Memory System Design for A1/ ML,
Accelerators & MIL./Al Techniques
for Memory System Design

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
29 September 2021
SRC AIHW Annual Review

SAFARI ETH:zurich CarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

E Confidentiality

GRC

By reviewing this presentation or participating in a SRC event,
you are agreeing not to use the presented information for
purposes unrelated to the event until approved by SRC;

« Material may be presented that represents current research,
some of which has not been published or protected. This
material is not for public disclosure and until potential IP rights
have been protected, please treat all of the information
presented as confidential information which is the property
of the researcher and their university.

SRC Select Disclosure 5 I

Agenda

Problem and Background
Task Overview
Technical Challenges, Goals and Ideas

Ideas, Results and Papers from the Past Year

SAFARI

The Problem

Computing
IS Bottlenecked by Data

SAFARI

Data 1s Key for Al, ML, Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process

SAFARI .

Data 1s Key for Future Workloads

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]

SAFARI

Data Overwhelms Modern Machines

In-memory Databases Graph/Tree Processing

Data — performance & energy bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]

SAFARI

Data is Key for Future Workloads

Z 12

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI

Data Overwhelms Modern Machines

2

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI

Data 1s Key for Future Workloads

development of high-throughput
sequencing (HTS) technologies

N I H National Human Genome
Research Institute
geno

me.gov/sequencingcosts

T T

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes ’
Sequenced AN

2014 2015 2016 2017 Source: IHumina

SAFARI http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped 10

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

CCTATAATACG

,C

Al

CP2
Billions of Short Reads LA
"ATATATACGTACTAGTACGT :X
TTTAGTACGTACGT P
ATACGTACTAGTACGT D:I".: é
. . G

\
CGCCCCTACGTA Short Read Read

ACGTACTAGTACGT

" TTAGTACGTACGT
TACGTACTAAAGTACGT

ATACGTACTAGTACGT
' TTTAAAACGTA

CGTACTAGTACGT

GGGAGTACGTACGT

ll Sequencing Genome Read Mapping n

Analysis

read5: CCATGACGC "\\’/‘
read6: TTCCATGAC [\

B Variant Calling Scientific Discoveryn

New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali X, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinION

Data — performance & energy bottleneck

SAFARI 12

https://arxiv.org/pdf/1711.08774.pdf

Data Overwhelms Modern Machines ...

= Storage/memory capability

= Communication capability

= Computation capability

= Greatly impacts robustness, energy, performance, cost

SAFARI

13

Data Overwhelms Modern Machines

2

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 14

Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose' Youngsok Kim?
Rachata Ausavarungnirun’ Eric Shiv> Rahul Thakur’> Daehyun Kim*?
Aki Kuusela®> Allan Knies® Parthasarathy Ranganathan® Onur Mutlu®!

SAFARI 15

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Axiom

An Intelligent Architecture
Handles Data Well

SAFARI

How to Handle Data Well

Ensure data does not overwhelm the components

o via intelligent algorithms

o via intelligent architectures

o via whole system designs: algorithm-architecture-devices

Take advantage of vast amounts of data and metadata
o to improve architectural & system-level decisions

Understand and exploit properties of (different) data
o to improve algorithms & architectures in various metrics

SAFARI

17

Corollaries: Architectures Today ...

= Architectures are terrible at dealing with data
o Designed to mainly store and move data vs. to compute
a They are processor-centric as opposed to data-centric

= Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them

o Designed to make simple decisions, ignoring lots of data
o They make human-driven decisions vs. data-driven decisions

= Architectures are terrible at knowing and exploiting
different properties of application data

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware

SAFARI 18

Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware

SAFARI

19

Agenda

Problem and Background
Task Overview
Technical Challenges, Goals and Ideas

Ideas, Results and Papers from the Past Year

SAFARI

20

In This Task... (Task #2946.001)

We focus on designing memory systems to handle data well

We aim to solve two different yet related and synergistic
problems, both focusing on ML/AI and memory system
design

We explore (and exploit the synergy between)
o Memory system design for AI/ML workloads/accelerators
a AI/ML techniques for improving memory system designs

SAFARI 21

Our Goals 1n This Task

Two Major Goals:

1. Memory system design for AI/ML workloads/accelerators

- in-depth exploration of memory system designs for cutting-
edge and emerging machine learning accelerators

- more efficient on-chip and off-chip memory systems

2. AI/ML techniques for improving memory system designs

- take a comprehensive look at memory system design and
make it data driven, i.e., based on machine learning

- more effective cache/memory/prefetch/thread controllers
and data/resource management/mapping/scheduling policies

SAFARI 22

Anticipated Primary Results

Realistic, practical and effective novel memory system
designs for ML/AI accelerators

New ML-based techniques to improve memory system
efficiency and performance

Open-source workloads, metrics, methodologies &
infrastructures to analyze such designs and techniques.

SAFARI 23

Task Description

Description
Our major goals in this research are twofold. First, we aim to provide the First in-depth exploration of memory system
designs for cutting-edge and emerging machine learning accelerators. To this end, we aim to develop much more
efficient on-chip/on-die as well as off-chip memory system designs For such accelerators, along with open source
models, metrics, simulators, prototypes & workload suites to evaluate existing and future ML/AI accelerators. Second,
we would like to take a comprehensive look at memory system design and make it data driven, i.e., based on machine
learning: we aim to design ML/AI techniques For on-chip cache/memory/prefetch/thread controllers and data/resource
management/mapping/scheduling policies, to maximize efficiency, performance and QoS beyond levels that can be
achievable by human-designed policies.

To this end, we will comprehensively examine a wide variety of key issues and bottlenecks in the entire memory
system designs of modern ML/AI accelerators as well as general purpose processors, ranging from issues in SRAM
buffers/caches, DRAM main memory, cache and memory controllers, interconnects, non-volatile memory, hybrid
memories, prefetching mechanisms, and near-data acceleration mechanisms, with a special focus on cutting-edge data-
intensive production ML/AI workloads (For Problem 1) and with a broader Focus on key data-intensive workloads (for
Problem 2).

To solve Problem 1, based on our analysis of bottlenecks in state-of-the-art ML/Al accelerators and workloads, we aim
to develop new on-chip and off-chip memory designs, data organization techniques, data movement reduction
mechanisms, request scheduling, caching, prefetching schemes, near-data and in-memory acceleration mechanisms,
customized SRAM, DRAM, NVM designs For demands of ML/AI acceleration, and various other innovative techniques
across the entire memory hierarchy. To solve Problem 2, based on our analysis of each controller and major policy in
the memory hierarchy, we aim to find and design new ML-based policies that are best Fit For each controller and its
optimization goals.

SAFARI 24

Task Deliverables (2020)

Deliverables

Report on experimental performance and energy analysis & breakdown of ML/Al accelerator execution on key ML/AI
workloads using rigorous evaluation metrics and methodologies

Original due date: 30-Jun-2020

Annual review presentation
Revised due date: 9-Sep-2020 (Original Due Date: 1-Sep-2020)

Report on description and analysis of new customized memory system designs for ML accelerators & complete ML
accelerator designs with new data orchestration and memory management mechanisms

Original due date: 31-Dec-2020

SAFARI 25

Task Deliverables (2021)

Report on performance and energy analysis of control and management policies in the memory hierarchy & potential
of machine learning based techniques to replace them

Original due date: 28-Feb-2021

Report on description and analysis of new ML-based memory system policies and designs & specification and
coordination of various on-chip ML-based agents

Original due date: 31-Aug-2021

Annual review presentation
Original due date: 1-Sep-2021

Report on analysis of various different memory types, new on-chip/off-chip near-data processing designs, and short-
term & long-term options for near-data processing designs for ML/AIl accelerators

Original due date: 31-Dec-2021

SAFARI 26

Task Deliverables (2022)

Report analyzing various new ML-based memory/cache/interconnect/prefetcher control mechanisms along with ML-
based data mapping, address mapping, thread scheduling policies across the memory system

Original due date: 30-Jun-2022

Report on open source release of new ML/AI accelerator simulation infrastructures, their evaluation metrics and
methodologies, and their analysis

Original due date: 31-Oct-2022

Report on open source release of ML/Al-based memory system evaluation infrastructures their evaluation metrics and
methodologies, and their analysis

Original due date: 31-Oct-2022

Final report summarizing research accomplishments and Future direction
Original due date: 31-Dec-2022

SAFARI 27

Task Information #2946.001 (1)

= Thrust: Al Hardware

= Task Leader: Onur Mutlu

o https://people.inf.ethz.ch/omutlu/
a onur.mutlu@inf.ethz.ch

= Students

o Rahul Bera (ETH)

o Amirali Boroumand (CMU)

o Geraldo Francisco de Oliveira Junior (ETH)
o Joao Ferreira (ETH)
Q
Q

Konstantinos Kanellopoulos (ETH
Damla Senol Cali (CMU)

SAFARI 28

https://people.inf.ethz.ch/omutlu/
mailto:onur.mutlu@inf.ethz.ch

Task Information #2946.001 (2)

= Senior Researchers
o Juan Gomez Luna (ETH) .
o Lois Orosa (ETH)
o Jisung Park (ETH)
o Gagandeep Singh (ETH)

= More students/postdocs to be added as the task evolves

SAFARI

29

Recent PhD Graduates (I)

= Amirali Boroumand
o December 2020

o Practical Mechanisms for Reducing Processor-Mory Data
Movement in Modern Workloads

= Gagandeep Singh
o April 2021

o Designing, Modeling, and Optimizing Data-Intensive Computing
Systems

= Damla Senol Cali
o August 2021 ,
o Accelerating Genome Seqguence Analysis via Eff|C|en

Hardware/Algorithm Co-Design
= Nastaran Hajinazar
o August 2021

o Data-Centric and Data-Aware Frameworks for Fundamentally
Efficient Data Handling in Modern Computing Systems

SAFARI 3

https://safari.ethz.ch/safari_public_wp/wp-content/uploads/2021/07/ECE-PhD-Thesis-Defense-Damla-Senol-Cali.pdf

Recent PhD Graduates (II)

= https://safari.ethz.ch/safari-alumni/

= Dr. Saugata Ghose
o Started @ UIUC as Assistant Professor, Fall 2020

SAFARI 31

https://safari.ethz.ch/safari-alumni/

Soon to Finish PhD

= Minesh Patel
o Defense date: October 1, 2021

o Enabling Effective Error Mitigation in Memory Chips That Use
On-Die Error-Correcting Codes

SAFARI 32

Industry Liaisons

Charles Augustine, Intel
Pradip Bose, IBM

Alper Buyuktosunoglu, IBM
Rosario Cammarota, Intel
Ramesh Chauhan, Qualcomm
Prokash Ghosh, NXP

Jose Joao, ARM

Arun Joseph, IBM

Anurag Kar, ARM

Preetham Lobo, IBM
Nithyakalyani Sampath, TI
Willem Sanberg, NXP
Pushkar Sareen, NXP
Sreenivas Subramoney, Intel
Xin Zhang, IBM

We are having and will have regular and irregular meetings with all liaison companies
Very open to other collaborators, feedback, internships

SAFARI

Agenda

Problem and Background
Task Overview
Technical Challenges, Goals and Ideas

Ideas, Results and Papers from the Past Year

SAFARI

34

Two Major Thrusts

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

SAFARI

35

Thrust 1 Exploration Ideas

1.1. Comprehensive Energy and Performance Analysis of ML/AI Accelerator
Execution on Key ML/AI Workloads

1.2. Cache/Buffer, On-Chip Memory, Interconnect, Memory Controller Designs for
ML Accelerators and Their Interfaces

1.3. Complete on-chip ML/AI accelerator designs with careful data orchestration
and on-chip memory management.

1.4. On-chip & off-chip near-data processing (NDP) designs, interfaces, evaluation,
programming for AI/ML workloads

1.5. Evaluation and understanding of both short-term and long-term options for
NDP for AI/ML Workloads

1.6. Use of NVM devices, simple customized DRAM and 3D-stacked Memory+Logic
for AI/ML Acceleration

1.7. High-Fidelity and Highly-Flexible Open Source Simulation & Modeling This
Infrastructures for ML/AI Memory Systems talk

SAFARI 36

Memory System Design for A1/ ML

Some background works from the past

"EDEN: Enabling Energy-Efficient, High-Performance
Deep Neural Network Inference Using Approximate
DRAM”, MICRO 2019

"SMASH: Co-designing Software Compression and
Hardware-Accelerated Indexing for Efficient Sparse
Matrix Operations”, MICRO 2019

"Google Workloads for Consumer Devices: Mitigating
Data Movement Bottlenecks”, ASPLOS 2018.

