Memory System Design for A1/ ML,
Accelerators & MIL./Al Techniques
for Memory System Design

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
30 August 2022
SRC AIHW Annual Review

SAFARI ETH:zurich CarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

E Confidentiality

GRC

By reviewing this presentation or participating in a SRC event,
you are agreeing not to use the presented information for
purposes unrelated to the event until approved by SRC;

« Material may be presented that represents current research,
some of which has not been published or protected. This
material is not for public disclosure and until potential IP rights
have been protected, please treat all of the information
presented as confidential information which is the property
of the researcher and their university.

SRC Select Disclosure 5 I

Agenda

Problem and Background
Task Overview
Technical Challenges, Goals and Ideas

Ideas, Results and Papers from the Past Year

SAFARI

The Problem

Computing
IS Bottlenecked by Data

SAFARI

Data 1s Key for Al, ML, Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process

SAFARI .

Data 1s Key for Future Workloads

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]

SAFARI

Data Overwhelms Modern Machines

In-memory Databases Graph/Tree Processing

Data — performance & energy bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]

SAFARI

Data is Key for Future Workloads

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI

Data Overwhelms Modern Machines

»?

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI

Data 1s Key for Future Workloads

development of high-throughput
sequencing (HTS) technologies

N I H National Human Genome
Research Institute
geno

me.gov/sequencingcosts

T T

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes ’
Sequenced AN

2014 2015 2016 2017 Source: IHumina

SAFARI http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped 10

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

CCTATAATACG

,C

Al

CP2
Billions of Short Reads LA
"ATATATACGTACTAGTACGT :X
TTTAGTACGTACGT P
ATACGTACTAGTACGT D:I".: é
. . G

\
CGCCCCTACGTA Short Read Read

ACGTACTAGTACGT

" TTAGTACGTACGT
TACGTACTAAAGTACGT

ATACGTACTAGTACGT
' TTTAAAACGTA

CGTACTAGTACGT

GGGAGTACGTACGT

ll Sequencing Genome Read Mapping n

Analysis

read5: CCATGACGC "\\’/‘
read6: TTCCATGAC [\

B Variant Calling Scientific Discoveryn

Example Data Generator: Genome Sequencing

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali &, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinION

Data — performance & energy bottleneck

SAFARI 12

https://arxiv.org/pdf/1711.08774.pdf

Data Overwhelms Modern Machines ...

= Storage/memory capability

= Communication capability

= Computation capability

= Greatly impacts robustness, energy, performance, cost

SAFARI

13

Data Overwhelms Modern Machines

»?

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 14

Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim?
Rachata Ausavarungnirun! Eric Shiv> Rahul Thakur’> Daehyun Kim*?
Aki Kuusela®> Allan Knies® Parthasarathy Ranganathan® Onur Mutlu”!
SAFARI 15

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Axiom

An Intelligent Architecture
Handles Data Well

SAFARI

How to Handle Data Well

Ensure data does not overwhelm the components
o via intelligent algorithms

o via intelligent architectures

o via whole system designs: algorithm-architecture-devices

Take advantage of vast amounts of data and metadata
o to improve architectural & system-level decisions

Understand and exploit properties of (different) data
o to improve algorithms & architectures in various metrics

SAFARI 17

Corollaries: Computing Systems Today ...

= Are processor-centric vs. data-centric

= Make designer-dictated decisions vs. data-driven

= Make component-based myopic decisions vs. data-aware

SAFARI 18

Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware

SAFARI

19

A Blueprint for Fundamentally Better Architectures

= Onur Mutluy,

'Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.

Slides (pptx) (pdf)]

[IEDM Tutorial Slides (pptx) (pdf)]

[Short DATE Talk Video (11 minutes)]

[Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich

omutlu@gmail.com

SAFARI 20

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Agenda

Problem and Background
Task Overview
Technical Challenges, Goals and Ideas

Ideas, Results and Papers from the Past Year

SAFARI

21

In This Task... (Task #2946.001)

= We focus on designing memory systems to handle data well

= We aim to solve two different yet related and synergistic
problems, both focusing on ML/AI and memory system
design

= We explore (and exploit the synergy between)
o Memory system design for AI/ML workloads/accelerators
a AI/ML techniques for improving memory system designs

= Task Name: Memory System Design for AI/ML Accelerators
& ML/AI Techniques for Memory System Design

SAFARI 22

Our Goals 1n This Task

Two Major Goals:

1. Memory system design for AI/ML workloads/accelerators

- in-depth exploration of memory system designs for cutting-
edge and emerging machine learning accelerators

- more efficient on-chip and off-chip memory systems

2. AI/ML techniques for improving memory system designs

- take a comprehensive look at memory system design and
make it data driven, i.e., based on machine learning

- more effective cache/memory/prefetch/thread controllers
and data/resource management/mapping/scheduling policies

SAFARI 23

Anticipated Primary Results

Realistic, practical and effective novel memory system
designs for ML/AI accelerators

New ML-based techniques to improve memory system
efficiency and performance

Open-source workloads, metrics, methodologies &
infrastructures to analyze such designs and techniques.

SAFARI 24

Task Description

Description

Our major goals in this research are twofold. First, we aim to provide the First in-depth exploration of memory system
designs for cutting-edge and emerging machine learning accelerators. To this end, we aim to develop much more
efficient on-chip/on-die as well as off-chip memory system designs For such accelerators, along with open source
models, metrics, simulators, prototypes & workload suites to evaluate existing and future ML/AI accelerators. Second,
we would like to take a comprehensive look at memory system design and make it data driven, i.e., based on machine
learning: we aim to design ML/AI techniques For on-chip cache/memory/prefetch/thread controllers and data/resource
management/mapping/scheduling policies, to maximize efficiency, performance and QoS beyond levels that can be
achievable by human-designed policies.

To this end, we will comprehensively examine a wide variety of key issues and bottlenecks in the entire memory
system designs of modern ML/AI accelerators as well as general purpose processors, ranging from issues in SRAM
buffers/caches, DRAM main memory, cache and memory controllers, interconnects, non-volatile memory, hybrid
memories, prefetching mechanisms, and near-data acceleration mechanisms, with a special focus on cutting-edge data-
intensive production ML/AI workloads (Ffor Problem 1) and with a broader Focus on key data-intensive workloads (for
Problem 2).

To solve Problem 1, based on our analysis of bottlenecks in state-of-the-art ML/Al accelerators and workloads, we aim
to develop new on-chip and off-chip memory designs, data organization techniques, data movement reduction
mechanisms, request scheduling, caching, prefetching schemes, near-data and in-memory acceleration mechanisms,
customized SRAM, DRAM, NVM designs For demands of ML/AI acceleration, and various other innovative techniques
across the entire memory hierarchy. To solve Problem 2, based on our analysis of each controller and major policy in
the memory hierarchy, we aim to find and design new ML-based policies that are best Fit For each controller and its
optimization goals.

SAFARI 25

Task Deliverables (2020)

Deliverables

Report on experimental performance and energy analysis & breakdown of ML/AI accelerator execution on key ML/AI
workloads using rigorous evaluation metrics and methodologies

Original due date: 30-Jun-2020

Annual review presentation
Revised due date: 9-Sep-2020 (Original Due Date: 1-Sep-2020)

Report on description and analysis of new customized memory system designs for ML accelerators & complete ML
accelerator designs with new data orchestration and memory management mechanisms

Original due date: 31-Dec-2020

SAFARI 26

Task Deliverables (2021)

Report on performance and energy analysis of control and management policies in the memory hierarchy & potential
of machine learning based techniques to replace them

Original due date: 28-Feb-2021

Report on description and analysis of new ML-based memory system policies and designs & specification and
coordination of various on-chip ML-based agents

Original due date: 31-Aug-2021

Annual review presentation
Original due date: 1-Sep-2021

Report on analysis of various different memory types, new on-chip/off-chip near-data processing designs, and short-
term & long-term options for near-data processing designs for ML/AIl accelerators

Original due date: 31-Dec-2021

SAFARI 27

Task Deliverables (2022)

Report analyzing various new ML-based memory/cache/interconnect/prefetcher control mechanisms along with ML-
based data mapping, address mapping, thread scheduling policies across the memory system

Original due date: 30-Jun-2022

Report on open source release of new ML/AI accelerator simulation infrastructures, their evaluation metrics and
methodologies, and their analysis

Original due date: 31-Oct-2022

Report on open source release of ML/Al-based memory system evaluation infrastructures their evaluation metrics and
methodologies, and their analysis

Original due date: 31-Oct-2022

Final report summarizing research accomplishments and Future direction
Original due date: 31-Dec-2022

SAFARI 28

Task Information #2946.001 (1)

= Thrust: Al Hardware

= Task Leader: Onur Mutlu

o https://people.inf.ethz.ch/omutlu/ ﬁj)

o onur.mutlu@inf.ethz.ch

= Students

o Rahul Bera (ETH)
Joao Ferreira (ETH)

Geraldo Francisco de Oliveira Junior (ETH)
Konstantinos Kanellopoulos (ETH)
Joel Lindegger (ETH)

Aditya Manglik (ETH) “

- Rakesh Nadig (ETH) ” A A

o o 0O O O

SAFARI 29

https://people.inf.ethz.ch/omutlu/
mailto:onur.mutlu@inf.ethz.ch

Task Information #2946.001 (2)

= Senior Researchers

o Juan Gomez Luna (ETH)
Haiyu Mao (ETH)
Lois Orosa (ETH)
Jisung Park (ETH) ‘
Gagandeep Singh (ETH) | 48

= More students/postdocs to be added as the task evolves

SAFARI 3

Recent PhD Graduate

= Minesh Patel
o October 2021

o Enabling Effective Error Mitigation in Memory Chips That Use
On-Die Error-Correcting Codes

o 2022 William C. Carter PhD Dissertation Award in Dependability
o Best Paper Awards at DSN 2019 & MICRO 2020
o https://www.youtube.com/watch?v=0c9bDr18jZE
o https://arxiv.org/abs/2204.10387
o https://www.mineshp.com/

Dissertation Overview

“Enabling Effective Error Mitigation

in Modern Memory Chips that Use On-Die ECC”

Defended Oct. 2021 (ETH Zirich)

Deposited Apr. 2022 (DOI 10.3929/ethz-b-000542542)

Advisor:

Onur Mutlu (ETH Ziirich)

Co-Examiners:

Mattan Erez (UT Austin)

Moinuddin Qureshi (Georgia Tech)

Vilas Sridharan (AMD)

Christian Weis (TU Kaiserslautern)

SAFARI
402 views - Premiered Jul 15,2022 4 D CLIP =+ SAVE ... 31
SAFARI ® -

https://www.youtube.com/watch?v=0c9bDr18jZE
https://arxiv.org/abs/2204.10387
https://www.mineshp.com/

Recent PostDoc Alumni

= Dr. Lois Orosa
o March 2022
o Director at the Galician Supercomputing Center

= Dr. Gagandeep Singh
o September 2022
o Joining AMD Research

= Dr. Jisung Park
o September 2022
o Joining POSTECH (South Korea) as Assistant Professor

SAFARI

32

Soon to Finish PhD

= Hasan Hassan
o PhD Defense date: September 29, 2022
o Improving DRAM Performance, Reliability, and Security by
Rigorously Understanding Intrinsic DRAM Operation

o https://drive.google.com/file/d/1E5mFYI|_SMjCP-
7TQ8qt6kRALROGhZs9K/view

SAFARI

33

https://drive.google.com/file/d/1E5mFYl_SMjCP-7TQ8qt6kRALROGhZs9K/view

Recent Internships

= Dr. Gagandeep Singh
o February-June 2022
o Visit to AMD Research

SAFARI

34

Upcoming TECHCON Presentation

= Dr. Juan Gomez-Luna

o Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware

o Based on two major works
= https://arxiv.org/pdf/2105.03814.pdf
= https://arxiv.org/pdf/2207.07886.pdf

Workshop on Computing with Unconventional Technologies (CUT 2021)

Memory Hardware
Benchmarking Memory-Centric

Year: 2021, Pages: 1-7 Computing Systems:

DOI Bookmark: 10.1109/IGSC54211.2021.9651614 Analysis of Real Processing-in-Memory Hardwa

Authors MM, I.zzat I.EI Hajj,
lvan Fernandez, Christina Giannoula,

. . G Olivei
Juan Gomez-Luna, ETH Ziirich eraldo F. Oliveira, Onur Mutlu

N H B H H https://arxiv.org/pdf/2110.01709.pdf
Izzat El Hajj, American University of Beirut T e
|Van Ferna ndeZ, University of Ma|aga https://github.com/CMU-SAFARI/prim-benchmarks
Christina Giannoula, National Technical University of Athens E'Hztirich SAFAR

. . .) 126/37:48
Geraldo F. Oliveira, ETH Zirich
. Benchmarking Memory-Centric Computing Systems: Analysis of Real PIM Hardware - CUT'21 Invited Talk

Onur Mutlu, ETH ZUFICh 502 views + Premiered Dec 6,2021 il 23 GP DISLKE) SHARE L DOWNLOAD & CLIP =+ SAVE

SAFARI https: / /www.youtube.com/watch?v=nphV36SrysA 35

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=nphV36SrysA

Industry Liaisons

= Charles Augustine, Intel

= Pradip Bose, IBM

= Alper Buyuktosunoglu, IBM
= Rosario Cammarota, Intel

= Ramesh Chauhan, Qualcomm
= Prokash Ghosh, NXP

= Jose Joao, ARM

= Arun Joseph, IBM

= Preetham Lobo, IBM

= Nithyakalyani Sampath, TI

= Willem Sanberg, NXP

= Pushkar Sareen, NXP

= Sreenivas Subramoney, Intel
= Xin Zhang, IBM

= We are having and will have regular and irregular meetings with all liaison companies
= Very open to other collaborators, feedback, internships, visits

SAFARI

36

Industry Interactions (This Year I)

= Intel: Collaborative papers with as part of this task

o Sreenivas Subramoney, Gurpreet Kalsi, Anant Nori, Kamlesh Pillai, Shankar
Balachandran, Bharathwaj Suresh

o SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph
and Sequence-to-Sequence Mapping [ISCA 2022]

o pLUTo: Enabling Massively Parallel Computation In DRAM via Lookup Tables
[MICRO 2022]

o Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

o ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
Efficient Genome Analysis [arXiv 2022]

= IBM: Collaborative papers
o Dionysios Diamantopoulos, Christoph Hagleitner

o Accelerating Weather Prediction Using Near-Memory Reconfigurable Fabric
[TRETS 2022]

SAFARI 37

Industry Interactions (This Year 1)

IBM: Collaborative EU Horizon Project BioPIM

Q

Q

Q

Abu Sebastian, Irem Boybat (IBM Research Zurich) B 20 Pl M

http://www.biopim.eu/

BioPIM project aims to leverage the emerging processing-in-memory (PIM)
technologies to enable powerful edge computing.

Synergistic with this task

We will focus on co-designing algorithms and data structures commonly used
in bioinformatics together with several types of PIM architectures to obtain the
highest benefit in cost, energy, and time savings.

BioPIM will also impact other fields that employ similar algorithms.

Our designs and algorithms will not be limited to cheap hardware, and they
will impact computation efficiency on all forms of computing environments
including cloud platforms.

The targeted breakthrough of BioPIM is to invent and leverage in-memory

computing architectures to fundamentally improve the performance and
energy efficiency of various important bioinformatics algorithms to make

mobile genomics a reality

SAFARI 58

http://www.biopim.eu/

Industry Interactions (This Year I1I)

Qualcomm: In-person Visit & Talk

o Ramesh Chauhan
o May 2022

IBM Research: In-person Visit & Talk
o Pradip Bose, Karthik Swaminathan, Alper Buyuktosunoglu, Krishnan Kailas
o May 2022

Intel: Keynote Talk at the Intel Interconnect & Connectivity Summit

o Debendra Das Sharma

o "Memory-Centric Computing"
Keynote Talk at the Intel Interconnect & Connectivity Summit (IICS), Virtual, 9
February 2022.
[Slides (pptx) (pdf)]

SAFARI 3

https://people.inf.ethz.ch/omutlu/pub/onur-IICS-Keynote-MemoryCentricComputing-February-9-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IICS-Keynote-MemoryCentricComputing-February-9-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IICS-Keynote-MemoryCentricComputing-February-9-2022.pdf

Posters for Annual Review 2022 T

o
= Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using
Online Reinforcement Learning [ISCA 2022]

o Gagandeep Singh

m SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and
Sequence-to-Sequence Mapping [ISCA 2022]
o Damla Senol Cali, Joel Lindegger

s Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip
Load Prediction [MICRO 2022]

o Rahul Bera

= Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design [ICDE 2022]

o Geraldo Francisco de Oliveira Junior

s Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-
Memory Hardware [IEEE Access 2022]

o Juan Gomez-Luna

= Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine
Learning Inference Bottlenecks [PACT 2021]

o Geraldo Francisco de Oliveira Junior

SAFARI 40

Special Research Sessions & Courses

Special Session at ISVLSI 2022: 9 cutting-edge talks

In-Memory Processing
ISVLSI 2022 Special Session

IEEE Computer Society Annual Symposium on VLSI

[aVLal

Z O 2 Z Adonis room

Ailathon resort, Paphos, Cyprus
July 4th, 2022

4/ 3:36:35 - Dr. Juan Gémez-Luna, "Introduction to the ISVLSI 2022 Special Session on Processing-in-Memory'

ISVLSI 2022 Special Session on Processing-in-Memory

1,286 views - Premiered Aug 9, 2022 e 61 GJ DISLIKE > SHARE L DOWNLOAD 3 CLIP =+ SAVE ...
@ OnunMutiulLectures ANALYTICS | EDIT VIDEO
26.9K subscribers

SAFARI https://www.youtube.com/watch?v=qeukNs5XI3 4

https://www.youtube.com/watch?v=qeukNs5XI3g

748 Computer Architecture - Fall 2021 Search

% Recent Changes Media Manager = Sitemap

Comp Arch (Fall’2l) -~

Lecture Video Playlist on YouTube

@ Livestream Lecture Playlist

Fall 2021 Edition:
o https://safari.ethz.ch/architecture/fall2021/doku. e

Resources

php?id=schedule iyl

Course Webpage
« & Computer Architecture FS20:

g m
n Lecture Videos
a I I 0 n u - & Digitaltechnik SS21: Course

Webpage

« 4 Digitaltechnik $S21: Lecture
Videos

o https://safari.ethz.ch/architecture/fall2020/doku. . ..

