory System [IEEE Access’22]
n Benchmarking Memory-Centric Computing Systems: Analysis of Real 

Processing-in-Memory Hardware [CUT 2021]

n An Experimental Evaluation of Machine Learning Training on a Real 
Processing-in-Memory System [arXiv 2022]

n SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real 
Processing-In-Memory Architectures [SIGMETRICS 2022]

n High-throughput Pairwise Alignment with the Wavefront Algorithm using 
Processing-in-Memory [HICOMB 2022]

n PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]
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Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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Host Machine

FPGA Board

RISC-V System
PiM-Enabled DIMM

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s


Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
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An	FPGA-based	Framework
for	End-to-end	Evaluation	

of	Processing-in-DRAM	Techniques
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Juan	Gomez	Luna Konstantinos	Kanellopoulos
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Behzad	Salami

Oğuz Ergin Onur Mutlu
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Executive Summary
Motivation: Commodity DRAM based PiM techniques improve the performance 
and energy efficiency of computing systems at no additional DRAM hardware cost
Problem: Challenges of integrating these PiM techniques into real systems are not solved
General-purpose computing systems, special-purpose testing platforms, and 
system simulators cannot be used to efficiently study system integration challenges

Goal: Design and implement a flexible framework that can be used to:
• Solve system integration challenges 
• Analyze trade-offs of end-to-end implementations
of commodity DRAM based PiM techniques

Key idea: PiDRAM, an FPGA-based framework that enables:
• System integration studies
• End-to-end evaluations
of commodity DRAM based PiM techniques using real unmodified DRAM chips
Evaluation: End-to-end integration of two PiM techniques on PiDRAM’s FPGA prototype

Case Study #1 – RowClone: In-DRAM bulk data copy operations
• 119x speedup for copy operations compared to CPU-copy with system support
• 198 lines of Verilog and 565 lines of C++ code over PiDRAM’s flexible codebase
Case Study #2 – D-RaNGe: DRAM-based random number generation technique
• 8.30 Mb/s true random number generator (TRNG) throughput, 220 ns TRNG latency
• 190 lines of Verilog and 78 lines of C++ code over PiDRAM’s flexible codebase



PiDRAM Talk Video
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PiDRAM:	Overview	(I)
A	flexible	framework	that	can	be	used	to:
• Solve	system	integration	challenges	
• Analyze	trade-offs	of	end-to-end	implementations
of	commodity	DRAM	based	PiM techniques

Identify	key	components	shared across	PiM	techniques

Implement	customizable key	components:
• Provide	modularity,	enhance	extensibility	of	the	framework

Common	basis	to	enable	system	support	for	PiM	techniques
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PiDRAM:	Overview	(II)
Identify	and	develop	four	key	hardware	and	software	components

Hardware Software

Easy-to-extend 
Memory Controller

Flexible
PiM Ops. Controller

2

1 3

4

Extensible
Software Library

Custom 
Supervisor Software
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PiDRAM:	System	Design
Key	components	are	attached	to	a	real	computing	system
• PiM	Ops.	Controller	and	PiDRAM	Memory	Controller	
is	implemented	within	the	hardware	system
• Custom	supervisor	software	runs	on	the	hardware	system
• Extensible	software	library	
is	used	by	the	supervisor	software
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PiM	Operations	Controller	(POC)

Decode	&	execute	PiDRAM	instructions	(e.g.,	in-DRAM	copy)

Receive	instructions	over	memory-mapped	interface
(portable	to	other	systems	with	different	CPU	ISAs)

Simple	interface	to	the	PiDRAM	memory	controller
(i)	send	request,	(ii)	wait	until	completion,	(iii)	read	results
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PiDRAM	Memory	Controller
Perform	PiM operations	by	violating	DRAM	timing	parameters

Support	conventional	memory	operations	(e.g.,	LOAD/STORE)
One	state	machine	per	operation	(e.g.,	LOAD/STORE,	in-DRAM	copy)

Easily	replicate	a	state	machine	to	implement	a	new	operation

Controls	the	physical	DDR3	interface
Receives	commands	from	command	scheduler	&	operates	DDR3	pins
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PiM	Operations	Library	(pimolib)
Contains	customizable	functions	that	interface	with	the	POC