SAFARI 37

https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/SMASH-sparse-matrix-software-hardware-acceleration_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf

Two Major Thrusts

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

SAFARI

38

Thrust 2 Exploration Ideas

2.1. Comprehensive performance and energy analysis of rigid policies in the
memory hierarchy — how far are they from the ideal policies? What is the
maximum potential ML techniques can achieve?

2.2. New caching, prefetching, mem. controller, runahead, compression policies
that are directed with appropriate ML techniques

2.3. Rigorous specification and coordination of ML-based on-chip cache, prefetch,
DRAM, NVM, hybrid mem. Controllers

2.4. Design and evaluation of new ML-based techniques to manage hybrid This
memories consisting of multiple different technologies talk

2.5. Design and evaluation of new ML-based data mapping policies across on-chip
caches and memory controllers

2.6. Design and evaluation of new ML-based thread scheduling policies in both
SMT and memory controllers

2.7. High-Fidelity and Highly-Flexible Open Source Simulation & Modeling
Infrastructures for ML-Based Controllers

SAFARI 3

AIl/ML for Memory System Design

Some background works from the past

"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach”, ISCA 2008

"NAPEL: Near-Memory Computing Application
Performance Prediction via Ensemble Learning”,
DAC 2019

SAFARI 4

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf

System Architecture Design Today

Human-driven
o Humans design the policies (how to do things)

Many (too) simple, short-sighted policies all over the system
No automatic data-driven policy learning

(Almost) no learning: cannot take lessons from past actions

Can we design
fundamentally intelligent architectures?

SAFARI 41

An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

How do we start?

SAFARI 42

Two Major Thrusts & Their Synergies

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

43

Agenda

Problem and Background
Task Overview
Technical Challenges, Goals and Ideas

Ideas, Results and Papers from the Past Year

SAFARI

44

Initial Results in Year I (2020 Review)

GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis [MICRO 2020]

NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather
Prediction Modeling [FPL 2020]

An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for
Neural Network Acceleration [DSN 2020]

NATSA: A Near-Data Processing Accelerator for Time Series Analysis
[ICCD 2020]

Robust Machine Learning Systems: Challenges, Current Trends,
Perspectives, and the Road Ahead [IEEE D&T 2020]

Accelerating Genome Analysis: A Primer on an Ongoing Journey [IEEE
Micro 2020]

SMASH Open Source Software Code Release [GitHub]
SAFARI e

Initial Results in Year I (2020 Ongoing)

Efficiently Accelerating Edge ML Inference by Exploiting Layer
Heterogeneity: An Empirical Study with Google Edge Models [Ongoing]

A New Methodology and Open-Source Benchmark Suite for Evaluating Data
Movement Bottlenecks: A Near-Data Processing Case Study [Ongoing]

Accelerating Profile Hidden Markov Models in Computational Biology
Applications [Ongoing]

StenCache: A Near-Cache Accelerator for Stencil Computations [Ongoing]

SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM
[Ongoing]

Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases
with Specialized Hardware/Software Co-Design [Ongoing]

Reinforcement Learning based Prefetch Generation [Ongoing]

Benchmarking a New Paradigm: Understanding a Modern Processing-in-
Memory Architecture [Ongoing]

SAFARI 46

Year II Results (2021 Annual Review I)

Google Neural Network Models for Edge Devices: Analyzing and Mitigating
Machine Learning Inference Bottlenecks [PACT 2021]

Pythia: A Customizable Hardware Prefetching Framework Using Online
Reinforcement Learning [MICRO 2021]

Refresh Triggered Computation: Improving the Energy Efficiency of
Convolutional Neural Network Accelerators [TACO 2020]

SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures [HPCA 2021]

SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in
DRAM [ASPLOS 2021]

SAFARI 47

Year II Results (2021 Annual Review II)

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks [IEEE Access 2021]

Benchmarking a New Paradigm: An Experimental Analysis of a Real
Processing-in-Memory Architecture [Arxiv, 2021]

FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications [IEEE Micro 2021]

A Modern Primer on Processing in Memory [Arxiv, 2020]

Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid
Storage Systems [Ongoing]

SAFARI 48

Second Year Results: More Detail

Year II Results (2021 Annual Review -)

Google Neural Network Models for Edge Devices: Analyzing and Mitigating
Machine Learning Inference Bottlenecks [PACT 2021]

Pythia: A Customizable Hardware Prefetching Framework Using Online
Reinforcement Learning [MICRO 2021]

Refresh Triggered Computation: Improving the Energy Efficiency of
Convolutional Neural Network Accelerators [TACO 2020]

SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures [HPCA 2021]

SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in
DRAM [ASPLOS 2021]

SAFARI >0

Google Neural Network Models for Edge Devices:

Analyzing and Mitigating
Machine Learning Inference Bottlenecks

Amirali Boroumand Saugata Ghose Berkin Akin

Ravi Narayanaswami Geraldo F. Oliveira Xiaoyu Ma
Eric Shiu Onur Mutlu

PACT 2021

SAFARI
ko (50 gle ETH i

AAAAAAAAAAAAAAAA

Carnegie Mellon)

Executive Summary

Context: We extensively analyze a state-of-the-art edge ML accelerator
(Google Edge TPU) using 24 Google edge models

— Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem: The Edge TPU accelerator suffers from three challenges:
— It operates significantly below its peak throughput
— It operates significantly below its theoretical energy efficiency
— It inefficiently handles memory accesses

Key Insight: These shortcomings arise from the monolithic design of the
Edge TPU accelerator

— The Edge TPU accelerator design does not account for layer heterogeneity

Key Mechanism: A new framework called Mensa

— Mensa consists of heterogeneous accelerators whose dataflow and
hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models

— Mensa improves performance and energy by 3.0X and 3.1X
— Mensa reduces cost and improves area efficiency

SAFARI 52

Google Edge NN Models

We analyze inference execution using 24 edge NN models

TranSdu cer
- *ao S

-~
S

Speech Recognition Language Translation

\p 3
r~" v . Re
() ¥ ..~ Google EdgeTPU ~~~_Wv '—W‘_l
L 2 A" ~ .
L7774

Image Captioning

D

Face Detection

SA FARI TPU and P:Iodel Characterization 5 3

Diversity Across the Models

Insight |:there is significant variation in terms of
layer characteristics across the models

Layers from
;,CNNs and RCNNs

100000 - - CNN3
10000 © :
g o %38 \ ~-CNN4
@ 00 s * %
. . . e TFOPoo) ~-CNNI |
™ %0 o &y ~-CNN9
- 10 \ ¢ o @
--CNNII3
| | - 4 o<
0.00 0.01 0.1 | 100 FHTHM
Parameter Footprint (MB) \‘a\
Layers from
LSTMs and Transducers

SAFARI

TPU and Model Characterization
°

54

Diversity Within the Models

Insight 2: even within each model, layers exhibit
significant variation in terms of layer characteristics

For example, our analysis of edge CNN models shows:

CNNI3

6000

A
o
o
o

2000

FLOP/Byte

Variation in MAC intensity: up to 200x across layers
Variation in FLOP/Byte: up to 244x across layers

SA FARI TPU and Model Chara::terization 5 5

Root Cause of Accelerator Challenges

The key components of Google Edge TPU are completely
oblivious to layer heterogeneity

; Dataflow

I % PE Array

o N N
—> s
Off-chip o g g -
bandwidth

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth

\

While this approach might work for a specific group of layers, it fails

to efficiently execute inference across a wide variety of edge models
S A FA R l TPU and Model Charact.erization 5 6

Mensa Framework

Goal: design an edge accelerator that can efficiently run
inference across a wide range of different models and layers

Instead of running the entire NN model on
a monolithic accelerator:

\

Mensa: a new acceleration framework for edge NN inference

SAFARI Mensa Framework 5 7

Mensa High-Level Overview

Edge TPU Accelerator Mensa
ModelB Model C

Model A Model B Model C

Family 3

(===

g

Y

O Ny

Monolithic Accelerator

SA FARI Mensa Fr.amework 5 8

Mensa Runtime Scheduler

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
during initial setup
of a system

¥, :
\\ ® -
I‘x """""""" N NN model
\
['| Accelerator || l
i characteristics | |
' L
E : —{ Scheduler H ayefr J
. I Mapping
i Layer !
| | characteristics ,l
\\\ ————— 7‘,::::-‘_ —,,
/, =~ ~
,/ “~~~~~
‘_/ ~~~)
Each of the accelerators Layers tend to group
caters to together into a small
a specific family of layers number of families

SAFARI Mensa Framework 5 9

Mensa Runtime Scheduler

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand'® Saugata Ghose* Berkin Akin® Ravi Narayanaswami®
Geraldo F. Oliveira™ Xiaoyu Ma® Eric Shiu® Onur Mutlu*"

"Carnegie Mellon Univ. °Stanford Univ. ¥Univ. of Hlinois Urbana-Champaign YGoogle *ETH Ziirich

SAFARI Mensa Framework 6 0

For More on Mensa [PACT 2021]

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand'® Saugata Ghose* Berkin Akin® Ravi Narayanaswami®
Geraldo F. Oliveira* Xiaoyu Ma® Eric Shiu® Onur Mutlu*"

TCarnegie Mellon Univ. °Stanford Uniy. *Univ. of Illinois Urbana-Champaign YGoogle *ETH Ziirich

SAFARI 61

Year II Results (2021 Annual Review -)

Google Neural Network Models for Edge Devices: Analyzing and Mitigating
Machine Learning Inference Bottlenecks [PACT 2021]

Pythia: A Customizable Hardware Prefetching Framework Using Online
Reinforcement Learning [MICRO 2021]

Refresh Triggered Computation: Improving the Energy Efficiency of
Convolutional Neural Network Accelerators [TACO 2020]

SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures [HPCA 2021]

SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in
DRAM [ASPLOS 2021]

SAFARI 62

Pythia

A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

. 7
SAFARI ETHziirich TUDelft

SAFARI Research Group
safari.ethz.ch

Executive Summary

Background: Prefetchers learns to predict future addresses by associating
patterns with program context (called feature)

Problem: Three key shortcomings in prior prefetchers:
- Predicts mainly using a single program feature

Lacks inherent system awareness

Lacks online customization ability

: Design a prefetching framework that:
Learns from multiple features and inherent system-level feedback
Can be customized online to change features and/or objective

Contribution: Pythia, that formulates prefetching as reinforcement learning
- Adaptive, autonomous learning using multiple features and system-level feedback
- Realistic, practical implementation without any changes to software

Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms prior SOTA by 3.4%, 7.7% and 16.9% in 1/4/bandwidth-constrained cores

* Open sourced: https://github.com/CMU-SAFARI/Pythia
SAFARI

https://github.com/CMU-SAFARI/Pythia

Our Goal

(

.

