
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
30 August 2022

SRC AIHW Annual Review

Memory System Design for AI/ML
Accelerators & ML/AI Techniques

for Memory System Design

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

2

Confidentiality

• By reviewing this presentation or participating in a SRC event,
you are agreeing not to use the presented information for
purposes unrelated to the event until approved by SRC;

• Material may be presented that represents current research,
some of which has not been published or protected. This
material is not for public disclosure and until potential IP rights
have been protected, please treat all of the information
presented as confidential information which is the property
of the researcher and their university.

SRC Select Disclosure

Agenda

n Problem and Background

n Task Overview

n Technical Challenges, Goals and Ideas

n Ideas, Results and Papers from the Past Year

3

The Problem

Computing
is Bottlenecked by Data

4

Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts
of data

n Data is increasing
q We can generate more than we can process

5

Data is Key for Future Workloads

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data Overwhelms Modern Machines

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data → performance & energy bottleneck

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data is Key for Future Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data Overwhelms Modern Machines

Data → performance & energy bottleneck

Data is Key for Future Workloads

10

development of high-throughput
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Genome
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read
Alignment

 CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Data → performance & energy bottleneck

Example Data Generator: Genome Sequencing

12

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

Data → performance & energy bottleneck

https://arxiv.org/pdf/1711.08774.pdf

Data Overwhelms Modern Machines …

n Storage/memory capability

n Communication capability

n Computation capability

n Greatly impacts robustness, energy, performance, cost

13

14

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data Overwhelms Modern Machines

Data → performance & energy bottleneck

n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

15

62.7% of the total system energy
is spent on data movement

Data Movement Overwhelms Modern Machines

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Axiom

An Intelligent Architecture
Handles Data Well

16

How to Handle Data Well

n Ensure data does not overwhelm the components
q via intelligent algorithms
q via intelligent architectures
q via whole system designs: algorithm-architecture-devices

n Take advantage of vast amounts of data and metadata
q to improve architectural & system-level decisions

n Understand and exploit properties of (different) data
q to improve algorithms & architectures in various metrics

17

Corollaries: Computing Systems Today …
n Are processor-centric vs. data-centric

n Make designer-dictated decisions vs. data-driven

n Make component-based myopic decisions vs. data-aware

18

Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
19

A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]

20

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Agenda

n Problem and Background

n Task Overview

n Technical Challenges, Goals and Ideas

n Ideas, Results and Papers from the Past Year

21

In This Task… (Task #2946.001)

n We focus on designing memory systems to handle data well

n We aim to solve two different yet related and synergistic
problems, both focusing on ML/AI and memory system
design

n We explore (and exploit the synergy between)
q Memory system design for AI/ML workloads/accelerators
q AI/ML techniques for improving memory system designs

n Task Name: Memory System Design for AI/ML Accelerators
& ML/AI Techniques for Memory System Design

22

Our Goals in This Task
n Two Major Goals:

1. Memory system design for AI/ML workloads/accelerators
à in-depth exploration of memory system designs for cutting-

edge and emerging machine learning accelerators
à more efficient on-chip and off-chip memory systems

2. AI/ML techniques for improving memory system designs
à take a comprehensive look at memory system design and

make it data driven, i.e., based on machine learning
à more effective cache/memory/prefetch/thread controllers

and data/resource management/mapping/scheduling policies

23

Anticipated Primary Results

n Realistic, practical and effective novel memory system
designs for ML/AI accelerators

n New ML-based techniques to improve memory system
efficiency and performance

n Open-source workloads, metrics, methodologies &
infrastructures to analyze such designs and techniques.

24

Task Description

25

Task Deliverables (2020)

26

Task Deliverables (2021)

27

Task Deliverables (2022)

28

Task Information #2946.001 (1)
n Thrust: AI Hardware

n Task Leader: Onur Mutlu
q https://people.inf.ethz.ch/omutlu/
q onur.mutlu@inf.ethz.ch

n Students
q Rahul Bera (ETH)
q Joao Ferreira (ETH)
q Geraldo Francisco de Oliveira Junior (ETH)
q Konstantinos Kanellopoulos (ETH)
q Joel Lindegger (ETH)
q Aditya Manglik (ETH)
q Rakesh Nadig (ETH)

29

https://people.inf.ethz.ch/omutlu/
mailto:onur.mutlu@inf.ethz.ch

Task Information #2946.001 (2)
n Senior Researchers

q Juan Gomez Luna (ETH)
q Haiyu Mao (ETH)
q Lois Orosa (ETH)
q Jisung Park (ETH)
q Gagandeep Singh (ETH)

n More students/postdocs to be added as the task evolves

30

Recent PhD Graduate
n Minesh Patel

q October 2021
q Enabling Effective Error Mitigation in Memory Chips That Use

On-Die Error-Correcting Codes
q 2022 William C. Carter PhD Dissertation Award in Dependability
q Best Paper Awards at DSN 2019 & MICRO 2020
q https://www.youtube.com/watch?v=0c9bDr18jZE
q https://arxiv.org/abs/2204.10387
q https://www.mineshp.com/

31

https://www.youtube.com/watch?v=0c9bDr18jZE
https://arxiv.org/abs/2204.10387
https://www.mineshp.com/

Recent PostDoc Alumni
n Dr. Lois Orosa

q March 2022
q Director at the Galician Supercomputing Center

n Dr. Gagandeep Singh
q September 2022
q Joining AMD Research

n Dr. Jisung Park
q September 2022
q Joining POSTECH (South Korea) as Assistant Professor

32

Soon to Finish PhD

n Hasan Hassan
q PhD Defense date: September 29, 2022
q Improving DRAM Performance, Reliability, and Security by

Rigorously Understanding Intrinsic DRAM Operation
q https://drive.google.com/file/d/1E5mFYl_SMjCP-

7TQ8qt6kRALROGhZs9K/view

33

https://drive.google.com/file/d/1E5mFYl_SMjCP-7TQ8qt6kRALROGhZs9K/view

Recent Internships
n Dr. Gagandeep Singh

q February-June 2022
q Visit to AMD Research

34

Upcoming TECHCON Presentation
n Dr. Juan Gomez-Luna

q Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware

q Based on two major works
n https://arxiv.org/pdf/2105.03814.pdf
n https://arxiv.org/pdf/2207.07886.pdf

35https://www.youtube.com/watch?v=nphV36SrysA

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=nphV36SrysA

Industry Liaisons
n Charles Augustine, Intel
n Pradip Bose, IBM
n Alper Buyuktosunoglu, IBM
n Rosario Cammarota, Intel
n Ramesh Chauhan, Qualcomm
n Prokash Ghosh, NXP
n Jose Joao, ARM
n Arun Joseph, IBM
n Preetham Lobo, IBM
n Nithyakalyani Sampath, TI
n Willem Sanberg, NXP
n Pushkar Sareen, NXP
n Sreenivas Subramoney, Intel
n Xin Zhang, IBM

n We are having and will have regular and irregular meetings with all liaison companies
n Very open to other collaborators, feedback, internships, visits

36

Industry Interactions (This Year I)
n Intel: Collaborative papers with as part of this task

q Sreenivas Subramoney, Gurpreet Kalsi, Anant Nori, Kamlesh Pillai, Shankar
Balachandran, Bharathwaj Suresh

q SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph
and Sequence-to-Sequence Mapping [ISCA 2022]

q pLUTo: Enabling Massively Parallel Computation In DRAM via Lookup Tables
[MICRO 2022]

q Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

q ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
Efficient Genome Analysis [arXiv 2022]

n IBM: Collaborative papers
q Dionysios Diamantopoulos, Christoph Hagleitner
q Accelerating Weather Prediction Using Near-Memory Reconfigurable Fabric

[TRETS 2022]

37

Industry Interactions (This Year II)
n IBM: Collaborative EU Horizon Project BioPIM

q Abu Sebastian, Irem Boybat (IBM Research Zurich)
q http://www.biopim.eu/
q BioPIM project aims to leverage the emerging processing-in-memory (PIM)

technologies to enable powerful edge computing.
q Synergistic with this task
q We will focus on co-designing algorithms and data structures commonly used

in bioinformatics together with several types of PIM architectures to obtain the
highest benefit in cost, energy, and time savings.

q BioPIM will also impact other fields that employ similar algorithms.
q Our designs and algorithms will not be limited to cheap hardware, and they

will impact computation efficiency on all forms of computing environments
including cloud platforms.

q The targeted breakthrough of BioPIM is to invent and leverage in-memory
computing architectures to fundamentally improve the performance and
energy efficiency of various important bioinformatics algorithms to make
mobile genomics a reality

38

http://www.biopim.eu/

Industry Interactions (This Year III)
n Qualcomm: In-person Visit & Talk

q Ramesh Chauhan
q May 2022

n IBM Research: In-person Visit & Talk
q Pradip Bose, Karthik Swaminathan, Alper Buyuktosunoglu, Krishnan Kailas
q May 2022

n Intel: Keynote Talk at the Intel Interconnect & Connectivity Summit
q Debendra Das Sharma
q "Memory-Centric Computing"

Keynote Talk at the Intel Interconnect & Connectivity Summit (IICS), Virtual, 9
February 2022.
[Slides (pptx) (pdf)]

39

https://people.inf.ethz.ch/omutlu/pub/onur-IICS-Keynote-MemoryCentricComputing-February-9-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IICS-Keynote-MemoryCentricComputing-February-9-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IICS-Keynote-MemoryCentricComputing-February-9-2022.pdf

Posters for Annual Review 2022
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using

Online Reinforcement Learning [ISCA 2022]
q Gagandeep Singh

n SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and
Sequence-to-Sequence Mapping [ISCA 2022]
q Damla Senol Cali, Joel Lindegger

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip
Load Prediction [MICRO 2022]
q Rahul Bera

n Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design [ICDE 2022]
q Geraldo Francisco de Oliveira Junior

n Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-
Memory Hardware [IEEE Access 2022]
q Juan Gómez-Luna

n Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine
Learning Inference Bottlenecks [PACT 2021]
q Geraldo Francisco de Oliveira Junior

40

Special Research Sessions & Courses
n Special Session at ISVLSI 2022: 9 cutting-edge talks

41https://www.youtube.com/watch?v=qeukNs5XI3g

https://www.youtube.com/watch?v=qeukNs5XI3g

Comp Arch (Fall’21)
n Fall 2021 Edition:

q https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule

n Fall 2020 Edition:
q https://safari.ethz.ch/architecture/fall2020/doku.

php?id=schedule

n Youtube Livestream (2021):
q https://www.youtube.com/watch?v=4yfkM_5EFg

o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
n Youtube Livestream (2020):

q https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN

n Master’s level course
q Taken by Bachelor’s/Masters/PhD students
q Cutting-edge research topics + fundamentals in

Computer Architecture
q 5 Simulator-based Lab Assignments
q Potential research exploration
q Many research readings

42https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures

DDCA (Spring 2022)
n Spring 2022 Edition:

q https://safari.ethz.ch/digitaltechnik/spring2022/do
ku.php?id=schedule

n Spring 2021 Edition:
q https://safari.ethz.ch/digitaltechnik/spring2021/do

ku.php?id=schedule

n Youtube Livestream (Spring 2022):
q https://www.youtube.com/watch?v=cpXdE3HwvK

0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
n Youtube Livestream (Spring 2021):

q https://www.youtube.com/watch?v=LbC0EZY8yw
4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN

n Bachelor’s course
q 2nd semester at ETH Zurich
q Rigorous introduction into “How Computers Work”
q Digital Design/Logic
q Computer Architecture
q 10 FPGA Lab Assignments

43https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/onurmutlulectures

PIM Course (Spring 2022)

n Spring 2022 Edition:
q https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=processing
_in_memory

n Youtube Livestream:
q https://www.youtube.com/watch?v=9e4

Chnwdovo&list=PL5Q2soXY2Zi-
841fUYYUK9EsXKhQKRPyX

n Project course
q Taken by Bachelor’s/Master’s students
q Processing-in-Memory lectures
q Hands-on research exploration
q Many research readings

44

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX

Genomics (Spring 2022)

n Spring 2022 Edition:
q https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=bioinforma
tics

n Youtube Livestream:
q https://www.youtube.com/watch?v=DEL

_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR
1yRU_Cxxjw-u18

n Project course
q Taken by Bachelor’s/Master’s students
q Genomics lectures
q Hands-on research exploration
q Many research readings