- @ HotCRP

php?id=schedule - —

Youtube Livestream (2021):

o https://www.youtube.com/watch?v=4yfkM 5EFg S st 320 S e i
0&list=PL50Q2s0XY2Zi-Mnk1PxiEIG32HAGILKTOF e e

Youtube Livestream (2020):

o https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN

4
Master’s level course Fall 2021 Lectures & Schedule
O Ta ken by Ba Ch el orls / M asters / PhD Students Week Date Livestream Lecture Readings Lab HW

w1 30.09 Yo Live = LA: Introduction and Basics Required Lab 1 HWO
H H H Thu. am(PDF) i (PPT) Mentioned = Out Out
D CUttI ng edg e resea rCh top I CS + fu nd a menta |S I n 01.10 | Youfff Live = L2: Trends, Tradeoffs and Design Required
H Fri. Fundamentals Mentioned
Computer Architecture PO (PP
w2 07.10 | Youff[Live = L3a: Memory Systems: Challenges and Described HW 1

o 5 Simulator-based Lab Assignments e

L3b: Course Info & Logistics

o Potential research exploration (POP) PP

L3c: Memory Performance Attacks Described
M h i a(PDF) s (PPT) Suggested
D a ny resea rC read I ng S 08.10 Youf[[Live = L4a: Memory Performance Attacks Described | Lab 2
Fri. am(PDF) i (PPT) Suggested | Out

L4b: Data Retention and Memory Refresh = Described

https://www.youtube.com/onurmutlulectures e e

am(PDF) i (PPT) Suggested

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures

7,;‘-;‘ fﬁ Digital Design and Computer Architecture - Dearch

\N Spring 2021

DDCA (Spring 2022) -~

Spring 2022 Edition:
o https://safari.ethz.ch/digitaltechnik/spring2022/do * &
ku-DhD?|d=SChedu|e %g&%:zﬂmems

- = m Resources
Spring 2021 Edition: - @ Compur e OMU)
S§815: Lecture Videos
%/ Computer Architecture (CMU)

o https://safari.ethz.ch/digitaltechnik/spring2021/do . s curewase *

Videos

ku.Dh D?id=schedu|e = 4 Digitaltechnik SS18: Course

Website

= 4 Digitaltechnik SS19: Lecture
Videos

= 4 Digitaltechnik S519: Course
Website

= f4 Digitaltechnik SS20: Lecture

Youtube Livestream (Spring 2022): I

o https://www.youtube.com/watch?v=cpXdE3HWvVK
0&list=PL5Q2s0XY27i97Ya5DEUpMpO2bbAcaG7c6

Youtube Livestream (Spring 2021):

o https://www.youtube.com/watch?v=LbCOEZY8yw
4&list=PL50Q2s0XY2Zi uej3aY39YB5pfW4SJ7LIN

Bachelor’s course

2nd semester at ETH Zurich

Rigorous introduction into “How Computers Work”
Digital Design/Logic

Computer Architecture

10 FPGA Lab Assignments

I I I S

$hétpS:R/www.youtube.com/onurmutlulectures

Recent Changes Media Manager Siten

Lecture Video Playlist on YouTube

@ Livestream Lecture Playlist

» Computing landscape is very different from 10-20 years ago

= Applications and technology both demand novel architectures

Hybrid Mai w

Persistent Memory/Storage
Processors and

Accelerators Every component and its
1 interfaces, as well as
@ g entire system designs
i are being re-examined

General Purpose GPUs

Watchon @3 YouTube

%/ Recorded Lecture Playlist

How Com{iZlers Work

(from the ground up)

Watch on (@ Youube

Spring 2021 Lectures/Schedule

Week Date Livestream Lecture Readings

W1 2502 Yol Live L1: Introduction and Basics Required
Thu. am (PDF) z(PPT) Suggested
Mentioned

26.02 Youll[Live L2a: Tradeoffs, Metrics, Mindset Required

Fri. am (PDF) zm (PPT)

L2b: Mysteries in Computer Architecture Required
am (PDF) @r(PPT) Mentioned

w2 04.03 | Y[Live L3a: Mysteries in Computer Architecture Il Required
Thu. am (PDF) zs#(PPT) Suggested
Mentionad

Lab HW

https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/onurmutlulectures

PIM Course (Spring 2022)

A Modern Primer on Processing in Memoryj

Onur Mutlu*®, Saugata Ghose®®, Juan Gémez-Luna*, Rachata Ausavarungnirun

SAFARI Research Group

bCarn iversity

]

“University of ina-Champaig
“King Mongkut’s University of Technology North Bangkok

= Spring 2022 Edition:
o https://safari.ethz.ch/projects and semi

nars/spring2022/doku.php?id=processing

in_memory

= Youtube Livestream:

o https://www.youtube.com/watch?v=9e4

Chnwdovo&list=PL50Q2s0oXY2Zi-

841fUYYUK9ESXKhQKRPyX

= Project course

o Taken by Bachelor's/Master’s students
o Processing-in-Memory lectures

o Hands-on research exploration

o Many research readings

SAFARI

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

Invit

Watch on @YouTube

jted Book Chapter in Emergin ymputing: From Devic -
ooking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

Spring 2022 Meetings/Schedule

Week Date Livestream Meeting
W1 10.03 Yol Live M1: P&S PIM Course Presentation
Thu. aa (PDF) zmi (PPT)
w2 1503 Hands-on Project Proposals
Tue.

17.03 Yol Premiere = M2: Real-world PIM: UPMEM PIM

Thu. a (PDF) zmi (PPT)
w3 2403 Yol Live M3: Real-world PIM:
Thu. Microbenchmarking of UPMEM
PIM
i (PDF) m (PPT)
w4 3103 Yol Live M4: Real-world PIM: Samsung
Thu. HBM-PIM
(@ (PDF) am (PPT)
w5 07.04 YoflD Live MS5: How to Evaluate Data
Thu. Movement Bottlenecks

am (PDF) @ (PPT)

we 1404 YouflD Live M6: Real-world PIM: SK Hynix AiM
Thu. @ (PDF) @m (PPT)
W7 21.04 Yol Premiere | M7: Programming PIM
Thu. Architectures
(@ (PDF) zm (PPT)
we 28.04 Yol Premiere =M8: Benchmarking and Workload
Thu. Suitability on PIM
am (PDF) s (PPT)
W9 05.05 Yol Premiere =M9: Real-world PIM: Samsung
Thu. AXDIMM
am (PDF) s (PPT)

W10 12,05 Yol Premiere =M10: Real-world PIM: Alibaba HB-

Thu. PNM
am (PDF) @m (PPT)
Wil 19.05 Yol Live M11: SpMV on a Real PIM
Thu, Architecture
m (PDF) am (PPT)
w12 2605 Yol Live M12: End-to-End Framework for
Thu Processing-using-Memory
«am (PDF) zm (PPT)
W13 02.06 YoM Live M13: Bit-Serial SIMD Processing
Thu. using DRAM
i (PDF) am (PPT)
W14 09.06 Yol Live M14: Analyzing and Mitigating ML
Thu. Inference Bottlenecks

am (PDF) am (PPT)

w15 1506 Yol Live M15: In-Memory HTAP Databases
Thu. with HW/SW Co-design
(@ (PDF) m (PPT)
w16 23.06 YoullD Live M16: In-Storage Processing for
Thu. Genome Analysis

(@ (PDF) am (PPT)
W17 18.07 Yol Premiere M17: How to Enable the Adoption
Mon. of PIM?
(@ (PDF) @ (PPT)
w18 09.08 Yool Premiere | SS1: ISVLSI 2022 Special Session
Tue. on PIM
(PDF & PPT)

108

Learning Assignments
Materials

Required Materials HW 0 Out
Recommended
Materials

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX

Genomics (Spring 2022)

= Spring 2022 Edition:
o https://safari.ethz.ch/projects and semi
nars/spring2022/doku.php?id=bioinforma

tics

= Youtube Livestream:

o https://www.youtube.com/watch?v=DEL
5A Y3TI&list=PL5Q2s0XY2Zi8NrPDgOR
1VRU Cxxjw-ul8

= Project course
o Taken by Bachelor’'s/Master’s students
o Genomics lectures
o Hands-on research exploration
o Many research readings

ﬁ. Accelergl’ur_lgGeno_mm_:_s‘Coursg; Meeting 1: C...

e P

Genomic Sm;\nh Sequencing Machine

© Pro-alignment Fitering

¥
SAM Hha (aigremant scone, edt
ARtance. type ans DGYSon of aach ek

» Ruorerce unsequences extiacted
e Sorreron kATt locuion

Accalerating
Pre Filtering

f Reducing
(o tvmtwiient)

g (Smewmis (T e
Watch on @BYouTube e C Sparze OF)

Spring 2022 Meetings/Schedule

Accelerating Alignment

Week Date Livestream Meeting Learning
Materials

Assignments

w1 11.3 | YoufIB Live M1: P&S Accelerating Genomics Required

SAFARI

Fri. Course Introduction & Project Materials
Proposals Recommended
am (PDF) zm (PPT) Materials

w2 18.3 | Yol Live M2: Introduction to Sequencing
Fri. am (PDF) zm (PPT)

w3 253 Yul Premiere A M3: Read Mapping
Fri. am (PDF) zm (PPT)

W4 01.04 | Youlll® Premiere = M4: GateKeeper
Fri. am (PDF) zm (PPT)

w5 08.04 Yl Premiere = M5: MAGNET & Shouiji
Fri. am (PDF) zm (PPT)

w6 15.4 | Yol Premiere = M6: SneakySnake
Fri. am (PDF) zm (PPT)

w7 294 Yol Premiere = M7: GenStore
Fri. am (PDF) zm (PPT)

w8 06.05 | Youlll® Premiere = M8: GRIM-Filter
Fri. am (PDF) zm (PPT)

w9 13.05 | Yol Premiere = M9: Genome Assembly
Fri. am (PDF) zm (PPT)

W10 20.05 YoullB Live M10: Genomic Data Sharing Under
Fri. Differential Privacy

am (PDF) @w (PPT)

w11 10.06 | Yl Premiere M11: Accelerating Genome

Fri. Sequence Analysis

am (PDF) zm (PPT)

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18

Hetero. Systems (Spring’22

= Spring 2022 Edition:
o https://safari.ethz.ch/projects and semi
nars/spring2022/doku.php?id=heterogen
eous_systems

= Youtube Livestream:

o https://www.youtube.com/watch?v=0FO
S5fTrgFIY&list=PL5Q2s0XY2Zi9XrgXR38IM
FTimY6h7Gzm

= Project course
o Taken by Bachelor’'s/Master’s students
o GPU and Parallelism lectures
o Hands-on research exploration
o Many research readings

— |/

el ez e e]

i
§ Non-coherent bu

I Coherent bus

Watch on @B YouTube
jg for Heterogeneous Integrated Systems,” ICPE 2017.

Spring 2022 Meetings/Schedule

Week Date Livestream Meeting

W1 15.03 | Yol Premiere = M1: P&S Course Presentation
Tue. &z (PDF) & (PPT)

w2 22.03 | Youll[® Premiere = M2: SIMD Processing and GPUs

Tue. &z (PDF) & (PPT)

w3 29.03 | Youll[Premiere = M3: GPU Software Hierarchy
Tue. m (PDF) zm (PPT)

w4 05.04 Yol Premiere | M4: GPU Memory Hierarchy
Tue. m (PDF) zm (PPT)

W5 12.04 Youll[B Premiere = M5: GPU Performance
Tue. Considerations

am (PDF) zx (PPT)
Weé 19.04 | Yul[D Premiere | M6: Parallel Patterns: Reduction

Tue. am (PDF) zm (PPT)
W7 26.04 Yulll® Premiere = M7: Parallel Patterns: Histogram
Tue. am (PDF) zm (PPT)

w8 03.05 Youll[® Premiere = MB8: Parallel Patterns: Convolution
Tue. am (PDF) zm (PPT)

w9 10.05 Youlll Premiere = M9: Parallel Patterns: Prefix Sum
Tue. (Scan)
am (PDF) zm (PPT)

W10 | 17.05 Yl Premiere = M10: Parallel Patterns: Sparse
Tue. Matrices
am (PDF) zm (PPT)

W11 24.05 Youll[® Premiere = M11: Parallel Patterns: Graph
Tue. Search
tm (PDF) & (PPT)

W12 01.06 Yol Premiere M12: Parallel Patterns: Merge
Wed. Sort
tm (PDF) & (PPT)

W13 07.06 Youll[® Premiere = M13: Dynamic Parallelism
Tue. m (PDF) zm (PPT)

W14 15.06 Youll[® Premiere = M14: Collaborative Computing
Wed. (m (PDF) & (PPT)
w15 24.06 Yulll® Premiere M15: GPU Acceleration of

Fri. Genome Sequence Alignment
am (PDF) @m (PPT)

W16 14.07 Youll[® Premiere = M16: Accelerating Agent-based
Thu. Simulations
{m (PDF) tm (ODP)

Learning
Materials

Required Materials
Recommended
Materials

52

Assignments

HW 0 Out

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://www.youtube.com/watch?v=oFO5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm
https://www.youtube.com/watch?v=oFO5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm

HW /SW Co-Design (Spring 2022)

2 0/ StV JepRralicecrmeefs e.Sparse Ma ix Comp
Enables highly-efficient sparse matrix compression and computation
General across a diverse set of sparse matrices and sparse matrix operation

= Spring 2022 Edition:

o https://safari.ethz.ch/projects and semi Software Hardware
nars/spring2022/doku.php?id=hw_sw co | Efficient Unit that scans

design compression bitmaps to
using a Hierarchy accelerate

of Bitmaps indexing

= Youtube Livestream:

o https://youtube.com/playlist?list=PL5Q2s
0oXY2Zi8nH7un3ghD2nutKWWDk-NK

* Memory management is delegated

to the Memory Translation Layer (%) (%) 7% (7
(MTL) in the memory controller

- Address translation

- Physical memory alloc 0 08 ¢t

= Project course
o Taken by Bachelor's/Master’s students
2 HW/SW co-design lectures oy
o Hands-on research exploration
o Many research readings

VB1 VB2 VB3 VB4
VBI Address Space
* Pros: Many benefits, in g
in the memory controller

- Physical memory is allocated only

Watch on (8 YouTube

Edit
2022 Meetings/Schedule (Tentative)
Week Date Livestream Meeting Materials Assignments

wo 16.03 Youll[® Live | Intro to HW/SW Co-Design Required HW 0 Out
ax (PPTX) am (PDF)

W1 23.03 Project selection Required

w2 30.03 | Ywi® Live | Virtual Memory (1)
aE (PPTX) am (PDF)

W3 | 13.04 Yol Live Virtual Memory (Il)
15 (PPTX) az (PDF)

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=hw_sw_codesign
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi8nH7un3ghD2nutKWWDk-NK

SSD Course (Spring 2022)

Spring 2022 Edition: P&S Modern SSDs
o https://safari.ethz.ch/projects and semi Basics of NAND Flash-Based SSDs
nars/spring2022/doku.php?id=modern s
sds
Dr. Jisung Park
Prof. Onur Mutlu
Youtube Livestream:)
o https://www.youtube.com/watch?v=_g4r — 25 March 2021
m 7 1 DSY4&| iSt= P LSQZSOXYZZiSVa bcse 1 kL Modern Solid-State Drives (SSDs) Course - Meeting 2: Basics of NAND Flash-Based SSDs (Spring 2022)
22DEch|2RAq EEEEE Al o e e 16 GUDISLKE > SHARE & DOWNLOAD §¢ CLIP =+ SAVE ...
o Taken by Bachelor’'s/Master’s students Introduction to MQSim
o SSD Basics and Advanced Topics
. Rakesh Nadig
o Hands-on research exploration Dr. Jisung Park
o Many research readings Prof. Onur Mutiu

ETH Zirich
Spring 2022
8th April 2022

Modern Solid-State Drives (SSDs) Course - Meeting 4: Introduction to MQSim (Spring 2022)

views - Streamed live on Apr 8, 2022 e 17 GP DISLIKE) SHARE & DOWNLOAD 3¢ CLIP =+ SAVE

ANALYTICS | EDIT VIDEO

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=modern_ssds
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq

Agenda

Problem and Background
Task Overview
Technical Challenges, Goals and Ideas

Ideas, Results and Papers from the Past Year

SAFARI

49

Two Major Thrusts

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

SAFARI

50

Thrust 1 Exploration Ideas

1.1. Comprehensive Energy and Performance Analysis of ML/AI Accelerator
Execution on Key ML/AI Workloads

1.2. Cache/Buffer, On-Chip Memory, Interconnect, Memory Controller Designs for
ML Accelerators and Their Interfaces

1.3. Complete on-chip ML/AI accelerator designs with careful data orchestration
and on-chip memory management.

1.4. On-chip & off-chip near-data processing (NDP) designs, interfaces, evaluation,
programming for AI/ML workloads

1.5. Evaluation and understanding of both short-term and long-term options for
NDP for AI/ML Workloads

1.6. Use of NVM devices, simple customized DRAM and 3D-stacked Memory+Logic
for AI/ML Acceleration

1.7. High-Fidelity and Highly-Flexible Open Source Simulation & Modeling This
Infrastructures for ML/AI Memory Systems talk

SAFARI >

Two Major Thrusts

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

SAFARI

52

Thrust 2 Exploration Ideas

2.1. Comprehensive performance and energy analysis of rigid policies in the
memory hierarchy — how far are they from the ideal policies? What is the
maximum potential ML techniques can achieve?

2.2. New caching, prefetching, mem. controller, runahead, compression policies
that are directed with appropriate ML techniques

2.3. Rigorous specification and coordination of ML-based on-chip cache, prefetch,

DRAM, NVM, hybrid mem. Controllers

2.4. Design and evaluation of new ML-based techniques to manage hybrid This
memories consisting of multiple different technologies talk

2.5. Design and evaluation of new ML-based data mapping policies across on-chip
caches and memory controllers

2.6. Design and evaluation of new ML-based thread scheduling policies in both
SMT and memory controllers

SAFARI >3

System Architecture Design Today

Human-driven
o Humans design the policies (how to do things)

Many (too) simple, short-sighted policies all over the system
No automatic data-driven policy learning

(Almost) no learning: cannot take lessons from past actions

Can we design
fundamentally intelligent architectures?

SAFARI >4

An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

How do we start?

SAFARI >

Two Major Thrusts & Their Synergies

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

56

Agenda

Problem and Background
Task Overview
Technical Challenges, Goals and Ideas

Ideas, Results and Papers from the Past Year

SAFARI

57

Initial Results in Year I (2020 Review)

GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis [MICRO 2020]

NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather
Prediction Modeling [FPL 2020]

An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for
Neural Network Acceleration [DSN 2020]

NATSA: A Near-Data Processing Accelerator for Time Series Analysis
[ICCD 2020]

Robust Machine Learning Systems: Challenges, Current Trends,
Perspectives, and the Road Ahead [IEEE D&T 2020]

Accelerating Genome Analysis: A Primer on an Ongoing Journey [IEEE
Micro 2020]

SMASH Open Source Software Code Release [GitHub]
SAFARI o8

Initial Results in Year I (2020 Ongoing)

Efficiently Accelerating Edge ML Inference by Exploiting Layer
Heterogeneity: An Empirical Study with Google Edge Models [Ongoing]

A New Methodology and Open-Source Benchmark Suite for Evaluating Data
Movement Bottlenecks: A Near-Data Processing Case Study [Ongoing]

Accelerating Profile Hidden Markov Models in Computational Biology
Applications [Ongoing]

StenCache: A Near-Cache Accelerator for Stencil Computations [Ongoing]

SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM
[Ongoing]

Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases
with Specialized Hardware/Software Co-Design [Ongoing]

Reinforcement Learning based Prefetch Generation [Ongoing]

Benchmarking a New Paradigm: Understanding a Modern Processing-in-
Memory Architecture [Ongoing]

SAFARI >

Year II Results (2021 Annual Review I

Google Neural Network Models for Edge Devices: Analyzing and Mitigating
Machine Learning Inference Bottlenecks [PACT 2021]

Pythia: A Customizable Hardware Prefetching Framework Using Online
Reinforcement Learning [MICRO 2021]

Refresh Triggered Computation: Improving the Energy Efficiency of
Convolutional Neural Network Accelerators [TACO 2020]

SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures [HPCA 2021]

SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in
DRAM [ASPLOS 2021]

SAFARI 60

Year II Results (2021 Annual Review II)

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks [IEEE Access 2021]

Benchmarking a New Paradigm: An Experimental Analysis of a Real
Processing-in-Memory Architecture [Arxiv, 2021]

FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications [IEEE Micro 2021]

A Modern Primer on Processing in Memory [Arxiv, 2020]

Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid
Storage Systems [Ongoing]

SAFARI 61

Year III Results (2022 Annual Review 1)

Benchmarking a New Paradigm: Experimental Analysis and
Characterization of a Real Processing-in-Memory System [IEEE Access'22

Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware [CUT 2021]

An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [arXiv 2022]

SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Architectures [SIGMETRICS 2022]

High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory [HICOMB 2022] Part of Thrust 1:

Real PIM Systems

PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021

SAFARI 62

Year III Results (2022 Annual Review 2)

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-
Graph and Sequence-to-Sequence Mapping [ISCA 2022]

GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis [ASPLOS 2022]

Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm
[HICOMB 2022]

Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design
[ICDE 2022]

Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation
Capability of NAND Flash Memory [MICRO 2022]

Part of Thrust 1
SAFARI 03

Year I1I Results (2022 Annual Review 3)

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems
Using Online Reinforcement Learning [ISCA 2022]

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022] Part of Thrust 2

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022] Part of Thrust 1

DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

A Modern Primer on Processing in Memory [Arxiv, Updated 2022]

SAFARI

D

Year III Results (2022 Annual Review 4)

EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network
Accelerators [arXiv 2022] https://arxiv.org/abs/2202.02310

ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-

Efficient Genome Analysis [arXiv 2022] https://arxiv.org/abs/2207.09765

Accelerating Weather Prediction Using Near-Memory Reconfigurable Fabric
[TRETS 2022] https://arxiv.org/abs/2107.08716

SAFARI 65

https://arxiv.org/abs/2202.02310
https://arxiv.org/abs/2207.09765
https://arxiv.org/abs/2107.08716

Third Year Results: More Detail

Year III Results (2022 Annual Review 1)

Benchmarking a New Paradigm: Experimental Analysis and
Characterization of a Real Processing-in-Memory System [IEEE Access'22]

Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware [CUT 2021]

An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [arXiv 2022]

SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Architectures [SIGMETRICS 2022]

High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory [HICOMB 2022]

PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]

SAFARI 07

Eliminating the Adoption Barriers

Processing-in-Memory
in the Real World

SAFARI

Processing-in-Memory Landscape Today

LLLILL LELLLLL LLLLLE L

i
i
g
i
S
5

[SK Hynix 2022] [Samsung 2021] [UPMEM 2019]

This does not include many experimental chips and startups 69

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandwidth

% 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMEM LUPME M UPMEM UPMEM LIPMIEM UPMEM UPMEM
PIM PiM P PiM PN PIM
chip chip chip ¢ hig i

https:/fwww.anandtech.com/show/14750/hot-chips-3 T-analysis-inmemory-processing-by-upmem 70
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

UPMEM Memory Modules

* E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz
* P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz

SAFAR’ www.upmem.com 71

http://www.upmem.com/

2,560-DPU Processing-in-Memory System

Main Memory

[fﬁﬁﬁﬁf_\f_\f_\f_\
; »-| \ crie) chi)\ chip |\ chie)\ chip |\ chie){ chip |\ chip
(oram\(oram\(oram\(oram\(oram (oram (oram\(oram

Host
CPU O

\\

\Chip chip || chip || chip)| chip || chip)| chip Chip/ AZ

Z,

\\

!