A prefetching framework that:

1. Can learn to prefetch using multiple features and
inherent system-level feedback information

type and/or prefetcher’s objective

2.Can be easily customized in silicon to change feature

SAFARI

65

Basics of Reinforcement Learning (RL)

 Algorithmic approach to learn to take an actionin a
given situation to maximize a numerical reward

| Agent \

[Environment]

« Agent stores Q-values for every state-action pairs
- Given a state, selects action that provides highest Q-value

SAFARI 66

Formulating Prefetching as RL

SAFARI

Pythia Overview

* Q-Value Store: Records Q-values for all state-action pairs
« Evaluation Queue: A FIFO queue of recently-taken actions

Find the Action with max Q-Value

a Al1|AlzlAl3| a

Look up 1 |

Generate
II:)(emand . \;State Qvstore |1 prefetch (Memory]
equest ector 52 - i
9 2 [Viax L Hierarchy
> S4
Q-Value Store
6 Evict EQ entry and (QVStore)
update QVStore
—[Evaluation Queue (EQ) |- 9

) Insert prefetch action &

i' T State-Action pair in EQ
Set filled bit a

Assign reward to

corresponding EQ entry

Prefetch Fill

SAFARI

Simulation Methodology

 Champsim trace-driven simulator

* 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

* Five state-of-the-art prefetchers
- SPP
- Bingo
- MLOP
- SPP+DSPatch

- SPP+PPF
SAFARI

Performance with Varying Core Count

1.35

1.3 -
g £
s
Q @ 1.25 Pythia
o
S a
g 12- SPP
S § MLOP
© %115 - Bingo

1 channel 2 channels 4 channels
1.1 | | | | | |

0 2 4 6 8 10 12
Number of cores

SAFARI 70

Performance with Varying Core Count

Pythia consistently provides higher

performance in all system configurations
from single core to twelve cores

SAFARI 71

Pythia is Completely Open Source

« MICRO’21 artifact evaluated

https://

oithub.com/CMU-SAFARI/Pythia

« Champsim source code + Chisel modeling code
 All traces used for evaluation

@ CMU-SAFARI/ Pythia

<> Code Issues

SAFARI

Pull requests

coesssErEREEREERE O

(w]

0D 0ODO0O 0O DD

master ~

Actions Projects

rahulbera Bumped up to v1.3

branch
config
experiments
inc
prefetcher
replacement
scripts

src

tracer
gitignore

LICENSE

LICENSE champsim

Makefile

README.md
build_champsim.sh
build_champsim_highcore.sh
logo.png

setvars.sh

¥ 1branch ©F6

Security Insights Settings

it for MICRO'21 artifact evaluation

act evaluation

aluation

21 artifact evaluation

rtifact evaluation

Updated L|

Initial commit for M

Initial c

Initial com

Initial commit for MICRO'21 artifact evaluation

Initial commit for MICRO'21 artifact evaluation

Initial commit for MICRO'21 artifact evaluation

Go to file

ify downloa

Add file ~ Code ~

33 comn
2 months a
2 months a

months

2 months ¢

2 month

2 months a
2 month

2 months

2 months

2 months ag
2 months a

months

A Customizable Hardware Prefetching
Framework Using Online
Reinforcement Learning.
machine-learning
reinforcement-learning pi
cache-replacement branch-predictor

champsim-simulator

00 Readm:

® Other 1.0%

README.md

PYTHIA

A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning
Ucense [release VL3 DO 10.5281/2enode 5520125
v Table of Contents
1. What is Pythia
2. About the Fral
Prerequisites

ing up Statistic

8. Citation
9. License
10. Contact
1. A ledgement

What is Pythia?

Pythia formulates hardware prefetching as a reinforcement learning task. For every demand request, Pythia
observes multiple different types of program context information to take a prefetch decision. For every prefetch
decision, Pythia receives a numerical reward that evaluates prefetch quality under the current memory bandwidth
utilization. Pythia uses this reward to reinforce the correlation between program context information and prefetch
decision to generate highly accurate, timely, and system-aware prefetch requests in the future.

72

https://github.com/CMU-SAFARI/Pythia

More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera! Konstantinos Kanellopoulos! =~ Anant V. Nori* Taha Shahroodi®
Sreenivas Subramoney? Onur Mutlu!

IETH Ziirich ?Processor Architecture Research Labs, Intel Labs 3TU Delft

SAFARI

Year II Results (2021 Annual Review -)

Google Neural Network Models for Edge Devices: Analyzing and Mitigating
Machine Learning Inference Bottlenecks [PACT 2021]

Pythia: A Customizable Hardware Prefetching Framework Using Online
Reinforcement Learning [MICRO 2021]

Refresh Triggered Computation: Improving the Energy Efficiency of
Convolutional Neural Network Accelerators [TACO 2020]

SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures [HPCA 2021]

SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in
DRAM [ASPLOS 2021]

SAFARI 74

Refresh Triggered Computation

SAFARI

Refresh Triggered Computation: Improving the Energy Efficiency
of Convolutional Neural Network Accelerators

SYED M. A. H. JAFRI, KTH Royal Institute of Technology
HASAN HASSAN, ETH Ziirich

AHMED HEMANI, KTH Royal Institute of Technology
ONUR MUTLU, ETH Ziirich

To employ a Convolutional Neural Network (CNN) in an energy-constrained embedded system, it is critical
for the CNN implementation to be highly energy efficient. Many recent studies propose CNN accelerator
architectures with custom computation units that try to improve energy-efficiency and performance of CNNs
by minimizing data transfers from DRAM-based main memory. However, in these architectures, DRAM is still
responsible for half of the overall energy consumption of the system, on average. A key factor of the high
energy consumption of DRAM is the refresh overhead, which is estimated to consume 40% of the total DRAM
energy.

In this paper, we propose a new mechanism, Refresh Triggered Computation (RTC), that exploits the memory
access patterns of CNN applications to reduce the number of refresh operations. RTC uses two major techniques
to mitigate the refresh overhead. First, Refresh Triggered Transfer (RTT) is based on our new observation that
a CNN application accesses a large portion of the DRAM in a predictable and recurring manner. Thus, the
read/write accesses of the application inherently refresh the DRAM, and therefore a significant fraction of
refresh operations can be skipped. Second, Partial Array Auto-Refresh (PAAR) eliminates the refresh operations
to DRAM regions that do not store any data.

We propose three RTC designs (min-RTC, mid-RTC, and full-RTC), each of which requires a different level
of aggressiveness in terms of customization to the DRAM subsystem. All of our designs have small overhead.
Even the most aggressive RTC design (i.e., full-RTC) imposes an area overhead of only 0.18% in a 16 Gb DRAM
chip and can have less overhead for denser chips. Our experimental evaluation on six well-known CNNs show
that RTC reduces average DRAM energy consumption by 24.4% and 61.3%, for the least aggressive and the
most aggressive RTC implementations, respectively. Besides CNNs, we also evaluate our RTC mechanism
on three workloads from other domains. We show that RTC saves 31.9% and 16.9% DRAM energy for Face
Recognition and Bayesian Confidence Propagation Neural Network (BCPNN), respectively. We believe RTC can
be applied to other applications whose memory access patterns remain predictable for a sufficiently long time.

75

Refresh Triggered Computation

= Syed M. A. H. Jafri, Hasan Hassan, Ahmed Hemani, and Onur Mutlu,

"Refresh Triggered Computation: Improving the Ener

Efficiency of Convolutional Neural Network Accelerators"”
ACM Transactions on Architecture and Code Optimization (TACO),

December 2020.

SAFARI 76

https://people.inf.ethz.ch/omutlu/pub/RTC-Refresh-Triggered-Computation_taco20.pdf
http://taco.acm.org/

Year II Results (2021 Annual Review -)

Google Neural Network Models for Edge Devices: Analyzing and Mitigating
Machine Learning Inference Bottlenecks [PACT 2021]

Pythia: A Customizable Hardware Prefetching Framework Using Online
Reinforcement Learning [MICRO 2021]

Refresh Triggered Computation: Improving the Energy Efficiency of
Convolutional Neural Network Accelerators [TACO 2020]

SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures [HPCA 2021]
SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in

DRAM [ASPLOS 2021]

SAFARI 7

SynCron

Efficient Synchronization Support
for Near-Data-Processing Architectures

Christina Giannoula
christina.giann@gmail.com

Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas
Ivan Fernandez, Juan GoOmez Luna, Lois Orosa
Nectarios Koziris, Georgios Goumas, Onur Mutlu

© O QQ Hationul Technical University of Athens

o
S A FA R ’ O% SLab e esch
ETH:zurich

Executive Summary

Problem:

I Synchronization support is challenging for NDP systems

Prior schemes are not suitable or efficient for NDP systems

Contribution:

SynCron: the first end-to-end synchronization solution for
NDP architectures

Key Results:

SynCron comes within 9.5% and 6.2% of performance and
energy of an Ideal zero-overhead synchronization scheme

SAFARI 79

NDP Synchronization Solution Space

4/

[(1) Shared Memory]

e

R

Hardware Remote Specialized Software- Specialized
Cache Atomics Hardware based Hardware
Coherence Support Schemes ,_Support :
/ |
// :
SynCron’s Design Choices (] N\

: NDPs:
Hardware Message-passing
to Avoid Synchronization via Shared Memory
Hierarchical Communication SynCron
to Eliminate Expensive Network Traffic N\, Hpcazi] g

Specialized Cache Structure
to Minimize Latency Costs

SAFARI 80

Summary & Conclusion

Synchronization is a major system challenge for NDP systems
Prior schemes are not suitable or efficient for NDP systems

SynCron is the first end-to-end synchronization solution for
NDP architectures

Syncron consists of four key techniques:
i. Hardware support for synchronization acceleration
ii. Direct buffering of synchronization variables
ili. Hierarchical message-passing communication
iv. Integrated hardware-only overflow management

SynCron’s benefits: 90.5% and 93.8% of performance and
energy of an Ideal zero-overhead scheme

SynCron is highly-efficient, low-cost, easy-to-use, and general
to support many synchronization primitives

SAFARI 81

More on SynCron

= Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan
Fernandez, Juan Gdmez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu,
"SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures"”
Proceedings of the 2/th International Symposium on High-Performance Computer
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Short Talk Video (7 minutes)]

SynCron: Efficient Synchronization Support
for Near-Data-Processing Architectures

Christina Giannoula™ Nandita Vijaykumar** Nikela Papadopoulou’ Vasileios Karakostas’ Ivan Fernandez®*
Juan G6mez-Luna* Lois Orosa* Nectarios Koziris' Georgios Goumas® Onur Mutlu*

"National Technical University of Athens ~ *ETH Ziirich *University of Toronto $University of Malaga

SAFARI 52

https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=2DNDjQjNDTw
https://www.youtube.com/watch?v=kGiN-YjeUUA

Year II Results (2021 Annual Review -)

Google Neural Network Models for Edge Devices: Analyzing and Mitigating
Machine Learning Inference Bottlenecks [PACT 2021]

Pythia: A Customizable Hardware Prefetching Framework Using Online
Reinforcement Learning [MICRO 2021]

Refresh Triggered Computation: Improving the Energy Efficiency of
Convolutional Neural Network Accelerators [TACO 2020]

SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures [HPCA 2021]

SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in
DRAM [ASPLOS 2021

SAFARI 83

SIMDRAM Framework

= Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

SIMDRAM: A Framework for
Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar!-? *Geraldo F. Oliveira' Sven Gregorio' Jodo Dinis Ferreira’
Nika Mansouri Ghiasi' =~ Minesh Patel! =~ Mohammed Alser! Saugata Ghose®
Juan Gémez-Luna’ Onur Mutlu?