45

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18

Hetero. Systems (Spring’22)

n Spring 2022 Edition:
q https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=heterogen
eous_systems

n Youtube Livestream:
q https://www.youtube.com/watch?v=oFO

5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM
_FTjmY6h7Gzm

n Project course
q Taken by Bachelor’s/Master’s students
q GPU and Parallelism lectures
q Hands-on research exploration
q Many research readings

46

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://www.youtube.com/watch?v=oFO5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm
https://www.youtube.com/watch?v=oFO5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm

HW/SW Co-Design (Spring 2022)

n Spring 2022 Edition:
q https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=hw_sw_co
design

n Youtube Livestream:
q https://youtube.com/playlist?list=PL5Q2s

oXY2Zi8nH7un3ghD2nutKWWDk-NK

n Project course
q Taken by Bachelor’s/Master’s students
q HW/SW co-design lectures
q Hands-on research exploration
q Many research readings

47

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=hw_sw_codesign
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi8nH7un3ghD2nutKWWDk-NK

SSD Course (Spring 2022)

n Spring 2022 Edition:
q https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=modern_s
sds

n Youtube Livestream:
q https://www.youtube.com/watch?v=_q4r

m71DsY4&list=PL5Q2soXY2Zi8vabcse1kL
22DEcgMl2RAq

n Project course
q Taken by Bachelor’s/Master’s students
q SSD Basics and Advanced Topics
q Hands-on research exploration
q Many research readings

48

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=modern_ssds
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq

Agenda

n Problem and Background

n Task Overview

n Technical Challenges, Goals and Ideas

n Ideas, Results and Papers from the Past Year

49

Two Major Thrusts

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

50

Thrust 1 Exploration Ideas
1.1. Comprehensive Energy and Performance Analysis of ML/AI Accelerator
Execution on Key ML/AI Workloads

1.2. Cache/Buffer, On-Chip Memory, Interconnect, Memory Controller Designs for
ML Accelerators and Their Interfaces

1.3. Complete on-chip ML/AI accelerator designs with careful data orchestration
and on-chip memory management.

1.4. On-chip & off-chip near-data processing (NDP) designs, interfaces, evaluation,
programming for AI/ML workloads

1.5. Evaluation and understanding of both short-term and long-term options for
NDP for AI/ML Workloads

1.6. Use of NVM devices, simple customized DRAM and 3D-stacked Memory+Logic
for AI/ML Acceleration

1.7. High-Fidelity and Highly-Flexible Open Source Simulation & Modeling
Infrastructures for ML/AI Memory Systems

51

This
talk

Two Major Thrusts

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

52

Thrust 2 Exploration Ideas
2.1. Comprehensive performance and energy analysis of rigid policies in the
memory hierarchy – how far are they from the ideal policies? What is the
maximum potential ML techniques can achieve?

2.2. New caching, prefetching, mem. controller, runahead, compression policies
that are directed with appropriate ML techniques

2.3. Rigorous specification and coordination of ML-based on-chip cache, prefetch,
DRAM, NVM, hybrid mem. Controllers

2.4. Design and evaluation of new ML-based techniques to manage hybrid
memories consisting of multiple different technologies

2.5. Design and evaluation of new ML-based data mapping policies across on-chip
caches and memory controllers

2.6. Design and evaluation of new ML-based thread scheduling policies in both
SMT and memory controllers

2.7. High-Fidelity and Highly-Flexible Open Source Simulation & Modeling
Infrastructures for ML-Based Controllers

53

This
talk

System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

54

Can we design
fundamentally intelligent architectures?

An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

55

How do we start?

Two Major Thrusts & Their Synergies

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

56

Agenda

n Problem and Background

n Task Overview

n Technical Challenges, Goals and Ideas

n Ideas, Results and Papers from the Past Year

57

Initial Results in Year I (2020 Review)
n GenASM: A High-Performance, Low-Power Approximate String Matching

Acceleration Framework for Genome Sequence Analysis [MICRO 2020]

n NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather
Prediction Modeling [FPL 2020]

n An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for
Neural Network Acceleration [DSN 2020]

n NATSA: A Near-Data Processing Accelerator for Time Series Analysis
[ICCD 2020]

n Robust Machine Learning Systems: Challenges, Current Trends,
Perspectives, and the Road Ahead [IEEE D&T 2020]

n Accelerating Genome Analysis: A Primer on an Ongoing Journey [IEEE
Micro 2020]

n SMASH Open Source Software Code Release [GitHub]
58

Initial Results in Year I (2020 Ongoing)
n Efficiently Accelerating Edge ML Inference by Exploiting Layer

Heterogeneity: An Empirical Study with Google Edge Models [Ongoing]
n A New Methodology and Open-Source Benchmark Suite for Evaluating Data

Movement Bottlenecks: A Near-Data Processing Case Study [Ongoing]
n Accelerating Profile Hidden Markov Models in Computational Biology

Applications [Ongoing]
n StenCache: A Near-Cache Accelerator for Stencil Computations [Ongoing]
n SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM

[Ongoing]
n Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases

with Specialized Hardware/Software Co-Design [Ongoing]
n Reinforcement Learning based Prefetch Generation [Ongoing]

n Benchmarking a New Paradigm: Understanding a Modern Processing-in-
Memory Architecture [Ongoing]

59

Year II Results (2021 Annual Review I)
n Google Neural Network Models for Edge Devices: Analyzing and Mitigating

Machine Learning Inference Bottlenecks [PACT 2021]

n Pythia: A Customizable Hardware Prefetching Framework Using Online
Reinforcement Learning [MICRO 2021]

n Refresh Triggered Computation: Improving the Energy Efficiency of
Convolutional Neural Network Accelerators [TACO 2020]

n SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures [HPCA 2021]

n SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in
DRAM [ASPLOS 2021]

60

Year II Results (2021 Annual Review II)
n DAMOV: A New Methodology and Benchmark Suite for Evaluating Data

Movement Bottlenecks [IEEE Access 2021]

n Benchmarking a New Paradigm: An Experimental Analysis of a Real
Processing-in-Memory Architecture [Arxiv, 2021]

n FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications [IEEE Micro 2021]

n A Modern Primer on Processing in Memory [Arxiv, 2020]

n Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid
Storage Systems [Ongoing]

61

Year III Results (2022 Annual Review 1)
n Benchmarking a New Paradigm: Experimental Analysis and

Characterization of a Real Processing-in-Memory System [IEEE Access’22]
n Benchmarking Memory-Centric Computing Systems: Analysis of Real

Processing-in-Memory Hardware [CUT 2021]

n An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [arXiv 2022]

n SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Architectures [SIGMETRICS 2022]

n High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory [HICOMB 2022]

n PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]

62

Part of Thrust 1:
Real PIM Systems

Year III Results (2022 Annual Review 2)
n SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-

Graph and Sequence-to-Sequence Mapping [ISCA 2022]

n GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis [ASPLOS 2022]

n Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm
[HICOMB 2022]

n Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design
[ICDE 2022]

n Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation
Capability of NAND Flash Memory [MICRO 2022]

63

Part of Thrust 1

Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
64

Part of Thrust 1

Part of Thrust 2

Year III Results (2022 Annual Review 4)
n EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network

Accelerators [arXiv 2022] https://arxiv.org/abs/2202.02310

n ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
Efficient Genome Analysis [arXiv 2022] https://arxiv.org/abs/2207.09765

n Accelerating Weather Prediction Using Near-Memory Reconfigurable Fabric
[TRETS 2022] https://arxiv.org/abs/2107.08716

65

https://arxiv.org/abs/2202.02310
https://arxiv.org/abs/2207.09765
https://arxiv.org/abs/2107.08716

Third Year Results: More Detail

Year III Results (2022 Annual Review 1)
n Benchmarking a New Paradigm: Experimental Analysis and

Characterization of a Real Processing-in-Memory System [IEEE Access’22]
n Benchmarking Memory-Centric Computing Systems: Analysis of Real

Processing-in-Memory Hardware [CUT 2021]

n An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [arXiv 2022]

n SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Architectures [SIGMETRICS 2022]

n High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory [HICOMB 2022]

n PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]

67

Eliminating the Adoption Barriers

Processing-in-Memory
in the Real World

68

Processing-in-Memory Landscape Today

69

[UPMEM	2019][Samsung	2021][SK	Hynix	2022]

[Samsung	2021]

This does not include many experimental chips and startups

[Alibaba	2022]

UPMEM Processing-in-DRAM Engine (2019)

70

n Processing in DRAM Engine
n Includes standard DIMM modules, with a large

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

71

UPMEM Memory Modules
• E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz
• P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz

www.upmem.com

http://www.upmem.com/

2,560-DPU Processing-in-Memory System

CPU 0

CPU 1

DRAM

DRAM

PIM-enabled
memory

PIM-enabled
memory

PIM-enabled
memory

PIM-enabled
memory

Host
CPU 0

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

Host
CPU 1

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

72https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

More on the UPMEM PIM System

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Experimental Analysis of the UPMEM PIM Engine

https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Juan Gómez Luna, Izzat El Hajj,
Ivan Fernandez, Christina Giannoula,

Geraldo F. Oliveira, Onur Mutlu

Understanding a Modern
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

76

Executive Summary
• Data movement between memory/storage units and compute units is a major

contributor to execution time and energy consumption
• Processing-in-Memory (PIM) is a paradigm that can tackle the data movement

bottleneck
- Though explored for +50 years, technology challenges prevented the successful materialization

• UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

• Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

• Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture
- PrIM (Processing-In-Memory) benchmarks:

• 16 workloads that are memory-bound in conventional processor-centric systems
• Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

• Takeaways:
- Workload characteristics for PIM suitability
- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems

Upcoming TECHCON Presentation
n Dr. Juan Gomez-Luna

q Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware

q Based on two major works
n https://arxiv.org/pdf/2105.03814.pdf
n https://arxiv.org/pdf/2207.07886.pdf

77https://www.youtube.com/watch?v=nphV36SrysA

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=nphV36SrysA

78

Observations, Recommendations, Takeaways
GENERAL	PROGRAMMING	RECOMMENDATIONS
1. Execute	on	the	DRAM	Processing	Units (DPUs)	

portions	of	parallel	code that	are	as	long	as possible.	
2. Split	the	workload	into	independent	data	blocks,	

which	the	DPUs	operate	on	independently.	
3. Use	as	many	working	DPUs	in	the	system	as	possible.
4. Launch	at	least	11	tasklets (i.e.,	software	threads)

per	DPU.	

PROGRAMMING	RECOMMENDATION	1
For	data	movement	between	the	DPU’s	MRAM	bank	and	the	
WRAM,	use	large	DMA	transfer	sizes	when	all	the	accessed	
data	is	going	to	be	used.	

KEY	OBSERVATION	7

Larger	CPU-DPU	and	DPU-CPU	
transfers	between	the	host	main	
memory	and	the	DRAM	Processing	
Unit’s	Main	memory	(MRAM)	banks	
result	in	higher	sustained	bandwidth.	 KEY	TAKEAWAY	1

The	UPMEM	PIM	architecture	is	fundamentally	compute	
bound.	As	a	result,	the	most	suitable	work- loads	are	
memory-bound.

79

Outline
• Introduction

- Accelerator Model
- UPMEM-based PIM System Overview

• UPMEM PIM Programming
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication
- CPU-DPU/DPU-CPU Transfer Bandwidth

• DRAM Processing Unit
- Arithmetic Throughput
- WRAM and MRAM Bandwidth

• PrIM Benchmarks
- Roofline Model
- Benchmark Diversity

• Evaluation
- Strong and Weak Scaling
- Comparison to CPU and GPU

• Key Takeaways

80

Key Takeaway 1

12345678910111213141516
12345678910111213141516

12345678910111213141516
12345678910111213141516 1

2345678910111213141516 1
2345678910111213141516

1
2
345678910111213141516

1
2
34
5678910111213141516

1
2
34
56
78910111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

0.03
0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

1/4

096

1/2

048

1/1

024

1/5

12

1/2

56

1/1

28

1/6

4

1/3

2

1/1

6

1/8

1/4

1/2
1 2 4 8

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t (
M

O
PS

, l
og

 sc
al

e)

Operational Intensity (OP/B)

(a) INT32, ADD (1 DPU)

21 84

Memory-bound
region

Compute-bound
region

The throughput
saturation point is as low

as ¼ OP/B,
i.e., 1 integer addition per

every 32-bit element
fetched

KEY	TAKEAWAY	1
The	UPMEM	PIM	architecture	is	fundamentally	compute	bound.	
As	a	result,	the	most	suitable	workloads	are	memory-bound.