Software	interface	for	performing	PiM operations

Executes	LOAD	&	STORE	requests	to	communicate	with	the	POC
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Custom	Supervisor	Software

Exposes	PiM operations	to	the	user	application	via	system	calls

Contains	the	necessary	OS	primitives	to	develop	end-to-end	PiM techniques
(e.g.,	memory	management	and	allocation	for	RowClone)
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PiM Operation	Execution	Flow
copy() function	called	by	the	user	to	perform	a	RowClone-Copy operation	in	DRAM

1 Application	makes	a	system	call: copy(A, B, N bytes)

2 Custom	Supervisor	Software	calls	the	copy() pimolib function

Copy (S, D) S: source	DRAM	row
D: destination	DRAM	row
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PiM Operation	Execution	Flow
3 Copy(S, D) executes	two	store	instructions	in	the	CPU

4 The	first	store	updates	the	instruction register	with	Copy(S, D)

5 The	second	store	sets	the	“Start”	flag	in	the	flag register

1
Start	(S)

Start	the	execution	of	PiM operation
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PiM Operation	Execution	Flow
6 POC	instructs	the	memory	controller	to	perform	RowClone

7 POC	resets	the	“Start”	flag,	and	sets	the	“Ack”	flag

8 PiDRAMmemory	controller	issues	commands	
with	violated	timing	parameters	to	the	DDR3	module
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PiM Operation	Execution	Flow
9 The	memory	controller	sets	the	“Fin.”	flag

10 Copy(S, D) periodically	checks	either	“Ack”	or	“Fin.”	flags
using	LOAD	instructions

Copy(S, D)returns	when	the	periodically	checked	flag	is	set
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PiM Operation	Execution	Flow

Data	Register	is	not	used	in	RowClone operations
because	the	result	is	stored	in	memory

It	is	used	to	read	true	random	numbers	generated	by	D-RaNGe
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PiDRAM Components	Summary

Four	key	components	provide	an	extensible	basis	
for	end-to-end	integration	of	PiM techniques

Four	key	components	orchestrate	PiM operation	execution
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PiDRAM’s FPGA	Prototype
Full	system	prototype	on	Xilinx	ZC706	FPGA	board
• RISC-V	System:	In-order,	pipelined	RISC-V	Rocket	CPU	core,	L1D/I$,	TLB
• PiM-Enabled	DIMM:Micron	MT8JTF12864,	1	GiB,	8	banks



156

PiDRAM is	Open	Source
https://github.com/CMU-SAFARI/PiDRAM

https://github.com/CMU-SAFARI/PiDRAM
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Extended	Version	on	ArXiv
https://arxiv.org/abs/2111.00082

https://arxiv.org/abs/2111.00082
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Longer	Talk	+	Tutorial	on	Youtube
https://youtu.be/s_z_S6FYpC8

https://youtu.be/s_z_S6FYpC8


Year III Results (2022 Annual Review 2)
n SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-

Graph and Sequence-to-Sequence Mapping [ISCA 2022]

n GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis [ASPLOS 2022]

n Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm 
[HICOMB 2022]

n Polynesia: Enabling High-Performance and Energy-Efficient Hybrid 
Transactional/Analytical Databases with Hardware/Software Co-Design 
[ICDE 2022]

n Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation 
Capability of NAND Flash Memory [MICRO 2022]
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Accelerating Sequence-to-Graph Mapping
n Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. 

Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, 
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, 
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph 
and Sequence-to-Sequence Mapping"
Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New 
York, June 2022.
[arXiv version]
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Damla Senol Cali

Sequence-to-Sequence (S2S) Mapping Sequence-to-Graph (S2G) Mapping

Genome Sequence Analysis
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Sequence-to-graph mapping results in notable quality improvements.
However, it is a more difficult computational problem, 

with no prior hardware design.

q Mapping the reads to a reference genome (i.e., read mapping) is a 
critical step in genome sequence analysis

Linear Reference: ACGTACGT

Read: ACGG

Alternative Sequence: ACGGACGT

Alternative Sequence: ACGTTACGT

Alternative Sequence: ACG‒ACGT

Graph-based Reference:

Read: ACGG
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SeGraM: First universal algorithm/hardware co-designed genomic 
mapping accelerator that can effectively and efficiently support: 

q Sequence-to-graph mapping 

q Sequence-to-sequence mapping

q Both short and long reads

SeGraM: First Graph Mapping Accelerator
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Our Goal:

Specialized, high-performance, scalable, and low-cost 
algorithm/hardware co-design that alleviates bottlenecks in

multiple steps of sequence-to-graph mapping
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Use Cases & Key Results
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(1) Sequence-to-Graph (S2G) Mapping
q 5.9×/106× speedup, 4.1×/3.0× less power than GraphAligner

for long and short reads, respectively (state-of-the-art SW)

q 3.9×/742× speedup, 4.4×/3.2× less power than vg 
for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (S2G) Alignment
q 41×–539× speedup over PaSGAL with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (S2S) Alignment
q 1.2×/4.8× higher throughput than GenASM and GACT of Darwin 

for long reads (state-of-the-art HW)

q 1.3×/2.4× higher throughput than GenASM and SillaX of GenAX
for short reads (state-of-the-art HW)



SeGraM Talk Video
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Genome Graphs
Genome graphs:

q Combine the linear reference genome with the known genetic 
variations in the entire population as a graph-based data structure

q Enable us to move away from aligning with a single linear reference 
genome (reference bias) and more accurately express the genetic 
diversity in a population
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ACG ACGT

T

G

T

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Sequence #4: ACGACGT
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Sequence-to-Graph Mapping Pipeline
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Pre-Processing 
Steps (Offline)

Seed-and-Extend 
Steps (Online)

Indexing
(index the nodes of the graph)

Seeding
(query the index & find the seed matches)

Filtering/Chaining/Clustering
(filter out dissimilar query read and subgraph pairs)

S2G Alignment
(perform distance/score calculation & traceback)

Linear reference 
genome

Known genetic 
variations

Reads from 
sequenced 

genome

0.2

1

2

3

Genome Graph Construction
(construct the graph using a linear reference genome and variations)

0.1

Genome graph

Hash-table-based index (of graph nodes)

Candidate mapping locations (subgraphs)

Remaining candidate mapping locations (subgraphs)

Optimal alignment between read & subgraph
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S2S vs. S2G Alignment
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S2S vs. S2G Alignment
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In contrast to S2S alignment, 
S2G alignment must incorporate non-neighboring characters 

as well whenever there is an edge (i.e., hop) 
from the non-neighboring character to the current character
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Based on our analysis with GraphAligner and vg:

Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates

Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable 
for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle 
S2G alignment

Analysis of State-of-the-Art Tools
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SW

HW
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SW

HW

SeGraM: Universal Genomic Mapping Accelerator

q First universal genomic mapping accelerator that can support both
sequence-to-graph mapping and sequence-to-sequence mapping, 
for both short and long reads

q First algorithm/hardware co-design for accelerating 
sequence-to-graph mapping

q We base SeGraM upon a minimizer-based seeding algorithm

q We propose a novel bitvector-based alignment algorithm to   perform 
approximate string matching between a read and                     a graph-
based reference genome

q We co-design both algorithms with high-performance, scalable,    
and efficient hardware accelerators
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SeGraM Hardware Design
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SeGraM Accelerator

MinSeed (MS)

Host 
CPU

Main Memory (graph-based reference & index)

Find 
Minimizers

BitAlign (BA)

Read
Scratchpad

Minimizer 
Scratchpad

Filter
Frequencies 

by Frequency

Seed 
Scratchpad

Find 
Candidate

Seed Regions

MinSeed (MS)

Find 
Minimizers

Read
Scratchpad

Minimizer 
Scratchpad

Filter
Minimizers 

by Frequency

Seed 
Scratchpad

Find 
Candidate

Seed Regions

Input Scratchpad

Generate 
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

BitAlign (BA)