PIM-enabled Memory

)

Main Memory

x10

&= | e)| chie)\ criv || chip)| chie)\ crip | chip)| chie
(oram\(oram\(Gram(oram(oram (oram (Gram\(oram

Host
CPU 1

N
S —

\Chip chip || chip || chip)| chip || chip || chip Chip/ f2
X

Z,

7

PIM-enabled Memory

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOULA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Zirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM i motivated by the of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM i ‘The UPMEM PIM i combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUS), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key i First, we conduct an i ization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the and scaling istics of PrIM

on the UPMEM PIM and compare their and energy to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and
architecture designers of future PIM systems.

https://arxiv.org/pdf/2105.03814.pdf

72

https://arxiv.org/pdf/2105.03814.pdf

More on the UPMEM PIM System
DRAM Processing Unit (Il)
PIM Chip
-
Control/Status Interface 4—»{ DDR4 Interface
ﬂ/ \\
V)
n/l
F ¥ w N)
DISPAICH
FETCH1 24-KB
FETCH2 §—P> Instruction
FETCH3 Memory
. READOP1 2
) > 2 & | e4-mB DRAM
& FORMAT : Bank
ALU1 =
ALU2 . a
: s e
5 ALU4
a MERGE1
o MERGE2
-
_

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 12d: Real Processing-in-DRAM with UPMEM (ETH Ziirich, Fall 2020)

1,120 views * Oct 31, 2020 |b 30 0 SHARE SAVE

@ Onur MUﬂU_LECtUTES ANALYTICS EDIT VIDEO
< 16.7K subscribers

>

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Experimental Analysis of the UPMEM PIM Engine

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOUVLA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and

architecture designers of future PIM systems.
https://arxiv.orqg/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Understanding a Modern
Processing-in-Memory Architecture:

Benchmarking and Experimental Characterization

Juan Gomez Luna, Izzat El Hajj,
lvan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

m Ziirich SA F A R ’

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Executive Summary

+ Data movement between .memo(?//stora ge units and compute units is a major
contributor to execution time and energy consumption

. Processing-in—l\/\emory (PIM) is a paradigm that can tackle the data movement
bottlenec
- Though explored for +50 years, technology challenges prevented the successful materialization

* UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

* Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

* Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture

- PrIM (Processing-In-Memory) benchmarks:
* 16 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

* Takeaways:
- Workload characteristics for PIM suitability

- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems

SAFARI /6

Upcoming TECHCON Presentation

= Dr. Juan Gomez-Luna

o Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware

o Based on two major works
= https://arxiv.org/pdf/2105.03814.pdf
= https://arxiv.org/pdf/2207.07886.pdf

Workshop on Computing with Unconventional Technologies (CUT 2021)

Memory Hardware
Benchmarking Memory-Centric

Year: 2021, Pages: 1-7 Computing Systems:

DOI Bookmark: 10.1109/IGSC54211.2021.9651614 Analysis of Real Processing-in-Memory Hardwa

Authors MM, I.zzat I.EI Hajj,
lvan Fernandez, Christina Giannoula,

. . G Olivei
Juan Gomez-Luna, ETH Ziirich eraldo F. Oliveira, Onur Mutlu

N H B H H https://arxiv.org/pdf/2110.01709.pdf
Izzat El Hajj, American University of Beirut T e
|Van Ferna ndeZ, University of Ma|aga https://github.com/CMU-SAFARI/prim-benchmarks
Christina Giannoula, National Technical University of Athens E'Hztirich SAFAR

. . .) 126/37:48
Geraldo F. Oliveira, ETH Zirich
. Benchmarking Memory-Centric Computing Systems: Analysis of Real PIM Hardware - CUT'21 Invited Talk

Onur Mutlu, ETH ZUFICh 502 views + Premiered Dec 6,2021 il 23 GP DISLKE) SHARE L DOWNLOAD & CLIP =+ SAVE

SAFARI https: //www.youtube.com/watch?v=nphV36SrysA 77

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=nphV36SrysA

Observations, Recommendations, Takeaways

GENERAL PROGRAMMING RECOMMENDATIONS

Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as possible.
Split the workload into independent data blocks,
which the DPUs operate on independently.

Use as many working DPUs in the system as possible.
Launch at least 11 tasklets (i.e., software threads)
per DPU.

PROGRAMMING RECOMMENDATION 1

For data movement between the DPU’s MRAM bank and the
WRAM, use large DMA transfer sizes when all the accessed

data is going to be used.

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU
transfers between the host main
memory and the DRAM Processing

Unit’s l_/[aln_ memory (MRAM) banks_ KEY TAKEAWAY 1
result in higher sustained bandwidth.
The UPMEM PIM architecture is fundamentally compute
bound. As a result, the most suitable work- loads are

memory-bound.

SAFARI

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways

SAFARI

Key Takeaway 1

64.00

0.03

Arithmetic Throughput (MOPS, log scale)

32.00 A
16.00 -
8.00 -
4.00 -
2.00 +
1.00 ~
0.50 -
0.25 ~
0.13 ~
0.06 -

(a) INT32, ADD (1 DPU)

Memory-bound
region

Compute-bound

region

@ > A o D o ©
VN <5 Vo v)) v
Q" O ¢ N/ > N

Operational Intensity (OP/B)

KEY TAKEAWAY 1

NV X D

The throughput
saturation point is as low
as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.

As aresult, the most suitable workloads are memory-bound.

SAFARI

80

Table 4: Evaluated CPU, GPU, and UPMEM-based PIM Systems.

Processor

Co!

Memor

1024.000
256.000 -
64.000 -
16.000 -
4.000 -
1.000

0.250 -
0.063 -
0.016 -
0.004 -
0.001

Speedup over CPU (log scale)

System Nod Total Cores — Frequency Peak Performance | Capacity Total Bandwidih | TPF
K Tntel Xeon E3-1225 v6 CPU [241] | 14 nm 48 threads) 33GHz 26.4 GFLOPS* 32GB 37.5 GB/s 3W
NVIDIA Titan V GPU [277] 14 nm 80 (5,120 SIMD lanes) 1.2 GHz 12,288.0 GFLOPS 12 GB 652.8 GB/s 250 W
e y a e a W a y 2 2,556-DPU PIM System 2x nm 350 MHz 894.6 GOPS 159.75 GB 1.7 TB/s 383 WT
640-DPU PIM System 2x nm 267 MHz 170.9 GOPS 40 GB 333.75 GB/s 96 WT
*Estimate d GFLOPS = 3.3 GHz X 4 cores X 2 instructions per cycle.
"Estimated TDP = T8 PRGS x 1.2 W /chip [199].
o CPU GPU 640 DPUs 2556 DPUs
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
- - (V)] | (V)] [¥p) [l — —
<>t L P m P ! 8 ._<,E) % 2 2 2 [L | ; i o =
(0p] (%2} 1 1 L Q_ 2 2 w
| T z |z | F o | wn
Z | = < | < | 2
O) Ll Ll G)
A | B s | 2
Ol o0
More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

KEY TAKEAWAY 2
The most well-suited workloads for the UPMEM PIM architecture

use no arithmetic operations or use only simple operations (e.g.,
bitwise operations and integer addition/subtraction).

SAFARI

81

Table 4: Evaluated CPU, GPU, and UPMEM-based PIM Systems.

Process Processor Cores Memo:
System Node Total Cores Frequency Peak Performance | Capacity Total Bandwidth | (0
Intel Xeon E3-1225 v6 CPU [241] | 14nm 4 (8 threads) 33 GHz 26.4 GFLOPS* 32 GB 37.5 GB/s 73 W
e aKkeawa VDA Tie YOrU)|t {Gin Dl 2o usmoonow | bor e | s
640-DPU PIM System 2x nm 640 267 MHz 170.9 GOPS 40 GB 333.75 GB/s 9 W?
755,‘5:;‘,‘:;’fSﬁ‘i"%ﬁéﬁKﬁ2‘37;32&"55"”"’”""W’
O CPU 1 GPU 640 DPUs 2556 DPUs
o 1024.000 - ! r !
— M M B F] 1
© 256.000 N : . : i i
— N M - 1 1 B
:0 64.000 : N —:: —: 0 AR b i ~ " ~
& b - & A |
o 16.000 : \ \ N : \ : \ =" |
~ il 1 -l 1
- 4.000 \ N \ - N N \ \ —H N \ !
o 1 000 \ N I 1 N \ [\ : b " Iy :
©) M NI N M M y N TS N N |
o 0.250 \ ' R \ ' R HE N T \ !
Py 1
3 0063 || SR TN T (I S N \ !
el 1] 1
My 1 I by "‘ P M 1
g— 0.016 \ '.',: :'. : N y :: : | \ N : i
1 A 1
T 0.004 \ vl R o 3N TN 1Rl \ !
My Py y 1 A 1
v 0.001 B . b h B
s)
| - (Vp) | (¥p) [a — —
m § w | Z2 | m ;_,') = a c</£1 A 2 g § e A R T - |2
T+ z|lz|" ©|9 < | x| 3
4k 2125
A | P S| 2
(G (G
More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

KEY TAKEAWAY 3
The most well-suited workloads for the UPMEM PIM

architecture require little or no communication across DPUs
(inter-DPU communication).

SAFARI

82

Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in
terms of performance and energy efficiency on most of PrIM
benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on

a majority of PrIM benchmarks, and the outlook is even more
positive for future PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-
of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.

SAFARI

Understanding a Modern
Processing-in-Memory Architecture:

Benchmarking and Experimental Characterization

Juan Gomez Luna, Izzat El Hajj,
lvan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

ellgoluj@gmail.com

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

m Ziirich SA F A R '

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

UPMEM PIM System Summary & Analysis

Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo
F. Oliveira, and Onur Mutlu,

"Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware"

Invited Paper at Workshop on Computing with Unconventional

Technologies (€UT), Virtual, October 2021.

[arXiv version]

[PrIM Benchmarks Source Code]

[Slides (pptx) (pdf)]

[Talk Video (37 minutes)]

[Lightning Talk Video (3 minutes)]

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan Gémez-Luna Izzat El Hayj Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu
ETH Ziirich American University University National Technical ETH Ziirich ETH Ziirich
of Beirut of Malaga University of Athens

85

https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

PrIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
Matrix transposition TRNS

SAFARI

86

PriIM Benchmarks are Open Source

* All microbenchmarks, benchmarks, and scripts
e https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks ® Unwatch ~ 2 {7 star 2 % Fork 1
<> Code () Issues {1 Pull requests (*) Actions [T Projects [wiki () Security [~ Insights 51 Settings
¥ main + prim-benchmarks / README.md Go to file
Juan Gomez Luna PrIM -- first commit Latest commit 3de4b49 9 days ago O History

A 1 contributor

‘= 168 lines (132 sloc) 5.79 KB Raw Blame ;' Va fi

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.

SAFARI

https://github.com/CMU-SAFARI/prim-benchmarks

Understanding a Modern PIM Architecture

Benchmarking a New Paradigm:
Experimental Analysis and
Characterization of a Real
Processing-in-Memory System

JUAN GOMEZ-LUNA', IZZAT EL HAJJ?, IVAN FERNANDEZ'-3, CHRISTINA GIANNOULA' 4,
GERALDO F. OLIVEIRA', AND ONUR MUTLU!

'"ETH Ziirich

% American University of Beirut

3 University of Malaga

“National Technical University of Athens

Corresponding author: Juan Gémez-Luna (e-mail: juang @ethz.ch).

https://arxiv.orq/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 88

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Understanding a Modern PIM Architecture

Understanding a Modern ,
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

Juan Gémez Luna, Izzat El Hajj,
Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

urich

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

2,579 views * Streamed live on Jul 12, 2021 e 93 GP 0) SHARE =+ SAVE
@ Onur Mutlu_Lectures SUBSCRIBED Q
18.7K subscribers =

) 4

https://www.youtube.com/watch?v=D8Hjy2iU9I4&list=PL502s0XY2Zi tOTAYm--dYByNPL7JhwR9 89

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

More on Analysis of the UPMEM PIM Engine

Inter-DPU Communication
* There is no direct communication channel between DPUs

Main Memory

\\
—)

(omase|[omasd oras(onan|(orardorasionanoman

Chip J| Cnip || aip || cnip || Evip || Crip || Ovip || Evip

oram|[orasi oras|(oram|[orar Dras orar|(orar

y.
Chip || Crip || Chip || Caip || Cvip | Chip | Chip || Cip g

Ll L L LR L L L
o)| Chip | Chip || Chip J| Cp || Chip | Chip || Chip

rim || pime ‘

om | pave) pim || pime
Chip -

cvip || cnip | cnip || onip
e /o XN

PIM-enabled Memory

* Inter-DPU communication takes places via the host CPU using CPU-DPU
and DPU-CPU transfers

* Example communication patterns:
- Merging of partial results to obtain the final result
* Only DPU-CPU transfers
- Redistribution of intermediate results for further computation
* DPU-CPU transfers and CPU-DPU transfers

14 P »l o)18389/257:10°

°

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

1,868 views * Streamed live on Jul 12, 2021 |. 81 0 SHARE SAVE

@ e ANALYTICS | EDIT VIDEO
&> 17.6K subscribers
Talk Title: Understanding a Modern Processing-in-Memory Architecture: Benchmarking and

Experimental Characterization
Dr. Juan Gémez-Luna, SAFARI Research Group, D-ITET, ETH Zurich

https://www.youtube.com/watch?v=D8Hjy2iU9I4&list=PL502s0XY2Zi tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

(]

More on Analysis of the UPMEM PIM |

ngine

Data Movement in Computing Systems

* Data movement dominates performance and is a major system
energy bottleneck

* Total system energy: data movement accounts for
- 62%in consumer applications™,
- 40% in scientific applications*,

- 35%in mobile applications*
Data Movement

v

Video Video

*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” [ISWC 2014

SAFARI
> »l N 227/21:28

Understanding a Modern Processing-in-Memory Arch: Benchmarking & Experimental Characterization; 21m

3,482 views * Premiered Jul 25, 2021 |b 38 0 SHARE SAVE

@ ?;l;l}: Zl:)g:ritz::stures ANALYTICS EDIT VIDEO
« > :

https://www.youtube.com/watch?v=Pp9jSU2b9oM8&list=PL5Q2s0XY2Zi8 VVChACnON4sfh2bJ5IrD&index=159

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159

More on PRIM Benchmarks

= Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina
Giannoula, Geraldo F. Oliveira, and Onur Mutlu,
"Benchmarking a New Paradigm: An Experimental
Analysis of a Real Processing-in-Memory
Architecture”
Preprint in arXiv, 9 May 2021.

[arXiv_preprint]

PrIM Benchmarks Source Code]

Slides (pptx) (pdf)]

Long Talk Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[SAFARI Live Seminar Slides (pptx) (pdf)]

[SAFARI Live Seminar Video (2 hrs 57 mins)]

Lightning Talk Video (3 minutes)]

92

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/abs/2105.03814
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pdf
https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

UPMEM PIM System Summary & Analysis

Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo
F. Oliveira, and Onur Mutlu,

"Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware"

Invited Paper at Workshop on Computing with Unconventional

Technologies (€UT), Virtual, October 2021.

[arXiv version]

[PrIM Benchmarks Source Code]

[Slides (pptx) (pdf)]

[Talk Video (37 minutes)]

[Lightning Talk Video (3 minutes)]

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan Gémez-Luna Izzat El Hayj Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu
ETH Ziirich American University University National Technical ETH Ziirich ETH Ziirich
of Beirut of Malaga University of Athens

93

https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

Year III Results (2022 Annual Review 1)

Benchmarking a New Paradigm: Experimental Analysis and
Characterization of a Real Processing-in-Memory System [IEEE Access'22]

Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware [CUT 2021]

SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Architectures [SIGMETRICS 2022]

High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory [HICOMB 2022]

PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]

SAFARI 74

ML Training on a Real PIM System

Machine Learning Training on
a Real Processing-in-Memory System

Juan Gémez-Luna' Yuxin Guo! Sylvan Brocard® Julien Legriel®

Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!
'ETH Ziirich 2UPMEM

An Experimental Evaluation of Machine Learning Training
on a Real Processing-in-Memory System

Juan Gémez-Luna! Yuxin Guo! Sylvan Brocard* Julien Legriel?
Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!

'ETH Ziirich *UPMEM

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

SAFARI 95

https://arxiv.org/pdf/2206.06022.pdf

Machine Learning Training
on a Real Processing-in-Memory System

Juan Gomez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,
Gagandeep Singh, Onur Mutlu

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s u p

mzmich SAFAR’ (=L

https://arxiv.org/pdf/2206.06022.pdf

Executive Summary

* Training machine learning (ML) algorithms is a computationally expensive process,
frequently memory-bound due torepeatedly accessing large training datasets

* Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities,
can alleviate this data movement bottleneck

* Real-world PIM systems have only recently been manufactured and commercialized
- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

* Our goal is to understand the potential of modern general-purpose PIM architectures to
accelerate machine learning training

e QOur main contributions:

- PIM implementation of several classical machine learning algorithms: linear regression, logistic
regression, decision tree, K-means clustering

- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

* Experimental evaluation on a real-world PIM system with 2,524 PIM cores (@ 425 MHz
and 158 GB of DRAM memory

* New observations and insights:

- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3)
hybrid precision implementations

- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without
native support for those activation functions

- Data canbe [EIaced and laid out for PIM cores to access nearby memory banks in streaming, thus
maximizing PIM memory bandwidth

- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to
memory banks

SAFARI 97

ML Training on Real PIM Talk Video

Machine Learning Training
on a Real Processing-in-Memory System

Juan Gémez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,
Gagandeep Singh, Onur Mutlu

https://arxiv.org/pdf/2206.06022.pdf

juang@ethz.ch

up
mza'rich SA FARI nem

’ }| ‘D 3:07:11/ 3:36:35 + Dr. Juan Gémez-Luna, "Machine Learning Training on a Real Processing-In-Memory System" >

ISVLSI 2022 Special Session on Processing-in-Memory

1,345 views * Premiered Aug 9, 2022 |‘ 61 93 DISLIKE A) SHARE | DOWNLOAD % CLIP =+ SAVE

P
SAFARI https: //www.youtube.com/watch?v=qeukNs5XI3g&t=11226s I8

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

Outline

()

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

r
\.

Evaluation

r
\.