'ETH Ziirich 2Simon Fraser University 3University of lllinois at Urbana—Champaign

SAFARI 54

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

Executive Summary

Motivation: Processing-using-Memory (PuM) architectures can efficiently perform bulk
bitwise computation

Problem: Existing PuM architectures are not widely applicable

— Support only a limited and specific set of operations

— Lack the flexibility to support new operations

— Require significant changes to the DRAM subarray
Goals: Design a processing-using-DRAM framework that:

— Efficiently implements complex operations

— Provides the flexibility to support new desired operations

— Minimally changes the DRAM architecture
SIMDRAM: An end-to-end processing-using-DRAM framework that provides the
programming interface, the ISA, and the hardware support for:

1. Efficiently computing complex operations

2. Providing the ability to implement arbitrary operations as required
3. Using a massively-parallel in-DRAM SIMD substrate that requires minimal changes to DRAM

Key Results: SIMDRAM provides:

— 88xand 5.8x the throughput and 257x and 31x the energy efficiency of a baseline CPU and a
high-end GPU, respectively, for 16 in-DRAM operations

— 21x and 2.1x the performance of the CPU and GPU for seven real-world applications

SAFARI 2

SIMDRAM Key Idea

* SIMDRAM: An end-to-end processing-using-DRAM
framework that provides the , the
, and the for:

- Efficiently computing complex operations in DRAM

- Providing the ability to implement arbitrary operations as
required

- Using an in-DRAM massively-parallel SIMD substrate that
requires minimal changes to DRAM architecture

SAFARI 23

SIMDRAM Framework: Overview

User Input

. ‘e

CN o
--

AND/OR/NOT logic

\

User Input

’____~

’____-

SIMDRAM-enabled application

--
03 *,
o o,

c -
g tS
--

SAFARI

Step 1: Generate (Step 2: Generate > SIMDRAM Output
MA] logic | sequence of l
mm—_,-———s” . | | DRAM commands | NeWSIMDRAMuProgram
P >
i1 1 [acT/PRE Hrrogram]
@ I::} ACT/PRE |‘.‘.I.J.r.f).‘.gf.c.lm....J...l
11| acT/PRE I Main memory
................................... | | ACT/ACT/PRE
MA]/NOTIogic] I done | ... b bop_new P g
—_——_——— - | PG)| New SIMDRAM
N L = = 7| instruction
- —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— ~
7 Step 3: Execution according to uProgram \ SIMDRAM Output
l ‘ Instructlon result
I : ACT/PRE l in memory
I ACT/PRE I .:‘ ,.“
1IN ACT/PRE - :
I:> = | Ji s -
1 d ACT/PRE/PRE I o
I done ; >
e : S B
I| Control Unit UProgram | < :
\) 2 B
~ Memory Co_ntr_ollir o

SIMDRAM: A Framework for

Bit-Serial SIMD Processing using DRAM

Nastaran Hajinazar* Geraldo F Oliveira*
Sven Gregorio Joao Ferreira Nika Mansouri Ghiasi
Minesh Patel Mohammed Alser Saugata Ghose
Juan GOmez-Luna Onur Mutlu

SA F A R ' E'H Ziirich

SIMON FRASER
UNIVERSITY

UNIVERSITY OF

ILLINOIS

AAAAAAAAAAA

Processing-using-Memory (PuM)

* PuM: Exploits analog operation principles of the
memory circuitry to perform computation

- Leverages the large internal bandwidth and parallelism
available inside the memory arrays

* A common approach for PuM architectures is to perform
bulk bitwise operations

- Simple logical operations (e.g.,, AND, OR, XOR)

- More complex operations (e.g., addition, multiplication)

SAFARI 89

Motivation, Goal, and Key Idea

 Existing PuM mechanisms are not widely applicable
- Support only a limited and mainly basic set of operations

- Lack the flexibility to support new operations
- Require significant changes to the DRAM subarray

* Goal: Design a PuM framework that
- Efficiently implements complex operations
- Provides the flexibility to support new desired operations
- Minimally changes the DRAM architecture

* SIMDRAM: An end-to-end processing-using-DRAM framework
that provides the programming interface, the ISA, and the
hardware support for:

- Efficiently computing complex operations in DRAM
- Providing the ability to implement arbitrary operations as required

- Using an in-DRAM massively-parallel SIMD substrate that requires minimal
changes to DRAM architecture

SAFARI 90

SIMDRAM: PuM Substrate

* SIMDRAM framework is built around a DRAM substrate
that enables two techniques:

(1) Vertical data layout (2) Majority-based computation

most significant bit (MSB) Cout= AB + AC;, + BCy,

5 § A

S i § B Cout
2 =3

= E Cin

- H N\ %

least significant bit (LSB)

Pros compared to the
conventional horizontal layout:

Pros compared to AND/OR/NOT-
based computation:

* Implicit shift operation * Higher performance
e Massive parallelism * Higher throughput

SAFARI Lower energy consumption 91

SIMDRAM Framework: Overview

User Input Step 1: Generate Step 2: Generate SIMDRAM OQutput
. . MA] logic
JDesired operation [e - sequence of DRAM New SIMDRAM uProgram
0 3 : _: COmmandS “"""ﬁ ..
ACT/PRE L/ rogram
> > |acr/eee || L. ubrogram | |)
ACT/PRE Main memory
... ACT/ACT/PRE fa s
. ! hhon naw Sssssseess >
AND/OR/NOT logic MAJ/NOT logic done ; bbopnew |
New SIMDRAM
wProgram _ ,
Instruction
User Input Step 3: Execution according to pProgram SIMDRAM Qutput

SIMDRAM-enabled application

--
03 .,
o o,

c -
g tS
--

. G
o o,

. o
. S
Sasmssssssssssssssssssnssnnasnt

Control Unit

SAFARI

Instruction result

ACT/PRE
ACT/PRE
ACT/PRE
ACT/PRE/PRE

done

In memory

03 .,

PRE

uProgram

Memory Controller

,,,,,

N N . - .y,

\
User Input { Step 1: Generate

MA] logic

EEssssEsEsEEEeEREEEy,
o,
‘e, i o
SammssssEsEsssEEEEEmEnnES
—_— &_ —
EEsssmsssEERsEnn
e
— —— _— —_—

o o

. S
--

AND/OR/NOT logic | MAJ/NOT logic

Step 1:
* Builds an efficient MAJ/NOT representation of a given desired
operation from its AND/OR/NOT-based implementation

SAFARI 93

SIMDRAM Framework: Overview

’ —_— —_— —_— —_— \
User Input Step 1: Generate Step 2: Generate \ SIMDRAM Output

.... Desired operation . MAJIOQ’C sequence of DRAM : New SIMDRAM uProgram
| ACT/PRE > uProgram
o> @ O} | act/ere (| pProgram || .
I'| act/ere I Main memory
... | EE——— s
AND/OR/NOT logic MAJ/NOT logic 1| gone (| T
| Program | New SIMDRAM
\ - — — = w o | Instruction
Step 2:

* Allocates DRAM rows to the operation’s inputs and outputs
* Generates the sequence of DRAM commands (uProgram) to
execute the desired operation

SAFARI 94

SIMDRAM Framework: Overview

Step 3:

* Executes the pProgram to perform the operation
* Uses a control unit in the memory controller

User Input

SIMDRAM-enabled application

--
03 .,
o o,

c -
g tS
--

SAFARI

7 Step 3: Execution according to pProgram S \ SIMDRAM Output
U Instruction result
l ACT/PRE I .

I In memory
I ACT/PRE
ACT/PRE ! =
ACT/PRE/PRE >
I D ETTTTTITE >
l done .
I trsssasssssassananssanasassanest” | O
Control Unit uProgram ;L <
emor On rO er
\ Memory Controll J
95

SIMDRAM Framework: Overview

User Input Step 1: Generate Step 2: Generate SIMDRAM OQutput
. . MA] logic
JDesired operation [e - sequence of DRAM New SIMDRAM uProgram
0 3 : _: COmmandS “"""ﬁ ..
ACT/PRE L/ rogram
> > |acr/eee || L. ubrogram | |)
ACT/PRE Main memory
... ACT/ACT/PRE fa s
. ! hhon naw Sssssseess >
AND/OR/NOT logic MAJ/NOT logic done ; bbopnew |
New SIMDRAM
wProgram _ ,
Instruction
User Input Step 3: Execution according to pProgram SIMDRAM Qutput

SIMDRAM-enabled application

--
03 .,
o o,

c -
g tS
--

. G
o o,

. o
. S
Sasmssssssssssssssssssnssnnasnt

Control Unit

SAFARI

Instruction result

ACT/PRE
ACT/PRE
ACT/PRE
ACT/PRE/PRE

done

In memory

03 .,

PRE

uProgram

Memory Controller

,,,,,

Key Results

Evaluated on:

- 16 complex in-DRAM operations
- 7 commonly-used real-world applications

SIMDRAM provides:

* 88x and 5.8x the throughput of a CPU and a high-end
GPU, respectively, over 16 operations

* 257x and 31x the energy efficiency of a CPU and a
high-end GPU, respectively, over 16 operations

* 21x and 2.1x the performance of a CPU an a high-end
GPU, over seven real-world applications

SAFARI 97

Conclusion
« SIMDRAM:

- Enables efficient computation of a flexible set and wide range
of operations in a PuM massively parallel SIMD substrate

- Provides the hardware, programming, and ISA support, to:
* Address key system integration challenges

* Allow programmers to define and employ new operations without
hardware changes

SIMDRAM is a promising PuM framework

* (Can ease the adoption of processing-using-DRAM

architectures
Improve the performance and efficiency of processing-

using-DRAM architectures

SAFARI 98

SIMDRAM: A Framework for

Bit-Serial SIMD Processing using DRAM

Nastaran Hajinazar* Geraldo F Oliveira*
Sven Gregorio Joao Ferreira Nika Mansouri Ghiasi
Minesh Patel Mohammed Alser Saugata Ghose
Juan GOmez-Luna Onur Mutlu

SA F A R ' E'H Ziirich

SIMON FRASER
UNIVERSITY

UNIVERSITY OF

ILLINOIS

AAAAAAAAAAA

More on the SIMDRAM Framework

= Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

SIMDRAM: A Framework for
Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar!-? *Geraldo F. Oliveira' Sven Gregorio' Jodo Dinis Ferreira’
Nika Mansouri Ghiasi' =~ Minesh Patel! =~ Mohammed Alser! Saugata Ghose®
Juan Gémez-Luna! Onur Mutlu?

'ETH Ziirich 2Simon Fraser University 3University of lllinois at Urbana—Champaign

SAFARI 100

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

Year II Results (2021 Annual Review - 1)

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks [IEEE Access 2021]

Benchmarking a New Paradigm: An Experimental Analysis of a Real
Processing-in-Memory Architecture [Arxiv, 2021]

FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications [IEEE Micro 2021]

A Modern Primer on Processing in Memory [Arxiv, 2020]

Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid
Storage Systems [Ongoing]

SAFARI tot

DAMOV: A New Methodology

and Benchmark Suite for Evaluating
Data Movement Bottlenecks

Geraldo F. Oliveira
Juan Gémez-Luna Lois Orosa Saugata Ghose
Nandita Vijaykumar Ivan Fernandez Mohammad Sadrosadati
Onur Mutlu

SAFARI

UNIVERSITY OF

ILLINOIS

AAAAAAAAAAAAAAA

% UNIVERSIDAD
=4/ DE MALAGA

UNIVERSITY OF

R

] VS
W7

6? TORONTO
G

m Zlirich I

Executive Summary

* Problem: Data movement is a major bottleneck is modern systems.
However, it is unclear how to identify:
- different sources of data movement bottlenecks

- the most suitable mitigation technique (e.g., caching, prefetching, near-data processing)
for a given data movement bottleneck

* Goals:
1. Design a methodology to identify sources of data movement bottlenecks
2. Compare compute- and memory-centric data movement mitigation techniques

* Key Approach: Perform a large-scale application characterization to identify
key metrics that reveal the sources to data movement bottlenecks

* Key Contributions:

- Experimental characterization of 77K functions across 345 applications

- A methodology to characterize applications based on data movement bottlenecks and
their relation with different data movement mitigation techniques

- DAMOV: a benchmark suite with 144 functions for data movement studies
- Four case-studies to highlight DAMOV’s applicability to open research problems

SAFARI DAMOV: https://github.com/CMU-SAFARI/DAMOV 2

https://github.com/CMU-SAFARI/DAMOV

Near-Data Processing (2/2)

Samsung FIMDRAM (2021)

SAMSUNG
& HBM-PIM

Near-DRAM-banks processing Near-DRAM-banks processing
for general-purpose computing for neural networks
0.9 TOPS compute throughput! 1.2 TFLOPS compute throughput?

The goal of Near-Data Processing (NDP) is

to mitigate data movement

[1] Devaux, "The True Processing In Memory Accelerator,” HCS, 2019
SA FAR' [2] Kwon+, “A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using 7
Bank-Level Parallelism, for Machine Learning Applications," ISSCC, 2021

When to Employ Near-Data Processing?

Mobile consumer workloads
(GoogleWL?)

Graph processing

(Tesseract?) Neural networks

(GoogleWL?)

Near-Data
Databases .
(Polynesia®) Processing

DNA

sequence mapping

Time series analysis (GenASM3; GRIM-Filter?)

(NATSA®)

[1] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing," ISCA, 2015
[2] Boroumand+, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS, 2018

|
|
[3] Cali+, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis,” MICRO, 2020
[4] Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies,” BMC Genomics, 2018

|

5] Boroumand+, "Polynesia: Enabling Effective Hybrid Transactional /Analytical Databases with Specialized Hardware/Software Co-Design,”
arXiv:2103.00798 [cs.AR], 2021

[6] Fernandez+, “NATSA: A Near-Data Processing Accelerator for Time Series Analysis,” ICCD, 2020

SAFARI 8

Key Approach

* New workload characterization methodology to analyze:

- data movement bottlenecks
- suitability of different data movement mitigation mechanisms

* Two main profiling strategies:

4)

characterizes the memory behavior independently
of the underlying hardware

J

Y4

Architecture-dependent profiling:

evaluates the impact of the system configuration
on the memory behavior

_ /
SAFARI 15

Methodology Overview

.