Input Scratchpad

Generate 
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

MinSeed: first hardware 
accelerator for 

Minimizer-based Seeding

BitAlign: first hardware 
accelerator for (Bitvector-based) 

sequence-to-graph Alignment
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Host 
CPU

Main Memory (graph-based reference & index)Main Memory (graph-based reference & index)

SeGraM Hardware Design
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SeGraM Accelerator

MinSeed (MS)

Host 
CPU

Find 
Minimizers

query
read

1

BitAlign (BA)

Read
Scratchpad

Minimizer 
Scratchpad

Filter
Minimizers 

by Frequency

Seed 
Scratchpad

Find 
Candidate

Seed Regions

Input Scratchpad

Generate 
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

query k-mers

minimizers

frequencies seed locations graph nodes

2

3

4

5

6

7

8
9

10

11

12 optimal alignment information

MinSeed: first hardware 
accelerator for 

Minimizer-based Seeding

BitAlign: first hardware 
accelerator for (Bitvector-based) 

sequence-to-graph Alignment
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SeGraM Module (1 x per HBM2E stack)SeGraM Module (1 x per HBM2E stack)

High Bandwidth Memory (HBM2E) Stack

Host

. . .

Overall System Design of SeGraM
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. . .

High Bandwidth Memory (HBM2E) Stack

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

. . .Host

MS

BA

MS

BA

MS

BA

MS

BA

MS

BA

X4

CH0 CH1 CH2 CH6 CH7
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Use Cases of SeGraM
(1) Sequence-to-Graph 

Mapping

(2) Sequence-to-Graph
Alignment

(3) Sequence-to-Sequence 
Alignment

(4) Seeding
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MS BA

MS or
Other BA

BA

MS

MS or
Other

BA or
Other
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Key Results – Area & Power
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q Based on our synthesis of MinSeed and BitAlign accelerator datapaths 
using the Synopsys Design Compiler with a 28nm process (@ 1GHz):
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Key Results – SeGraM with Long Reads
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SeGraM provides 5.9× and 3.9× throughput improvement
over GraphAligner and vg, 

while reducing the power consumption by 4.1× and 4.4×
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Key Results – SeGraM with Short Reads

SeGraM provides 106× and 742× throughput improvement
over GraphAligner and vg, 

while reducing the power consumption by 3.0× and 3.2×
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BitAlign provides 41×-539× speedup over PaSGAL

Key Results – BitAlign (S2G Alignment)
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Key Results – BitAlign (S2S Alignment)
q BitAlign can also be used for sequence-to-sequence alignment

o The cost of more functionality: extra hop queue registers 

o We do not sacrifice any performance 

q For long reads (over GACT of Darwin and GenASM): 

o 4.8× and 1.2× throughput improvement, 

o 2.7× and 7.5× higher power consumption, and 

o 1.5× and 2.6× higher area overhead

q For short reads (over SillaX of GenAx and GenASM):

o 2.4× and 1.3× throughput improvement
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Conclusion
q SeGraM: First universal algorithm/hardware co-designed genomic 

mapping accelerator that supports:
§ Sequence-to-graph (S2G) & sequence-to-sequence (S2S) mapping
§ Short & long reads

o MinSeed: First minimizer-based seeding accelerator

o BitAlign: First (bitvector-based) S2G alignment accelerator

q SeGraM supports multiple use cases:

o End-to-end S2G mapping

o S2G alignment

o S2S alignment

o Seeding

q SeGraM outperforms state-of-the-art software & hardware solutions
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SeGraM Talk Video
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Year III Results (2022 Annual Review 2)
n SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-

Graph and Sequence-to-Sequence Mapping [ISCA 2022]

n GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis [ASPLOS 2022]

n Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm 
[HICOMB 2022]

n Polynesia: Enabling High-Performance and Energy-Efficient Hybrid 
Transactional/Analytical Databases with Hardware/Software Co-Design 
[ICDE 2022]

n Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation 
Capability of NAND Flash Memory [MICRO 2022]
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In-Storage Genomic Data Filtering [ASPLOS 2022]

n Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
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https://www.youtube.com/watch?v=Vi1af8KY0g8
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Genome Sequence Analysis

Computation overhead

Data movement overhead 

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System
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Heuristics Accelerators Filters