\
J

Key observations and insights

. J

SAFARI 99

Machine Learning Workloads

Machine learning
Unsupervised
learning

* Machine learning training
with large amounts of data
is a computationally
expensive process, which
requires many iterations to
update an ML model’s e
parameters e,

Supervised Reinforcement
learning learning

* Frequent data movement between memory and processing
elements to access training data

* The amount of computation is not enough to amortize the
cost of moving training data to the processing elements

- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses

SAFARI 100

Machine Learning Workloads: Our Goal

* Our goal is to study and analyze
how real-world general-purpose
PIM can accelerate ML training

* Four representative ML

algorithms: linear regression,
logistic regression, decision tree,
K-means 30 etk compute perormance
* Roofline modelto g 1
quantify the memory g o]
boundedness of CPU &
versions of the four & | :
workloads *301 0.1 ; 10

Arithmetic Intensity (OP/B)

[All workloads fall in the memory-bound area of the Roofline]

SAFARI 101

Processing-in-Memory (PIM)

* PIM is a computing paradigm that advocates for memory-
centric computing systems, where processing elements are
placed near or inside the memory arrays

* Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AXDIMM, SK Hynix AiM,
Alibaba HB-PNM

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1) standard
main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements
(PEs) with high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number
of registers and small (or no) cache/scratchpad

4. PEs may need to communicate via the host processor

SAFARI 102

A State-of-the-Art PIM System

Standard Main Memory

_—
y=
y =
1
RAM
i

= T)
Chip
(Host CPU A - /7
/7 Memory Array
2l e o7 4 (Rank or Bank)
AL
O Q \ Y,
() .
(4] Instruction |Scratchpad/
-5 .t:u\\': —— Memory][Memory Memory
(] - Array Array
) il e D
| PIM PE PIM PE
[\lPIM Processing Elements

M_-

PIM-enabled Memory

* In our work, we use the UPMEM PIM architecture

- General-purpose processing cores called DRAM Processing
Units (DPUs)
* Up to 24 PIM threads, called tasklets

* 32-bit integer arithmetic, but multiplication/division are
emulated, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

SAFARI 103

ML Training Workloads

* Four widely-used machine learning
workloads:

Machine learning
Unsupervised
learning

Supervised Reinforcement
learning learning

Linear reg i Logistic reg i K-means

Linear regression (LIN)

Logistic regression (LOG)

Decision tree (DTR)
K-means clustering (KME)

* Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Learning Avplication | Alsorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach PP & Sequential | Strided | Random Operations | Datatype Intra PIM Core | Inter PIM Core
Regression Linear Regression LIN Yes No No mul, add float, int32_t barrier Yes
Supervised Classification Logistic Regression LOG Yes No No mul, add, exp, div | float, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add float barrier, mutex Yes
Unsupervised | Clustering K-Means KME Yes No No ul, compare, add | int16_t, int64_t| barrier, mutex Yes

SAFARI 104

Evaluation Methodology

* Synthetic and real datasets

Synthetic Datasets

ML Workload Strong Scaling (1 PIM core | 256-2048 PIM cores) | Weak Scaling (per PIM core) Real Dataset

Linear regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) | SUSY [223, 224]
Logistic regression || 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) | Skin segmentation [225]
Decision tree 60,000 samples, 16 attr. (3.84 MB) | 153,600,000 samples, 16 attr. (9830 MB) | 600,000 samples, 16 attr. (38.4 MB) | Higgs boson [223, 226]
K-Means 10,000 samples, 16 attr. (0.64 MB) | 25,600,000 samples, 16 attr. (1640 MB) 100,000 samples, 16 attr. (6.4 MB) | Higgs boson [223, 226]

* Evaluated systems

- UPMEM PIM system with 2,524 PIM cores (@ 425 MHz and 158 GB of
DRAM

- Intel Xeon Silver 4215 CPU (16 hardware threads)
- NVIDIA A100 GPU

* We evaluate:
- Metrics
- Performance of PIM kernels
- Performance scaling
- Comparison to CPU and GPU

SAFARI 105

2,560-DPU System (1)

« UPMEM-based PIM Main Hemory

)
(N\
system with 20 UPMEM o o (0
@—p-| (i) Chip){ chip | chip |\ chip |\ chip |\ chip)| chip
[]
DRAM|[DRAM||DRAM|[DRAM|[DRAM||DRAM|[DRAM||DRAM
chip || chip || chip || chip || chip || chip || chip || chip

(40 ranks) cPy 0 —— 2560 DPUs™

P21 DIMMs PERIEN R ENER 6D EA B
Dual x86 socket By
X
° UP M E M DI M MS PIM-enabled Memory

coexist with regular Main Memory
DDR4 DIMMs s
e > memory 4—»[
controllers/socket (3 - 2
os

channels each) CPU 1)

.
* 2 conventional DDR4 - EEEEEEEE
‘ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
DIMMS On One PIM PIM PIM PIM PIM PIM PIM PIM
Chp Chp Chp Chp Chp Chp Chp Chip /10

channel of one

” PIM-enable
controller
160 GB

r
|

SA FA R’ * There are some faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,524 1 06

2,560-DPU System (lI)

Main Memory
)
——— N ——\

Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
oA A e o e o o o)
\cmp chip || chip || chip || chip || chip || chip cmpj AZ

Host
CPUO

A A
y y

PIM-enabled Memory

Main Memory
)
(T —— =)

- Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
T o e e e e o e o)
\cmp chip || chip || chip || chip || chip || chip cmpj A2
N

y

Host
CPU 1

PIM-enabled Memory

SAFARI 107

Evaluation: Metrics

* Linear regression

- Training error rate of LIN-FP32 is the same as the CPU
version

- For integer versions, it remains low and close to that of LIN-
FP32

* Logistic regression
- LUT-based versions obtain lower training error rates that
LOG-INT32, since they use exact values, not approximations

* Decision tree
- Training accuracy only slightly lower than that of the CPU
version
* K-means

- Same Calinski-Harabasz score and adjusted Rand index of PIM
and CPU versions

SAFARI

Evaluation: Analysis of PIM Kernels (1)

60000 |

* Linear regression

"2 50000 o (a) LIN-FP32
B, 40000 - —O— LIN-FP32
£ 30000 -
] o +—1r—v—v+—v—"T"—r""T"""T"""""" "
fA” versions saturate\ % 123456 7 8 9101112131415161718192021222324
PI M Number of PIM Threads (per PIM Core)
at 11 or more
5000 800
L threads y % s (b) LIN INT Versions | eoo - 457
% ~O—LIN-INT32 400 1 324
ig 3000 - LIN-HYB 200 -
Fixed point Z 5000 e 3 I —
accelerates the & /' 1 3 5 7 9111315171921 23
S 1000 -
= [TFssssssssssssnay
kernel by an order 0 J—.—
. 1234567 8 9101112131415161718192021222324
\ Of magnltUde j Number of PIM Threads (per PIM Core)
(°
LIN-HYB is 41% faster than LIN-BUI provides an
L LIN-INT32 additional 25% speedup

SAFARI 109

Evaluation: Analysis of PIM Kernels (II)

500000 |

* Logistic regression z . J- (2 106 32-bit versions —
/ . \ _ ;88888 40316 LOG-INT32
Very high kernel _ \ - 260

100000 1 o Sppn oo N/ T
time of LOG-FP32 0 e O 0000000 0-0-0-0-0
and LOG-INT32

PIM Kernel Time

123456 7 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)

due to sigmoid 5000 —1™
]) . ¢ (b) LOG LUT Versions | go0
__approximation / E 4000 4 1 1 e s || 400
4 N £\ e b || 20
LOG-INT32- 2 2000 \
LUT (MRAM) is 53x 5 1000 - =83
0

faster than LOG-
1234567 8 9101112131415161718192021222324
INT 3 2 Number of PIM Threads (per PIM Core)

_ J
-
LOG-HYB-LUT is 28% faster } [LOG-BUI-LUT provides an }

than LOG-INT32-LUT additional 43% speedup

\.

SAFARI 110

Evaluation: Analysis of PIM Kernels (111)

e Decision tree & K-means
4)

Both workloads 40000 o
2 a
saturate at 11 or = 30000 4
£ 20000 H —o—DTR
more PIM threads = 10000 -
GLJ 0 T
\\‘ "/ E 1 23 456 7 8 9101112131415161718192021222324

Number of PIM Threads (per PIM Core)

/l\/\aximum number\ 30000

(b) KME
of PIM threads in 20000 - e
10000 -~

DTR is 16 due to
the usage Of |OC3| 12345678 9I1o|11|12I13I14I15I16|17I18I19|20|21I22I23I24
SCI‘atChpad Number of PIM Threads (per PIM Core)

\ memory /

SAFARI 111

o

PIM Kernel Time (ms)

Evaluation: Performance Scaling

* Strong scaling: 256 to 2,048 PIM cores

300000 MR 9 30000 8 2500000 SRy o 8 - = P I M k e rn e I ti e
250000 | B cemonmxemet 2| 25000 P D e L 7 800000 - z 6 | I l
B zZ=Za I 4 p EZZAPIM K
z :_:'p":e';i;‘e' L7 g 6 z 2000000 -O—Speedi’:e | ¢ 700000 Z .
= 200000 6 20000 4 [= 7 600000 { s *
o / 5 4 o / -5 / a I I t
£ 150000 > 15000 z d i3 e Z 4 20000 é P '3 Sca e S l n e a r y WI
c c . O § P
< : é 7 ;& £ 1000000 é 7 | , 4000004 Z ¢ 38
2 100000 3 10000 é g 2 ? é 300000 4 Z 7 , f
X < X | + ..’ r
* so000 2 So00 4 é % 7 j * 500000 %‘% 7 j 200000 4 %‘Z % . th e n U| I lb e r O PI M
6 o b1 o 7 g 7 woo { A U U @
256 | 512 | 1024 | 2048 256 | 512 | 1024 | 2048 256 | 512 |1024 | 2048 256 | 512 | 1024 | 2048 r
LIN-FP32 LIN-INT32 LOG-FP32 LOG-INT32 k C O e S /
20000 8 16000 7 30000 s 30000 3
18000 - b7 14000 { . P
— 16000 4 7 P ? 6 25000 { 1 P 7 25000 . Pr7
£ 14000 { [/ (e 1200017 5 z é e 6
Fl 10 L s 10000 |] o 20000 { /] | . 20000
g 12000 1 1 7 d a5 ¢ é 5 5a
= 10000 1 Z d [4 8000 - Z % = 15000 é d L 4 15000 43
= - 7 |72 Q L4
5 o Z / 3500 % é o g 10000 é 7 "3 10000 - L ttl h d f
g Zggg: Z g - L2 4000 | é é - 2 g 1 ? G L,) I e Over ea r0| I l
2000 | f o Z B 1 2000 5 é é R s000 { 7 Z 7R I)
: 2
. inter PIM
256 | 512 | 1024 | 2048 256 | 512 | 1004 | 2008 I n e r C O re
LIN-HYB LIN-BUI LOG-INT32-LUT (MRAM) LOG-INT32-LUT (WRAM) o o
30000 FIM.CPU 7 10000 9 25000 8 14000 7 t d
St -+ w=—— | communication an
25000 { ez Keml 8000 1 Z ; 20000 - é
é, ; ~O—Speedup | 5 2000 4 g g ? F6 10000 4 % 5] 03
gzoooo- g L, 6000 - 7 6% 2 15000 | z M5 8000 4 z 4 5 Communlcatlon
£ 15000 - % - 5000 Z il i? = 2 g L4 2 ® /) E
S L3 A O % S 6000 - % 32
2 oo | é é 4000 4 é Z 15 S 10000 4 é 7 L5 é é &
£y 2wl "y oo | 1| B : etween host an
o g‘z ; 1 200 é é 7 : © S0 1 Z é 2 ¥ 2000 . g ? g |1
116 m | A 2 | ¥
g Y = 1000 4 ,o‘ - ,0‘/ 7B 1 9 U Y 7
A 0 dal, 14 a0 A, A8 0 ., 27 001,
256 | 512 | 1024 | 2048 256 | 512 | 1024 | 2048 256 | 512 | 1024 | 2048 256 | 512 | 1024 | 2048
cores
DTR KME LOG-HYB-LUT (WRAM) LOG-BUI-LUT (WRAM)

SAFARI 112

Comparison to CPU and GPU (1)

* Linear regression anc

60000 6000 18000
16000 1 prrrm
50000 5000 - 2 14000 1
‘g ‘g o 12000 1
€
2 40000 1 2 4000 i 10000
£ £ é 8000 EPIMCPU
]]
= 300 1 = 3000 1 it
5 S & 4000 { 5pim Kernel
2 EIPIM-CPU 2 B PIM-CPU 2000
2 20000 {minterPIMCore| 2 2000 4 mDinterPIMCord 1
g EICPU-PIM] FCPU-PIM 0
w w |
10000 CIPIM Kernel 1000 O PIM Kernel LOG-FP32
600
0 0 500 |
LIN-FP32 LIN-INT32 B 200 |
@
6000 6000 E
~ 300
8 TEPIMCPU
5000 5000 A 2 200 o minter PIM Coref
oy i o EICPU-PIM
£ £ 9 oo JEPIM Kernel
~ 4000 ~ 4000 4
[[
E E ® LoG-INT3zL0r
- 3000 - 3000 A (MRAM)
) T=PIM-CPU 2 TPIM-CPU 600
3 2000 {mointerPIMCore] 3 2000 q DinterPIMCor
] EICPU-PIM o ECPU-PIM __ 500 1
w] 2
1000 CIPIM Kernel 1000 O PIM Kernel % 200
= 4
0 4 0 s 300
LIN-HYB LIN-BUI 2 200 TemimcRy
= ugir:mcm
48 -PI
60000 1400 100 1 Spin Kernel
50000 A 1200 A e “LOG-HYB-LUT
= = (WRAM)
1S £ 1000 A 2000
o 40000 o 1800
E £ 800 A = 1600 4
¢ 3900 1 e GPU Kerne < 10
o cPU S 600 4 £ 1200
B = [CPU-GPU =
g 20000 3 £ GPU-CPU 1000
g g 40 1 § s [oo |
w w 2 600
10000 1 200 2 a0
0 0 o
CPU GPU CPU

SAFARI

18000

500 -

8

Execution Time (ms)
N ow
8
L

g

0
LOG-BUI-LUT

30

8

B PIM-CPU
- OinterPIMCorg

BCPU-PIM
o PIM Kernel

1Ll

LOG-INT32

Al

OPIM-CPU
9 OinterPIMCorg
@crPuU-PIM

ogistic regression

4)

PIM versions are heavily
burdened when they use
operations that are not
natively supported by the

O PIM Kernel

[

LOG-INT32-LUT
(WRAM)

BPIM-CPU
DinterPIMCorg
qocru-PMm
O PIM Kernel

(WRAM)

25

20 4

15 4

10 4

Execution Time (ms)

[J GPU Kernel
0 CPU-GPU
[GPU-CPU

\ hardware /

& Several optimizations A

reduce the execution time

considerably and close the
gap with GPU

performance

o J

113

Comparison to CPU and GPU (II)

e Decision tree and K-means

4000 7 80000 4000
EPIM-CPU

3500 1 minterPIM Core] 70000 A 3500 A
— EBCPU-PIM — —_
é 3000 1 @PIM Kernel é 60000 1 é 3000 1]
L 2500 A @ 50000 A @ 2500 A [JGPU Kernel
E E HCPU E F1CPU-GPU
- 2000 A - 40000 A - 2000 A [EGPU-CPU
§e] .0 .0 3
S 1500 A £ 30000 S 1500
3 3 3
> 1000 A X< 20000 A x 1000
wl w w

500 A 10000 4 500 1

0 0 0

DTR CPU GPU

(a) Decision Tree

4)

PIM version of DTR is 27x
faster than the CPU
version and 1.34x faster
than the GPU version

_ j

20000 —| 20000 T 20000
18000 Tomvcru 18000 ~ EICPU 18000 1
— 16000 o MinterPIMCorel — 16000 o 16000 1
g |aceu-pim £ | 2 .
= 14000 1 5pim Kernel < 14000 E14000
£ 12000 £ 12000 - £12000
= 10000 A = 10000 + |—10000 J
5 5 <
5 8000 - S 8000 - S 8000 -
S 6000 - 3 6000 A 3 6000 | | TGPU Kernel
2 L o [1CPU-GPU
* 4000 1 4000 4 W 4000 { | @GPU-cPU
2000 ~ 2000 - 2000 |
KME CPU GPU
(b) K-means

-

faster than the CPU
version and 3.2x faster
than the GPU version

_

PIM version of KME is 2.8x

~

J

SAFARI

114

Key Observations and Insights

* ML training workloads can greatly benefit from (1) fixed-
point data representation, (2) quantization, and (3)
hybrid precision implementation in PIM systems

* ML training workloads that require complex activation
functions (e.g., sigmoid) can take advantage of lookup
tables (LUTs) in PIM systems instead of function
approximation

* Data can be placed and laid out such that memory
accesses of PIM cores are streaming

* ML training workloads with large training datasets
benefit from scaling the size of PIM-enabled memory
with PIM cores attached to memory arrays

SAFARI 115

Machine Learning Training
on a Real Processing-in-Memory System

Juan Gomez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,
Gagandeep Singh, Onur Mutlu

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s u p

mzmich SAFAR’ (=L

https://arxiv.org/pdf/2206.06022.pdf

Year III Results (2022 Annual Review 1)

Benchmarking a New Paradigm: Experimental Analysis and
Characterization of a Real Processing-in-Memory System [IEEE Access'22]

Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware [CUT 2021]

An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [arXiv 2022]

High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory [HICOMB 2022]

PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]

SAFARI 7

SpMV Multiplication on Real PIM Systems

Appears in SIGMETRICS 2022

SparseP: Towards Efficient Sparse Matrix Vector
Multiplication on Real Processing-In-Memory Systems

CHRISTINA GIANNOULA, ETH Ziirich, Switzerland and National Technical University of Athens,
Greece

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

NECTARIOS KOZIRIS, National Technical University of Athens, Greece

GEORGIOS GOUMAS, National Technical University of Athens, Greece
ONUR MUTLU, ETH Ziirich, Switzerland

https://arxiv.or df/2201.05072.pdf
https: ithub.com/CMU-SAFARI/SparseP

SAFARI https://www.youtube.com/watch?v=5ka0sIKIGrE 118

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP
https://www.youtube.com/watch?v=5kaOsJKlGrE

o~ A
SparseP

Towards Efficient Sparse Matrix Vector Multiplication
on Real Processing-In-Memory Architectures

Christina Giannoula
lvan Fernandez, Juan Gomez-Luna,
Nectarios Koziris, Georgios Goumas, Onur Mutlu

!

@) UNIVERSIDAD
WY DE MALAGA

O QQQ Natlonal Technical University of Athens

SAFARI ETH:zirich i€SLab

SparseP Summary

Efficient Algorithmic Designs

The first open-source Sparse Matrix Vector Multiplication
(SpMV) software package, SparseP, for real Processing-In-
Memory (PIM) systems

SparseP is Open-Source
SparseP: https://github.com/CMU-SAFARI/SparseP

Extensive Characterization

The first comprehensive analysis of SpMV on the first real
commercial PIM architecture

Recommendations for Architects and Programmers
Full Paper: https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP

SparseP: SpMV Library for Real PIMs

Our Contributions:

1. Design efficient SpMV kernels for current and future PIM
systems

= 25 SpMV kernels

= 4 compressed matrix formats (CSR, COO, BCSR, BCOO)

6 data types

4 data partitioning techniques

Various load balancing schemes among PIM cores/threads
3 synchronization approaches

2. Provide a comprehensive analysis of SpMV on the first
commercially-available real PIM system up
= 16 sparse matrices i
= Comparisons to state-of-the-art CPU and GPU systems

= Recommendations for software, system and hardware
designers

Sparsel Talk Video

o~ N
SparseP

Towards Efficient Sparse Matrix Vector Multiplication
on Real Processing-In-Memory Architectures

Christina Giannoula
Ivan Fernandez, Juan Gomez-Luna,
Nectarios Koziris, Georgios Goumas, Onur Mutlu

Kyl

SAFARI ETHiirich W) @) v

Processing-in-Memory Course: Lecture 11: SpMV on a Real PIM Architecture - Spring 2022

149 views - Streamed live on May 19, 2022 e 12 5P DISLIKE > SHARE L DOWNLOAD ${ CLIP =+ SAVE

8 oo
SAFARI https://www.voutube.com/watch?v=5ka0sIKIGrE 122

https://www.youtube.com/watch?v=5kaOsJKlGrE

Sparse Matrix Vector Multiplication

Sparse Matrix Vector Multiplication (SpMV):

= Widely-used kernel in graph processing,
machine learning, scientific computing ...

= A highly memory-bound kernel
Roofline Model

Peak Compute Performance

Performance

Operational Intensity

Real Processing-In-Memory Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:
* High levels of parallelism

* Low memory access latency
* Large aggregate memory bandwidth

f | Main Memory
BUS DRAM DRAM DRAM
Bank Bank Bank Bank
Host p N
CPU e PIM-Enabled Memo
] PIM Core § PIM Core § PIM Core § PIM Core
G DRAM DRAM DRAM
Bus Bank Bank Bank
\ J N\ = - J 7
J

Real Processing-In-Memory Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:
* High levels of parallelism

* Low memory access latency
* Large aggregate memory bandwidth

Lee+, [ISSCC 2022]

Kwon+, [ISSCC 2021]

GDDR6-AIM

SpMV Execution on a PIM System
O 2 © 4

Load the Execute the Retrieve the Merge the
input vector kernel partial results partial results

4 N
(1 A Host CPU
‘Main Memory @ PIM-Enabled Memory @

SparseP Software Package

25 SpMV kernels for PIM Systems -
https://github.com/CMU-SAFARI/SparseP

Partitioning Matrix Format| Load-Balancing
CSR rows, nnzs *
?; CO0 - rows, nnzs *, nnzs
Kernels BCSR blocks *, nnzs
BCOO a blocks, nnzs
CSR
4x 00«
2D BCSR
Equally-Sized Tiles
BCOO
CSR nnzs *
6x CO0 » nnzs
2D BCSR blocks * A
Equally-Wide Tiles OCKS ~, Nnzs
BCOO a blocks, nnzs
CSR nnzs *
6x CO0 » nnzs
2D
BCSR blocks *, nnzs *

Variable-Sized Tiles

BCOO »

blocks, nnz

Load-balance

across PIM cores/threads:

* row-granularity (CSR)

* block-row-granularity (BCSR)

Synchronization
among threads of a PIM core:
a |b-cg, lb-fb, If (COO, BCOO)

~

(Data Types:

8-bit integer
* 16-bit integer
» 32-bit integer
* 64-bit integer
» 32-bit float

e 64-bit float
\ J

https://github.com/CMU-SAFARI/SparseP

Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer

Key Takeaway 1

The compressed matrix format used to store the input matrix
determines the data partitioning across DRAM banks of PIM-enabled
memory. As a result, it affects the load-balance across PIM cores (and
Kthreads of a PIM core) with corresponding performance implications.

Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing high
computation balance across PIM cores (and threads of a PIM core).