Od e

User Input Step 1
Target Application \ Application Profiling
— \ roi_begin st OxAF

— N\ :
) — ! 1d OxFF

/ roi end || | Tt M
1

Step 2
Locality-based Clustering

e |
Source Code
N
v
n =
o
o O
X X
SRS
=
3+ \\\\\-...
(@)
(=]
H
(¢
(7]
|

SAFARI

Step 1: Application Profiling

* We analyze 345 applications from distinct domains:

- Graph Processing
- Deep Neural Networks

Signal
- Physics pam | T o

- High-Performance Computing = -

- Genomics

- Machine Learning PNetworks. (.
- Databases o\
- Data Reorganization Dareorgamisation |

- Image Processing

- Map-Reduce et e

- Benchmarking

- Linear Algebra

SAFARI 25

Step 3: Memory Bottleneck Analysis

fMemory Bottleneck Class

-~

_

Six classes of
data movement bottlenecks:

each class <& data movement
mitigation mechanism

~

/

SAFARI

1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity

2a: L3 Cache
Contention

2b: L1 Cache
Capacity

2c: Compute-Bound

\

DAMOYV i1s Open-Source

* We open-source our benchmark suite and our toolchain

CMU-SAFARI /| DAMOV

<> Code () Issues 1% Pull requests (») Actions [11] Projects) Security |~ Insights 51 Settings
+ main ~ ¥ 1branch © 0tags Go to file Add file v

Q omutlu Update README.md celbdea 17 daysago O 5 commits
.IIIIIIIIIIIIIII'-

DAM OV—S I M : [simulator : Cleaning 19 days ago
YEEEEEEEEEEEEEEED

[README.md Update README.md 17 days ago
.IIIIIIIIIIIIIII'-

DAM OV : [get_workloads.sh : DAMOV -- first commit 19 days ago
h k ¢YEEEEEEEEEEEEEEED

= README.md V4

DAMOV: A New Methodology and Benchmark Suite for
Evaluating Data Movement Bottlenecks

DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in
modern applications. It is intended to study new architectures, such as near-data processing.

The DAMOV benchmark suite is the first open-source benchmark suite for main memory data movement-related
studies, based on our systematic characterization methodology. This suite consists of 144 functions representing
different sources of data movement bottlenecks and can be used as a baseline benchmark set for future data-
movement mitigation research. The applications in the DAMOV benchmark suite belong to popular benchmark
suites, including BWA, Chai, Darknet, GASE, Hardware Effects, Hashjoin, HPCC, HPCG, Ligra, PARSEC, Parboil,
PolyBench, Phoenix, Rodinia, SPLASH-2, STREAM.

SAFARI

About €3

DAMOV is a benchmark suite and a
methodical framework targeting the
study of data movement bottlenecks
in modern applications. It is intended
to study new architectures, such as
near-data processing. Described by
Oliveira et al. (preliminary version at
https://arxiv.org/pdf/2105.03725.pdf)

0 Readme

Releases

No releases published
Create a new release

Packages

No packages published
Publish your first package

Languages

44

DAMOYV i1s Open-Source

Get DAMOV at:

SAFARI 44

https://github.com/CMU-SAFARI/DAMOV

More on DAMOYV

Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata
Ghose, Nandita Vijaykumar, Ivan fernandez, Mohammad
Sadrosadati, and Onur Mutluy,

"DAMOV: A New Methodology and Benchmark Suite for
Evaluating Data Movement Bottlenecks"

Preprint in arXiv, 8 May 2021.

[arXiv _preprint]

[DAMOV Suite and Simulator Source Code]

SAFARI 2

https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://github.com/CMU-SAFARI/DAMOV

More on DAMOYV Analysis Methodology & Workloads

Step 3: Memory Bottleneck Classification (2/:

* Goal: identify the specific sources of data movement ersido gl

bottlenecks
Configuration 1: Host CPU System

DAMOV-SIM Simulator

Cores

\ Scalability Analysis /

Integrated ZSim and Ramulator

Logic Layer

 Scalability Analysis:
- 1,4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores
- 3D-stacked memory as main memory

SAFARI Live Seminar: DAMOV: A New Methodology & Benchmark Suite for Data Movement Bottlenecks

352 views * Streamed live on Jul 22, 2021 |. 18 ’l 0) SHARE =i SAVE

@ Onur Mutlu .Lectures ANALYTICS EDIT VIDEO
&> 17.7K subscribers

https://www.youtube.com/watch?v=GWideVyoOnM&list=PL5Q2so0XY2Zi tOTAYm--dYByNPL7JhwR9&index=3

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3

DAMOYV Analysis Methodology & Workloads

DAMOV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

JUAN G OMEZ-LUN A, ETH Ziirich, Switzerland

LOIS OROSA, ETH Ziirich, Switzerland

SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA

NANDITA VIJAYKUMAR, University of Toronto, Canada

IVAN FERNANDEZ, University of Malaga, Spain & ETH Ziirich, Switzerland

MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH

Zirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Data movement between the CPU and main memory is a first-order obstacle against improving performance,
scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to
reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache
hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP),
where some computation is moved close to memory. Prior NDP works investigate the root causes of data
movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of
understanding about the key metrics that can identify different data movement bottlenecks and their relation
to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify
potential sources of data movement over a broad set of applications and to comprehensively compare traditional
compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric
techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each
source of data movement.

With this goal in mind, we perform the first large-scale characterization of a wide variety of applications,
across a wide range of application domains, to identify fundamental program properties that lead to data
movement to/from main memory. We develop the first systematic methodology to classify applications based
on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K
functions across 345 applications, we select 144 functions to form the first open-source benchmark suite
(DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent
different types of data movement bottlenecks, and (2) come from a wide range of application domains.
Using NDP as a case study, we identify new insights about the different data movement bottlenecks and
use these insights to determine the most suitable data movement mitigation mechanism for a particular

application. We open-source DAMOV and the complete source code for our new characterization methodology

S A FA R l at https://github.com/CMU-SAFAR/DAMOV. httos: / /arxiv.or df/2105.03725.pdf

https://arxiv.org/pdf/2105.03725.pdf

Year II Results (2021 Annual Review - 1)

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks [IEEE Access 2021]

Benchmarking a New Paradigm: An Experimental Analysis of a Real
Processing-in-Memory Architecture [Arxiv, 2021]

FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications [IEEE Micro 2021]

A Modern Primer on Processing in Memory [Arxiv, 2020]

Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid
Storage Systems [Ongoing]

SAFARI 5

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®?, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 16

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

SAFARI

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose"®, Juan Gémez-Luna?, Rachata Ausavarungnirun?
SAFARI Research Group

AETH Ziirich
bCarnegie Mellon University
“University of lllinois at Urbana-Champaign
4King Mongkut's University of Technology North Bangkok

Abstract

Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes
directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks:
(1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory
bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms,
especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms
of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the
data-intensive server and energy-constrained mobile systems of today.

At the same time, conventional memory technology is facing many technology scaling challenges in terms of
reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different
ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic,
the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards
and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity
of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an
evidence of this trend.

This chapter discusses recent research that aims to practically enable computation close to data, an approach we call
processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the
memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between
the computation units and memory is reduced or eliminated. While the general idea of PIM is not new, we discuss
motivating trends in applications as well as memory circuits/technology that greatly exacerbate the need for enabling
it in modern computing systems. We examine at least two promising new approaches to designing PIM systems
to accelerate important data-intensive applications: (1) processing using memory by exploiting analog operational
properties of DRAM chips to perform massively-parallel operations in memory, with low-cost changes, (2) processing
near memory by exploiting 3D-stacked memory technology design to provide high memory bandwidth and low memory
latency to in-memory logic. In both approaches, we describe and tackle relevant cross-layer research, design, and
adoption challenges in devices, architecture, systems, and programming models. Our focus is on the development of
in-memory processing designs that can be adopted in real computing platforms at low cost. We conclude by discussing
work on solving key challenges to the practical adoption of PIM.

Keywords: memory systems, data movement, main memory, processing-in-memory, near-data processing,
computation-in-memory, processing using memory, processing near memory, 3D-stacked memory, non-volatile
memory, energy efficiency, high-performance computing, computer architecture, computing paradigm, emerging
technologies, memory scaling, technology scaling, dependable systems, robust systems, hardware security, system
security, latency, low-latency computing

117

SAFARI

Contents

1 Introduction 2
2 Major Trends Affecting Main Memory| 4
3 The Need for Intelligent Memory Controllers

to Enhance Memory Scaling 6
|4 Perils of Processor-Centric Design| 9
5 Processing-in-Memory (PIM): Technology

Enablers and Two Approaches| 12

[5.1 New Technology Enablers: 3D-Stacked |
[Memory and Non-Volatile Memory| . . 12

|52 Two Approaches: Processing Using
Memory (PUM) vs. Processing Near

Memory (PNM)[. 13
|6 Processing Using Memory (PUM)| 14
6.1 RowClone, 14
6.2 _Ambit 15
[6.3 Gather-Scatter DRAM| 17
[6.4 In-DRAM Security Primitives| 17
|7 Processing Near Memory (PNM) 18
[7.1 Tesseract: Coarse-Grained Application-
Level PNM Acceleration of Graph Pro-
CeSSINPliici o v 3 & ok wrahs it s 19
7.2 _Function-Level PNM Acceleration of
...... 20

[7.3 Programmer-Transparent Function-
Level PNM Acceleration of GPU
Applications|. 21

[7.4 Instruction-Level PNM Acceleration]

[with PIM-Enabled Instructions (PEI)| . . 21

7.5 Function-Level PNM Acceleration of J
Genome Analysis Workloads| 22

~[7.6 Application-Level PNM Acceleration of

Time Series Analysis| 23

'8 Enabling the Adoption of PIM| 24
[8.1 Programming Models and Code Genera-

[tionfor PIM|. 24
[8.2 PIM Runtime: Scheduling and Data

[Mapping|. 25

8.3 Memory Coherence 27

8.4 Virtual Memory Support| 27

8.5 Data Structures for PIM|. 28

~ [8.6__Benchmarks and Simulation Infrastruc-

................... 29

8.7 Real PIM Hardware Systems and Proto- '
typesk: soiis o s e R vl ShEa 30

|8.8 Security Considerations|. 30

9 _Conclusion and Future Outlook 31

1. Introduction

Main memory, built using the Dynamic Random Ac-
cess Memory (DRAM) technology, is a major compo-
nent in nearly all computing systems, including servers,
cloud platforms, mobile/embedded devices, and sensor
systems. Across all of these systems,the data working
set sizes of modern applications are rapidly growing,
while the need for fast analysis of such data is increas-
ing. Thus, main memory is becoming an increasingly
significant bottleneck across a wide variety of computing
systems and applications [1}2,3,/4, 5, 6,(7, 8, 9,10, 11,

12,113, 14,/15, 16]. Alleviating the main memory bot-

tleneck requires the memory capacity, energy, cost, and
performance to all scale in an efficient manner across
technology generations. Unfortunately, it has become
increasingly difficult in recent years, especially the past
decade, to scale all of these dimensions [1,2,/17, 18, 19,
20, 21,22, 23,24, 25,[26, 27,28, 29,130, 31, 32,/33, 34,
35,136,/37,138,39, 40, 41, 42,/43,|44, 45, 46, 47, 48,49],
and thus the main memory bottleneck has been worsen-
ing.

A major reason for the main memory bottleneck is the
high energy and latency cost associated with data move-
ment. In modern computers, to perform any operation
on data that resides in main memory, the processor must
retrieve the data from main memory. This requires the
memory controller to issue commands to a DRAM mod-
ule across a relatively slow and power-hungry off-chip
bus (known as the memory channel). The DRAM mod-
ule sends the requested data across the memory channel,
after which the data is placed in the caches and regis-
ters. The CPU can perform computation on the data
once the data is in its registers. Data movement from the
DRAM to the CPU incurs long latency and consumes
a significant amount of energy [7, 50, 51, 52, 53, 54].
These costs are often exacerbated by the fact that much
of the data brought into the caches is not reused by the
CPU [52, 53, 55,/56], providing little benefit in return
for the high latency and energy cost.