Computation overhead

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System

Data movement overhead 

✓

Accelerating Genome Sequence Analysis
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Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment
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Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources 
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System



189

GenStore

Computation overhead

Data movement overhead 

GenStore provides significant speedup (1.4x - 33.6x) and  
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

GenStore-Enabled
Storage
System

✓
✓



In-Storage Genomic Data Filtering [ASPLOS 2022]

n Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8


GenStore Talk Video
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Year III Results (2022 Annual Review 2)
n SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-

Graph and Sequence-to-Sequence Mapping [ISCA 2022]

n GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis [ASPLOS 2022]

n Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm 
[HICOMB 2022]

n Polynesia: Enabling High-Performance and Energy-Efficient Hybrid 
Transactional/Analytical Databases with Hardware/Software Co-Design 
[ICDE 2022]

n Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation 
Capability of NAND Flash Memory [MICRO 2022]
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Accelerating HTAP Database Systems
n Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu,

"Polynesia: Enabling High-Performance and Energy-Efficient Hybrid 
Transactional/Analytical Databases with Hardware/Software Co-Design"
Proceedings of the 38th International Conference on Data Engineering (ICDE), 
Virtual, May 2022.
[arXiv version]
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22.pdf
https://icde2022.ieeecomputer.my/
https://arxiv.org/pdf/2204.11275.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pdf
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https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pdf
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Polynesia: 
Enabling High-Performance and Energy-Efficient 

Hybrid Transactional/Analytical Databases 
with Hardware/Software Co-Design

ICDE 
2022

Amirali Boroumand Saugata Ghose
Geraldo F. Oliveira Onur Mutlu



Executive Summary
• Context: Many applications need to perform real-time data analysis using 
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties: 

(1) data freshness and consistency, (2) workload-specific optimization, 
(3) performance isolation

• Problem: Prior works cannot achieve all properties of an ideal HTAP system

• Key Idea: Divide the system into transactional and analytical processing 
islands
– Enables workload-specific optimizations and performance isolation 

• Key Mechanism: Polynesia, a novel hardware/software cooperative design 
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of 

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption  
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Polynesia Talk Video (I)
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https://arxiv.org/pdf/2205.14664.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=5897s
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Polynesia Talk Video (II)
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https://arxiv.org/pdf/2204.11275.pdf
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Real-Time Analysis
Increasing interest in many applications domains to 

perform data analytics on the most recent version of data 
(real-time analysis) 

Use transactions to record
each periodic sample of data 

from all sensors

Run analytics across 
sensor data to make 

real-time steering decisions

For these applications, it is critical to analyze the transactions
in real-time as the data’s value diminishes over time

Self-Driving Cars
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Traditionally, new transactions (updates) are propagated to the 
analytical database using a periodic and costly process

To support real-time analysis: a single hybrid DBMS is used 
to execute both transactional and analytical workloads

Transactions

Hybrid DBMS 
(HTAP System)

Analytics

Data
Migration

Analytics

Transactional 
DBMS

Transactions

Analytical
DBMS

hours/days

HTAP: Supporting Real-Time Analysis
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Ideal HTAP System Properties

2 Data Freshness and Consistency Guarantees
• Guarantee access to the most recent version of data for 

analytics while ensuring that transactional and analytical 
workloads have a consistent view of data

1 Workload-Specific Optimizations
• Transactional and analytical workloads must benefit from their 

own specific optimizations

3 Performance Isolation
• Latency and throughput of  transactional and analytical 

workloads are the same as if they were run in isolation

An ideal HTAP system should have three properties:

Achieving all three properties at the same time
is very challenging
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11 State-of-the-art HTAP systems do not achieve 
all of the desired HTAP properties1

Data freshness and consistency mechanisms are 
data-intensive and cause a drastic reduction in throughput2
These systems fail to provide performance isolation 

because of high resource contention3

Take advantage of custom algorithm and 
processing-in-memory (PIM) to address these challenges4

Problem and Goal
Problems:

Goal:

201



Key idea: partition computing resources into 
two types of isolated and specialized processing islands