81

Key Takeaway 2

0.001
0.004
0.016
0.063
0.250
1.000
4.000

16.000
64.000

256.000
1024.000

VA SE
L

U
N

I

BS

H
ST

-S

H
ST

-L

RE
D

SC
AN

-S
SA

SC
AN

-R
SS

TR
N

S

G
EM

V

Sp
M

V TS BF
S

M
LP N
W

G
M

EA
N

 (1
)

G
M

EA
N

 (2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

Sp
ee

du
p

ov
er

 C
PU

 (l
og

 sc
al

e)

CPU GPU 640 DPUs 2556 DPUs

G
M

EA
N

(1
)

G
M

EA
N

(2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

KEY	TAKEAWAY	2
The	most	well-suited	workloads	for	the	UPMEM	PIM	architecture	
use	no	arithmetic	operations	or	use	only	simple	operations (e.g.,	
bitwise	operations	and	integer	addition/subtraction).	

82

Key Takeaway 3

0.001
0.004
0.016
0.063
0.250
1.000
4.000

16.000
64.000

256.000
1024.000

VA SE
L

U
N

I

BS

H
ST

-S

H
ST

-L

RE
D

SC
AN

-S
SA

SC
AN

-R
SS

TR
N

S

G
EM

V

Sp
M

V TS BF
S

M
LP N
W

G
M

EA
N

 (1
)

G
M

EA
N

 (2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

Sp
ee

du
p

ov
er

 C
PU

 (l
og

 sc
al

e)

CPU GPU 640 DPUs 2556 DPUs

G
M

EA
N

(1
)

G
M

EA
N

(2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

KEY	TAKEAWAY	3
The	most	well-suited	workloads	for	the	UPMEM	PIM	
architecture	require	little	or	no	communication	across	DPUs	
(inter-DPU	communication).		

83

Key Takeaway 4

KEY	TAKEAWAY	4
•	UPMEM-based	PIM	systems	outperform	state-of-the-art	CPUs	in	
terms	of	performance	and	energy	efficiency	on	most	of	PrIM
benchmarks.

•	UPMEM-based	PIM	systems	outperform	state-of-the-art	GPUs	on	
a	majority	of PrIM benchmarks,	and	the	outlook	is	even	more	
positive	for	future	PIM	systems.	

•	UPMEM-based	PIM	systems	are	more	energy-efficient	than	state-
of-the-art	CPUs	and	GPUs	on	workloads	that	they	provide	
performance	improvements	over	the	CPUs	and	the	GPUs.	

Juan Gómez Luna, Izzat El Hajj,
Ivan Fernandez, Christina Giannoula,

Geraldo F. Oliveira, Onur Mutlu

Understanding a Modern
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

el1goluj@gmail.com

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

UPMEM PIM System Summary & Analysis
n Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo

F. Oliveira, and Onur Mutlu,
"Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware"
Invited Paper at Workshop on Computing with Unconventional
Technologies (CUT), Virtual, October 2021.
[arXiv version]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Talk Video (37 minutes)]
[Lightning Talk Video (3 minutes)]

85

https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

86

PrIM Benchmarks: Application Domains
Domain Benchmark Short name

Dense linear algebra
Vector Addition VA

Matrix-Vector Multiply GEMV

Sparse linear algebra Sparse Matrix-Vector Multiply SpMV

Databases
Select SEL

Unique UNI

Data analytics
Binary Search BS

Time Series Analysis TS

Graph processing Breadth-First Search BFS

Neural networks Multilayer Perceptron MLP

Bioinformatics Needleman-Wunsch NW

Image processing
Image histogram (short) HST-S

Image histogram (large) HST-L

Parallel primitives

Reduction RED

Prefix sum (scan-scan-add) SCAN-SSA

Prefix sum (reduce-scan-scan) SCAN-RSS

Matrix transposition TRNS

87

PrIM Benchmarks are Open Source
• All microbenchmarks, benchmarks, and scripts
• https://github.com/CMU-SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks

88

Understanding a Modern PIM Architecture

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Understanding a Modern PIM Architecture

89https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159

More on PRIM Benchmarks
n Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina

Giannoula, Geraldo F. Oliveira, and Onur Mutlu,
"Benchmarking a New Paradigm: An Experimental
Analysis of a Real Processing-in-Memory
Architecture"
Preprint in arXiv, 9 May 2021.
[arXiv preprint]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Long Talk Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[SAFARI Live Seminar Slides (pptx) (pdf)]
[SAFARI Live Seminar Video (2 hrs 57 mins)]
[Lightning Talk Video (3 minutes)]

92

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/abs/2105.03814
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pdf
https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

UPMEM PIM System Summary & Analysis
n Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo

F. Oliveira, and Onur Mutlu,
"Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware"
Invited Paper at Workshop on Computing with Unconventional
Technologies (CUT), Virtual, October 2021.
[arXiv version]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Talk Video (37 minutes)]
[Lightning Talk Video (3 minutes)]

93

https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

Year III Results (2022 Annual Review 1)
n Benchmarking a New Paradigm: Experimental Analysis and

Characterization of a Real Processing-in-Memory System [IEEE Access’22]
n Benchmarking Memory-Centric Computing Systems: Analysis of Real

Processing-in-Memory Hardware [CUT 2021]

n An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [arXiv 2022]

n SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Architectures [SIGMETRICS 2022]

n High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory [HICOMB 2022]

n PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]

94

95

ML Training on a Real PIM System

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://arxiv.org/pdf/2206.06022.pdf

Juan Gómez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,

Gagandeep Singh, Onur Mutlu

Machine Learning Training
on a Real Processing-in-Memory System

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://arxiv.org/pdf/2206.06022.pdf

97

Executive Summary
• Training machine learning (ML) algorithms is a computationally expensive process,

frequently memory-bound due to repeatedly accessing large training datasets
• Memory-centric computing systems, i.e., with Processing-in-Memory (PIM) capabilities,

can alleviate this data movement bottleneck
• Real-world PIM systems have only recently been manufactured and commercialized

- UPMEM has designed and fabricated the first publicly-available real-world PIM architecture

• Our goal is to understand the potential of modern general-purpose PIM architectures to
accelerate machine learning training

• Our main contributions:
- PIM implementation of several classical machine learning algorithms: linear regression, logistic

regression, decision tree, K-means clustering
- Workload characterization in terms of accuracy, performance, and scaling
- Comparison to their counterpart implementations on processor-centric systems (CPU and GPU)

• Experimental evaluation on a real-world PIM system with 2,524 PIM cores @ 425 MHz
and 158 GB of DRAM memory

• New observations and insights:
- ML training in PIM systems benefits from (1) fixed-point representation, (2) quantization, and (3)

hybrid precision implementations
- Complex activation functions (e.g., sigmoid) can take advantage of LUTs in PIM systems without

native support for those activation functions
- Data can be placed and laid out for PIM cores to access nearby memory banks in streaming, thus

maximizing PIM memory bandwidth
- ML training benefits from scaling the size of PIM-enabled memory with PIM cores attached to

memory banks

ML Training on Real PIM Talk Video

98https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

99

Outline

Machine learning workloads

Processing-in-memory

PIM implementation of ML workloads

Evaluation

Key observations and insights

100

Machine Learning Workloads
• Machine learning training

with large amounts of data
is a computationally
expensive process, which
requires many iterations to
update an ML model’s
parameters

Machine learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Regression Classification
Neural

Networks
Clustering

Dimensionality
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector
machine
Naive Bayes

K-means
K-median
Hierarchical
clustering
Mean shift

• Frequent data movement between memory and processing
elements to access training data
• The amount of computation is not enough to amortize the

cost of moving training data to the processing elements
- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses

101

Machine Learning Workloads: Our Goal
• Our goal is to study and analyze

how real-world general-purpose
PIM can accelerate ML training
• Four representative ML

algorithms: linear regression,
logistic regression, decision tree,
K-means

Machine learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Regression Classification
Neural

Networks
Clustering

Dimensionality
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector
machine
Naive Bayes

K-means
K-median
Hierarchical
clustering
Mean shift

DRAM

L3

Peak compute performance

KME

DTR

LIN

LOG

0.3

1

3

10

30

0.01 0.1 1 10
Arithmetic Intensity (OP/B)

Pe
rfo

rm
an

ce
 (G

O
PS

)

• Roofline model to
quantify the memory
boundedness of CPU
versions of the four
workloads

All workloads fall in the memory-bound area of the Roofline

102

Processing-in-Memory (PIM)
• PIM is a computing paradigm that advocates for memory-

centric computing systems, where processing elements are
placed near or inside the memory arrays
• Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AxDIMM, SK Hynix AiM,
Alibaba HB-PNM

• These PIM systems have some common characteristics:
1. There is a host processor (CPU or GPU) with access to (1) standard

main memory, and (2) PIM-enabled memory
2. PIM-enabled memory contains multiple PIM processing elements

(PEs) with high bandwidth and low latency memory access
3. PIM PEs run only at a few hundred MHz and have a small number

of registers and small (or no) cache/scratchpad
4. PEs may need to communicate via the host processor

103

A State-of-the-Art PIM System

• In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing

Units (DPUs)
• Up to 24 PIM threads, called tasklets
• 32-bit integer arithmetic, but multiplication/division are

emulated, as well as floating-point operations
- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

Host CPU

S
h

ar
ed

 C
ac

h
e

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Standard Main Memory

xN

xM

PIM-enabled Memory

PIM-Host

Host-PIM

C
ac

h
e

C
ac

h
e

C
or

e
C

or
e Memory

Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory Array
(Rank or Bank)

PIM Processing Elements

Instruction
Memory

Scratchpad/
Cache

104

Machine learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Regression Classification
Neural

Networks
Clustering

Dimensionality
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector
machine
Naive Bayes

K-means
K-median
Hierarchical
clustering
Mean shift

ML Training Workloads
• Four widely-used machine learning

workloads:
- Linear regression (LIN)
- Logistic regression (LOG)
- Decision tree (DTR)
- K-means clustering (KME)

• Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Host CPU

S
h

ar
ed

 C
ac

h
e

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Standard Main Memory

xN

xM

PIM-enabled Memory

PIM-Host

Host-PIM

C
ac

h
e

C
ac

h
e

C
o

re
C

o
re Memory

Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory Array
(Rank or Bank)

PIM Processing Elements

Instruction
Memory

Scratchpad/
Cache

Figure 3: High-level view of a state-of-the-art processing-in-memory system. The host CPU has access to" standard memory
modules and # PIM-enabled memory modules.

Table 1: Machine learning workloads.

Learning Application Algorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach Sequential Strided Random Operations Datatype Intra PIM Core Inter PIM Core

Supervised
Regression Linear Regression LIN Yes No No mul, add �oat, int32_t barrier Yes

Classi�cation Logistic Regression LOG Yes No No mul, add, exp, div �oat, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add �oat barrier, mutex Yes

Unsupervised Clustering K-Means KME Yes No No mul, compare, add int16_t, int64_t barrier, mutex Yes

and PUs in AiM [163] have 16-bit �oating point arithmetic
units. Second, ML models and hardware with adaptive preci-
sion are becoming widely-used [163, 180].

• LIN-BUI replaces compiler-generated 16-bit and 32-bit mul-
tiplications with a custom multiplication based on 8-bit built-
in multiplication functions (this optimization is speci�c to
the UPMEM PIM architecture). Listing 1 shows the default
integer multiplication code (C-based (a) and compiled code
(b)) and our custom integer multiplication code (C-based (c)
and compiled code (d)).

In Section 4, we evaluate all LIN versions in terms of accuracy
(Section 4.2), performance for di�erent numbers of threads per
PIM core (Section 4.3), and performance scaling characteristics
(Section 4.4).