\

J

Scalability

COO format, 32-bit integer

Key Takeaway 2

The 1D-partitioned kernels are severely bottlenecked by the high
data transfer costs to broadcast the whole input vector into DRAM
| banks of all PIM cores, through the narrow off-chip memory bus.

J

Recommendation 2

Optimize the broadcast collective collective in data transfers to
PIM-enabled memory to efficiently copy the input data into DRAM
banks in the PIM system.

\ S

Scalability

COO format, 32-bit integer

Key Takeaway 3

The 2D equally-wide and variable-sized kernels need fine-grained
parallel data transfers at DRAM bank granularity (zero padding) to

X be supported by the PIM system to achieve high performance.
J

Recommendation 3

Optimize the gather collective operation at DRAM bank granularity
in data transfers from PIM-enabled memory to efficiently retrieve
the output results to the host CPU.

\

1D vs 2D

Expensive data transfers to/from PIM-enabled memory performed
via the narrow memory bus impose significant performance
overhead to end-to-end SpMV execution. Thus, it is hard to fully
9 exploit all available PIM cores of the system.

Recommendation 4

Design high-speed communication channels and optimized libraries
in data transfers to/from PIM-enabled memory, provide hardware
support to effectively overlap computation with data transfers in
the PIM system, and/or integrate PIM-enabled memory as the main
memory of the system.)

.

CPU/GPU Comparisons

* Kernel-Only (COQ, 32-bit float):

* CPU = 0.51% of Peak Perf.
* GPU = 0.21% of Peak Perf.
* PIM (1D) =50.7% of Peak Perf.

* CPU = 4.08 GFlop/s
* GPU = 1.92 GFlop/s
* PIM (1D) = 0.11 GFlop/s

'» End-to-End (COO, 32-bit float):|

J

Peak Performance | Bandwidth -

CPU Intel Xeon 660 GFlops
Silver 4110

GPU NVIDIA 14.13 TFlops
Tesla V100

PIM UPMEM 4.66 GFlops

1st Gen.

23.1 GB/s

897 GB/s

1.77 TB/s

2x85 W Processor-

> Centric
300 W

J

379 w Memory-
Centric

CPU/GPU Comparisons

* Kernel-Only (COO, 32-bit float):
 CPU = 0.51% of Peak Perf.
* GPU = 0.21% of Peak Perf.
* PIM (1D) =50.7% of Peak Perf.

* End-to-End (COO, 32-bit float):

* CPU = 4.08 GFlop/s
* GPU = 1.92 GFlop/s
* PIM (1D) = 0.11 GFlop/s

Many more results in the full paper:

https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf

o~ A
SparseP

Towards Efficient Sparse Matrix Vector Multiplication

on Real Processing-In-Memory Architectures

Christina Giannoula
lvan Fernandez, Juan Gomez-Luna,
Nectarios Koziris, Georgios Goumas, Onur Mutlu

2. qERs/

R 2=
s Yo
A <V
‘;‘\:?'Ir‘. A2

2 74

O QQQ Natlonal Technical University of Athens

SAFARI ETH:zirich $€SLab

UNIVERSIDAD
DE MALAGA

Year III Results (2022 Annual Review 1)

Benchmarking a New Paradigm: Experimental Analysis and
Characterization of a Real Processing-in-Memory System [IEEE Access'22]

Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware [CUT 2021]

An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [arXiv 2022]

SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Architectures [SIGMETRICS 2022]

High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory [HICOMB 2022]

Real Processing Using Memory Prototype

PiDRAM: A Holistic End-to-end FPGA-based Framework
for Processing-in-DRAM

Ataberk Olgun®™ Juan Gémez Luna® Konstantinos Kanellopoulos® Behzad Salami®”
Hasan Hassan® Oguz Ergin® Onur Mutlu®

SETH Zdrich fTOBB ETU "BSC

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

136

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Real Processing Using Memory Prototype

—— Host Machine

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

137

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Real Proce

ssing Using Memory Prototype

README.md Va

Building a PiDRAM Prototype

To build PIDRAM's prototype on Xilinx ZC706 boards, developers need to use the two sub-projects in this
directory. fpga-zynq is a repository branched off of UCB-BAR's fpga-zynq repository. We use fpga-zynq to
generate rocket chip designs that support end-to-end DRAM PuM execution. controller-hardware is where we
keep the main Vivado project and Verilog sources for PIDRAM's memory controller and the top level system
design.

Rebuilding Steps

1. Navigate into fpga-zynq and read the README file to understand the overall workflow of the repository
o Follow the readme in fpga-zyng/rocket-chip/riscv-tools to install dependencies

2. Create the Verilog source of the rocket chip design using the ZynqCopyFPGAConfig
o Navigate into zc706, then run make rocket CONFIG=ZynqCopyFPGAConfig —j<number of cores>

3. Copy the generated Verilog file (should be under zc706/src) and overwrite the same file in controller-
hardware/source/hd1/impl/rocket-chip

4. Open the Vivado project in controller-hardware/Vivado_Project using Vivado 2016.2

5. Generate a bitstream

6. Copy the bitstream (system_top.bit) to fpga-zynq/zc706

7.Use the ./build_script.sh to generate the new boot.bin under fpga-images-zc706 , you can use this file

to program the FPGA using the SD-Card
o For details, follow the relevant instructions in fpga-zynq/README.md

You can run programs compiled with the RISC-V Toolchain supplied within the fpga-zynq repository. To install the
toolchain, follow the instructions under fpga-zynq/rocket-chip/riscv-tools .

Generating DDR3 Controller IP sources

We cannot provide the sources for the Xilinx PHY IP we use in PIDRAM's memory controller due to licensing
issues. We describe here how to regenerate them using Vivado 2016.2. First, you need to generate the IP RTL files:

1- Open IP Catalog
2- Find "Memory Interface Generator (MIG 7 Series)" IP and double click

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

PiDRAM
An FPGA-based Framework

for End-to-end Evaluation
of Processing-in-DRAM Techniques

Ataberk Olgun
Juan Gomez Luna Konstantinos Kanellopoulos Behzad Salami

Hasan Hassan Oguz Ergin Onur Mutlu

SAFARI «<>kasirga
ETHz(irich /\ TOBBETU

Executive Summary

Motivation: Commodity DRAM based PiM techniques improve the performance
and energy efficiency of computing systems at no additional DRAM hardware cost

Problem: Challenges of integrating these PiM techniques into real systems are not solved
General-purpose computing systems, special-purpose testing platforms, and

system simulators cannot be used to efficiently study system integration challenges
Design and implement a that can be used to:

* Solve

* Analyze

of commodity DRAM based PiM techniques

Keyidea: PIDRAM, an FPGA-based framework that enables:

« System integration studies

* End-to-end evaluations

of commodity DRAM based PiM techniques using real unmodified DRAM chips

Evaluation: End-to-end integration of two PiM techniques on PIDRAM's FPGA prototype
Case Study #1 — RowClone: In-DRAM bulk data copy operations

» 119x speedup for copy operations compared to CPU-copy with system support
* 198 lines of Verilog and 565 lines of C++ code over PIDRAM’s flexible codebase

Case Study #2 — D-RaNGe: DRAM-based random number generation technique

* 8.30 Mb/s true random number generator (TRNG) throughput, 220 ns TRNG latency
* 190 lines of Verilog and 78 lines of C++ code over PIDRAM's flexible codebase

SAFARI

140

PiDRAM Talk Video

PiDRAM

An FPGA-based Framework
for End-to-end Evaluation
of Processing-in-DRAM Techniques

Ataberk Olgun
Juan Gomez Luna Konstantinos Kanellopoulos Behzad Salami

Hasan Hassan Oguz Ergin Onur Mutlu

SAFARI (<>kasirga

y\. TOBB ETU

o NN . , —
B> Pl ¢ 1:10:43/3:36:35 + Ataberk Oigun, 'PiDRAM: An FPGA-Based Framework for End-To-End Evaluation of Processing-in-DRAM Techniques”

ISVLSI 2022 Special Session on Processing-in-Memory

1,345 views + Premiered Aug 9, 2022 e 61 GJ DISLIKE /> SHARE | DOWNLOAD 3 CLIP =+ SAVE ...

@ ?::}: M:tlu-te(:tures ANALYTICS EDIT VIDEO
& .9K subscribers

SAFARI https:/ /www.youtube.com/watch?v=geukNs5XI3q&t=4243s 141

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4243s

PiDRAM: Overview (I)

A that can be used to:
e Solve

* Analyze
of commodity DRAM based PiM techniques

[dentify key components shared across PiM techniques

Implement customizable key components:

* Provide modularity, enhance extensibility of the framework

Common basis to enable system support for PiM techniques

SAFARI (Ykaslrga 142

PiDRAM: Overview (II)

[dentify and develop four key hardware and software components

Hardware Software
(1 Flexible 3 Extensible
PiM Ops. Controller Software Library
(2 Easy-to-extend Custom
Memory Controller Supervisor Software

SAFARI (Ykaslrga 143

PiDRAM: System Design

Key components are attached to a real computing system

* PiM Ops. Controller and PIDRAM Memory Controller
is implemented within the hardware system

* Custom supervisor software runs on the hardware system

* Extensible software library
is used by the supervisor software

User Application Rocket PiM Ops. @ PIiDRAM®
~ Chip Controller Memory Controller @
: 1 System Calls (POC) 3
Y _ (4] RISC-V S 8 k-
Custom Supervisor Software CPU Core] Instruction Register (— £ DDR3 S
/.\ ; IIIIIIIIIIII L
! Function Calls ” .S.'I'.O.R.E.I:ift.n:ft:o.n' %' Flag Register | Command £ Interface E
Y pimO"b 9 ,"" -I;C:)I:\IE):IIE{tEu:cEnE)EI. HI Data Register Scheduler g o
---------------------- ; . > Q
' pimolib function ' on
Veaaaenaannamnaannannnn 2] Memory Bus

SAFARI (Ykaslrga 144

PiM Operations Controller (POC)

Decode & execute PiIDRAM instructions (e.g., in-DRAM copy)

Receive instructions over memory-mapped interface
(portable to other systems with different CPU ISAs)

Simple interface to the PiDRAM memory controller
(i) send request, (ii) wait until completion, (iii) read results

User ApplicXtion Rocket PiM Ops. @ PiDRAM ©

~ Chip Controller Memory Controller)
. System C (POC) B =S
- RISC-V _ . = -8
Custom Supervisor Softwa CPU Core Instruction Register o S

N g
Function Calls ST jon Flag Register ’ —mand £ |" Interface <Et

RV =
pimolib 6 LOAD Instruction [} — Data Register Scheduler € % OQ:

>

pimolib function / x

Memory Bus

SAFARI (>kasirga 145

PIDRAM Memory Controller

+ I Easily replicate a state machine to implement a new operation I

h

PiDRAM ©®
Memory Controller
Q
(3)
©
% | DDR3 LA
o € — ‘
Command =
| scheduler €= §
2
=
o

SAFARI (Ykaslrga 146

PiIM Operations Library (pimolib)

Contains customizable functions that interface with the POC

Software interface for performing PiM operations

Executes LOAD & STORE requests to communicate with the POC

Rocket

SAFARI (Ykaslrga 147

Custom Supervisor Software

Exposes PiM operations to the user application via system calls

Contains the necessary OS primitives to develop end-to-end PiM techniques
(e.g., memory management and allocation for RowClone)

User Application Rocket PiM Ops. @ PiDRAM ©
~ Chip Controller Memory Controller o
: 1+ System Calls (POC) =
FY (4 RISC-V - 8 9
Custom Supervisor Software CPU Core Instruction Register |— &l oors s
N | : Le—

; Function Calls STORE Instruction Flag Register Command E Interface 5

V2 — —> ®
p|m0|lb 6 LOAD Instruction | Data Register J Scheduler :_); %

pimolib function T

SAFARI (>kasirga 148

PiM Operation Execution Flow

copy () function called by the user to perform a RowClone-Copy operation in DRAM

o Application makes a system call:

a Custom Supervisor Software calls the pimolib function

b (S. D) S: source DRAM row
PY 4 D: destination DRAM row

User Application
S

i (D SystemCalls
Vv

Custom Supervisor Software

SAFARI (>kasirga 149

PiM Operation Execution Flow

9 Copy (S, D) executes two store instructions in the CPU

e The first store updates the instruction register with Copy (S, D)

e The second store sets the “Start” flag in the flag register

Start (S)
1 Start the execution of PiM operation

User Application Rocket

A (@ System Calls el

: RISC-V
Custom Supervisor Software CPU Core

/:\ i @ COpy(S, D) flflll; lllll ,;n
: &, S:source D: destination - E—— L
pimolib ’

L4
&
s
W'

SAFARI (—kasirga 150

PiIM Operation Execution Flow

@ POC instructs the memory controller to perform RowClone

@ POC resets the “Start” flag, and sets the “Ack” flag

@ PiDRAM memory controller issues commands
with violated timing parameters to the DDR3 module

User Application Rocket POC PiDRAM

™ Chi - < Memory Controller
i @ System Cali P @ T ry

RISC-V
Custom Supervisor Software cpu Core ® su&(la Ack (A) Elp)l

’:\ 5 @ copy(S, D) (YN 0

®

Physical Interface

P inati JCommand

v & S:source D: destination B e

Y plilrl;molib e — Scheduler €
PUERREERNEFREEEEENEER NN | -" H
b copy (S, D) .-

SAFARI (<kasirga 151

PiIM Operation Execution Flow

@ The memory controller sets the “Fin.” flag

@ Copy (S, D) periodically checks either “Ack” or “Fin.” flags
using LOAD instructions

Copy (S, D)returns when the periodically checked flag is set

User Application Rocket POC PiDRAM
N Chi n Memory Controller Q2
i | (@ system Cals P @ TR ry e 0
P _ RISC-V > ‘ 8 1
C/l\Js-tom Sé)perws(;r ;oftware CPU Core E — s
: : Copy , D) /e — oIn E I t rf

i &, S:source D: destination -s-TPﬂE'mﬂ- Command = ienace E

pimolib —— Scheduler <) %

o

SAFARI (—kasirga 152

PiIM Operation Execution Flow

Data Register is not used in RowClone operations
because the result is stored in memory

It is used to read true random numbers generated by D-RaNGe

9' Data Register |(-T

SAFARI (<kasirga 153

PIDRAM Components Summary

Four key components orchestrate PiM operation execution

Four key components provide an extensible basis
for end-to-end integration of PiM techniques

User Application Rocket PiM Ops. @ PiDRAM ©

A Chip Gontollen Memory Controller Qo
: 1+ System Calls (POC) =]
s (4) RISC-V — 8 8
Custom Supervisor Software CPU Core | Instruction Register |— T DDR3 S
N Function Calls STORE Instruction)|—9| Flag Register | Command E Interface E

RV) “—> ®
pimolib "o' LOAD Instruction | ﬂﬁl Data Register Scheduler % g

) (=

Memory Bus =

SAFARI (kasirga 154

PiIDRAM's FPGA Prototype

Full system prototype on Xilinx ZC706 FPGA board
« RISC-V System: In-order, pipelined RISC-V Rocket CPU core, L1D/I$, TLB
* PiM-Enabled DIMM: Micron MT8]TF12864, 1 GiB, 8 banks

— Host Machine

N — (———-

‘._“-
VUt e rarkeny

s so;a uan

3 =nsy F
-~ —1 .
1 = | "

- T E—— -2

FPGA Board _ .

4 N ' ‘ :.‘ ‘, ;;‘i%é L. 9 ‘-i;;‘ r
E RISC-V SYStem o
v "'\\\ f’” T 1} PiM- Enabled_[_)lMM

ﬂ B umumnm_u -»

SAFARI (<kasirga 155

PiIDRAM is Open Source

https://github.com/CMU-SAFARI/PiDRAM

B CMU-SAFARI/ PiDRAM [X Editpins ~ | [@Watch @)+ | ¥ Fork @ | [% sr @) | ~ |

<> Code (@ Issues §% Pullrequests @ Actions [Projects [wiki @ Security & Insights €83 Settings

¥ 2 branches © 0 tags [Go to file] [Add file ~] About Q3

() PiDRAM is the first flexible end-to-end
olgunataberk Fix small mistake in README 46522cc on Dec 5,2021) 11 commits framework that enables system
integration studies and evaluation of real
B controller-hardware Add files via upload 7 months ago Processing-using-Memory techniques.
B fpga-zynq Adds instructions to reproduce two key results 7 months ago -Prototype on a RISC-V rocket Chl.p sysf(em
implemented on an FPGA. Described in
(3 READMEmd Fix small mistake in README 7 months ago our preprint:
https://arxiv.org/abs/2111.00082
‘= README.md / m Readme
¢ 21stars
PiDRAM ® 3wt
¥ 2 forks

PIDRAM is the first flexible end-to-end framework that enables system integration studies and evaluation of real
Processing-using-Memory (PuM) techniques. PIDRAM, at a high level, comprises a RISC-V system and a custom
memory controller that can perform PuM operations in real DDR3 chips. This repository contains all sources Releases
required to build PIDRAM and develop its prototype on the Xilinx ZC706 FPGA boards.

No releases published
Create a new release

SAFARI (—kasirga 156

https://github.com/CMU-SAFARI/PiDRAM

Extended Version on ArXiv

https://arxiv.org/abs

2111.00082

Search... All fields Search
Help | Advanced Search

d I‘ <lV > cs > arXiv:2111.00082

Computer Science > Hardware Architecture
- Download:
[Submitted on 29 Oct 2021 (v1), last revised 19 Dec 2021 (this version, v3)] « PDF
PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM + Other formats
Ataberk Olgun, Juan Gémez Luna, Konstantinos Kanellopoulos, Behzad Salami, Hasan Hassan, Oguz Ergin, Onur Mutlu Current browse context:
cs.AR
Processing-using-memory (PuM) techniques leverage the analog operation of memory cells to perform computation. Several recent works have demonstrated <prev | next>

PuM techniques in off-the-shelf DRAM devices. Since DRAM is the dominant memory technology as main memory in current computing systems, these PuM new | recent | 2111

Change to browse by:

techniques represent an opportunity for alleviating the data movement bottleneck at very low cost. However, system integration of PuM techniques imposes

non-trivial challenges that are yet to be solved. Design space exploration of potential solutions to the PuM integration challenges requires appropriate tools to

develop necessary hardware and software components. Unfortunately, current specialized DRAM-testing platforms, or system simulators do not provide the

flexibility and/or the holistic system view that is necessary to deal with PuM integration challenges.
We design and develop PiDRAM, the first flexible end-to-end framework that enables system integration studies and evaluation of real PuM techniques.
PiDRAM provides software and hardware components to rapidly integrate PuM techniques across the whole system software and hardware stack (e.g.,

necessary modifications in the operating system, memory controller). We implement PIDRAM on an FPGA-based platform along with an open-source RISC-V

system. Using PIDRAM, we implement and evaluate two state-of-the-art PuM techniques: in-DRAM (i) copy and initialization, (ii) true random number
generation. Our results show that the in-memory copy and initialization techniques can improve the performance of bulk copy operations by 12.6x and bulk
initialization operations by 14.6x on a real system. Implementing the true random number generator requires only 190 lines of Verilog and 74 lines of C code

using PIDRAM's software and hardware components.

Comments: 15 pages, 12 figures

Subjects: ~ Hardware Architecture (cs.AR)

Cite as: arXiv:2111.00082 [cs.AR]
(or arXiv:2111.00082v3 [es.AR] for this version)
https://doi.org/10.48550/arXiv.2111.00082 Q

SAFARI (<kasirga

cs

References & Citations

« NASAADS
¢ Google Scholar
* Semantic Scholar

DBLP - CS Bibliography
listing | bibtex

Juan Gémez-Luna
Behzad Salami
Hasan Hassan
Oguz Ergin

Onur Mutlu

Export Bibtex Citation

Bookmark

157

https://arxiv.org/abs/2111.00082

Longer Talk + Tutorial on Youtube
https://voutu.be/s z S6FYpC8

Alloc_align Example

alloc_align(16*1024, 0); B = alloc_align(16*1024, 0

Array A Array B
16 KBs 16 KBs

Virtual Addresses: 0x0000 0x1000 0x2000

Processing in Memory Course: Meeting 6: End-to-end Framework for Processing-using-Memory - Fall’21

615 views - Streamed live on 9 Nov 2021 « Project & Seminar, ETH Ziirich, Fall 202 Show more e 25 OGP Dislike > Share L Download 3¢ Clip =+ Save

2 Onur Mutlu Lectures
SA ‘ A Q 25.7K subscribers SUBSCRIBED ﬁ_l 1 5 8

https://youtu.be/s_z_S6FYpC8

Year III Results (2022 Annual Review 2)

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-
Graph and Sequence-to-Sequence Mapping [ISCA 2022]

GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis [ASPLOS 2022]

Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm
[HICOMB 2022]

Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design
[ICDE 2022]

Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation
Capability of NAND Flash Memory [MICRO 2022]

SAFARI 159

Accelerating Sequence-to-Graph Mapping

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S.
Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi,
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph
and Sequence-to-Sequence Mapping"

Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New
York, June 2022.