Isolating transactional islands from analytical islands allows us to:

Apply workload-specific optimizations to each island1
Avoid high resource contention2
Design efficient data freshness and consistency 
mechanisms without incurring high data movement costs 3

Polynesia
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• Leverage processing-in-memory (PIM) to reduce data movement
• PIM mitigates data movement overheads by 

placing computation units nearby or inside memory



Designed to sustain
bursts of updates  

Each island includes (1) a replica of data, (2) an optimized execution 
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate 
data movement bottleneck Conventional multicore CPUs 

with multi-level caches

Polynesia: High-Level Overview
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Key Results 
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Polynesia achieves 91.6% the transactional throughput of 
an ideal system by employing

custom PIM logic for data freshness/consistency,
which significantly reduces

resource contention and data movement

Polynesia improves analytical throughput by 63.8% over
an optimized multiple-instance system, by eliminating 

data movement, and using custom logic for update 
propagation and consistency

Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x) 

over prior HTAP systems



Conclusion
• Context: Many applications need to perform real-time data analysis using 
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties: 

(1) data freshness and consistency, (2) workload-specific optimization, 
(3) performance isolation

• Problem: Prior works cannot achieve all properties of an ideal HTAP system

• Key Idea: Divide the system into transactional and analytical processing 
islands
– Enables workload-specific optimizations and performance isolation 

• Key Mechanism: Polynesia, a novel hardware/software cooperative design 
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of 

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption  
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More in the Paper 
• Real workload analysis

• Effect of the update propagation technique 

• Effect of the consistency mechanism

• Effect of the analytical engine

• Effect of the dataset size

• Area Analysis 
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Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems 

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based 
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration 
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup 
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique 
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
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Sibyl: Self-Optimizing Hybrid Storage Systems
n Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 

David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer Architecture (ISCA), 
New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]
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http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf
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Sibyl: 
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in Hybrid Storage Systems 
Using Online Reinforcement Learning
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Sibyl Talk Video [ISCA’22]
• Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan 

Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online 
Reinforcement Learning"
ISCA, New York, June 2022.
[Sibyl Source Code]

https://www.youtube.com/watch?v=5-WedkiB000 211

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
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Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to

provide high and scalable storage capacity at high performance
• Problem: Two key shortcomings of prior data placement policies:

- Lack of adaptivity to:
• Workload changes
• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device

characteristics
- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:
- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in

dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 212

https://github.com/CMU-SAFARI/Sibyl


213

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sybil: Overview

Evaluation of Sybil and Key Results

Conclusion
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Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View) 
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Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system 
highly depends on the ability of the 

storage management layer
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Key Shortcomings in Prior 
Techniques
We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices
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Our Goal

A data-placement mechanism 
that can provide:

1.Adaptivity, by continuously learning and 
adapting to the application and underlying 

device characteristics
2.Easy extensibility to incorporate a wide 

range of hybrid storage configurations
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Our Proposal

Sibyl
Formulates data placement in 

hybrid storage systems as a 
reinforcement learning problem

Sybil is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 218
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Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sybil: Overview

Evaluation of Sybil and Key Results

Conclusion
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Basics of Reinforcement Learning 
(RL)

Agent learns to take an action in a given state
to maximize a numerical reward

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)
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Formulating Data Placement as RL
Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage 
System

Sibyl

Features of the 
current request 

and system

Request latency
(of last served request)

Select storage device to 
place the current page
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What is State?
Hybrid Storage 

System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to
reduce storage overhead
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What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the     
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the 

latency of garbage collection, queuing delays, …)
- Throughput
- Evictions

• More details in the paper

Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page
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What is Action?
• At every new page request, the                                     

action is to select a storage device

• Action can be easily extended to any number of 
storage devices

• Sibyl learns to proactively evict or promote a page

Hybrid Storage 
System

Sibyl

Features of 
the current 
request and 
system

Request latency
(of last served 
request)

Select storage 
device to place 
the current page
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Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sybil: Overview

Evaluation of Sybil and Key Results

Conclusion
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RL Decision 
Thread

Sibyl Execution

Storage
Request

(from OS)