3.2 Logistic Regression
Logistic regression [165, 167] is a supervised learning algorithm
used for classi�cation, which outputs probability values for each
input observation variable or vector. This probability values repre-
sent the likelihood of belonging to a certain class or event. Logistic
regression is used in various �elds (e.g., medical, marketing, engi-
neering, economics, etc.) [167].

Logistic regression uses the sigmoid function to map predicted
values (output vector ~ obtained from an input matrix - and a
weights vectorF) to probabilities. Our implementation of logistic
regression uses gradient descent, same as our linear regression
implementation (Section 3.1). In the beginning of each training

iteration, we obtain the dot product of row vectors G8 and weights
F . Then, we apply the sigmoid function to the dot product results.
Next, we calculate the gradient to evaluate the error of the pre-
dicted probability. Finally, we update the weightsF according to
the gradients.

Our PIM implementation of logistic regression follows the same
workload distribution pattern as our linear regression implemen-
tation. First, row vectors G8 are distributed across PIM cores and
threads in each PIM core. Second, each thread computes the dot
product of a row vector and the weights (G8 ·F), and applies the
sigmoid function to the dot product result. Third, the thread com-
putes partial gradient values. Fourth, partial gradient values from
di�erent threads are reduced, and the results return to the host.
Finally, the host computes the �nal reductions, and updates the
weights before redistributing them to the PIM cores.

We implement six di�erent versions of logistic regression with
di�erent input datatypes and optimizations: (1) 32-bit �oating
point (LOG-FP32), (2) 32-bit �xed point (LOG-INT32), (3) 32-bit
�xed point with LUT-based sigmoid calculation and LUT in DRAM
(LOG-INT32-LUT (MRAM)), (4) 32-bit �xed point with LUT-based sig-
moid calculation and LUT in scratchpad (LOG-INT32-LUT (WRAM)),
(5) �xed point with hybrid precision and LUT-based sigmoid calcula-
tion (LOG-HYB-LUT), and (6) �xed point with hybrid precision, LUT-
based sigmoid calculation, and built-in functions (LOG-BUI-LUT).

5

105

Evaluation Methodology
• Synthetic and real datasets

• Evaluated systems
- UPMEM PIM system with 2,524 PIM cores @ 425 MHz and 158 GB of

DRAM
- Intel Xeon Silver 4215 CPU (16 hardware threads)
- NVIDIA A100 GPU

• We evaluate:
- Metrics
- Performance of PIM kernels
- Performance scaling
- Comparison to CPU and GPU

Table 2: Evaluated PIM system, baseline CPU, and baseline GPU.

System Process Processor Cores Memory TDPNode Total Cores Frequency Peak Performance Capacity Total Bandwidth
UPMEM PIM System [153] 2x nm 2,560⇧ 425 MHz 1,088 GOPS 160 GB 2.1 TB/s 280 W†

Intel Xeon Silver 4215 CPU [221] 14 nm 8 (16 threads) 2.5 GHz 40 GFLOPS¢ 256 GB 37.5 GB/s 85 W
NVIDIA A100 GPU [222] 7 nm 108 (6,912 SIMD lanes) 1.4 GHz 19,500 GFLOPS 40 GB 1555 GB/s 250 W
⇧ There are several faulty PIM cores in the PIM system where we run our experiments.
†⇢BC8<0C43)⇡% =)>C0; %�" 2>A4B

%�" 2>A4B/⇡�"" ⇥ 14, /⇡�"" [153].
¢⇢BC8<0C43 ⌧�!$%(= 2.5 ⌧�I ⇥ 8 2>A4B ⇥ 2 8=BCAD2C8>=B ?4A 2~2;4 .

Table 3: Datasets.

ML Workload Synthetic Datasets Real DatasetStrong Scaling (1 PIM core | 256-2048 PIM cores) Weak Scaling (per PIM core)
Linear regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) SUSY [223, 224]
Logistic regression 2,048 samples, 16 attr. (0.125 MB) | 6,291,456 samples, 16 attr. (384 MB) 2,048 samples, 16 attr. (0.125 MB) Skin segmentation [225]
Decision tree 60,000 samples, 16 attr. (3.84 MB) | 153,600,000 samples, 16 attr. (9830 MB) 600,000 samples, 16 attr. (38.4 MB) Higgs boson [223, 226]
K-Means 10,000 samples, 16 attr. (0.64 MB) | 25,600,000 samples, 16 attr. (1640 MB) 100,000 samples, 16 attr. (6.4 MB) Higgs boson [223, 226]

low and close to that of the 32-bit �oating point version, as shown
in the �gure.

0.55 1.02 1.29

0
2
4
6
8

1 30 70 17
0

50
0

10
00 10 50 10

0

25
0

70
0 1 30 70 17
0

50
0

10
00

LIN-FP32 LIN-INT32 LIN-HYB & LIN-BUI

Tr
ai

ni
ng

 Er
ro

r R
at

e
(%

)

LIN Versions
52.56 53.16 53.70

Figure 6: Training error rate (%) of LIN versions.

LOG. Figure 7(a) presents the training error rate of our six
versions of LOG for numbers of training iterations between 1
and 1000. The training error of LOG-FP32, which we use as
the comparison point for the integer versions (i.e., LOG-INT32,
LOG-INT32-LUT (MRAM), LOG-INT32-LUT (WRAM), LOG-HYB-LUT
(WRAM), LOG-BUI-LUT (WRAM)), is almost �at after 100 iterations,
and is as low as 1.20% after 1000 iterations (same as the CPU ver-
sion). We observe that the training error rate of LOG-INT32 is
higher than that of LOG-INT32-LUT (MRAM) and LOG-INT32-LUT
(WRAM). The reason is that LOG-INT32 approximates exponenti-
ation (hence, sigmoid) with Taylor series, while LOG-INT32-LUT
(MRAM) and LOG-INT32-LUT (WRAM) store exact sigmoid values in a
LUT. LOG-HYB-LUT (WRAM) and LOG-BUI-LUT (WRAM) increase the
training error rate signi�cantly (14.12%) due to the use of reduced-
precision datatypes. In another experiment using samples with 2
decimal numbers (Figure 7(b)), the training error rate of these two
versions decreases to 4.49%.

DTR. We limit the tree depth to 10. The tree is built by splitting
leaf nodes until no node can be split. A node cannot be split if
it holds fewer than two data points, or if it contains only points
belonging to the same class, or if its depth exceeds the maximum
tree depth. To account for the e�ect of di�erent random number
generation on both implementations, we restart the algorithm 10
times, and average the resulting accuracies. We register a training

4.49

0
5

10
15
20

1 30 70 25
0

70
0

LOG-HYB-LUT
(WRAM) & LOG-
BUI-LUT (WRAM)

(b)

1.20 2.42 2.14 2.08

14.12

0
5

10
15
20

1 30 70 25
0

70
0 1 30 70 25
0

70
0 1 30 70 25
0

70
0 1 30 70 25
0

70
0 1 30 70 25
0

70
0

LOG-FP32 LOG-INT32 LOG-INT32-LUT
(MRAM)

LOG-INT32-LUT
(WRAM)

LOG-HYB-LUT
(WRAM) & LOG-
BUI-LUT (WRAM)

Tr
ai

ni
ng

 E
rr

or
 R

at
e

(%
)

(a) LOG Versions

Figure 7: Training error rate (%) of LOG versions.

accuracy of 0.90008 for the PIM implementation, against 0.90175
for the Scikit-learn CPU version.

KME. We perform a K-Means clustering with 16 clusters to
match the dataset generation. The clustering iterates for a maxi-
mum of 300 iterations, or until the relative Frobenius norm between
the cluster centers of two consecutive iterations is lower than 0.0001.
In practice, the clustering always converges after less than 40 itera-
tions on both the PIM and Scikit-learn CPU implementations. To
account for randomness in the loss of precision due to quantization,
we average the metrics on 10 runs with di�erent random seeds.
We register an average Calinski-Harabasz scores of 82200 for both
implementations. The adjusted Rand index between the PIM and
Scikit-learn CPU clusterings is 0.999347 on average, showing that
the clusterings are nearly identical despite the quantization.

4.3 Performance Analysis of PIM Kernels
We analyze in this section the performance of the di�erent PIM
kernel versions of our ML workloads on a single PIM core (i.e., an
UPMEM DPU). This way, we understand the e�ect of (1) di�er-
ent optimizations we apply, and (2) increasing the number of PIM
threads.

LIN. Figure 8 shows the PIM kernel time of our four versions
of LIN. The upper plot (Figure 8(a)) represents the PIM kernel time
of LIN-FP32. The lower plot (Figure 8(b)) shows the PIM kernel
time of the integer versions. We make four observations. First, all
LIN versions result in their best performance with 11 or more PIM
threads. Eleven is the minimum number of PIM threads that keep

9

106

Host
CPU 0

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

Host
CPU 1

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

2,560-DPU System (I)
• UPMEM-based PIM

system with 20 UPMEM
DIMMs of 16 chips each
(40 ranks)
- P21 DIMMs
- Dual x86 socket

• UPMEM DIMMs
coexist with regular
DDR4 DIMMs

• 2 memory
controllers/socket (3
channels each)

• 2 conventional DDR4
DIMMs on one
channel of one
controller

2560 DPUs*

* There are some faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,524

160 GB

107

2,560-DPU System (II)

CPU 0

CPU 1

DRAM

DRAM

PIM-enabled
memory

PIM-enabled
memory

PIM-enabled
memory

PIM-enabled
memory

Host
CPU 0

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

Host
CPU 1

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

108

Evaluation: Metrics
• Linear regression

- Training error rate of LIN-FP32 is the same as the CPU
version

- For integer versions, it remains low and close to that of LIN-
FP32

• Logistic regression
- LUT-based versions obtain lower training error rates that
LOG-INT32, since they use exact values, not approximations

• Decision tree
- Training accuracy only slightly lower than that of the CPU

version
• K-means

- Same Calinski-Harabasz score and adjusted Rand index of PIM
and CPU versions

109

Evaluation: Analysis of PIM Kernels (I)
• Linear regression

4550

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e

(m
s)

Number of PIM Threads (per PIM Core)

(a) LIN-FP32
LIN-FP32

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e

(m
s)

Number of PIM Threads (per PIM Core)

(b) LIN INT Versions

LIN-INT32
LIN-HYB
LIN-BUI

457

324

259
0

200

400

600

800

1 3 5 7 9 11 13 15 17 19 21 23

All versions saturate
at 11 or more PIM

threads

Fixed point
accelerates the

kernel by an order
of magnitude

LIN-HYB is 41% faster than
LIN-INT32

LIN-BUI provides an
additional 25% speedup

110

40316
24460

0
100000
200000
300000
400000
500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e

(m
s)

Number of PIM Threads (per PIM Core)

(a) LOG 32-bit Versions
LOG-FP32

LOG-INT32

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e

(m
s)

Number of PIM Threads (per PIM Core)

(b) LOG LUT Versions
LOG-INT32-LUT (MRAM)
LOG-INT32-LUT (WRAM)
LOG-HYB-LUT (WRAM)
LOG-BUI-LUT (WRAM)

463
449

352 246
0

200

400

600

800

1 3 5 7 9 11 13 15 17 19 21 23

Evaluation: Analysis of PIM Kernels (II)
• Logistic regression

Very high kernel
time of LOG-FP32
and LOG-INT32

due to sigmoid
approximation

LOG-INT32-
LUT(MRAM) is 53x
faster than LOG-

INT32

LOG-HYB-LUT is 28% faster
than LOG-INT32-LUT

LOG-BUI-LUT provides an
additional 43% speedup

111

Evaluation: Analysis of PIM Kernels (III)
• Decision tree & K-means

0

10000

20000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e (

m
s)

Number of PIM Threads (per PIM Core)

(b) KME

KME

0
10000
20000
30000
40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e (

m
s)

Number of PIM Threads (per PIM Core)