[arXiv version]

SeGraM: A Universal Hardware Accelerator for
Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali' Konstantinos Kanellopoulos? Joél Lindegger? Ziilal Bingol®
Gurpreet S. Kalsi* Ziyi Zuo®> Can Firtina?® Meryem Banu Cavlak? Jeremie Kim?
Nika Mansouri Ghiasi* Gagandeep Singh® Juan Gémez-Luna® Nour Almadhoun Alserr?
Mohammed Alser’ Sreenivas Subramoney? Can Alkan® Saugata Ghose® Onur Mutlu?

1Bionano Genomics 2ETH Ziirich 3Bilkent University — “Intel Labs
>Carnegie Mellon University ~ ®University of Illinois Urbana-Champaign

SAFARI https://arxiv.org/pdf/2205.05883.pdf '

https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
https://arxiv.org/pdf/2205.05883.pdf
https://arxiv.org/pdf/2205.05883.pdf

SeGraM: A Universal Hardware Accelerator for
Genomic Sequence-to-Graph and
Sequence-to-Sequence Mapping

Damla Senol Cali, Ph.D.

damlasenolcali@gmail.com
https://damlasenolcali.github.io/

Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo,
Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri Ghiasi,
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

(§&)) Bilkent University

Carnegie Mellon ETH:zurich
intel X iliiNois SAFARI

AAAAAA -CHAMPAIGN

mailto:damlasenolcali@gmail.com
https://damlasenolcali.github.io/

Genome Sequence Analysis

O Mapping the reads to a reference genome (i.e., read mapping) is a
critical step in genome sequence analysis

Linear Reference: ACGTACGT Graph-based Reference:
Read: ACGG

Alternative Sequence: ACGGACGT
Alternative Sequence: ACGTTACGT
Alternative Sequence: ACG-ACGT Read: ACGG

Sequence-to-Sequence (52S) Mapping Sequence-to-Graph (S2G) Mapping

Sequence-to-graph mapping results in notable quality improvements.
However, it is a more difficult computational problem,
with no prior hardware design.

Damla Senol Cali SAFARI 162

SeGraM: First Graph Mapping Accelerator

Our Goal:

Specialized, high-performance, scalable, and low-cost
algorithm/hardware co-design that alleviates bottlenecks in
multiple steps of sequence-to-graph mapping

SeGraM: First universal algorithm/hardware co-designed genomic
mapping accelerator that can effectively and efficiently support:

1 Sequence-to-graph mapping

J Sequence-to-sequence mapping

1 Both short and long reads

Damla Senol Cali SAFARI 163

Use Cases & Key Results

(1) Sequence-to-Graph (52G) Mapping

0 5.9x/106x speedup, 4.1x/3.0x less power than GraphAligner
for long and short reads, respectively (state-of-the-art SW)

O 3.9x/742x speedup, 4.4x/3.2x less power than vg
for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (52G) Alignment
0 41x-539x% speedup over PaSGAL with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (52S) Alignment

) 1.2x/4.8x higher throughput than GenASM and GACT of Darwin
for long reads (state-of-the-art HW)

1 1.3%x/2.4x higher throughput than GenASM and SillaX of GenAX
for short reads (state-of-the-art HW)

Damla Senol Cali SAFARI 164

SeGraM Talk Video

>

Sequence-to-Graph Mapping Pipeline

Linear reference

Reads from

sequenced Seedlng

- N Pre-Processing
genome Genome Graph Construction

Steps (Offline
struct the graph using a linear reference genome and vanations

‘ Genome graph

Indexing

4 f oh ’
3 je e grag

Hash-table-basea

query the index & find the seed matches
genome

l Candidate mapping locations (subgraphs)

Filtering/Chaining/Clustering

(filter out dissamdar query read and subgraph pairs)

)
l Remaining candidate mapping locations (subgraphs)

S2G Alignment
(perform distance/score calculation & traceback)
v Seed-and-Extend
Optimal alignment between read & subgraph Steps (Online)

Damla Senol Cali SAFARI 14

5:56 / 21:29

SeGraM: A Universal HW Accelerator for Genomic Sequence-to-Graph Mapping - Damla Senol Cali (ISCA)

136 views * Premiered 21 hours ago

<« >

SAFARI

e Onur Mutlu Lectures
' 26.9K subscribers

e 12 GP DISLIKE > SHARE | DOWNLOAD

X curp

=+ SAVE

ANALYTICS EDIT VIDEO

https://www.youtube.com/watch?v=qyjqYoyDP9s

165

https://www.youtube.com/watch?v=gyjqYoyDP9s

Genome Graphs

Genome graphs:

J Combine the linear reference genome with the known genetic
variations in the entire population as a graph-based data structure

J Enable us to move away from aligning with a single linear reference
genome (reference bias) and more accurately express the genetic

diversity in a population

Sequence #1: ACGTACGT
Sequence #2: ACGGACGT
Sequence #3: ACGTTACGT
Sequence #4: ACGACGT

Damla Senol Cali SAFARI 166

Sequence-to-Graph Mapping Pipeline

Linear reference
genome

Genome Graph Construction

(construct the graph using a linear reference genome and variations)

Known genetic v Genome graph
variations -
Indexing]

(index the nodes of the graph)

Steps (Offline)

‘e

] Pre-Processing

sequenced
genome

(query the index & find the seed matches)

Seeding]

(filter out dissimilar query read and subgraph pairs)

Filtering/Chaining/Clustering]

¢ Remaining candidate mapping locations (subgraphs)

[a l Candidate mapping locations (subgraphs)

S2G Alignment
(perform distance/score calculation & traceback)
v Seed-and-Extend
Optimal alignment between read & subgraph Steps (Online)

Damla Senol Cali SAFARI 167

S2Svs. S2G Alignment

Single linear
reference

A A HHAA AT

Query _| ¢
read G

Sequence-to-Sequence (52S) Alignment

Damla Senol Cali SAFARI 168

S2Svs. S2G Alignment

Graph-based

reference OP
<) <)

Query _|
read G

——
\
~—_ [

Sequence-to-Graph (52G) Alignment

In contrast to S25 alignment,
S2G alignment must incorporate non-neighboring characters
as well whenever there is an edge (i.e., hop)
from the non-neighboring character to the current character

Damla Senol Cali SAFARI 169

Analysis of State-of-the-Art Tools

Based on our analysis with GraphAligner and vg: SW
Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates
Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable AW

for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle
S2G alignment

Damla Senol Cali SAFARI 170

SeGraM: Universal Genomic Mapping Accelerator

O First universal genomic mapping accelerator that can support both
sequence-to-graph mapping and sequence-to-sequence mapping,
for both short and long reads

A First algorithm/hardware co-design for accelerating
sequence-to-graph mapping

0 We base SeGraM upon a minimizer-based seeding algorithm

O We propose a novel bitvector-based alignment algorithm to perform|
approximate string matching between a read and a graph-
based reference genome SW

[We co-design both algorithms with high-performance, scalable,
and efficient hardware accelerators HW

Damla Senol Cali SAFARI 171

SeGraM Hardware Design

Main Memory (graph-based reference & index)

Minimizer
Scratchpad

Input Scratchpad

Seed
Scratchpad

Hop Queues

Bitvector Scratchpad

Host Read
CPU
Scratchpad MinSeed (MS) BitAlign (BA)
: SeGraM Accelerator ;
MinSeed: first hardware BitAlign: first hardware

Damla Senol Cali

Minimizer-based Seeding

accelerator for accelerator for (Bitvector-based)
sequence-to-graph Alignment

SAFARI

172

SeGraM Hardware Design

Main Memory (graph-based reference & index)

frequencies seed locations graph nodes
gl g o g

Input Scratchpad

Minimizer Seed
Scratchpad Scratchpad

9]

Hop Queues

minimizers

[19

Bitvector Scratchpad

query k-mers

Host 0 ‘ Read

CPU query == | Scratchpad

MinSeed: first hardware BitAlign: first hardware
accelerator for accelerator for (Bitvector-based)
Minimizer-based Seeding sequence-to-graph Alignment

Damla Senol Cali SAFARI 173

Overall System Design of SeGraM

-] \
High Bandwidth Memory (HBM2E) Stack
CHoO CH1 CH2 CHe6 CH7
""" »>--1|| MS MS MS MS MS
Host S— X 4
------ <-11| BA BA BA BA BA
SeGraM SeGraM SeGraM SeGraM SeGraM
Acc. Acc. Acc. Acc. Acc.
SeGraM Module (1 x per HBM2E stack)
—

Damla Senol Cali

SAFARI

174

Use Cases of SeGraM

(1) Sequence-to-Graph
Mapping

(2) Sequence-to-Graph
Alignment

(3) Sequence-to-Sequence
Alignment

(4) Seeding

Damla Senol Cali SAFARI

MS BA
'MS or |
| Other | BA

Key Results — Area & Power

O Based on our synthesis of MinSeed and BitAlign accelerator datapaths

using the Synopsys Design Compiler with a 28nm process (@ 1GHz):

Component Area (mm?) Power (mW)
MinSeed — Logic 0.017 10.8
Read Scratchpad (6 kB) 0.012 7.9
Minimizer Scratchpad (40 kB) 0.055 22.7
Seed Scratchpad (4 kB) 0.008 6.4
BitAlign — Edit Distance Calculation Logic with Hop Queue Registers (64 PEs)
BitAlign — Traceback Logic 0.020 2.7
Input Scratchpad (24 kB) 0.033 13.3
Bitvector Scratchpads (128 kB)
Total — 1 SeGraM Accelerator 0.867 758.0 (0.8 W)

Total — 4 SeGraM Modules (32 SeGraM Accelerators)

HBMZ2E (4 stacks)

Damla Senol Cali SAFARI

176

Key Results — SeGraM with Long Reads

@ GraphAligner Ovg O SeGraM

—g 1E+03 | ‘ :
4 x 3.1x > 5.2x 3.0 0-0X 47X 1 59x 3.9x
i e’ S e (R IS
g 1E+02 ‘ ‘ ‘ ‘ i $
2 | J | Lo |
o |
5
£ 1E+01
[=Ts]
=
o
i o
[

1E+00 i

PacBio-5% PacBio - 10% ONT - 5% ONT-10% , Average
" ™)

SeGraM provides 5.9x and 3.9x throughput improvement
over GraphAligner and vg,
while reducing the power consumption by 4.1x and 4.4x

. J

Damla Senol Cali SAFARI 177

Key Results — SeGraM with Short Reads

@ GraphAligner Ovg O SeGraM

1E+07 1
1E+06 | 11! 28x . i 106x 742x
|

1E+05 ‘
1E+04
1E+03
1E+02
1E+01
1E+00

Throughput (short reads/sec)

lllumina - 100bp lllumina - 150bp Illumina - 250bp | Average

SeGraM provides 106x and 742x throughput improvement
over GraphAligner and vg,
while reducing the power consumption by 3.0x and 3.2x

. J

Damla Senol Cali SAFARI 178

Key Results — BitAlign (52G Alignment)

W PaSGAL O BitAlign

1E+06 :

= 1E+05 i 247x
S |
g 1E+04 |
‘= 1E+03 l
£ :
2 1E+02 i
o .
g 1E+01 E
L |
1E+00 |

LRC-L1 MHC1-M1 LRC-L2 MHC1-M2 Average
(100bp x 317.6K reads) (100bp x 497K reads) (10kbp x 3.2K reads) (10kbp x 4.9K reads) :
«— Short Reads Long Reads

BitAlign provides 41x-539x speedup over PaSGAL

Damla Senol Cali SAFARI 179

Key Results — BitAlign (525 Alignment)

 BitAlign can also be used for sequence-to-sequence alignment
o The cost of more functionality: extra hop queue registers

o We do not sacrifice any performance

 For long reads (over GACT of Darwin and GenASM):
o 4.8x and 1.2x throughput improvement,
o 2.7x and 7.5x higher power consumption, and

o 1.5x and 2.6x higher area overhead

([For short reads (over SillaX of GenAx and GenASM):

o 2.4x and 1.3x throughput improvement

Damla Senol Cali SAFARI 180

Conclusion

[SeGraM: First universal algorithm/hardware co-designed genomic
mapping accelerator that supports:
= Sequence-to-graph (52G) & sequence-to-sequence (525) mapping
= Short & long reads

o MinSeed: First minimizer-based seeding accelerator

o BitAlign: First (bitvector-based) S2G alignment accelerator

0 SeGraM supports multiple use cases:
o End-to-end S2G mapping
o S52G alignment
o S2S alignment

o Seeding

0 SeGraM outperforms state-of-the-art software & hardware solutions

Damla Senol Cali SAFARI 181

SeGraM Talk Video

>

Sequence-to-Graph Mapping Pipeline

Linear reference

Reads from

sequenced Seedlng

- N Pre-Processing
genome Genome Graph Construction

Steps (Offline
struct the graph using a linear reference genome and vanations

‘ Genome graph

Indexing

4 f oh ’
3 je e grag

Hash-table-basea

query the index & find the seed matches
genome

l Candidate mapping locations (subgraphs)

Filtering/Chaining/Clustering

(filter out dissamdar query read and subgraph pairs)

)
l Remaining candidate mapping locations (subgraphs)

S2G Alignment
(perform distance/score calculation & traceback)
v Seed-and-Extend
Optimal alignment between read & subgraph Steps (Online)

Damla Senol Cali SAFARI 14

5:56 / 21:29

SeGraM: A Universal HW Accelerator for Genomic Sequence-to-Graph Mapping - Damla Senol Cali (ISCA)

136 views * Premiered 21 hours ago

<« >

SAFARI

e Onur Mutlu Lectures
' 26.9K subscribers

e 12 GP DISLIKE > SHARE | DOWNLOAD

X curp

=+ SAVE

ANALYTICS EDIT VIDEO

https://www.youtube.com/watch?v=qyjqYoyDP9s

182

https://www.youtube.com/watch?v=gyjqYoyDP9s

Year III Results (2022 Annual Review 2)

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-
Graph and Sequence-to-Sequence Mapping [ISCA 2022]

GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis [ASPLOS 2022]

Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm
[HICOMB 2022]

Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design
[ICDE 2022]

Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation
Capability of NAND Flash Memory [MICRO 2022]

SAFARI 183

In-Storage Genomic Data Filtering [aspros 2022)

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Enerqy-Efficient In-Storage Computing
System for Genome Sequence Analysis"

Proceedings of the 27/th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa! Jeremie Kim! Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali? Can Firtina! Haiyu Mao! Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar* Mohammed Alser! Onur Mutlu!

1ETH Ziirich 2Bionano Genomics 3KMUTNB *University of Toronto

SAFARI 184

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8

Genome Sequence Analysis

‘I Data Movement from Storage

Alignment
Computation
Storage Main Unit
System Memory Cache (CPU or
Accelerator)
x Computation overhead
x Data movement overhead

SAFARI 185

Accelerating Genome Sequence Analysis

Heuristics Accelerators Filters
Computation
Storage Main Cache Unit

System Memory (CPU or
Accelerator)

\/ Computation overhead

x Data movement overhead

SAFARI 186

Key Idea

Y Filter reads that do not require alignment
inside the storage system

MECGTTCCTTGGCAl Computation

[AAICCTTTGGGTCCA] Main Cache Unit
GAATGGGGCCA

188 e Memory (CPU or
[GCTTCCAGAATG| Accelerator)

Filtered Reads

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Non-matching reads
Do not have potential matching locations and can skip alignment

SAFARI 187

Challenges

Y Filter reads that do not require alignment
inside the storage system

Storage
System

Filtered Reads

Main
Memory

Cache

Computation
Unit
(CPU or
Accelerator)

Read mapping workloads can exhibit different behavior

There are limited hardware resources
in the storage system

SAFARI

188

GenStore

Y Filter reads that do not require alignment
inside the storage system

Computation
GenStore-Enabled i Unit
Storage M Cache CPU
System emory (or
Accelerator)
\/ Computation overhead
\/ Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and

energy reduction (3.9x - 29.2x) at low cost
SAFARI 189

In-Storage Genomic Data Filtering [aspros 2022)

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Enerqy-Efficient In-Storage Computing
System for Genome Sequence Analysis"

Proceedings of the 27/th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa! Jeremie Kim! Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali? Can Firtina! Haiyu Mao! Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar* Mohammed Alser! Onur Mutlu!

1ETH Ziirich 2Bionano Genomics 3KMUTNB *University of Toronto

SAFARI 190

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8

GenStore Talk Video

GenStore-EM: Not Finding a Match

Sorted Read Table Sorted K-mer Index

Read K-mer
AAAAAAAAAA AAAAAAAAAA
AAAAAAAAAG AAAAAAAAAC
AAAAAAAACT F-AAAAAAAAAT

y

A

Comparator

’

Read < K-mer

Not an exact match = Send to read mapper

GenStore: A High-Performance In-Storage Processing System for Genome Analysis -- ASPLOS'22 Talk

343 views * Premiered Mar 22, 2022 e 7 GP DISLIKE > SHARE | DOWNLOAD 3¢ CLIP =+ SAVE ...
@ Onur Mutlu Lectures ANALYTICS | EDIT viDEO
&> 27K subscribers

SAFARI https:/ /www.youtube.com/watch?v=bvZhgXOOMjk 191

https://www.youtube.com/watch?v=bv7hgXOOMjk

Year III Results (2022 Annual Review 2)

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-
Graph and Sequence-to-Sequence Mapping [ISCA 2022]

GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis [ASPLOS 2022]

Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm
[HICOMB 2022]

Polynesia: Enabling High-Performance and Energy-Efficient Hybrid

Transactional/Analytical Databases with Hardware/Software Co-Design
[ICDE 2022]

Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation
Capability of NAND Flash Memory [MICRO 2022]

SAFARI 192

Accelerating HT AP Database Systems

Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu,

"Polynesia: Enabling High-Performance and Enerqy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design"
Proceedings of the 38th International Conference on Data Engineering (ICDE),
Virtual, May 2022.