RL Training 
Thread

Periodic Policy
Weight Update

State, Reward, 
and Action 

Information

Data 
Placement 
Decision

Asynchronous 
Execution

Sibyl
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Sibyl Design: Overview

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy

Periodic Weights 
update 10

Training 
Network

RL Training 
ThreadBatchTraining 

Dataset
Periodic Policy 
Weight Update
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Sibyl Design: Overview

Inference 
Network

Max

HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
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(from OS)

State

State

Action

Reward

RL Decision 
Thread

Sibyl Policy

Periodic Weights 
update 10
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Periodic Policy 
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RL Training 
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Talk Outline
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Formulating Data Placement as Reinforcement Learning
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Evaluation of Sybil and Key Results

Conclusion
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Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
AMD	Ryzen7	
2700G	CPU

Seagate	HDD	
ST1000DM010

Intel	Optane	
SSD	P4800X

Intel	SSD									
D3-S4510

ADATA	
SU630	SSD	

230
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Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 231
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Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17] 

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based
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Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

Sibyl consistently outperforms all the baselines 
for all the workloads

Cost-Oriented HSS Configuration
Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by 
dynamically adapting its data placement policy 

High-end SSD Mid-end SSD
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature

High-end SSD Low-end HDDMid-end SSD
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state featureSibyl outperforms the state-of-the-art 
data placement policy by

48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden 
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD
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Sibyl’s Overhead
• 124.4 KiB of total storage cost 

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small area overhead

Small inference overhead

Satisfies prediction latency
239
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More in the Paper

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl

https://www.youtube.com/watch?v=5-WedkiB000
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Evaluation of Sybil and Key Results

Conclusion
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Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage
systems that provides
- Adaptivity
- Easily extensibility
- Ease of design and implementation

•We evaluated Sibyl on real systems using many
different workloads
- Sibyl improves performance by 21.6% compared to the best prior

data placement policy in a dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-

data placement policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with a

storage overhead of only 124.4 KiB
242
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Sibyl is Open-Source

https://github.com/CMU-SAFARI/Sibyl
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Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems 

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based 
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration 
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup 
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique 
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
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Hermes
n To Appear in MICRO 2022

247https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes


Rahul Bera,  Konstantinos Kanellopoulos,  Shankar Balachandran,
David Novo,  Ataberk Olgun, Mohammad Sadrosadati,  Onur Mutlu

Accelerating Long-Latency Load Requests 
via Perceptron-based Off-chip Load Prediction



Long-latency off-chip requests
significantly limit performance of a processor



Deploy sophisticated prefetchers

Increase size of on-chip caches



Nearly 50% of the off-chip requests 
in a no-prefetching system 

still go to the main memory
even in presence of state-of-the-art prefetcher



37.5% of the stall cycles caused by an off-chip 
load can be reduced by removing on-chip cache 

access latency from its critical path



Predicts which load requests might go off-chip 
using multiple program features

Starts fetching data directly from main memory 
while concurrently accessing the cache hierarchy
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Hermes: Overview
Core
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Main Memory
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5 Predict whether the 

load will go off-chip
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load for positive 
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Train OCP

Buffer data fetched by 

speculative load

Load missing the LLC waits on 

the speculative load to finish

Existing data path

New data path
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Hermes: Overview
Core
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Perceptron-based Off-chip Predictor
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Table1

hash

index

Feature2 #
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hash

index

!

weight1

weight2

weightn

Φ
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weights

Final 
prediction

.....

...
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We evaluate Hermes using a wide-range of workloads

Hermes improves performance by

5.4% in single-core 
5.1% in eight-core

6.2% in memory bandwidth-constrained core
over the baseline with the state-of-the-art prefetcher

Consistent performance improvement in a wide range of configurations 
with varying prefetchers and cache access latency

5.1%, 6.2%, 7.7% performance improvement
in single-core with SPP, Bingo, SMS prefetchers

Realistic, practical implementation
Only 5.1 KB storage and 1.5% power overhead

of a desktop-class processor
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Hermes is Open Source
https://github.com/CMU-SAFARI/Hermes