(a) DTR

DTR

Both workloads
saturate at 11 or

more PIM threads

Maximum number
of PIM threads in
DTR is 16 due to

the usage of local
scratchpad

memory

112

Evaluation: Performance Scaling
• Strong scaling: 256 to 2,048 PIM cores

0
1
2
3
4
5
6
7
8
9

0

50000

100000

150000

200000

250000

300000

256 512 1024 2048

LIN-FP32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LIN-INT32

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

256 512 1024 2048

LIN-HYB

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

1

2

3

4

5

6

7

0

2000

4000

6000

8000

10000

12000

14000

16000

256 512 1024 2048

LIN-BUI

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0

500000

1000000

1500000

2000000

2500000

256 512 1024 2048

LOG-FP32
Ex

ec
ut

io
n

Ti
m

e
(m

s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

0

1

2

3

4

5

6

7

0

100000
200000
300000
400000
500000
600000
700000
800000
900000

256 512 1024 2048

LOG-INT32

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LOG-INT32-LUT (MRAM)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LOG-INT32-LUT (WRAM)

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

256 512 1024 2048

LOG-HYB-LUT (WRAM)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

1

2

3

4

5

6

7

0

2000

4000

6000

8000

10000

12000

14000

256 512 1024 2048

LOG-BUI-LUT (WRAM)

Sp
ee

du
p

0
1
2
3
4
5
6
7
8
9

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

256 512 1024 2048

KME

Sp
ee

du
p

0

1

2

3

4

5

6

7

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

DTR

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

PIM kernel time
scales linearly with
the number of PIM

cores

Little overhead from
inter PIM core

communicati0n and
communication

between host and
PIM cores

113

Comparison to CPU and GPU (I)
• Linear regression and logistic regression

0
200
400
600
800

1000
1200
1400
1600
1800
2000

CPU

Ex
ec

ut
io

n
 T

im
e

(m
s)

CPU

0

5

10

15

20

25

30

GPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

GPU Kernel
CPU-GPU
GPU-CPU

0

100

200

300

400

500

600

LOG-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

LOG-INT32-LUT
(MRAM)

0

100

200

300

400

500

600

LOG-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

LOG-INT32-LUT
(WRAM)

0

100

200

300

400

500

600

LOG-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

LOG-HYB-LUT
(WRAM)

0

100

200

300

400

500

600

LOG-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

LOG-BUI-LUT
(WRAM)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

LOG-FP32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

LOG-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

10000

20000

30000

40000

50000

60000

CPU

Ex
ec

ut
io

n
 T

im
e

(m
s)

CPU

0

200

400

600

800

1000

1200

1400

GPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

GPU Kernel
CPU-GPU
GPU-CPU

0

1000

2000

3000

4000

5000

6000

LIN-HYB

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

1000

2000

3000

4000

5000

6000

LIN-BUI

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

10000

20000

30000

40000

50000

60000

LIN-FP32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

1000

2000

3000

4000

5000

6000

LIN-INT32

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

PIM versions are heavily
burdened when they use
operations that are not

natively supported by the
hardware

Several optimizations
reduce the execution time
considerably and close the

gap with GPU
performance

114

Comparison to CPU and GPU (II)
• Decision tree and K-means

0

500

1000

1500

2000

2500

3000

3500

4000

DTR

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0

10000

20000

30000

40000

50000

60000

70000

80000

CPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

CPU

0

500

1000

1500

2000

2500

3000

3500

4000

GPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

GPU Kernel
CPU-GPU
GPU-CPU

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

KME

Ex
ec

ut
io

n
Ti

m
e

(m
s)

PIM-CPU
Inter P IM Core
CPU-PIM
PIM Kernel

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

CPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

CPU

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

GPU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

GPU Kernel
CPU-GPU
GPU-CPU

(a) Decision Tree (b) K-means

PIM version of DTR is 27x
faster than the CPU

version and 1.34x faster
than the GPU version

PIM version of KME is 2.8x
faster than the CPU

version and 3.2x faster
than the GPU version

115

Key Observations and Insights
• ML training workloads can greatly benefit from (1) fixed-

point data representation, (2) quantization, and (3)
hybrid precision implementation in PIM systems
• ML training workloads that require complex activation

functions (e.g., sigmoid) can take advantage of lookup
tables (LUTs) in PIM systems instead of function
approximation
• Data can be placed and laid out such that memory

accesses of PIM cores are streaming
• ML training workloads with large training datasets

benefit from scaling the size of PIM-enabled memory
with PIM cores attached to memory arrays

Juan Gómez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,

Gagandeep Singh, Onur Mutlu

Machine Learning Training
on a Real Processing-in-Memory System

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://arxiv.org/pdf/2206.06022.pdf

Year III Results (2022 Annual Review 1)
n Benchmarking a New Paradigm: Experimental Analysis and

Characterization of a Real Processing-in-Memory System [IEEE Access’22]
n Benchmarking Memory-Centric Computing Systems: Analysis of Real

Processing-in-Memory Hardware [CUT 2021]

n An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [arXiv 2022]

n SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Architectures [SIGMETRICS 2022]

n High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory [HICOMB 2022]

n PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]

117

SpMV Multiplication on Real PIM Systems

n Appears in SIGMETRICS 2022

118

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP

https://www.youtube.com/watch?v=5kaOsJKlGrE

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP
https://www.youtube.com/watch?v=5kaOsJKlGrE

SparseP
Towards Efficient Sparse Matrix Vector Multiplication

on Real Processing-In-Memory Architectures

Christina Giannoula
Ivan Fernandez, Juan Gomez-Luna,

Nectarios Koziris, Georgios Goumas, Onur Mutlu

SparseP Summary
Efficient Algorithmic Designs
• The first open-source Sparse Matrix Vector Multiplication

(SpMV) software package, SparseP, for real Processing-In-
Memory (PIM) systems

Extensive Characterization
• The first comprehensive analysis of SpMV on the first real

commercial PIM architecture

Full Paper: https://arxiv.org/pdf/2201.05072.pdf

Recommendations for Architects and Programmers

SparseP: https://github.com/CMU-SAFARI/SparseP

SparseP is Open-Source

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP

SparseP: SpMV Library for Real PIMs
Our Contributions:
1. Design efficient SpMV kernels for current and future PIM

systems
§ 25 SpMV kernels

§ 4 compressed matrix formats (CSR, COO, BCSR, BCOO)
§ 6 data types
§ 4 data partitioning techniques
§ Various load balancing schemes among PIM cores/threads
§ 3 synchronization approaches

2. Provide a comprehensive analysis of SpMV on the first
commercially-available real PIM system
§ 26 sparse matrices
§ Comparisons to state-of-the-art CPU and GPU systems
§ Recommendations for software, system and hardware

designers

SparseP Talk Video

122https://www.youtube.com/watch?v=5kaOsJKlGrE

https://www.youtube.com/watch?v=5kaOsJKlGrE

Sparse Matrix Vector Multiplication
Sparse Matrix Vector Multiplication (SpMV):
§ Widely-used kernel in graph processing,

machine learning, scientific computing …

§ A highly memory-bound kernel

Operational Intensity

Pe
rf

or
m

an
ce

Peak Compute Performance

Pe
ak

 M
em

or
y B

an
dw

idt
h

SpMV

Roofline Model

Real Processing-In-Memory Systems
Real Near-Bank Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth

Host
CPU

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryMain Memory
DRAM
Bank

DRAM
Bank

DRAM
Bank

DRAM
BankBus

Real Processing-In-Memory Systems
Real Near-Bank Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth

Host
CPU

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryMain Memory
DRAM
Bank

DRAM
Bank

DRAM
Bank

DRAM
BankBusKwon+, [ISSCC 2021] Lee+, [ISSCC 2022]

https://www.upmem.com

SpMV Execution on a PIM System

bus bus

PIM-Enabled Memory

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

DRAM
Bank

PIM
Core

Host CPU

+

Load the
input vector

Execute the
kernel

Retrieve the
partial results

Merge the
partial results

1 2 3 4

Main Memory

DRAM
Bank

DRAM
Bank

SparseP Software Package
25 SpMV kernels for PIM Systems à

https://github.com/CMU-SAFARI/SparseP

Load-balance
across PIM cores/threads:
* row-granularity (CSR)
^ block-row-granularity (BCSR)

Synchronization
among threads of a PIM core:
▵ lb-cg, lb-fb, lf (COO, BCOO)

Data Types:
• 8-bit integer
• 16-bit integer
• 32-bit integer
• 64-bit integer
• 32-bit float
• 64-bit float

Partitioning Matrix Format Load-Balancing

9x
1D

Kernels

CSR rows, nnzs *

COO▵ rows, nnzs *, nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnzs

4x
2D

Equally-Sized Tiles

CSR --

COO▵ --

BCSR --

BCOO▵ --

6x
2D

Equally-Wide Tiles

CSR nnzs *

COO▵ nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnzs

6x
2D

Variable-Sized Tiles

CSR nnzs *

COO▵ nnzs

BCSR blocks ^, nnzs ^

BCOO▵ blocks, nnz

https://github.com/CMU-SAFARI/SparseP

2048 PIM Cores, 32-bit integer

128

Comparison of Compressed Formats

0
2
4
6
8

regular matrices scale-free
matrices

Sp
ee

du
p

1D
CSR COO

BCSR BCOO

0

0.5

1

1.5

regular matrices scale-free
matrices

Sp
ee

du
p

2D Equally-Sized
CSR COO
BCSR BCOO

0
10
20
30
40
50

regular matrices scale-free
matrices

Sp
ee

du
p

2D Equally-Wide
CSR COO
BCSR BCOO

0
10
20
30
40
50

regular matrices scale-free
matrices

Sp
ee

du
p

2D Variable-Sized
CSR COO

The compressed matrix format used to store the input matrix
determines the data partitioning across DRAM banks of PIM-enabled
memory. As a result, it affects the load-balance across PIM cores (and
threads of a PIM core) with corresponding performance implications.

Key Takeaway 1

Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing high
computation balance across PIM cores (and threads of a PIM core).

Recommendation 1

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

Scalability

The 1D-partitioned kernels are severely bottlenecked by the high
data transfer costs to broadcast the whole input vector into DRAM
banks of all PIM cores, through the narrow off-chip memory bus.

Key Takeaway 2

Optimize the broadcast collective collective in data transfers to
PIM-enabled memory to efficiently copy the input data into DRAM
banks in the PIM system.

Recommendation 2

COO format, 32-bit integer

0

0.5

1

1.5

2

2.5

25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48 25
6

51
2
10

24
20

48

Sl
ow

do
w

n

load kernel retrieve merge

1D 2D
Equally-Sized

2D
Equally-Wide

2D
Variable-Sized

#PIM Cores #PIM Cores #PIM Cores #PIM Cores

Scalability

88.6% 88.0%

Optimize the gather collective operation at DRAM bank granularity
in data transfers from PIM-enabled memory to efficiently retrieve
the output results to the host CPU.

Recommendation 3

The 2D equally-wide and variable-sized kernels need fine-grained
parallel data transfers at DRAM bank granularity (zero padding) to
be supported by the PIM system to achieve high performance.

Key Takeaway 3

2528 PIM Cores, 32-bit float

1D vs 2D

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

hg
c

m
c2

pf
m rt
n

rj
t

as
h

de
l

td
k

m
em am

z

ft
h

w
bg ld

r

ps
b

bn
s

w
bs in

pk
s

cm
b

sx
w sk
t

as
k

G
M

 (
1)

G
M

 (
2)

Sp
ee

du
p

1D 2D (equally-sized)

1.45x

1.31x

regular scale-free

1329 Cores 253 Cores

Expensive data transfers to/from PIM-enabled memory performed
via the narrow memory bus impose significant performance
overhead to end-to-end SpMV execution. Thus, it is hard to fully
exploit all available PIM cores of the system.

Key Takeaway 4

Design high-speed communication channels and optimized libraries
in data transfers to/from PIM-enabled memory, provide hardware
support to effectively overlap computation with data transfers in
the PIM system, and/or integrate PIM-enabled memory as the main
memory of the system.