The cost of data movement is a fundamental issue
with the processor-centric nature of contemporary com-
puter systems. The CPU is considered to be the master
in the system, and computation is performed only in the
processor (and accelerators). In contrast, data storage
and communication units, including the main memory,
are treated as unintelligent workers that are incapable of
computation. As a result of this processor-centric design
paradigm, data moves a lot in the system between the
computation units and communication/ storage units so
that computation can be done on it. With the increasingly
data-centric nature of contemporary and emerging appli-

118

PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’ Amirali Boroumand® Jeremie S. Kim™ Juan Gémez-Luna® Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]

SAFARI https:/ /arxiv.org/pdf/1907.12947.pdf 19

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Year II Results (2021 Annual Review - 1)

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks [IEEE Access 2021]

FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications [IEEE Micro 2021]

A Modern Primer on Processing in Memory [Arxiv, 2020]

Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid
Storage Systems [Ongoing]

SAFARI 120

Near-Data Processing

Samsung FIMDRAM (2021)

SAMSUNG
& HBM-PIM

Near-DRAM-banks processing Near-DRAM-banks processing
for general-purpose computing for neural networks
0.9 TOPS compute throughput! 1.2 TFLOPS compute throughput?

The goal of Near-Data Processing (NDP) is

to mitigate data movement

[1] Devaux, "The True Processing In Memory Accelerator,” HCS, 2019
SA FAR' [2] Kwon+, “A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using 7
Bank-Level Parallelism, for Machine Learning Applications," ISSCC, 2021

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMEM LUPMEM UPMEM UPMEM LIPMIEM UPMEM UPMEM
PiM PIM PN P PIM PIM
chip chip chip i i

https:/fwww.anandtech.com/show/14750/hot-chips-3 T-analysis-inmemory-processing-by-upmem 122
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

UPMEM Memory Modules

* E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz
* P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz

SAFAR’ www.upmem.com 1 23

http://www.upmem.com/

PIM System Organization

* UPMEM-based PIM system with 20 UPMEM memory
modules of 16 chips each (40 ranks) - 2560 DPUs

[‘*15;
(3

SAFARI - 124

More on the UPMEM PIM System
DRAM Processing Unit (Il)
PIM Chip
-
Control/Status Interface 4—»{ DDR4 Interface
ﬂ/ \\
V)
n/l
F ¥ w N)
DISPAICH
FETCH1 24-KB
FETCH2 §—P> Instruction
FETCH3 Memory
. READOP1 2
) > 2 & | e4-mB DRAM
& FORMAT : Bank
ALU1 =
ALU2 . a
: s e
5 ALU4
a MERGE1
o MERGE2
-
_

Q ETH ZURICH HAUPTGEBAUDE
Computer Architecture - Lecture 12d: Real Processing-in-DRAM with UPMEM (ETH Ziirich, Fall 2020)

1,120 views * Oct 31, 2020 |b 30 0 SHARE SAVE

@ Onur MUﬂU_LECtUTES ANALYTICS EDIT VIDEO
< 16.7K subscribers

>

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

Experimental Analysis of the UPMEM PIM Engine

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOUVLA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and

architecture designers of future PIM systems.
https://arxiv.orqg/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

Understanding a Modern
Processing-in-Memory Architecture:

Benchmarking and Experimental Characterization

Juan Gomez Luna, Izzat El Hajj,
lvan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

m Ziirich SA F A R ’

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Executive Summary

+ Data movement between .memo(?//stora ge units and compute units is a major
contributor to execution time and energy consumption

. Processing-in—l\/\emory (PIM) is a paradigm that can tackle the data movement
bottlenec
- Though explored for +50 years, technology challenges prevented the successful materialization

* UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

* Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

* Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture

- PrIM (Processing-In-Memory) benchmarks:
* 16 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

* Takeaways:
- Workload characteristics for PIM suitability

- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems

SAFARI 128

Understanding a Modern PIM Architecture

Understanding a Modern Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

1

Juan Gémez-Luna! Izzat E1 Hajj> Ivan Fernandez!3 Christina Giannoula®-*

Geraldo F. Oliveira! Onur Mutlu!
IETH Ziirich 2American University of Beirut *University of Malaga *National Technical University of Athens

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 129

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Observations, Recommendations, Takeaways

GENERAL PROGRAMMING RECOMMENDATIONS

Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as possible.
Split the workload into independent data blocks,
which the DPUs operate on independently.

Use as many working DPUs in the system as possible.
Launch at least 11 tasklets (i.e., software threads)

per DPU.

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU
transfers between the host main
memory and the DRAM Processing
Unit’s Main memory (MRAM) banks

result in higher sustained bandwidth.

PROGRAMMING RECOMMENDATION 1
For data movement between the DPU’s MRAM bank and the

WRAM, use large DMA transfer sizes when all the accessed
data is going to be used.

KEY TAKEAWAY 1

The UPMEM PIM architecture is fundamentally compute
bound. As a result, the most suitable work- loads are

memory-bound.

SAFARI

130

Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview)

(¢ UPMEM PIM Programming)
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth)

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity)

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways

SAFARI

Key Takeaway 1

64.00

0.03

Arithmetic Throughput (MOPS, log scale)

32.00 A
16.00 -
8.00 -
4.00 -
2.00 +
1.00 ~
0.50 -
0.25 ~
0.13 ~
0.06 -

(a) INT32, ADD (1 DPU)

Memory-bound Compute-bound
region region

™ J o D © *x @
PO TN TN G ¢ > > N
Q" O ¢ N/ >7 Y

Operational Intensity (OP/B)

KEY TAKEAWAY 1

The throughput
saturation point is as low
as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.
As aresult, the most suitable workloads are memory-bound.

SAFARI

132

Key Takeaway 2

1024.000

o CPU GPU

640 DPUs

2556 DPUs

256.000 -
64.000 -
16.000 -
4.000 -
1.000

0.250 -
0.063 -
0.016 -
0.004 -
0.001

Speedup over CPU (log scale)

VA

SEL

UNI

BS

HST-S
HST-L

RED
SCAN-SSA
SCAN-RSS

TRNS

More PIM-suitable workloads (1)

KEY TAKEAWAY 2
The most well-suited workloads for the UPMEM PIM architecture

use no arithmetic operations or use only simple operations (e.g.,
bitwise operations and integer addition/subtraction).

SAFARI

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

GMEAN

133

Key Takeaway 3

_ NV3IND
[A
: (z) NVIWD
o Fg g FFFFyFFrFrd
_ (T) NVIWD
........................ —
o
(7,)
FFEFFFFF e]
_ MN m
| . FEEEEEFEFEFE m
_ d1N o
S
] Q
_ S4d o
©
L A x
: Sl 3
1
(i A N
_ AWdS a
a
(2] | i
Q
2 AW3ID =
i Y R A UL SN P S S P B
(o}
LN
LN
(V]
| & EEEFEFEFFEFF
¥ _ SNY1
| A i A \1'—'
_ SSY-NVIS =
(7] (7]
w | A A A w
o | VSS-NVIS | 8
o -z
< FFFFFFEFFFyFrFyFryFyrFyr) S
e} _ a3y m
" i h
_ 7-1SH o]
©
=
[A A A A u
= : S-1SH]
O >
D " . A A —
_ Sd o
g
[i o
I E INN S
@ FFFFFFFFFg gy FFFFFrFr)
o _ 13S
" i
i VA
O OO 0O 00O Mm W
OO0 OO0 00O WMNMmMuLVU-HOOoO
©Co0oooonNOOoOoOo
T O <FT O T H OO O OO
N 1N O
(@ Mo\
—

(1e3s 80]) NdD 49n0 dnpaads

KEY TAKEAWAY 3

=
J—y
A
=
=
=
o
=
<)
=
wd
o
=
2
.=
9
S
k
o
=)
=
=
<]
=
=
?
O
=
wd
2]
=
=
<)
=
=

7))
—
A
an]

7]

7]

(@)

S

()

«

e

o
u
b

«

()
u

S

=

=]

(S

o

e

B

(@)

Q
o
)
b
“

Q
=

=]

op

[<B)

9

L

|

-
)

()

Q
b
u
=

1)

)

4+

_—
=
(@)
ﬁ
°)
=
=
=]
£
£
(@)
()
=
(=
2
B
Q
)
=
&

134

SAFARI

Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in
terms of performance and energy efficiency on most of PrIM
benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on

a majority of PrIM benchmarks, and the outlook is even more
positive for future PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-
of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.

SAFARI

Understanding a Modern PIM Architecture

Understanding a Modern Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

1

Juan Gémez-Luna! Izzat E1 Hajj> Ivan Fernandez!3 Christina Giannoula®-*

Geraldo F. Oliveira! Onur Mutlu!
IETH Ziirich 2American University of Beirut *University of Malaga *National Technical University of Athens

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI 136

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

PrIM Repository

* All microbenchmarks, benchmarks, and scripts

* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks @ Unwatch ~ 2 {7 star 2 % Fork 1

<>

I_Y

Jaty

Code () Issues 1 Pull requests (*) Actions ["1] Projects [wiki () Security [~ Insights 51 Settings

main v prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

1 contributor

168 lines (132 sloc) 5.79 KB Raw Blame G 2 O

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.

SAFARI

137

https://github.com/CMU-SAFARI/prim-benchmarks

Understanding a Modern
Processing-in-Memory Architecture:

Benchmarking and Experimental Characterization

Juan Gomez Luna, Izzat El Hajj,
lvan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

ellgoluj@gmail.com

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

m Ziirich SA F A R ’

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

Experimental Analysis of the UPMEM PIM Engine

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOUVLA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and

architecture designers of future PIM systems.
https://arxiv.orqg/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

More on Analysis of the UPMEM PIM Engine

Inter-DPU Communication
* There is no direct communication channel between DPUs

Main Memory

\\
—)

(omase|[omasd oras(onan|(orardorasionanoman

Chip J| Cnip || aip || cnip || Evip || Crip || Ovip || Evip

oram|[orasi oras|(oram|[orar Dras orar|(orar

y.
Chip || Crip || Chip || Caip || Cvip | Chip | Chip || Cip g

Ll L L LR L L L
o)| Chip | Chip || Chip J| Cp || Chip | Chip || Chip

rim || pime ‘

om | pave) pim || pime
Chip -

cvip || cnip | cnip || onip
e /o XN

PIM-enabled Memory

* Inter-DPU communication takes places via the host CPU using CPU-DPU
and DPU-CPU transfers

* Example communication patterns:
- Merging of partial results to obtain the final result
* Only DPU-CPU transfers
- Redistribution of intermediate results for further computation
* DPU-CPU transfers and CPU-DPU transfers

14 P »l o)18389/257:10°

°

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

1,868 views * Streamed live on Jul 12, 2021 |. 81 0 SHARE SAVE

@ e ANALYTICS | EDIT VIDEO
&> 17.6K subscribers
Talk Title: Understanding a Modern Processing-in-Memory Architecture: Benchmarking and

Experimental Characterization
Dr. Juan Gémez-Luna, SAFARI Research Group, D-ITET, ETH Zurich

https://www.youtube.com/watch?v=D8Hjy2iU914&list=PL5Q2s0XY2Zi tOTAYm--dYByNPL7ZJhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

(]

More on Analysis of the UPMEM PIM |

ngine

Data Movement in Computing Systems

* Data movement dominates performance and is a major system
energy bottleneck

* Total system energy: data movement accounts for
- 62%in consumer applications™,
- 40% in scientific applications*,

- 35%in mobile applications*
Data Movement

v

Video Video

*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” [ISWC 2014

SAFARI
> »l N 227/21:28

Understanding a Modern Processing-in-Memory Arch: Benchmarking & Experimental Characterization; 21m

3,482 views * Premiered Jul 25, 2021 |b 38 0 SHARE SAVE

@ ?;l;l}: Zl:)g:ritz::stures ANALYTICS EDIT VIDEO
« > :

https:/ /www.youtube.com/watch?v=Pp9ijSU2b9oM&list=PL5Q2s0XY2Zi8 VVChACnON4sfh2bJ5IrD&index=159

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159

More on PRIM Benchmarks

= Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina
Giannoula, Geraldo F. Oliveira, and Onur Mutlu,
"Benchmarking a New Paradigm: An Experimental
Analysis of a Real Processing-in-Memory
Architecture”
Preprint in arXiv, 9 May 2021.