[arXiv version]

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

Polynesia: Enabling High-Performance and Energy-Efficient
Hybrid Transactional/Analytical Databases
with Hardware/Software Co-Design

Amirali Boroumand' Saugata Ghose® Geraldo F. Oliveira* Onur Mutlu?
TGoogle °Univ. of Illinois Urbana-Champaign *ETH Ziirich

SAFARI https://arxiv.orq/pdf/2204.11275.pdf 193

https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22.pdf
https://icde2022.ieeecomputer.my/
https://arxiv.org/pdf/2204.11275.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pdf
https://arxiv.org/pdf/2204.11275.pdf

Polynesia:
Enabling High-Performance and Energy-Efficient

Hybrid Transactional/Analytical Databases
with Hardware/Software Co-Design

Amirali Boroumand Saugata Ghose
Geraldo F. Oliveira Onur Mutlu
ICDE
2022

SAFARI Google I iiiss ETH i

Executive Summary

* Context: Many applications need to perform real-time data analysis using
an Hybrid Transactional/Analytical Processing (HTAP) system
— An ideal HTAP system should have three properties:

(1) data freshness and consistency, (2) workload-specific optimization,
(3) performance isolation

* Problem: Prior works cannot achieve all properties of an ideal HTAP system

* Key ldea: Divide the system into transactional and analytical processing
islands

— Enables workload-specific optimizations and performance isolation

* Key Mechanism: Polynesia, a novel hardware/software cooperative design
for in-memory HTAP databases

— Implements custom algorithms and hardware to reduce the costs of
data freshness and consistency

— Exploits PIM for analytical processing to alleviate data movement

* Key Results: Polynesia outperforms three state-of-the-art HTAP systems
— Average transactional/analytical throughput improvements of 1.7x/3.7x
— 48% reduction on energy consumption

SAFARI 195

Polynesia Talk Video (I)

Heterogeneous Data-Centric Architectures
for Modern Data-Intensive Applications:
Case Studies in Machine Learning
and Databases

Geraldo F. Oliveira Amirali Boroumand
Saugata Ghose Juan Gomez-Luna Onur Mutlu

ISVLSI
2022

SAFARI Google I kg ETH zirch

> Pl 0 1:38:220/3:36:35 - Geraldo F. Oliveira, "Heterogeneous Data-Centric Architectures for Modern Data-Intensive Applications: Case Studies... > O & Qw E | [3

ISVLSI 2022 Special Session on Processing-in-Memory

1,345 views * Premiered Aug 9, 2022 e 61 P DISLIKE > SHARE | DOWNLOAD 3¢ CLIP =+ SAVE

€ e https://arxiv.org/pdf/2205.14664.pdf
SAFARI https://www.youtube.com/watch?v=geukNs5XI3q&t=5897s 196

https://www.youtube.com/watch?v=qeukNs5XI3g&t=5897s
https://arxiv.org/pdf/2205.14664.pdf

Polynesia Talk Video (II)

Real-Time Analysis

T - = . — {—
An explosive interest in many applications domains to ’

perform data analytics on the most recent version of data
(real-time analysis)

Use transactions to record Run analytics across
each periodic sample of data sensor data to make
from all sensors real-time steering decisions

l,-y
,l
’

Self-Driving Cars

For these applications, it is critical to analyze the transactions
in real-time as the data’s value diminishes over time

Processing-in-Memory Course: Lecture 15: In-memory HTAP Databases with HW/SW Co-design - Spring 2022

524 views - Streamed live on Jun 16, 2022 e 12 GP DISLIKE 2> SHARE | DOWNLOAD $¢ CLIP =+ SAVE
- Onur Mutlu Lectures n - df 2 20 2 5 df
Q 27K subscribers htt SI a rX|v-or 4l 1 1 7 [] e EDIT VIDEO

SAFARI https: //www.youtube.com/watch?v=1HkXy3q6FF4 197

https://www.youtube.com/watch?v=1HkXy3g6FF4
https://arxiv.org/pdf/2204.11275.pdf

Real-Time Analysis

Increasing interest in many applications domains to

perform data analytics on the most recent version of data
(real-time analysis)

Use transactions to record Run analytics across
each periodic sample of data sensor data to make
from all sensors I~ real-time steering decisions
V~\~ P S 5 4
~Q L 7
\\ ,/

Self-Driving Cars

For these applications, it is critical to analyze the transactions
in real-time as the data’s value diminishes over time

SA FAR' Intrfduction i 98

HTAP: Supporting Real-Time Analysis

Traditionally, new transactions (updates) are propagated to the
analytical database using a periodic and costly process

h /d
@ our:‘ ays @

Transactions ; Analytics Transactions Analytics
1 o 2% 22 Hi
: e

»- Migration . -.’ - ‘
. Rty ¥ S

Transactional Analytical Hybrid DBMS
DBMS DBMS (HTAP System)

To support real-time analysis: a single hybrid DBMS is used

to execute both transactional and analytical workloads

SAFARI 199

Ideal HTAP System Properties

An ideal HTAP system should have three properties:

I Workload-Specific Optimizations
* Transactional and analytical workloads must benefit from their
own specific optimizations

2 Data Freshness and Consistency Guarantees

« Guarantee access to the most recent version of data for
analytics while ensuring that transactional and analytical
workloads have a consistent view of data

3 Performance Isolation
* Latency and throughput of transactional and analytical
workloads are the same as if they were run in isolation

Achieving all three properties at the same time

is very challenging

SAFARI 200

Problem and Goal

Problems:

1 State-of-the-art HTAP systems do not achieve
all of the desired HTAP properties

2 Data freshness and consistency mechanisms are

data-intensive and cause a drastic reduction in throughput

3 These systems fail to provide performance isolation
because of high resource contention

Goal:

4 Take advantage of custom algorithm and
processing-in-memory (PIM) to address these challenges

SAFARI 201

Polynesia

Key idea: partition computing resources into
two types of isolated and specialized processing islands

'

Isolating transactional islands from analytical islands allows us to:

I Apply workload-specific optimizations to each island

2 Avoid high resource contention

3 Design efficient data freshness and consistency
mechanisms without incurring high data movement costs
* Leverage processing-in-memory (PIM) to reduce data movement
* PIM mitigates data movement overheads by

placing computation units nearby or inside memory

SAFARI 202

Polynesia: High-Level Overview

Each island includes (1) a replica of data, (2) an optimized execution
engine, and (3) a set of hardware resources
Designed to provide high read throughput

Designed to sustain ;.*
bursts of updates -
fA ' °

e ! Analytical Island

; DRAM o777 %)
'Transactlonal Island‘ Banks ! AnayGealEngne pr—

- : Y, &/ &/ \ PIM |[PiM |[PIM |[PIM ——

Transactional Engme v 7 F \‘ Core || Core || Core || Core
Jl| €PU || €PU || cPU (| CPU , 0 5 Z 2 7 < * Update Propagation Consistency
! Off-Chip 7——7— ~ ' Mechanism Mechanism
I |||Shared Last-Level Cache (LLC) Link ¢ ey Ry 7/ - TSV . Undate Gath Undat Cop
1 2 / 4 / \ pdate Gatherin pdate
\\A)T Y &4 Vault %\ | || and Shipping Unii Application Unit Un,-ty
Seo Processor 3D-Stacked) =
SN ~———— Memory ot
‘x\ U4
\\ 4
\ \ 4
] o Take advantage of PIM to mitigate
Conv?ntlonal.multlcore CPUs data movement bottleneck
with multi-level caches

SAFARI

Key Results

Polynesia achieves 91.6% the transactional throughput of
an ideal system by employing
custom PIM logic for data freshness/consistency,
which significantly reduces
resource contention and data movement

Polynesia improves analytical throughput by 63.8% over
an optimized multiple-instance system, by eliminating
data movement, and using custom logic for update
propagation and consistency

Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x)
over prior HTAP systems

SAFARI 204

Conclusion

* Context: Many applications need to perform real-time data analysis using
an Hybrid Transactional/Analytical Processing (HTAP) system
— An ideal HTAP system should have three properties:

(1) data freshness and consistency, (2) workload-specific optimization,
(3) performance isolation

* Problem: Prior works cannot achieve all properties of an ideal HTAP system

* Key ldea: Divide the system into transactional and analytical processing
islands

— Enables workload-specific optimizations and performance isolation

* Key Mechanism: Polynesia, a novel hardware/software cooperative design
for in-memory HTAP databases

— Implements custom algorithms and hardware to reduce the costs of
data freshness and consistency

— Exploits PIM for analytical processing to alleviate data movement

* Key Results: Polynesia outperforms three state-of-the-art HTAP systems
— Average transactional/analytical throughput improvements of 1.7x/3.7x
— 48% reduction on energy consumption

SAFARI 205

More in the Paper

Polynesia: Enabling High-Performance and Energy-Efficient
Hybrid Transactional/Analytical Databases

with Hardware/Software Co-Design

Amirali Boroumand' Saugata Ghose® Geraldo F. Oliveira* Onur Mutlu*
TGoogle °Univ. of Illinois Urbana-Champaign *ETH Ziirich

SA FAR’ Evaluation .

Polynesia:
Enabling High-Performance and Energy-Efficient

Hybrid Transactional/Analytical Databases
with Hardware/Software Co-Design

Amirali Boroumand Saugata Ghose
Geraldo F. Oliveira Onur Mutlu
ICDE
2022

SAFARI Google I iiiss ETH i

Year I11 Results (2022 Annual Review 3)

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
SAFARI 208

Sibyl: Self-Optimizing Hybrid Storage Systems

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,

'Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"

Proceedings of the 49th International Symposium on Computer Architecture (ISCA),
New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh! Rakesh Nadig! Jisung Park! = Rahul Bera! = Nastaran Hajinazar!
David Novo® Juan Gémez-Luna' Sander Stuijk?® Henk Corporaal® Onur Mutlu?

IETH Ziirich 2Eindhoven University of Technology SLIRMM, Univ. Montpellier, CNRS

SAFARI https:/ /arxiv.org/pdf/2205.07394.pdf 209

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Sibyl:
Adaptive and Extensible Data Placement

in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,
Juan Gomez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu

SAFARI ETHziirich SLIRMM TU/e 5o

Sibyl Talk Video [ISCA’22]

* Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan
Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online
Reinforcement Learning"
ISCA, New York, June 2022.
[Sibyl Source Code]

Evaluation Methodology (1/3)

* Real system with various HSS configurations
- Dual-hybrid and tri-hybrid systems

’ / SSD P4800X
® 4 L re——
S e 7~ Seagate HDD =~ =

= _~ Y|/ srio00pmo10 L
o X

YA ol
inteissp ~ ADATA §
D3-54510 =SU630 SSD

(9

TRl
odology (2/3) >

Sibyl: Adaptive Data Placement in Storage Systems using Online Reinforcement Learning - ISCA22 n jrl . =
231 views + Premiered Jul 14, 2022 s 16 G DISLIKE > SHARE | DOWNLOAD ${ CLIP = il ii'l
T I, HA.
SAFAR] &= L s 23
- Ch |
https:/ /www.youtube.com/watch?v=5-WedkiB000 bF=ls 1

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000

Executive Summary

e Background: A hybrid storage system (HSS) uses multiple different storage devices to
provide high and scalable storage capacity at high performance

* Problem: Two key shortcomings of prior data placement policies:
- Lack of adaptivity to:
* Workload changes
* Changes in device types and configurations

- Lack of extensibility to more devices

: Design a data placement technique that provides:
, by to the

to incorporate a wide range of hybrid storage configurations

e Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:

- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

* Key Results: Evaluate on real systems using a wide range of workloads

- Sibyl improves performance by 21.6% compared to the best previous data placement technique in
dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

- 2 ’
SAFARI https://github.com/CMU-SAFARI/Sibyl 212

https://github.com/CMU-SAFARI/Sibyl

Talk Outline

Key Shortcomings of Prior Data Placement Techniques

SAFARI 233 3

Hybrid Storage System Basics
Address Space (Application/File System View)

{ Logical Pages J
UL LU L

Read T_ Write
/l'[‘ Storage Management Layer ?
Read I]-_Write Write\
F- ————— IPromotion | | 1 5

I i " INTEL” OPTANE™ § I] ..

I &=)1 Eviction LA

1\ ‘ 5 N b
e NG /
K Fast Device Slow Device /
SAFAR/ Hybrid Storage System 24 4

Hybrid Storage System Basics

Performance of a hybrid storage system
highly depends on the ability of the
storage management layer

215

ey shortcomings in Frior
Techniques

We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices

SAFARI 234 ¢

Our Goal

e
A data-placement mechanism

that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying
device characteristics

2.Easy extensibility to incorporate a wide
range of hybrid storage configurations

_

,/

SAFARI

217

Our Proposal

Sibyl

Formulates data placement in
hybrid storage systems as a
reinforcement learning problem

Sybil is an oracle that makes accurate prophecies

S AFARI https://en.wikipedia.org/wiki/Sibyl 2 ﬁ_ 3

Talk Outline

Formulating Data Placement as Reinforcement Learning

SAFARI 2499

DAasICS OT Reintorcement Learning
(RL)

| Agent l

[Environment]

Agent learns to take an action in a given state
to maximize a numerical reward

SAFARI 230,

Formulating Data Placement as RL

>[Agent }
)
State (S,) Reward (R,,;) Action (A,)

I
{ Environment]<

>[Sibyl
1

Features of the Request latency Select storage device to

current request (of last served request) place the current page
and system I

‘ (Hybrid Storage }

SAFARI L System

S

221

Sibyl]—‘
A

Request latency Select storage
(of last served device to place
request) the current page

1
Hybrid Storage
System

the current

What is State?

e Limited number of state features:-

- Reduce the implementation overhead
- RL agent is more sensitive to reward

 6-dimensional vector of state features

O; = (sizes, typey, intry, cnty, capy, curry)

* We quantize the state representation into bins to
reduce storage overhead
SAFARI 233

What is Reward? |

Features of . 4

the current iy /
request and evice to place

* Defines the objective of Sibyl system [0/ the current page
| I Hybrid Storage I |
System

e We formulate the reward as a function of the
request latency

* Encapsulates three key aspects:

- Internal state of the device (e.g., read/write latencies, the
latency of garbage collection, queuing delays, ...)

- Throughput
- Evictions

* More details in the paper
SAFARI 2333

What is Action?

* At every new page request, the

. . . Hybrid Storage
action is to select a storage device [Systen

Features of Request lateney . Js
the current .
(of last served \device to plage

request and request) .
O !
system I e currentpage

e Action can be easily extended to any number of

storage devices

* Sibyl learns to proactively evict or promote a page

SAFARI

524

Talk Outline

Sybil: Overview

SAFARI 35c

Sibyl Execution

e

RL Training
Thread Asynchronous
N X ! / Execution

State, Reward, \

and Action ‘ Periodic Policy

Information | Weight Update
Storage 4 o A Data
Request - RL Decision > Placement
(from OS) Thread Decision

_ v
\ Sibyl /

SAFARI 996

Sibyl Design: Overview

g Trainin — RL Training\
Networ | Training } Batch Ty
YO Dataset
Periodic Policy
_ Weight Update J
/ RL Decision
/ N) Thread

Experience Buffer
(in host DRAM)

State %8 ={ Max\ Action

Storage Inference Sib .
yl Policy
Request [|Observation _Network ~ .] Reward (C I‘IV t
St C
(from OS)|| vector { HSS J :LExpgrignces]

K State /

SAFARI 3%+

Sibyl Design: Overview

~

i RL Training

Trainin —
Networ: Training } Batch Thread
HAAPO [Dataset

|

|

I |

Periodic Policy :
_ Weight Update | I J

|

i

|

|

|

|

RL Decision
Thread

-

~
%8 ::{ Max \ Action

[
Storage Inference 1 . .

1 Sibyl Policy
Request [|Observation \{_N_e:\ilirlj_j . :] Reward (|‘|'
(from OS)I| vector { HSS J :LExggrigﬁE:eS]

K State /

Experience Buffer
(in host DRAM)

State

S

SAFARI 3

Talk Outline

Evaluation of Sybil and Key Results

SAFARI 2390

Evaluation Methodology (1/3)

* Real system with various HSS configurations
- Dual-hybrid and tri-hybrid systems

AMD Ryzen7),
2700G CPU In %
\ T

\“.

Intel Optane)=
SSD P4800X

G
I\ Y 'A }'u.

7 Seagate HDD ° —
ST1000DM010 5

VA o

Intelssp ~ ADATA " (™
D3-s4510 =SU630 SSD {|

SAFARI

230

Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

i ™ INTEL” OPTANE™

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

> %
i 7 INTEL” OPTANE !
}II
’ — s 0
' i (inteD

[0)

SAFARI High-end SSD Middle-end SSD

‘231

Evaluation Methodology (3/3)

18 different workloads from:
- MSR Cambridge and Filebench Suites

* Four state-of-the-art data placement baselines:

- CbE Heuristic-based
Hps :> euristic-base
- Archivist

Learning-based
- RNN-HSS

SAFARI 232,

Performance Analysis
Cost-Oriented HSS Configuration

[1Slow-Only] CDE [] HPS [Archivist [RNN-HSS [Sibyl [Oracle

‘: l‘\’ s220 -)
High-end SSD Low-end HDD

o 200

>

©

38150 —

s O

< © |

< ®100 - - - - F

D +

N9 50- - - - -

o 5

£ES o

)

2 v 0 3 1 o 49 > O 1 3 (O
7 Q9 (™ o\/ o)~ o\ Q/ ﬁ Y xO7 - N’ 0 B
R S A e e L S

SAFARI 2333

Performance Analysis
Cost-Oriented HSS Configuration

High-end SSD Low-énd HBD}

/ ¢ \
)
=

[] Sibyl @ Oracle

o 200
O >,
C 2150
Z
S 8100
ﬁg 50 — N I
c 2
£5 o
o
=2 %> 0 5% .0 .7 .S 00‘&01‘&\‘0
s &9 7 L0V L0 .0V ﬂ/ s‘ N k07 7N 0
W7 @077 IO T e,(" RS i o e v

Sibyl consistently outperforms all the baselines
for all the workloads

SAFARI 234

Performance Analysis

. .
 High-endSSD ~ Mid-end SSD

Performance-Oriented HSS Configuration

[]Slow-Only 1 CDE [] HPS [Archivist [RNN-HSS [Sibyl Il Oracle

9)

N

ki

5% O . . . \] % Y
-, -, -, -, -, P -, -, s N AP ¢ | -, N

W
1
]

=
i
1

Normalized Average
Request Latency
T

SAFARI 235¢

Performance Analysis | o }
High-endSSD Mid-end SSD

Performance-Oriented HSS Configuration

/ _“‘_Mf' N\

[Sibyl [Oracle

9)

N

Normalized Average
Request Latency
o }‘ N
\ss
‘&

OV

%» O 5% .0 .7% .HD 0 \) ’L S
s A9 ™7 .oV .oV oM / ‘\' / (s N 0

Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy

SAFARI 234

Performance on Tri-HS g -

]]) Im“ - /]
High-end SSD Mid-end SSD Low-end HDD

Extending Sibyl for more devices:
1. Add a new action

2. Add the remaining capacity of the new device as a
state feature

% 10

C 3

g

53 5 *

5 I]

© >

EU H = [| IIE|I Hm L] []

5&) 0 I | | | | | ﬂ | | I |

= Y V) » .0 .Y .HD V) N \)) % V) % % (o}
s A9 ™7 .oV LoV LoV . P, \ VA 2L YA\ S P« 2 @“

o U SO O ° QdS Q("S e RUGEP LR 0%

SAFARI 232

Performance on Tri-HS

H/gh-end SSD M/d-end SSD Low-end HDDJ

Sibyl outperforms the state-of-the-art

data placement policy by
48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility

SAFARI 234g

Sibyl’'s Overhead

* 124.4 KiB of total storage cost
- Experience buffer, inference and training network

* 40-bit metadata overhead per page for state features
* Inference latency of ~¥10ns

* Training latency of ~2us

V Small area overhead

V Small inference overhead
V Satisfies prediction latency
SAFARI 2384

More in the Paper

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning
Gagandeep Singh! = Rakesh Nadig! Jisung Park! = Rahul Bera! = Nastaran Hajinazar!
David Novo® Juan Gémez-Luna! Sander Stuijk’® Henk Corporaal? Onur Mutlu?
1ETH Ziirich 2Eindhoven University of Technology SLIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl

https://www.youtube.com/watch?v=5-WedkiB000O
SAFARI 2499

https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000

Talk Outline

Conclusion

SAFARI o

Conclusion

* We introduced Sibyl, the first reinforcement learning-
based data placement technique in hybrid storage
systems that provides

- Adaptivity
- Easily extensibility
- Ease of design and implementation

*We evaluated Sibyl on real systems using many
different workloads

- Sibyl improves performance by 21.6% compared to the best prior
data placement policy in a dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-
data placement policy by 48.2%

- Sibyl achieves of an oracle policy with a
storage overhead of only
SAFARI 2575

Sibyl is Open-Source

https://github.com/CMU-SAFARI/Sibyl

& CMU—SAFARl/SIby| Public <z EditPins ~ ® Watch 6 ~ % Fork 2 - Yy Star 14 -

<> Code () Issues I Pullrequests () Actions [J Projects [0 Wiki @ Security [~ Insights 3 Settings

¥ main ~ ¥ 3 branches © 0 tags Go to file Add file ~ About e
Source code for the software

== singagan Update README.md 21a98ee on7 Jul D) 20 commits implementation of Sibyl proposed in our
ISCA 2022 paper: Gagandeep Singh et.

fn driver added driver support 2 months ago al., "Sibyl: Adaptive and Extensible Data

Placement in Hybrid Storage Systems
using Online Reinforcement Learning" at

sibyl execution fixes 2 months ago

[LICENSE Create LICENSE 2 months ago https://people.inf.ethz.ch/fomutlu/pub/Sib
yl_RL-based-data-placement-in-hybrid-

[README.md Update README.md last month .
storage-systems_isca22.pdf

D __init__.py init clean 2 months ago
J Readme

[requirements.txt added logging 2 months ago &5 MIT license

[setup.py added logging 2 months ago W 14 stars
& 6 watching

‘= README.md Vs % 2 forks

SAFARI

[=]

20

2H

r Jd

943

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage

Systems Using Online Reinforcement Learning
Gagandeep Singh! Rakesh Nadig! lJisung Park! Rahul Beral

Nastaran Hajinazar! David Novo? Juan Gomez-Lunal
Semiconductor

Research Sander Stuijk® Henk Corporaal® Onur Mutlu?
Corporation

'ETHziirich > SLIRMM® TU/e B

e Systems (HSS) 2: Motivation & Goal
Address Space (Application/File System View) Observation 1: Lack of adaptivity to: Observation 2: Lack of extensibility
(Logical Pages 1 a) Workload changes Change in configuration Design a new policy
2 + Statically tuned \
parameters
* Upto 41.1% lower
i morman(e
= " I“ “- /\ -
b) Devices changes * Rigidtechniques
Doy Qe e oo Qeeon moc gees gewe | © Wastes precious design time and human resources
it 100- 13 e
L aoll Our goal is to design a data-placement mechanism
i that can provide:
Hybrid Storage System LIPS 2 I o o },.} - 1. Adaptivity, by continuously learning and adapting to
sescomgmtent PR the application and underlying device characteristics
* HSS consists of multiple devices with different characteristics * Do not consider underlying device characteristics
rage * Maquire a differant dats lenfor | |0 toi a wide range of HSS
* Stol layer the data each configuration = &
4: Sibyl Execut| Implementation
RL Training
o = W] e C u
Features of the Request latency Select storage device to e
current requestand (of fast served request) piace Asynchronous v RL Decision
system the current page / Thread
tion
Hybrid Storage e

Tnference

2ustem . oata | Request o Hetwork _ Sibyl Pollcy
eques
Formulates data placement in hybrid storage systems as a ‘ feomcs)

[mmmm) S 6 Our Poste r!

reinforcement learning problem
* Sibyl collects state, action, and reward

Limited number of features to Encapsulates three key aspect: z information in the experience buffer
* Implemented in the host 0OS & . i
reduce the overhead * Internal state of the device > 3 5 Training and inference networks use a
+ Throughput * Two threaded implementation small and identical feedforward
& Action . Evict: runs asynchronously network with only two hidden layer
Allows easy extensibility victs

Evaluation & Key Takeaways

Key Results

(] Real system with various HSS configuration
Q Dual-hybrid and tri-hybrid
(1 18 different workloads single-core workload
traces
0 MSR Cambridge and Filebench Suite
(1 4 state-of-the-art data placement baselines:
QO Two heuristic-based
O Two machine learning-based

Cost-Oriented HSS Configuration

JZI.G% and 19.9% performance improvement in a

performance-oriented and cost-oriented HSS configuration compared to the best
previous data-placement technique

J 48.2% performance improvement in a tri-HsS configuration
compared to the state-of-the-art data-placement policy

JAcmeves 80% performance of an oracle policy with complete
knowledge of future access patterns

J Small storage overhead of 124.KiB for experience buffer and
Extending Sibyl for more devices: inference and training network
1. Add a new action
2. Add the remaining capacity of the new
device as a state feature J Satisfies prediction latency for making a placement

decision dueto asynchronous training and inference
EiAE EimE EE
% Heat A

) GitHub ISCA’22 Talk Full Paper

This work was supported in part by Semiconductor Research Corporation (SRC). Task ID: 2946.001

Oiow-0nhE e DIHps_ Darchhst B Rnn-tss B sy B O

S B A S 00,00 7 T
Performance-Oriented HSS Configuration (im0
e

DsiowontyB e Dpps Darchnis: B

O sty B Orade

rz""“"r‘r‘« RS

£¥

3 9.0 >

fxxm*m« e g

Sibyl:
Adaptive and Extensible Data Placement

in Hybrid Storage Systems
Using Online Reinforcement Learning

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,
Juan Gomez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu

SAFARI ETHziirich SLIRMM TU/e 5o

Year I1I Results (2022 Annual Review 3)

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems
Using Online Reinforcement Learning [ISCA 2022]

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
SAFARI 246

Hermes

= To Appear in MICRO 2022

HERMES

Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load

Prediction

[License MER] release vi.0.1 [o1 10.5281/zeno0do.6909799

¥ Table of Contents

1.
2
3
4.
5
6

7.
8
9.
10.
11.
12.