Recommendation 4

CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.
• GPU = 0.21% of Peak Perf.
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU = 4.08 GFlop/s
• GPU = 1.92 GFlop/s
• PIM (1D) = 0.11 GFlop/s

CPU/GPU Comparisons
• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.
• GPU = 0.21% of Peak Perf.
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU = 4.08 GFlop/s
• GPU = 1.92 GFlop/s
• PIM (1D) = 0.11 GFlop/s

Many more results in the full paper:
https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf

SparseP
Towards Efficient Sparse Matrix Vector Multiplication

on Real Processing-In-Memory Architectures

Christina Giannoula
Ivan Fernandez, Juan Gomez-Luna,

Nectarios Koziris, Georgios Goumas, Onur Mutlu

Year III Results (2022 Annual Review 1)
n Benchmarking a New Paradigm: Experimental Analysis and

Characterization of a Real Processing-in-Memory System [IEEE Access’22]
n Benchmarking Memory-Centric Computing Systems: Analysis of Real

Processing-in-Memory Hardware [CUT 2021]

n An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [arXiv 2022]

n SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real
Processing-In-Memory Architectures [SIGMETRICS 2022]

n High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory [HICOMB 2022]

n PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-
DRAM [arXiv 2021]

135

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

136

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
137

Host Machine

FPGA Board

RISC-V System
PiM-Enabled DIMM

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

Real Processing Using Memory Prototype

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s

PiDRAM
An	FPGA-based	Framework
for	End-to-end	Evaluation	

of	Processing-in-DRAM	Techniques

Ataberk	Olgun
Juan	Gomez	Luna Konstantinos	Kanellopoulos

Hasan	Hassan
Behzad	Salami

Oğuz Ergin Onur Mutlu

140

Executive Summary
Motivation: Commodity DRAM based PiM techniques improve the performance
and energy efficiency of computing systems at no additional DRAM hardware cost
Problem: Challenges of integrating these PiM techniques into real systems are not solved
General-purpose computing systems, special-purpose testing platforms, and
system simulators cannot be used to efficiently study system integration challenges

Goal: Design and implement a flexible framework that can be used to:
• Solve system integration challenges
• Analyze trade-offs of end-to-end implementations
of commodity DRAM based PiM techniques

Key idea: PiDRAM, an FPGA-based framework that enables:
• System integration studies
• End-to-end evaluations
of commodity DRAM based PiM techniques using real unmodified DRAM chips
Evaluation: End-to-end integration of two PiM techniques on PiDRAM’s FPGA prototype

Case Study #1 – RowClone: In-DRAM bulk data copy operations
• 119x speedup for copy operations compared to CPU-copy with system support
• 198 lines of Verilog and 565 lines of C++ code over PiDRAM’s flexible codebase
Case Study #2 – D-RaNGe: DRAM-based random number generation technique
• 8.30 Mb/s true random number generator (TRNG) throughput, 220 ns TRNG latency
• 190 lines of Verilog and 78 lines of C++ code over PiDRAM’s flexible codebase

PiDRAM Talk Video

141https://www.youtube.com/watch?v=qeukNs5XI3g&t=4243s

https://www.youtube.com/watch?v=qeukNs5XI3g&t=4243s

142

PiDRAM:	Overview	(I)
A	flexible	framework	that	can	be	used	to:
• Solve	system	integration	challenges	
• Analyze	trade-offs	of	end-to-end	implementations
of	commodity	DRAM	based	PiM techniques

Identify	key	components	shared across	PiM	techniques

Implement	customizable key	components:
• Provide	modularity,	enhance	extensibility	of	the	framework

Common	basis	to	enable	system	support	for	PiM	techniques

143

PiDRAM:	Overview	(II)
Identify	and	develop	four	key	hardware	and	software	components

Hardware Software

Easy-to-extend
Memory Controller

Flexible
PiM Ops. Controller

2

1 3

4

Extensible
Software Library

Custom
Supervisor Software

144

PiDRAM:	System	Design
Key	components	are	attached	to	a	real	computing	system
• PiM	Ops.	Controller	and	PiDRAM	Memory	Controller	
is	implemented	within	the	hardware	system
• Custom	supervisor	software	runs	on	the	hardware	system
• Extensible	software	library	
is	used	by	the	supervisor	software

145

PiM	Operations	Controller	(POC)

Decode	&	execute	PiDRAM	instructions	(e.g.,	in-DRAM	copy)

Receive	instructions	over	memory-mapped	interface
(portable	to	other	systems	with	different	CPU	ISAs)

Simple	interface	to	the	PiDRAM	memory	controller
(i)	send	request,	(ii)	wait	until	completion,	(iii)	read	results

146

PiDRAM	Memory	Controller
Perform	PiM operations	by	violating	DRAM	timing	parameters

Support	conventional	memory	operations	(e.g.,	LOAD/STORE)
One	state	machine	per	operation	(e.g.,	LOAD/STORE,	in-DRAM	copy)

Easily	replicate	a	state	machine	to	implement	a	new	operation

Controls	the	physical	DDR3	interface
Receives	commands	from	command	scheduler	&	operates	DDR3	pins

147

PiM	Operations	Library	(pimolib)
Contains	customizable	functions	that	interface	with	the	POC

Software	interface	for	performing	PiM operations

Executes	LOAD	&	STORE	requests	to	communicate	with	the	POC

148

Custom	Supervisor	Software

Exposes	PiM operations	to	the	user	application	via	system	calls

Contains	the	necessary	OS	primitives	to	develop	end-to-end	PiM techniques
(e.g.,	memory	management	and	allocation	for	RowClone)

149

PiM Operation	Execution	Flow
copy() function	called	by	the	user	to	perform	a	RowClone-Copy operation	in	DRAM

1 Application	makes	a	system	call: copy(A, B, N bytes)

2 Custom	Supervisor	Software	calls	the	copy() pimolib function

Copy (S, D) S: source	DRAM	row
D: destination	DRAM	row

150

PiM Operation	Execution	Flow
3 Copy(S, D) executes	two	store	instructions	in	the	CPU

4 The	first	store	updates	the	instruction register	with	Copy(S, D)

5 The	second	store	sets	the	“Start”	flag	in	the	flag register

1
Start	(S)

Start	the	execution	of	PiM operation

151

PiM Operation	Execution	Flow
6 POC	instructs	the	memory	controller	to	perform	RowClone

7 POC	resets	the	“Start”	flag,	and	sets	the	“Ack”	flag

8 PiDRAMmemory	controller	issues	commands	
with	violated	timing	parameters	to	the	DDR3	module

152

PiM Operation	Execution	Flow
9 The	memory	controller	sets	the	“Fin.”	flag

10 Copy(S, D) periodically	checks	either	“Ack”	or	“Fin.”	flags
using	LOAD	instructions

Copy(S, D)returns	when	the	periodically	checked	flag	is	set

153

PiM Operation	Execution	Flow

Data	Register	is	not	used	in	RowClone operations
because	the	result	is	stored	in	memory

It	is	used	to	read	true	random	numbers	generated	by	D-RaNGe

154

PiDRAM Components	Summary

Four	key	components	provide	an	extensible	basis	
for	end-to-end	integration	of	PiM techniques

Four	key	components	orchestrate	PiM operation	execution

155

PiDRAM’s FPGA	Prototype
Full	system	prototype	on	Xilinx	ZC706	FPGA	board
• RISC-V	System:	In-order,	pipelined	RISC-V	Rocket	CPU	core,	L1D/I$,	TLB
• PiM-Enabled	DIMM:Micron	MT8JTF12864,	1	GiB,	8	banks

156

PiDRAM is	Open	Source
https://github.com/CMU-SAFARI/PiDRAM

https://github.com/CMU-SAFARI/PiDRAM

157

Extended	Version	on	ArXiv
https://arxiv.org/abs/2111.00082

https://arxiv.org/abs/2111.00082

158

Longer	Talk	+	Tutorial	on	Youtube
https://youtu.be/s_z_S6FYpC8

https://youtu.be/s_z_S6FYpC8

Year III Results (2022 Annual Review 2)
n SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-

Graph and Sequence-to-Sequence Mapping [ISCA 2022]

n GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis [ASPLOS 2022]

n Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm
[HICOMB 2022]

n Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design
[ICDE 2022]

n Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation
Capability of NAND Flash Memory [MICRO 2022]

159

Accelerating Sequence-to-Graph Mapping
n Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S.

Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi,
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph
and Sequence-to-Sequence Mapping"
Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New
York, June 2022.
[arXiv version]

160https://arxiv.org/pdf/2205.05883.pdf

https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
https://arxiv.org/pdf/2205.05883.pdf
https://arxiv.org/pdf/2205.05883.pdf

Damla Senol Cali, Ph.D.
damlasenolcali@gmail.com

https://damlasenolcali.github.io/

Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo,
Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri Ghiasi,

Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

SeGraM: A Universal Hardware Accelerator for
Genomic Sequence-to-Graph and
Sequence-to-Sequence Mapping

mailto:damlasenolcali@gmail.com
https://damlasenolcali.github.io/

Damla Senol Cali

Sequence-to-Sequence (S2S) Mapping Sequence-to-Graph (S2G) Mapping

Genome Sequence Analysis

162

Sequence-to-graph mapping results in notable quality improvements.
However, it is a more difficult computational problem,

with no prior hardware design.

q Mapping the reads to a reference genome (i.e., read mapping) is a
critical step in genome sequence analysis

Linear Reference: ACGTACGT

Read: ACGG

Alternative Sequence: ACGGACGT

Alternative Sequence: ACGTTACGT

Alternative Sequence: ACG‒ACGT

Graph-based Reference:

Read: ACGG

Damla Senol Cali

SeGraM: First universal algorithm/hardware co-designed genomic
mapping accelerator that can effectively and efficiently support:

q Sequence-to-graph mapping

q Sequence-to-sequence mapping

q Both short and long reads

SeGraM: First Graph Mapping Accelerator

163

Our Goal:

Specialized, high-performance, scalable, and low-cost
algorithm/hardware co-design that alleviates bottlenecks in

multiple steps of sequence-to-graph mapping

Damla Senol Cali

Use Cases & Key Results

164

(1) Sequence-to-Graph (S2G) Mapping
q 5.9×/106× speedup, 4.1×/3.0× less power than GraphAligner

for long and short reads, respectively (state-of-the-art SW)

q 3.9×/742× speedup, 4.4×/3.2× less power than vg
for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (S2G) Alignment
q 41×–539× speedup over PaSGAL with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (S2S) Alignment
q 1.2×/4.8× higher throughput than GenASM and GACT of Darwin

for long reads (state-of-the-art HW)

q 1.3×/2.4× higher throughput than GenASM and SillaX of GenAX
for short reads (state-of-the-art HW)

SeGraM Talk Video

165https://www.youtube.com/watch?v=gyjqYoyDP9s

https://www.youtube.com/watch?v=gyjqYoyDP9s

Damla Senol Cali

Genome Graphs
Genome graphs:

q Combine the linear reference genome with the known genetic
variations in the entire population as a graph-based data structure

q Enable us to move away from aligning with a single linear reference
genome (reference bias) and more accurately express the genetic
diversity in a population

166

ACG ACGT

T

G

T

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Sequence #4: ACGACGT

Damla Senol Cali

Sequence-to-Graph Mapping Pipeline

167

Pre-Processing
Steps (Offline)

Seed-and-Extend
Steps (Online)

Indexing
(index the nodes of the graph)

Seeding
(query the index & find the seed matches)

Filtering/Chaining/Clustering
(filter out dissimilar query read and subgraph pairs)

S2G Alignment
(perform distance/score calculation & traceback)

Linear reference
genome

Known genetic
variations

Reads from
sequenced

genome

0.2

1

2

3

Genome Graph Construction
(construct the graph using a linear reference genome and variations)

0.1

Genome graph

Hash-table-based index (of graph nodes)

Candidate mapping locations (subgraphs)

Remaining candidate mapping locations (subgraphs)

Optimal alignment between read & subgraph

Damla Senol Cali

S2S vs. S2G Alignment

168

Damla Senol Cali

S2S vs. S2G Alignment

169

In contrast to S2S alignment,
S2G alignment must incorporate non-neighboring characters

as well whenever there is an edge (i.e., hop)
from the non-neighboring character to the current character

Damla Senol Cali

Based on our analysis with GraphAligner and vg:

Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates

Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable
for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle
S2G alignment

Analysis of State-of-the-Art Tools

170

SW

HW

Damla Senol Cali

SW

HW

SeGraM: Universal Genomic Mapping Accelerator

q First universal genomic mapping accelerator that can support both
sequence-to-graph mapping and sequence-to-sequence mapping,
for both short and long reads

q First algorithm/hardware co-design for accelerating
sequence-to-graph mapping

q We base SeGraM upon a minimizer-based seeding algorithm

q We propose a novel bitvector-based alignment algorithm to perform
approximate string matching between a read and a graph-
based reference genome

q We co-design both algorithms with high-performance, scalable,
and efficient hardware accelerators