[arXiv_preprint]

PrIM Benchmarks Source Code]

Slides (pptx) (pdf)]

Long Talk Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[SAFARI Live Seminar Slides (pptx) (pdf)]

[SAFARI Live Seminar Video (2 hrs 57 mins)]

Lightning Talk Video (3 minutes)]

142

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/abs/2105.03814
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pdf
https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

Year II Results (2021 Annual Review - 1)

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks [IEEE Access 2021]

Benchmarking a New Paradigm: An Experimental Analysis of a Real
Processing-in-Memory Architecture [Arxiv, 2021]

FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications [IEEE Micro 2021]

A Modern Primer on Processing in Memory [Arxiv, 2020]

Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid
Storage Systems [Ongoing]

SAFARI 143

FPGA-based Processing Near Memory

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios
Diamantopoulos, Juan Gémez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive

Applications”
IEEE Micro (IEEE MICRO), to appear, 2021.

FPGA-based Near-Memory Acceleration
of Modern Data-Intensive Applications

Gagandeep Singh® Mohammed Alser® Damla Senol Cali”
Dionysios Diamantopoulos’ Juan Gémez-Luna®
Henk Corporaal* Onur Mutlu®™

°ETH Ziirich ™ Carnegie Mellon University
*Eindhoven University of Technology =~V IBM Research Europe

SAFARI 144

https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/

semiconiucor - FPGA-Based Near-Memory Acceleration of

Research

Corporation Modern Data-Intensive Applications

Gagandeep Singh! Mohammed Alser! Damla Senol Cali* Dionysios Diamantopoulos?

Juan Gomez-Luna! Henk Corporaal®

“TU/e

1 Vel i 2
ETH:zlrich

Onur Mutlu?
MAAAN
EINDHOVEN

4
wemvoe Carnegie Mellon

1: Modern Data-Intensive Applications 2: Motivation Goal

Genome Sequencing Weather Model
+ High DNA

{HTS) €OSMO (C for Small-Scale

can sequence only segments of the original molecule.

* We need read mapping to link the reads together and
construct back the donor's complete genome by 1)
determining the location of each read within the
reference genome and 2) calculating its optimal

nations and research institutes

of elementary stencil kernels

sequence alignment.
9 ¥ (vadvc) are represent¥ti¥ stencils
. is the f-th, p AA/
HRERE S rithm

New vakoe

weather prediction application is used by a dozen

Compound stencil kernel consists of a collection

Horizontal diffusion (hdiff) and vertical advection

kT carpasition
|o.n-.r.::ulm connected through IBM CAPI2 (Coherent Accelerator Processor
e R Eapen)

Modern data-intensive applications are memory-bound with limited
performance and high energy consumption on multi-core
architectures

e R p T —

Py e ——
;:/"'kﬁ“/ ’I”

e
>

== Vestical Advection
_ Horizoneal Diffusion
Pre-alignment Filtesing

eps

P

>
W' 3 10 E
Adictunetic Lateswity [flop/byte]

Mitigate the performance bottleneck of modern data-intensive
applications in an energy-efficient way

Evaluate the use of near-memory acceleration using a FPGA+HBM

Interface) and OCAPI (OpenCAPI)
MAAAN

4: Data Mapping onto Heterogeneous Memories
€D Ot in the st DRAM
1 POWERS Cache ine .0 TMGACCCTGTGTCT Refarence
cobwm) 2 3 4 5 & 7 &4 8 0 4 D2 100658 = 1268 5 32 5 P22 Vsl Ackiroas AMMGTARARAATT Sequences
1 = T T o { CTCCTCECALACA
i |5 Upper Diagonat| L [1 11 0 [0 {1 f0l0fof1]1]2 L ; ACCOTCANCOCAC Read
1ilo 2 Upper Diagonal| L |11 01t |1 |1|f1]0f1 ANTTGETTAMCCA Saquences
lola1]o] 1* Upper Diagonal | L |01 [1 [10|00 [0] 1[0 [0 g -+ s
tfolifelalal 1 Lower Disgonat |0 | 1| 0|0 [0 @ T 0[0] b
et 7% Lower Disgaat] 1 | 0|1 [0 [1[4 [4[]0 1] 1] I=S===S=3
abifalalalels o] 1 [———] e ;
1y B, el y 7 Lower Diaganat | 0 [VT[T [[y N o N o
vlofala s O e W R QRO o wothe dpweid Eachi fer
[el ©crchranenutiving @) £poauem crannels EpealyGuakn maze aari G
© vramandsi g
—— hechpeare * Create a specialized memory hierarchy from the pool of heterogeneous
oo 81 2 5 4 5% 7 8w i 2.9.4.36¢6 32 8 S0 I8t D FPGA memories (i.e., on-chip BRAM and URAM, and in-package HBM)
5 Upper
"EK :::: s * We partition the data among HBM channels to exploit data-level parallelism
2 tpper
I Upper HRT] I and to scale our design
Manrixr || I m * Each processing engine (PE) fetches from an independent 256-bit channel,
T Lower HRT] H |] T* Lower Diagomal which provides low-latency and high-bandwidth data access to each PE
2 Lower HRT i . 7 Lower Diagowal * Allthe tasks execute In a dataflow manner that enables task-level
5 Lowsr HRT |3 Lower Diagonal

SAFARI

SneakySnake vadve hdiff

1
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
i
|

OMOAP 63 —EMIOCAP

@

= — EM-OCAP) e OEAB) VB _must 4 OCAS
g oM maiecean) | B 42 1204 Sy ool | 8
g == reore 2 oz —— Comeecan? Es
2 10 == RO GARA o gl = @
g £ cx g
g E | o PIVERS mocket (64 drss) [€ 2
-4 x 202 x
10 T 5 & r
—TT37] 7z Y1737 (3 T4 O—7r33 (]
Number of PEs Number of PEs Number of PEs
Energy Efficiency Comparison
SneakySnake vadvc hdiff
. o o ————
10 & § 20.47 2101
H £ g~
i G :
E 52| @15 e
7 [T o
§_ 4 s 10, —HEMOTAP
< £1 ———HBM_muitsOCAP] & 7 0] e HBAL_ At OCAR
5 i ‘% HBMAG l; s b5 — HEMCAPZ
i — [DRA AL - DOR&+CAPIZ
ks S POWE RS sccket (B4 threada | E POWERS socket (54 thraads)
o 05734 £l g 4 o= FTSa 8 1@

Number of PEs Number of PEs Number of PEs

Key Results

./27.4><, 5.3x, and 12.7x speedup comparedto a
complete POWERY socket for SneakySnake, hdiff, and vadvc,
WA WY N ad
respectively

.,1.4X, 1.2x, and 1.8x performance

improvement while using multiple H8M channels compared

to a single HBM channel for SneakySnake, hdiff, and vadvc,
respectively

133x, 12x, and 35x higher energy efficiency
than a complete POWERY socket for SneakySnake, hdiff, and vadvc,

SAAAAAN AN AN
respectively

J HBM design avoids memory access

congestion, which is typical in DOR4-based FPGA designs, and
ensures memory bandwidth scaling with the number of PEs

of single channel & multiple channel HBM designs

Open-source:

145

Year II Results (2021 Annual Review - 1)

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data
Movement Bottlenecks [IEEE Access 2021]

Benchmarking a New Paradigm: An Experimental Analysis of a Real
Processing-in-Memory Architecture [Arxiv, 2021]

FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications [IEEE Micro 2021]

A Modern Primer on Processing in Memory [Arxiv, 2020]

Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid
Storage Systems [Ongoing]

SAFARI 146

Sibyl:
A Reinforcement Learning Approach to
Data Placement in Hybrid Storage Systems

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera,
Nastaran Hajinazar, Juan Gomez-Luna, Onur Mutlu

EINDHOVEN
TU/e s ETH:..

Executive Summary

Motivation: Complement different storage technologies to extend the overall capacity and
reduce the system cost with minimal effect on the application performance

Problem: Data allocation and movement between the heterogeneous devices to achieve optimal
(near-optimal) performance of the storage system is challenging

Goal: Develop an efficient, high-performant data-placement mechanism for hybrid storage
systems that can flexibly adapt to the behavior of the workload as well as the storage device
characteristics

Sibyl

* Uses reinforcement learning (RL) to develop a data-placement policy that decides which
data should be stored in the fast storage while minimizing the migration overhead

* Performs dynamic data-placement decision by learning device characteristics while taking
into account workload’s inherent behavior

* QRator improves I/O performance by 24.1%o, 34.7%, and 27.9%o0 on average compared to two
state-of-the-art heuristic-based baselines and a supervised learning-based baseline,
respectively, and achieves 80% performance of the oracle policy that has knowledge of future
access patterns

148

Background: Hybrid Storage Systems

Write operation:

(1) Write hot and random data to the fast
device

(2) Cold and sequential data to the slow
device

Write T
from host (1! 1(3) ___(2316)
(1) | u
Fast B) Slow
Read from (1) T 1) 1] (3)
host v
Read operation:

(1) Read hot and random data
from the fast device

(2) Read cold and sequential from
the slow device

Frozen data eviction: (Migration)

(1) Evict cold data to the slow
device

(2) In case of many reads to slow
memory (hot data) move
data to the fast device. Cold
and sequential is read
directly from the slow device

52

Memory System Design for A1/ ML,
Accelerators & MIL./Al Techniques
for Memory System Design

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
29 September 2021
SRC AIHW Annual Review

SAFARI ETHZzurich CarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Pythia

A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

. 7
SAFARI ETHziirich TUDelft

SAFARI Research Group
safari.ethz.ch

Executive Summary

Background: Prefetchers learns to predict addresses of future memory
requests by associating patterns with program context (called feature)

Problem: Three key shortcomings in prior prefetchers:
- Predicts mainly using a single program feature

Lacks inherent system awareness

Lacks in-silicon customization ability

: Design a prefetching framework that:
Learns from multiple features and inherent system-level feedback
Can be customized in silicon to change features and/or objective

Contribution: Pythia, that formulates prefetching as reinforcement learning
- Adaptive, autonomous learning using multiple features and system-level feedback
- Realistic, practical implementation without any changes to software

Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms prior SOTA by 3.4%, 7.7% and 16.9% in 1/4/bandwidth-constrained cores

* Open sourced: https://github.com/CMU-SAFARI/Pythia
SAFARI

https://github.com/CMU-SAFARI/Pythia

Talk Outline

Key Shortcomings of Prior Prefetchers

SAFARI 153

Prefetching Basics

* Predicts address of long-latency memory requests
and fetches data before the program demands

* Associates access patterns from past memory requests
to program context information

Program Feature = Access Pattern

* PC, Page#, Page offset, Cacheline delta, ...
- Any combination of these

SAFARI

Key Shortcomings in Prior Prefetchers

 We observe three key shortcomings that significantly
limits performance benefits

1 Predicts mainly using a single program feature

2 Lacks inherent system awareness

3 Lacks in-silicon customization ability

SAFARI 155

(1) Single-Feature Prefetch Prediction

* Provides benefits mainly on those workloads where
the feature to pattern correlation exists

______________ Y/ /G |0 VA /- W 368% 529%
w 250% ft | +f ! N
2 200% 11 i} i . (a)
o« 2 ° M Covered O Unggvered @ Overpredicted
o £ o | N |
o 4 I 11 |
5 5 100% I - 1) ! -
c & I I I
&5 50% 4! I '
8 o L i :
o] o _I I
ISPP Bingo Pythia| SPP Bingo Pythia| SPP Bingo Pythia= =SPP Bingo Pythia| SPP Bingo Pythia| SPP Bingo Pythia
I Il I
:482.sphinx3—417B PARSEC-Canneal | PARSEC-Facesim !l1459.GemsFDTD- ! Ligra-CC Ligra-
' i 7658 : PageRankDelt
: I: ! ageRankDelta
60% 4 1
N | |
& X 40% 7 O SPP ¥ Bingo M Pythia ” :
g 2 ' —Z i 7z |
> T 20% - / 11 / |
el 7 Bl | §
ES] nZl: . m _ m
2§ 1 | %
20% i T : ,
\ll_SE.ﬂ)hiﬂxi-ilzli_/_Eéﬁanjrleil___P_A_RS_EE—F_ac_eiirﬂJ IESB_G_emiFDT_D& Ligra-CC Ligra-PageRankDelta
Bingo performs better SPP performs better