What is Hermes?

. About the Framework
. Prerequisites

Installation

. Preparing Traces

. Experimental Workflow

o Launching Experiments

o Rolling up Statistics
Brief Code Walkthrough

. Frequently Asked Questions

Citation
License
Contact

Acknowledgments

What is Hermes?

Hermes is a speculative mechanism that accelerates long-latency off-chip load requests by removing on-chip

cache access latency from their critical path.

The key idea behind Hermes is to: (1) accurately predict which load requests might go to off-chip, and (2)
speculatively start fetching the data required by the predicted off-chip loads directly from the main memory in
parallel to the cache accesses. Hermes proposes a lightweight, perceptron-based off-chip predictor that identifies
off-chip load requests using multiple disparate program features. The predictor is implemented using only tables
and simnle arithmetic onerations like increment and decrement

SAFARI

https://github.com/CMU-SAFARI/Hermes

247

https://github.com/CMU-SAFARI/Hermes

HERMES

Accelerating Long-Latency Load Requests
via Perceptron-based Off-chip Load Prediction

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

SAFARI ETH:ziirich

SAFARI Research Group

Long-latency off-chip requests
significantly limit performance of a processor

Deploy sophisticated prefetchers

Increase size of on-chip caches

Nearly 50% of the off-chip requests

in @ no-prefetching system
still go to the main memory
even in presence of state-of-the-art prefetcher

37.5% of the stall cycles caused by an off-chip

load can be reduced by removing on-chip cache
access latency from its critical path

Predicts which load requests might go off-chip
using multiple program features

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

Hermes: Overview

------- oCP

Predict whether the
load will go off-chip

TrainOCP @ 1+

]
!
!
I
—]
Existing data path 1 ‘ :
-———p I Issue speculative
New data path L2 9 : load for positive
| predictions
t l
1
!
LLC :
]
1

e Load missing the LLC waits on
the speculative load to finish
SLB | o---ZZ-%| MC | <e--------4

Buffer data fetched by
G speculative load

Main Memory

SAFARI 254

Hermes: Overview

Core |-==----- >| OCP

Predict whether the
Train OCP 6 1 ‘ load will go off-chip E
'

L1-D
——
Existing data path 1 ‘ '
-———p | Issue speculative
New data path L2 1 load for positive
‘ | predictions
1 '
0
'
LLC :
:
]

e Load missing the LLC waits on
the speculative load to finish
SLB | o---ZZ-%| MC | <e--------4

Buffer data fetched by
G speculative load

Main Memory

SAFARI 255

Hermes: Overview

Core |-==----- >| OCP

Predict whether the 1
Train OCP e 1 ‘ load will go off-chip :
L1-D :
— 0
Existing data path 1 ‘ :
===r I Issue speculative
New data path L2 9 \ load for positive
: predictions
t :
I
]
LLC)
]
1
e Load missing the LLC waits on
the speculative load to finish
SLB | =--ZZZZ”| MC |<e---------

Buffer data fetched by
G speculative load

Main Memory

SAFARI 256

Perceptron-based Off-chip Predictor

- @ index

hash

- @ index

hash

- . @ index

hash

SAFARI

Weight
Table,

Weight

Table,

Weight
Tabley

/ ng Activation
weights

weight,

/

Final
prediction

25257

1 We evaluate Hermes using a wide-range of workloads
Hermes improves performance by
5.4% in single-core
5.1% in eight-core
6.2% in memory bandwidth-constrained core

over the baseline with the state-of-the-art prefetcher

Consistent performance improvement in a wide range of configurations

with varying prefetchers and cache access latency

5.1%, 6.2%, 7.7% performance improvement
in single-core with SPP, Bingo, SMS prefetchers

@ Realistic, practical implementation

Only 5.1 KB storage and 1.5% power overhead
of a desktop-class processor

58

Hermes is Open Source
https://github.com/CMU-SAFARI/Hermes

 All 3 badges from MICRO’22 artifact evaluation
 Champsim and McPAT source code
 All traces & scripts used for evaluation

& CMU-SAFARI/Hermes ' Public ®Unwatch 3 ~ % Fork 1 - Yy Star 3 -

<> Code (© Issues 19 Pullrequests () Actions [Projects [0 Wiki (@ Security [~ Insights 3 Settings

¥ main ~ ¥ 1branch © 3tags Go to file Add file v m About o
A speculative mechanism to accelerate
Rahul Bera Updated README e18045¢c 7 days ago ‘) 16 commits long-latency off-chip load requests by
removing on-chip cache access latency
BB branch Initial commit for MICRO'22 AE 27 days ago from their critical path.
M config Initial commit for MICRO'22 AE 27 days ago machine-learning cache perceptron
B cvp_tracer Initial commit for MICRO'22 AE 27 days ago computer-architecture microarchitecture
perceptron-learning-algorithm prefetching
I experiments 1. Added traces/ directory 21 days ago
B inc Initial commit for MICRO'22 AE 27 days ago M Readme
&8 MIT, Unknown licenses found
B logo Github theme-adapting logo 25 days ago
Y¢ 3stars
B mcpat Initial commit for MICRO'22 AE 27 days ago ® 3 watching
B prefetcher Initial commit for MICRO'22 AE 27 days ago % 1fork
I replacement Initial commit for MICRO'22 AE 27 days ago
@8 scripts Added more documentations for the script files 24 days ago Releases 3
B src Initial commit for MICRO'22 AE 27 days ago © v1.01
15 days ago
I tools Initial commit for MICRO'22 AE 27 days ago
+ 2 releases 2 5 9
BB tracer Initial commit for MICRO'22 AE 27 days ago

https://github.com/CMU-SAFARI/Hermes

HERMES

Accelerating Long-Latency Load Requests
via Perceptron-based Off-chip Load Prediction

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

SAFARI ETH:ziirich

SAFARI Research Group

Year I1I Results (2022 Annual Review 3)

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems
Using Online Reinforcement Learning [ISCA 2022]

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
SAFARI 261

Year I1I Results (2022 Annual Review 3)

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems
Using Online Reinforcement Learning [ISCA 2022]

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
SAFARI 262

pLUTo

To Appear in MICRO 2022

pLUTo: Enabling Massively Parallel Computation

In DRAM via Lookup Tables
Joao Dinis Ferreiral Gabriel Falcao Juan Gémez-Luna$ Mohammed Alser$
Lois Orosa$ Mohammad Sadrosadati® Jeremie S. Kim? Geraldo F. Oliveira$
Taha Shahroodi$+ Anant Nori* Onur Mutlu$

SETH Ziirich TInstituto de Telecomunicagoes, University of Coimbra *TU Delft *Intel Corporation

https://arxiv.or df/2104.07699.pdf

SAFARI 263

https://arxiv.org/pdf/2104.07699.pdf

pLUTo: In-DRAM Lookup Tables to Enable

General-Purpose Massively Parallel Computations

Joao Dinis Ferreira, Gabriel Falcao, Juan Gomez-Luna,
Mohammed Alser, Geraldo F. Oliveira, Jeremie S. Kim, Mohammad Sadrosadati,

Lois Orosa, Taha Shahroodi, Anant Nori, Onur Mutlu

SAFARI ETH:zurich

August 2022

Executive Summary

® Problem. Many workloads require significant data movement. Existing Processing-using-
Memory solutions mitigate this data movement but lack support for complex operations.

® Key Idea. LUTs enable general-purpose computation: perform LUT-based computation
inside memory subarrays to perform complex operations.

® Mechanism Overview. With the LUT query operation, the elements in a source memory
row are queried simultaneously in a LUT. In this way, it is possible to perform bulk LUT
queries in-DRAM.
e Key Contributions.
o Introduce support for bulk in-memory LUT querying for general-purpose in-memory computing.
o Three implementations of pLUTo with varying area/performance/efficiency trade-offs.
e Key Results.
o Compared to CPU: up to 33x faster and 110x more energy-efficient.
o Compared to GPU: up to 8x faster and 80x more energy-efficient.

265

Year I1I Results (2022 Annual Review 3)

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems
Using Online Reinforcement Learning [ISCA 2022]

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

DeepSketch: A New Machine Learning-Based Reference Search Technique

for Post-Deduplication Delta Compression [FAST 2022]

A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
SAFARI 266

DeepSketch

Jisung Park, Jeonggyun Kim, Yeseong Kim, Sungjin Lee, and Onur Mutlu,

"DeepSketch: A New Machine Learning-Based Reference Search
Technique for Post-Deduplication Delta Compression”

Proceedings of the 20th USENIX Conference on File and Storage
Technologies (FAST), Santa Clara, CA, USA, February 2022.
[Slides (pptx) (pdf)]

[Talk Video (15 minutes)]

DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression

Jisun Parkl* Jeonggyun KI.IIIZ* YﬁSCOIlg I(ollll2 Sllllgjill L662 Onur Mutlul
g
1E'TTI Ziirich 2D(;IST

SAFARI https://arxiv.orqg/pdf/2202.10584.pdf 267

https://people.inf.ethz.ch/omutlu/pub/DeepSketch_fast22.pdf
https://www.usenix.org/conference/fast22
https://people.inf.ethz.ch/omutlu/pub/DeepSketch_fast22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/DeepSketch_fast22-talk.pdf
https://www.youtube.com/watch?v=RFdGyAJCk9M
https://arxiv.org/pdf/2202.10584.pdf

Executive Summary

Motivation

o Data reduction: Effective at reducing the management cost of a data center by
reducing the amount of data physically written to storage devices

o Post-deduplication delta compression: Maximizes the data-reduction ratio by
applying delta compression along with deduplication and lossless compression

Problem: Existing post-deduplication delta-compression techniques provide
significantly low data-reduction ratios compared to the optimal.

o Due to the limited accuracy of reference search for delta compression
o Cannot identify a good reference block for many incoming data blocks

Key Ildea: DeepSketch, a new machine learning-based reference search technique
that uses the learning-to-hash method

o Generates a given data block’s signature (sketch) using a deep neural network

o The higher the delta-compression benefit of two data blocks,
the more similar the signatures of the two blocks to each other

Evaluation Results: DeepSketch reduces the amount of physically-written data
o Up to 33% (21% on average) compared to a state-of-the-art baseline

268

DeepSketch Talk Video

Overall Data-Reduction Benefits

EFinesse @O DeepSketch

IR I IFIFE N

PC Install Update Synth Sensor Web SOF0 SOF1-4

Large data-reduction improvement:
Up to 33% (21% on average)

2 il e
_RNWR U uo
11

o
l;
g
=]
5
=]
=)
=
=
5
D
3
o
a

Effective for unseen workloads (SOFs)
that cannot benefit from the state-of-the-art

DeepSketch: A New Machine Learning-Based Reference Search Technique for Delta Compression - FAST'22

391 views + Premiered Apr 22, 2022 e 20 CP DISLIKE > SHARE 1 DOWNLOAD §{ CLIP =+ SAVE ...
e Onur Mutlu Lectures ANALYTICS | EDIT VIDEO
&> 27K subscribers

SAFARI https: / /www.youtube.com/watch?v=RFdGyAJCkOM 269

https://www.youtube.com/watch?v=RFdGyAJCk9M

Year I1I Results (2022 Annual Review 3)

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems
Using Online Reinforcement Learning [ISCA 2022]

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

A Modern Primer on Processing in Memory [Arxiv, Updated 2022]

SAFARI 270

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https:/ /arxiv.org/pdf/1903.03988.pdf 271

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

SAFARI

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose"®, Juan Gémez-Luna?, Rachata Ausavarungnirun?
SAFARI Research Group

AETH Ziirich
bCarnegie Mellon University
“University of lllinois at Urbana-Champaign
4King Mongkut's University of Technology North Bangkok

Abstract

Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes
directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks:
(1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory
bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms,
especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms
of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the
data-intensive server and energy-constrained mobile systems of today.

At the same time, conventional memory technology is facing many technology scaling challenges in terms of
reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different
ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic,
the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards
and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity
of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an
evidence of this trend.

This chapter discusses recent research that aims to practically enable computation close to data, an approach we call
processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the
memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between
the computation units and memory is reduced or eliminated. While the general idea of PIM is not new, we discuss
motivating trends in applications as well as memory circuits/technology that greatly exacerbate the need for enabling
it in modern computing systems. We examine at least two promising new approaches to designing PIM systems
to accelerate important data-intensive applications: (1) processing using memory by exploiting analog operational
properties of DRAM chips to perform massively-parallel operations in memory, with low-cost changes, (2) processing
near memory by exploiting 3D-stacked memory technology design to provide high memory bandwidth and low memory
latency to in-memory logic. In both approaches, we describe and tackle relevant cross-layer research, design, and
adoption challenges in devices, architecture, systems, and programming models. Our focus is on the development of
in-memory processing designs that can be adopted in real computing platforms at low cost. We conclude by discussing
work on solving key challenges to the practical adoption of PIM.

Keywords: memory systems, data movement, main memory, processing-in-memory, near-data processing,
computation-in-memory, processing using memory, processing near memory, 3D-stacked memory, non-volatile
memory, energy efficiency, high-performance computing, computer architecture, computing paradigm, emerging
technologies, memory scaling, technology scaling, dependable systems, robust systems, hardware security, system
security, latency, low-latency computing

272

SAFARI

Contents

1 Introduction 2
2 Major Trends Affecting Main Memory| 4
3 The Need for Intelligent Memory Controllers

to Enhance Memory Scaling 6
|4 Perils of Processor-Centric Design| 9
5 Processing-in-Memory (PIM): Technology

Enablers and Two Approaches| 12

[5.1 New Technology Enablers: 3D-Stacked |
[Memory and Non-Volatile Memory| . . 12

|52 Two Approaches: Processing Using
Memory (PUM) vs. Processing Near

Memory (PNM)[. 13
|6 Processing Using Memory (PUM)| 14
6.1 RowClone, 14
6.2 _Ambit 15
[6.3 Gather-Scatter DRAM| 17
[6.4 In-DRAM Security Primitives| 17
|7 Processing Near Memory (PNM) 18
[7.1 Tesseract: Coarse-Grained Application-
Level PNM Acceleration of Graph Pro-
CeSSINPliici o v 3 & ok wrahs it s 19
7.2 _Function-Level PNM Acceleration of
...... 20

[7.3 Programmer-Transparent Function-
Level PNM Acceleration of GPU
Applications|. 21

[7.4 Instruction-Level PNM Acceleration]

[with PIM-Enabled Instructions (PEI)| . . 21

7.5 Function-Level PNM Acceleration of J
Genome Analysis Workloads| 22

~[7.6 Application-Level PNM Acceleration of

Time Series Analysis| 23

'8 Enabling the Adoption of PIM| 24
[8.1 Programming Models and Code Genera-

[tionfor PIM|. 24
[8.2 PIM Runtime: Scheduling and Data

[Mapping|. 25

8.3 Memory Coherence 27

8.4 Virtual Memory Support| 27

8.5 Data Structures for PIM|. 28

~ [8.6__Benchmarks and Simulation Infrastruc-

................... 29

8.7 Real PIM Hardware Systems and Proto- '
typesk: soiis o s e R vl ShEa 30

|8.8 Security Considerations|. 30

9 _Conclusion and Future Outlook 31

1. Introduction

Main memory, built using the Dynamic Random Ac-
cess Memory (DRAM) technology, is a major compo-
nent in nearly all computing systems, including servers,
cloud platforms, mobile/embedded devices, and sensor
systems. Across all of these systems,the data working
set sizes of modern applications are rapidly growing,
while the need for fast analysis of such data is increas-
ing. Thus, main memory is becoming an increasingly
significant bottleneck across a wide variety of computing
systems and applications [1}2,3,/4, 5, 6,(7, 8, 9,10, 11,

12,113, 14,/15, 16]. Alleviating the main memory bot-

tleneck requires the memory capacity, energy, cost, and
performance to all scale in an efficient manner across
technology generations. Unfortunately, it has become
increasingly difficult in recent years, especially the past
decade, to scale all of these dimensions [1,2,/17, 18, 19,
20, 21,22, 23,24, 25,[26, 27,28, 29,130, 31, 32,/33, 34,
35,136,/37,138,39, 40, 41, 42,/43,|44, 45, 46, 47, 48,49],
and thus the main memory bottleneck has been worsen-
ing.

A major reason for the main memory bottleneck is the
high energy and latency cost associated with data move-
ment. In modern computers, to perform any operation
on data that resides in main memory, the processor must
retrieve the data from main memory. This requires the
memory controller to issue commands to a DRAM mod-
ule across a relatively slow and power-hungry off-chip
bus (known as the memory channel). The DRAM mod-
ule sends the requested data across the memory channel,
after which the data is placed in the caches and regis-
ters. The CPU can perform computation on the data
once the data is in its registers. Data movement from the
DRAM to the CPU incurs long latency and consumes
a significant amount of energy [7, 50, 51, 52, 53, 54].
These costs are often exacerbated by the fact that much
of the data brought into the caches is not reused by the
CPU [52, 53, 55,/56], providing little benefit in return
for the high latency and energy cost.

The cost of data movement is a fundamental issue
with the processor-centric nature of contemporary com-
puter systems. The CPU is considered to be the master
in the system, and computation is performed only in the
processor (and accelerators). In contrast, data storage
and communication units, including the main memory,
are treated as unintelligent workers that are incapable of
computation. As a result of this processor-centric design
paradigm, data moves a lot in the system between the
computation units and communication/ storage units so
that computation can be done on it. With the increasingly
data-centric nature of contemporary and emerging appli-

273

PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’ Amirali Boroumand® Jeremie S. Kim™ Juan Gémez-Luna® Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

SAFARI https:/ /arxiv.org/pdf/1907.12947.pdf 274

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Year III Results (2022 Annual Review 4)

EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network
Accelerators [arXiv 2022] https://arxiv.org/abs/2202.02310

ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
Efficient Genome Analysis [arXiv 2022] https://arxiv.org/abs/2207.09765

Accelerating Weather Prediction Using Near-Memory Reconfigurable Fabric
[TRETS 2022] https://arxiv.org/abs/2107.08716

SAFARI 275

https://arxiv.org/abs/2202.02310
https://arxiv.org/abs/2207.09765
https://arxiv.org/abs/2107.08716

Memory System Design for A1/ ML,
Accelerators & MIL./Al Techniques
for Memory System Design

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
30 August 2022
SRC AIHW Annual Review

SAFARI ETHZzurich CarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