• All 3 badges from MICRO’22 artifact evaluation
• Champsim and McPAT source code
• All traces & scripts used for evaluation

https://github.com/CMU-SAFARI/Hermes
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Accelerating Long-Latency Load Requests 
via Perceptron-based Off-chip Load Prediction



Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems 

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based 
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration 
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup 
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique 
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
261



Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems 

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based 
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration 
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup 
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique 
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
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pLUTo

n To Appear in MICRO 2022
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https://arxiv.org/pdf/2104.07699.pdf

https://arxiv.org/pdf/2104.07699.pdf


João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna,

Mohammed Alser, Geraldo F. Oliveira, Jeremie S. Kim, Mohammad Sadrosadati,
Lois Orosa, Taha Shahroodi, Anant Nori, Onur Mutlu

pLUTo:	In-DRAM	Lookup	Tables	to	Enable
General-Purpose	Massively	Parallel	Computations

August 2022



Executive	Summary

● Problem. Many workloads require significant data movement. Existing Processing-using-
Memory solutions mitigate this data movement but lack support for complex operations.

● Key Idea. LUTs enable general-purpose computation: perform LUT-based computation
inside memory subarrays to perform complex operations.

● Mechanism Overview. With the LUT query operation, the elements in a source memory
row are queried simultaneously in a LUT. In this way, it is possible to perform bulk LUT
queries in-DRAM.

● Key Contributions.
○ Introduce support for bulk in-memory LUT querying for general-purpose in-memory computing.
○ Three implementations of pLUTo with varying area/performance/efficiency trade-offs.

● Key Results.
○ Compared to CPU: up to 33x faster and 110x more energy-efficient.
○ Compared to GPU: up to 8x faster and 80x more energy-efficient.
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Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems 

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based 
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration 
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup 
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique 
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
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DeepSketch
n Jisung Park, Jeonggyun Kim, Yeseong Kim, Sungjin Lee, and Onur Mutlu,

"DeepSketch: A New Machine Learning-Based Reference Search 
Technique for Post-Deduplication Delta Compression"
Proceedings of the 20th USENIX Conference on File and Storage 
Technologies (FAST), Santa Clara, CA, USA, February 2022.
[Slides (pptx) (pdf)]
[Talk Video (15 minutes)]

267https://arxiv.org/pdf/2202.10584.pdf

https://people.inf.ethz.ch/omutlu/pub/DeepSketch_fast22.pdf
https://www.usenix.org/conference/fast22
https://people.inf.ethz.ch/omutlu/pub/DeepSketch_fast22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/DeepSketch_fast22-talk.pdf
https://www.youtube.com/watch?v=RFdGyAJCk9M
https://arxiv.org/pdf/2202.10584.pdf


Executive Summary
n Motivation

q Data reduction: Effective at reducing the management cost of a data center by 
reducing the amount of data physically written to storage devices

q Post-deduplication delta compression: Maximizes the data-reduction ratio by 
applying delta compression along with deduplication and lossless compression

n Problem: Existing post-deduplication delta-compression techniques provide 
significantly low data-reduction ratios compared to the optimal.
q Due to the limited accuracy of reference search for delta compression
q Cannot identify a good reference block for many incoming data blocks

n Key Idea: DeepSketch, a new machine learning-based reference search technique 
that uses the learning-to-hash method
q Generates a given data block’s signature (sketch) using a deep neural network
q The higher the delta-compression benefit of two data blocks, 

the more similar the signatures of the two blocks to each other

n Evaluation Results: DeepSketch reduces the amount of physically-written data
q Up to 33% (21% on average) compared to a state-of-the-art baseline
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DeepSketch Talk Video
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Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems 

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based 
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration 
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup 
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique 
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
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PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf
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PIM Review and Open Problems (II)
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Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Year III Results (2022 Annual Review 4)
n EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network 

Accelerators [arXiv 2022] https://arxiv.org/abs/2202.02310

n ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
Efficient Genome Analysis [arXiv 2022] https://arxiv.org/abs/2207.09765

n Accelerating Weather Prediction Using Near-Memory Reconfigurable Fabric 
[TRETS 2022] https://arxiv.org/abs/2107.08716
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