171

Damla Senol Cali

SeGraM Hardware Design

172

SeGraM Accelerator

MinSeed (MS)

Host
CPU

Main Memory (graph-based reference & index)

Find
Minimizers

BitAlign (BA)

Read
Scratchpad

Minimizer
Scratchpad

Filter
Frequencies

by Frequency

Seed
Scratchpad

Find
Candidate

Seed Regions

MinSeed (MS)

Find
Minimizers

Read
Scratchpad

Minimizer
Scratchpad

Filter
Minimizers

by Frequency

Seed
Scratchpad

Find
Candidate

Seed Regions

Input Scratchpad

Generate
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

BitAlign (BA)

Input Scratchpad

Generate
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

MinSeed: first hardware
accelerator for

Minimizer-based Seeding

BitAlign: first hardware
accelerator for (Bitvector-based)

sequence-to-graph Alignment

Damla Senol Cali

Host
CPU

Main Memory (graph-based reference & index)Main Memory (graph-based reference & index)

SeGraM Hardware Design

173

SeGraM Accelerator

MinSeed (MS)

Host
CPU

Find
Minimizers

query
read

1

BitAlign (BA)

Read
Scratchpad

Minimizer
Scratchpad

Filter
Minimizers

by Frequency

Seed
Scratchpad

Find
Candidate

Seed Regions

Input Scratchpad

Generate
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

query k-mers

minimizers

frequencies seed locations graph nodes

2

3

4

5

6

7

8
9

10

11

12 optimal alignment information

MinSeed: first hardware
accelerator for

Minimizer-based Seeding

BitAlign: first hardware
accelerator for (Bitvector-based)

sequence-to-graph Alignment

Damla Senol Cali

SeGraM Module (1 x per HBM2E stack)SeGraM Module (1 x per HBM2E stack)

High Bandwidth Memory (HBM2E) Stack

Host

. . .

Overall System Design of SeGraM

174

. . .

High Bandwidth Memory (HBM2E) Stack

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

. . .Host

MS

BA

MS

BA

MS

BA

MS

BA

MS

BA

X4

CH0 CH1 CH2 CH6 CH7

Damla Senol Cali

Use Cases of SeGraM
(1) Sequence-to-Graph

Mapping

(2) Sequence-to-Graph
Alignment

(3) Sequence-to-Sequence
Alignment

(4) Seeding

175

MS BA

MS or
Other BA

BA

MS

MS or
Other

BA or
Other

Damla Senol Cali

Key Results – Area & Power

176

q Based on our synthesis of MinSeed and BitAlign accelerator datapaths
using the Synopsys Design Compiler with a 28nm process (@ 1GHz):

Damla Senol Cali

Key Results – SeGraM with Long Reads

177

SeGraM provides 5.9× and 3.9× throughput improvement
over GraphAligner and vg,

while reducing the power consumption by 4.1× and 4.4×

Damla Senol Cali 178

Key Results – SeGraM with Short Reads

SeGraM provides 106× and 742× throughput improvement
over GraphAligner and vg,

while reducing the power consumption by 3.0× and 3.2×

Damla Senol Cali 179

BitAlign provides 41×-539× speedup over PaSGAL

Key Results – BitAlign (S2G Alignment)

Damla Senol Cali 180

Key Results – BitAlign (S2S Alignment)
q BitAlign can also be used for sequence-to-sequence alignment

o The cost of more functionality: extra hop queue registers

o We do not sacrifice any performance

q For long reads (over GACT of Darwin and GenASM):

o 4.8× and 1.2× throughput improvement,

o 2.7× and 7.5× higher power consumption, and

o 1.5× and 2.6× higher area overhead

q For short reads (over SillaX of GenAx and GenASM):

o 2.4× and 1.3× throughput improvement

Damla Senol Cali

Conclusion
q SeGraM: First universal algorithm/hardware co-designed genomic

mapping accelerator that supports:
§ Sequence-to-graph (S2G) & sequence-to-sequence (S2S) mapping
§ Short & long reads

o MinSeed: First minimizer-based seeding accelerator

o BitAlign: First (bitvector-based) S2G alignment accelerator

q SeGraM supports multiple use cases:

o End-to-end S2G mapping

o S2G alignment

o S2S alignment

o Seeding

q SeGraM outperforms state-of-the-art software & hardware solutions

181

SeGraM Talk Video

182https://www.youtube.com/watch?v=gyjqYoyDP9s

https://www.youtube.com/watch?v=gyjqYoyDP9s

Year III Results (2022 Annual Review 2)
n SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-

Graph and Sequence-to-Sequence Mapping [ISCA 2022]

n GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis [ASPLOS 2022]

n Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm
[HICOMB 2022]

n Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design
[ICDE 2022]

n Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation
Capability of NAND Flash Memory [MICRO 2022]

183

In-Storage Genomic Data Filtering [ASPLOS 2022]

n Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

184

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8

185

Genome Sequence Analysis

Computation overhead

Data movement overhead

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System

186

Heuristics Accelerators Filters

Computation overhead

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

Data movement overhead

✓

Accelerating Genome Sequence Analysis

187

Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment

188

Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

189

GenStore

Computation overhead

Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

GenStore-Enabled
Storage
System

✓
✓

In-Storage Genomic Data Filtering [ASPLOS 2022]

n Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

190

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8

GenStore Talk Video

191https://www.youtube.com/watch?v=bv7hgXOOMjk

https://www.youtube.com/watch?v=bv7hgXOOMjk

Year III Results (2022 Annual Review 2)
n SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-

Graph and Sequence-to-Sequence Mapping [ISCA 2022]

n GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis [ASPLOS 2022]

n Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm
[HICOMB 2022]

n Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design
[ICDE 2022]

n Flash-Cosmos: In-Flash Bitwise Operations Using Inherent Computation
Capability of NAND Flash Memory [MICRO 2022]

192

Accelerating HTAP Database Systems
n Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu,

"Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design"
Proceedings of the 38th International Conference on Data Engineering (ICDE),
Virtual, May 2022.
[arXiv version]
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

193https://arxiv.org/pdf/2204.11275.pdf

https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22.pdf
https://icde2022.ieeecomputer.my/
https://arxiv.org/pdf/2204.11275.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pdf
https://arxiv.org/pdf/2204.11275.pdf

Polynesia:
Enabling High-Performance and Energy-Efficient

Hybrid Transactional/Analytical Databases
with Hardware/Software Co-Design

ICDE
2022

Amirali Boroumand Saugata Ghose
Geraldo F. Oliveira Onur Mutlu

Executive Summary
• Context: Many applications need to perform real-time data analysis using
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties:

(1) data freshness and consistency, (2) workload-specific optimization,
(3) performance isolation

• Problem: Prior works cannot achieve all properties of an ideal HTAP system

• Key Idea: Divide the system into transactional and analytical processing
islands
– Enables workload-specific optimizations and performance isolation

• Key Mechanism: Polynesia, a novel hardware/software cooperative design
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption

195

Polynesia Talk Video (I)

196https://www.youtube.com/watch?v=qeukNs5XI3g&t=5897s

https://arxiv.org/pdf/2205.14664.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=5897s
https://arxiv.org/pdf/2205.14664.pdf

Polynesia Talk Video (II)

197https://www.youtube.com/watch?v=1HkXy3g6FF4

https://arxiv.org/pdf/2204.11275.pdf

https://www.youtube.com/watch?v=1HkXy3g6FF4
https://arxiv.org/pdf/2204.11275.pdf

Real-Time Analysis
Increasing interest in many applications domains to

perform data analytics on the most recent version of data
(real-time analysis)

Use transactions to record
each periodic sample of data

from all sensors

Run analytics across
sensor data to make

real-time steering decisions

For these applications, it is critical to analyze the transactions
in real-time as the data’s value diminishes over time

Self-Driving Cars

198Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Traditionally, new transactions (updates) are propagated to the
analytical database using a periodic and costly process

To support real-time analysis: a single hybrid DBMS is used
to execute both transactional and analytical workloads

Transactions

Hybrid DBMS
(HTAP System)

Analytics

Data
Migration

Analytics

Transactional
DBMS

Transactions

Analytical
DBMS

hours/days

HTAP: Supporting Real-Time Analysis

199

Ideal HTAP System Properties

2 Data Freshness and Consistency Guarantees
• Guarantee access to the most recent version of data for

analytics while ensuring that transactional and analytical
workloads have a consistent view of data

1 Workload-Specific Optimizations
• Transactional and analytical workloads must benefit from their

own specific optimizations

3 Performance Isolation
• Latency and throughput of transactional and analytical

workloads are the same as if they were run in isolation

An ideal HTAP system should have three properties:

Achieving all three properties at the same time
is very challenging

200

11 State-of-the-art HTAP systems do not achieve
all of the desired HTAP properties1

Data freshness and consistency mechanisms are
data-intensive and cause a drastic reduction in throughput2
These systems fail to provide performance isolation

because of high resource contention3

Take advantage of custom algorithm and
processing-in-memory (PIM) to address these challenges4

Problem and Goal
Problems:

Goal:

201

Key idea: partition computing resources into
two types of isolated and specialized processing islands

Isolating transactional islands from analytical islands allows us to:

Apply workload-specific optimizations to each island1
Avoid high resource contention2
Design efficient data freshness and consistency
mechanisms without incurring high data movement costs 3

Polynesia

202

• Leverage processing-in-memory (PIM) to reduce data movement
• PIM mitigates data movement overheads by

placing computation units nearby or inside memory

Designed to sustain
bursts of updates

Each island includes (1) a replica of data, (2) an optimized execution
engine, and (3) a set of hardware resources

Designed to provide high read throughput

Take advantage of PIM to mitigate
data movement bottleneck Conventional multicore CPUs

with multi-level caches

Polynesia: High-Level Overview

203

Transactional Engine

CPU CPU CPU CPU

Shared Last-Level Cache (LLC)

Processor

Transactional Island
Memory

Controller

TSV

3D-Stacked
Memory

Off-Chip
Link

Vault

DRAM
Banks

Analytical Island

Analytical Engine
PIM
Core

PIM
Core

PIM
Core

PIM
Core

Update Propagation
Mechanism

Update Gathering
and Shipping Unit

Update
Application Unit

Consistency
Mechanism

Copy
Unit

Key Results

204

Polynesia achieves 91.6% the transactional throughput of
an ideal system by employing

custom PIM logic for data freshness/consistency,
which significantly reduces

resource contention and data movement

Polynesia improves analytical throughput by 63.8% over
an optimized multiple-instance system, by eliminating

data movement, and using custom logic for update
propagation and consistency

Overall, Polynesia achieves all three properties of HTAP system
and has a higher transactional/analytical throughput (1.7x/3.74x)

over prior HTAP systems

Conclusion
• Context: Many applications need to perform real-time data analysis using
an Hybrid Transactional/Analytical Processing (HTAP) system
– An ideal HTAP system should have three properties:

(1) data freshness and consistency, (2) workload-specific optimization,
(3) performance isolation

• Problem: Prior works cannot achieve all properties of an ideal HTAP system

• Key Idea: Divide the system into transactional and analytical processing
islands
– Enables workload-specific optimizations and performance isolation

• Key Mechanism: Polynesia, a novel hardware/software cooperative design
for in-memory HTAP databases
– Implements custom algorithms and hardware to reduce the costs of

data freshness and consistency
– Exploits PIM for analytical processing to alleviate data movement

• Key Results: Polynesia outperforms three state-of-the-art HTAP systems
– Average transactional/analytical throughput improvements of 1.7x/3.7x
– 48% reduction on energy consumption

205

More in the Paper
• Real workload analysis

• Effect of the update propagation technique

• Effect of the consistency mechanism

• Effect of the analytical engine

• Effect of the dataset size

• Area Analysis

206Introduction Motivation Polynesia Update Propagation Consistency Mechanism Analytical Engine Evaluation Conclusion
● ●

Polynesia:
Enabling High-Performance and Energy-Efficient

Hybrid Transactional/Analytical Databases
with Hardware/Software Co-Design

ICDE
2022

Amirali Boroumand Saugata Ghose
Geraldo F. Oliveira Onur Mutlu

Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
208

Sibyl: Self-Optimizing Hybrid Storage Systems
n Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,

David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer Architecture (ISCA),
New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

209https://arxiv.org/pdf/2205.07394.pdf

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu

Sibyl:
Adaptive and Extensible Data Placement

in Hybrid Storage Systems
Using Online Reinforcement Learning

211

Sibyl Talk Video [ISCA’22]
• Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan

Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online
Reinforcement Learning"
ISCA, New York, June 2022.
[Sibyl Source Code]

https://www.youtube.com/watch?v=5-WedkiB000 211

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000

212

Executive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to

provide high and scalable storage capacity at high performance
• Problem: Two key shortcomings of prior data placement policies:

- Lack of adaptivity to:
• Workload changes
• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device

characteristics
- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:
- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in

dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 212

https://github.com/CMU-SAFARI/Sibyl

213

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sybil: Overview

Evaluation of Sybil and Key Results

Conclusion

213

214

Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View)

214

215

Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system
highly depends on the ability of the

storage management layer

215

216

Key Shortcomings in Prior
Techniques
We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices

216

217

Our Goal

A data-placement mechanism
that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying

device characteristics
2.Easy extensibility to incorporate a wide

range of hybrid storage configurations

217

218

Our Proposal

Sibyl
Formulates data placement in

hybrid storage systems as a
reinforcement learning problem

Sybil is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 218

219

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sybil: Overview

Evaluation of Sybil and Key Results

Conclusion

219

220

Basics of Reinforcement Learning
(RL)

Agent learns to take an action in a given state
to maximize a numerical reward

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

220

221

Formulating Data Placement as RL
Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage
System

Sibyl

Features of the
current request

and system

Request latency
(of last served request)

Select storage device to
place the current page

221

222

What is State?
Hybrid Storage

System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to
reduce storage overhead

222

223

What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the

latency of garbage collection, queuing delays, …)
- Throughput
- Evictions

• More details in the paper

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

223

224

What is Action?
• At every new page request, the

action is to select a storage device

• Action can be easily extended to any number of
storage devices

• Sibyl learns to proactively evict or promote a page

Hybrid Storage
System

Sibyl

Features of
the current
request and
system

Request latency
(of last served
request)

Select storage
device to place
the current page

224

225

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sybil: Overview

Evaluation of Sybil and Key Results

Conclusion

225

226

RL Decision
Thread

Sibyl Execution

Storage
Request

(from OS)

RL Training
Thread

Periodic Policy
Weight Update

State, Reward,
and Action

Information

Data
Placement
Decision

Asynchronous
Execution

Sibyl

226

227

Sibyl Design: Overview

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

Periodic Weights
update 10

Training
Network

RL Training
ThreadBatchTraining

Dataset
Periodic Policy
Weight Update

227

228

Sibyl Design: Overview

Inference
Network

Max

HSS Collect
Experiences

Experience Buffer
(in host DRAM)

Observation
Vector

Storage
Request

(from OS)

State

State

Action

Reward

RL Decision
Thread

Sibyl Policy

Periodic Weights
update 10

Training
Network

Periodic Policy
Weight Update

RL Training
ThreadBatchTraining

Dataset

228

229

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sybil: Overview

Evaluation of Sybil and Key Results

Conclusion

229

230

Evaluation Methodology (1/3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
AMD	Ryzen7	
2700G	CPU

Seagate	HDD	
ST1000DM010

Intel	Optane	
SSD	P4800X

Intel	SSD									
D3-S4510

ADATA	
SU630	SSD	

230

231

Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 231

232

Evaluation Methodology (3/3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17]

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based

232

233

Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

233

234

Performance Analysis

Sibyl consistently outperforms all the baselines
for all the workloads

Cost-Oriented HSS Configuration
Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD

234

235

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD

235

236

Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy

High-end SSD Mid-end SSD

236

237

Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state feature

High-end SSD Low-end HDDMid-end SSD

237

238

Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a

state featureSibyl outperforms the state-of-the-art
data placement policy by

48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD

238

239

Sibyl’s Overhead
• 124.4 KiB of total storage cost

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small area overhead

Small inference overhead

Satisfies prediction latency
239

240

More in the Paper

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl

https://www.youtube.com/watch?v=5-WedkiB000

240

https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000

241

Talk Outline
Key Shortcomings of Prior Data Placement Techniques

Formulating Data Placement as Reinforcement Learning

Sybil: Overview

Evaluation of Sybil and Key Results

Conclusion

241

242

Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage
systems that provides
- Adaptivity
- Easily extensibility
- Ease of design and implementation

•We evaluated Sibyl on real systems using many
different workloads
- Sibyl improves performance by 21.6% compared to the best prior

data placement policy in a dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-

data placement policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with a

storage overhead of only 124.4 KiB
242

243

Sibyl is Open-Source

https://github.com/CMU-SAFARI/Sibyl

243

Please
Check Out
Our Poster!

Gagandeep Singh, Rakesh Nadig, Jisung Park,
Rahul Bera, Nastaran Hajinazar, David Novo,

Juan Gómez Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu

Sibyl:
Adaptive and Extensible Data Placement

in Hybrid Storage Systems
Using Online Reinforcement Learning

Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
246

Hermes
n To Appear in MICRO 2022

247https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-based Off-chip Load Prediction

Long-latency off-chip requests
significantly limit performance of a processor

Deploy sophisticated prefetchers

Increase size of on-chip caches

Nearly 50% of the off-chip requests
in a no-prefetching system

still go to the main memory
even in presence of state-of-the-art prefetcher

37.5% of the stall cycles caused by an off-chip
load can be reduced by removing on-chip cache

access latency from its critical path

Predicts which load requests might go off-chip
using multiple program features

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

254

Hermes: Overview
Core

L1-D

L2

LLC

MC

Main Memory

OCP

SLB

1

2

3

4

5 Predict whether the

load will go off-chip

Issue speculative

load for positive

predictions

Train OCP

Buffer data fetched by

speculative load

Load missing the LLC waits on

the speculative load to finish

Existing data path

New data path

255

Hermes: Overview
Core

L1-D

L2

LLC

MC

Main Memory

OCP

SLB

1

2

3

4

5 Predict whether the

load will go off-chip

Issue speculative

load for positive

predictions

Train OCP

Buffer data fetched by

speculative load

Load missing the LLC waits on

the speculative load to finish

Existing data path

New data path

256

Hermes: Overview
Core

L1-D

L2

LLC

MC

Main Memory

OCP

SLB

1

2

3

4

5 Predict whether the

load will go off-chip

Issue speculative

load for positive

predictions

Train OCP

Buffer data fetched by

speculative load

Load missing the LLC waits on

the speculative load to finish

Existing data path

New data path

257

Perceptron-based Off-chip Predictor

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

Φ
ActivationSum

weights

Final
prediction

.....

...

257

258

We evaluate Hermes using a wide-range of workloads

Hermes improves performance by

5.4% in single-core
5.1% in eight-core

6.2% in memory bandwidth-constrained core
over the baseline with the state-of-the-art prefetcher

Consistent performance improvement in a wide range of configurations
with varying prefetchers and cache access latency

5.1%, 6.2%, 7.7% performance improvement
in single-core with SPP, Bingo, SMS prefetchers

Realistic, practical implementation
Only 5.1 KB storage and 1.5% power overhead

of a desktop-class processor

259

Hermes is Open Source
https://github.com/CMU-SAFARI/Hermes

• All 3 badges from MICRO’22 artifact evaluation
• Champsim and McPAT source code
• All traces & scripts used for evaluation

https://github.com/CMU-SAFARI/Hermes

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-based Off-chip Load Prediction

Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
261

Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
262

pLUTo

n To Appear in MICRO 2022

263

https://arxiv.org/pdf/2104.07699.pdf

https://arxiv.org/pdf/2104.07699.pdf

João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna,

Mohammed Alser, Geraldo F. Oliveira, Jeremie S. Kim, Mohammad Sadrosadati,
Lois Orosa, Taha Shahroodi, Anant Nori, Onur Mutlu

pLUTo:	In-DRAM	Lookup	Tables	to	Enable
General-Purpose	Massively	Parallel	Computations

August 2022

Executive	Summary

● Problem. Many workloads require significant data movement. Existing Processing-using-
Memory solutions mitigate this data movement but lack support for complex operations.

● Key Idea. LUTs enable general-purpose computation: perform LUT-based computation
inside memory subarrays to perform complex operations.

● Mechanism Overview. With the LUT query operation, the elements in a source memory
row are queried simultaneously in a LUT. In this way, it is possible to perform bulk LUT
queries in-DRAM.

● Key Contributions.
○ Introduce support for bulk in-memory LUT querying for general-purpose in-memory computing.
○ Three implementations of pLUTo with varying area/performance/efficiency trade-offs.

● Key Results.
○ Compared to CPU: up to 33x faster and 110x more energy-efficient.
○ Compared to GPU: up to 8x faster and 80x more energy-efficient.

265

Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
266

DeepSketch
n Jisung Park, Jeonggyun Kim, Yeseong Kim, Sungjin Lee, and Onur Mutlu,

"DeepSketch: A New Machine Learning-Based Reference Search
Technique for Post-Deduplication Delta Compression"
Proceedings of the 20th USENIX Conference on File and Storage
Technologies (FAST), Santa Clara, CA, USA, February 2022.
[Slides (pptx) (pdf)]
[Talk Video (15 minutes)]

267https://arxiv.org/pdf/2202.10584.pdf

https://people.inf.ethz.ch/omutlu/pub/DeepSketch_fast22.pdf
https://www.usenix.org/conference/fast22
https://people.inf.ethz.ch/omutlu/pub/DeepSketch_fast22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/DeepSketch_fast22-talk.pdf
https://www.youtube.com/watch?v=RFdGyAJCk9M
https://arxiv.org/pdf/2202.10584.pdf

Executive Summary
n Motivation

q Data reduction: Effective at reducing the management cost of a data center by
reducing the amount of data physically written to storage devices

q Post-deduplication delta compression: Maximizes the data-reduction ratio by
applying delta compression along with deduplication and lossless compression

n Problem: Existing post-deduplication delta-compression techniques provide
significantly low data-reduction ratios compared to the optimal.
q Due to the limited accuracy of reference search for delta compression
q Cannot identify a good reference block for many incoming data blocks

n Key Idea: DeepSketch, a new machine learning-based reference search technique
that uses the learning-to-hash method
q Generates a given data block’s signature (sketch) using a deep neural network
q The higher the delta-compression benefit of two data blocks,

the more similar the signatures of the two blocks to each other

n Evaluation Results: DeepSketch reduces the amount of physically-written data
q Up to 33% (21% on average) compared to a state-of-the-art baseline

268

DeepSketch Talk Video

269https://www.youtube.com/watch?v=RFdGyAJCk9M

https://www.youtube.com/watch?v=RFdGyAJCk9M

Year III Results (2022 Annual Review 3)
n Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems

Using Online Reinforcement Learning [ISCA 2022]

n Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based
Off-Chip Load Prediction [MICRO 2022]

n GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration
of Basecalling and Read Mapping [MICRO 2022]

n pLUTo: Enabling Massively Parallel Computation via In DRAM via Lookup
Tables [MICRO 2022]

n DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression [FAST 2022]

n A Modern Primer on Processing in Memory [Arxiv, Updated 2022]
270

PIM Review and Open Problems

271

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

272

273

PIM Review and Open Problems (II)

274

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Year III Results (2022 Annual Review 4)
n EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network

Accelerators [arXiv 2022] https://arxiv.org/abs/2202.02310

n ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-
Efficient Genome Analysis [arXiv 2022] https://arxiv.org/abs/2207.09765

n Accelerating Weather Prediction Using Near-Memory Reconfigurable Fabric
[TRETS 2022] https://arxiv.org/abs/2107.08716

275

https://arxiv.org/abs/2202.02310
https://arxiv.org/abs/2207.09765
https://arxiv.org/abs/2107.08716

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
30 August 2022

SRC AIHW Annual Review

Memory System Design for AI/ML
Accelerators & ML/AI Techniques

for Memory System Design

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