SAFARI 156

(1) Single-Feature Prefetch Prediction

Relying on single feature for prediction leaves

sighificant performance improvement on table

SAFARI 157

(2) Lack of Inherent System Awareness

e Little understanding of undesirable effects (e.g.,
memory bandwidth usage, cache pollution,...)
- Performance loss in resource-constrained configurations

= ——— = ———

250% ! 574°4 302% ! 368%: 529%
g 1 F || | [(a)
o -2 200% - i1 BMCovered [Uncovered [Overpredicted)
o & I
5 190% 1| ANk
s - % 1 1 | |
§ _?_:J 100% : : " :
L 9 50% - " - : |
© o/ |
s % T T . .
SPP Bingo Pythia| SPP 1 Bingo:Pythia SPP Bingo Pythia| SPP Bingo Pythia| SPP 1 Bmgo:Pythla SPP Bingo Pythia
| |
482.sphinx3-417B PAR{EC-Ca:meaI PARSEC-Facesim | 459.GemsFDTD- Iigra—C{: Ligra-
i | 765B i | PageRankDelta
| |
60% : i : I
o = : . . : : (b)
é X 40% % I0SPP @Bingo M Pythia : |
g | i 77 | I
c
25 20% % o % e
5 & 7 : % 7 L
ES o, il [| | L m |
o I I I I
g3 I I I I %
_20% 1 1 1 1

482.sphinx3-417B PAR#EC—Ca r=neal PARSEC-Facesim 459.GemsFDTD-765B :Ligra-C¢ Ligra-PageRankDelta

Similar coverage, lower overpredictions

SAFARI Yet lower performance 198

(2) Lack of Inherent System Awareness

Prefetchers often lose performance gains due

to the lack of inherent system awareness

(3) Lack of In-silicon Customizability

» Feature statically selected at design time
- Rigid hardware designed specifically to exploit that feature

Design from scratch Verify Fabricate

SAFARI 160

Our Goal

(

.

A prefetching framework that:

1. Can learn to prefetch using multiple features and
inherent system-level feedback information

type and/or prefetcher’s objective

2.Can be easily customized in silicon to change feature

SAFARI

161

Talk Outline

Formulating Prefetching as Reinforcement Learning

SAFARI 162

Basics of Reinforcement Learning (RL)

 Algorithmic approach to learn to take an actionin a
given situation to maximize a numerical reward

| Agent \

[Environment]

« Agent stores Q-values for every state-action pairs
- Given a state, selects action that provides highest Q-value

SAFARI 163

Formulating Prefetching as RL

SAFARI

What s State?

* k~-dimensional vector of features
* Feature = control-flow + data-flow

* Control-flow
- PC
- Branch PC
- Last-3 PCs, ...

* Data-flow

Cacheline address

Page#

Delta between two cacheline address
Last 4 deltas, ...

SAFARI

165

What is Action?

 Selection of a prefetch offset
- Add to demanded cacheline to get
prefetch cacheline address

* A zero offset means no prefetch is generated

SAFARI 166

What is Reward?

* Defines the objective of Pythia

* Five distinct levels
- Accurate and timely (R 1)
- Accurate but late (Ry)
- Loss of coverage (R¢)
- Inaccurate
« When memory b/w usage is low (R;\-L)
« When memory b/w usage is high (R;y-H)
- No-prefetch
« When memory b/w usage is low (Ryp-L)
 When memory b/w usage is high (Ryp-H)

* Values are set at design time via automatic design-
space exploration

- Can be customized further in silicon for higher performance
SAFARI 167

Talk Outline

Pythia Overview

SAFARI 168

Pythia Overview

* Q-Value Store: Records Q-values for all state-action pairs
« Evaluation Queue: A FIFO queue of recently-taken actions

Find the Action with max Q-Value

a Al1|AlzlAl3| a

Look up 1 |

Generate
II:)(emand . \;State Qvstore |1 prefetch (Memory]
equest ector 52 - i
9 2 [Viax L Hierarchy
> S4
Q-Value Store
6 Evict EQ entry and (QVStore)
update QVStore
—[Evaluation Queue (EQ) |- 9

) Insert prefetch action &

i' T State-Action pair in EQ
Set filled bit a

Assign reward to

corresponding EQ entry

Prefetch Fill

SAFARI

Pythia Overview

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera! Konstantinos Kanellopoulos! =~ Anant V. Nori* Taha Shahroodi®
Sreenivas Subramoney? Onur Mutlu!

IETH Ziirich ?Processor Architecture Research Labs, Intel Labs 3TU Delft

SAFARI

Talk Outline

Evaluation of Pythia and Key Results

SAFARI 171

Simulation Methodology

 Champsim trace-driven simulator

* 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

* Five state-of-the-art prefetchers
- SPP
- Bingo
- MLOP
- SPP+DSPatch

- SPP+PPF
SAFARI

Performance with Varying Core Count

1.35

1.3 -
o o

-

25
0 3125 - Pythia
v o
S a
g 12- SPP
S § MLOP
© %115 - Bingo

1.1 | | | | | |

0 2 4 6 8 10 12
Number of cores

SAFARI 173

Performance with Varying Core Count

1. Pythia consistently provides higher

performance in all core configurations
2. Pythia’s gain increases with core count

SAFARI 174

Performance with Varying DRAM Bandwidth

1.25
1.2

= =
o P R
g = U

[ERY

Geomean speedup
over no prefetching

=
© ©
©o U

0.85

O
00

SAFARI

3%

Pythia
Bingo

Baseline

~Intel Xeon 6258R

MLOP
SPP

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

Q Q Q Q Q Q
Q Q Q Q Q Q
v ™ D \(9 0;\/ (ob‘

DRAM MTPS (in log scale)

S
S
Cb
N

175

Performance with Varying DRAM Bandwidth

Pythia consistently outperforms

in all DRAM bandwidth configurations
with 1/16x to 4x bandwidth of the baseline

SAFARI 176

More in the Paper

« Automatic design-space exploration for Pythia
* Details about reward assignment and QVStore update

* More results
v'Performance comparison against multi-level prefetchers
v'Detailed analysis of single-core and four-core performance
v'Performance comparison with unseen traces
v'Understanding Pythia’s learning with a case study
v'Performance benefits via customization

SAFARI 177

More in the Paper

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera! Konstantinos Kanellopoulos! =~ Anant V. Nori* Taha Shahroodi®
Sreenivas Subramoney? Onur Mutlu!

IETH Ziirich ?Processor Architecture Research Labs, Intel Labs 3TU Delft

SAFARI

Pythia is Open-sourced

https://github.com/CMU-SAFARI/Pythia

« MICRO’21 artifact evaluated
« Champsim source code + Chisel modeling code
* All traces used for evaluation

@ CMU-SAFARI/Pythia (P

README.md
<> Code Issues Pull requests Actions Projects Security Insights Settings

PYTHIA

A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

master ~ ¥ 1branch ©5 Go to file Add file ~ Code ~

A Customizable Hardware Prefetching
rahulbera Bumped up to v1.3 33 comn Framework Using Online
Reinforcement Learning.

9

branch 0'21 artifa 2 months a License [Hilf release V.3 DOI 10.5281/zen0do.5520125

machine-learning
confa BICIISE reinforcement-learing p v Table of Contents
e

b
experiments months cache-replacement branch-predictor 5 K
bout the Fra

i " champsim-simulator -
inc n 2 months 2 P Prerequisites

prefetcher al ¢ t for MICRO'21 artifact evaluation onths 2 00 Readm

replacement al co or MICRO act evaluation
scripts ded md5 c n for all artifac ify downloa

i ing up Statistic
src aluation 2 month

8. Citation
9. License
10. Contact

tracer nm 21 artifact evaluation 2 months a

gitignore n omm RC rtifact evaluation 2 month

o EEREREREEERE

LICENSE Updated L| 2 months 1. A ledgement

(w]

LICENSE.champsim Initial commit for M 1 n 2 months

What is Pythia?

Makefile Initial c¢
README.md

Pythia formulates hardware prefetching as a reinforcement learning task. For every demand request, Pythia
observes multiple different types of program context information to take a prefetch decision. For every prefetch
decision, Pythia receives a numerical reward that evaluates prefetch quality under the current memory bandwidth
utilization. Pythia uses this reward to reinforce the correlation between program context information and prefetch
decision to generate highly accurate, timely, and system-aware prefetch requests in the future.

build_champsim.sh Initial com
build_champsim_highcore.sh Initial commit for MICRO'21 artifact evaluation 2 months ag

logo.png Initial commit for MICRO'21 artifact evaluation 2 months a

0D 0ODO0O 0O DD

setvars.sh Initial commit for MICRO'21 artifact evaluation months
® Other 1.0%

SAFARI 179

https://github.com/CMU-SAFARI/Pythia

Talk Outline

Conclusion

SAFARI 180

Conclusion

Background: Prefetchers learns to predict future addresses by associating
patterns with program context (called feature)

Problem: Three key shortcomings in prior prefetchers:
- Predicts mainly using a single program feature

Lacks inherent system awareness

Lacks online customization ability

: Design a prefetching framework that:
Learns from multiple features and inherent system-level feedback
Can be customized online to change features and/or objective

Contribution: Pythia, that formulates prefetching as reinforcement learning
- Adaptive, autonomous learning using multiple features and system-level feedback
- Realistic, practical implementation without any changes to software

Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite
- Outperforms prior SOTA by 3.4%, 7.7% and 16.9% in 1/4/bandwidth-constrained cores

* Open sourced: https://github.com/CMU-SAFARI/Pythia
SAFARI

https://github.com/CMU-SAFARI/Pythia

Pythia

A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori,
Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu

. 7
SAFARI ETHziirich TUDelft

SAFARI Research Group
safari.ethz.ch

®

Semiconductor
Research
Corporation

FPGA-Based Near-Memory Acceleration
of Modern Data-Intensive Applications

Gagandeep Singh, Mohammed Alser, Damla Senol Cali,
Dionystos Diamantopoulos, Juan Gomez-Luna, Henk Corporaal, and
Onur Mutlu

TU/e ol =7 1, P AV Y4 B\ Research | Zurich

-

Near-Memory Acceleration

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gomez-Luna,
Henk Corporaal, Onur Mutlu,

“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications"

IEEE Micro, 2021.

[Source Code]

m cm Home / Magazines / |EEE Micro / 2021.04

T IEEE Micro

FPGA-Based Near-Memory Acceleration of

Modern Data-Intensive Applications
lll!g,-‘ July-Aug. 2021, pp. 39-48, vol. 41

FraA Compyting DOI Bookmark: 10.1109/MM.2021.3088396

9IEEE

Bz Authors
Gagandeep Singh, ETH Zirich, Zirich, Switzerland

‘ > Mohammed Alser, ETH Zrich, Zirich, Switzerland
Previous Next Damla Senol Cali, Carnegie Mellon University, Pittsburgh, PA, USA

Dionysios Diamantopoulos, Zirich Lab, IBM Research Europe, Riischlikon, Switzerland

i= Table of Contents Juan Gomez-Luna, ETH Ziirich, Zirrich, Switzerland

Past lssues Henk Corporaal, Eindhoven University of Technology, Eindhoven, The Netherlands

Onur Mutlu, ETH Zurich, Zirich, Switzerland

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM

How to Analyze a Genome?

NO

machine gives the complete
sequence of genome as output

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAA
GGACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTT
CTTCATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGAT
ACATTGGAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTT
GAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAA
TTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAA
AAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAA
TGTAGCCAGAATGGTTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGT
GGTTTCTCTGAGTGAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAA
GCTTTTTCATGTCAAGGACCTAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCA
CTTCCCAGAAAGCTTCTTCA......

Genome Analysis in Real Life

Genome Analysis Pipeline
(i — Read Mapping -
- aaog

Genomic Sample Sequencing Machine Reads Genomic Variants

Current sequencing machine provides
small randomized fragments
of the original DNA sequence

Alser+, "Technology dictates algorithms: Recent developments in read alignment"”, Genome Biology, 2021

186 ‘

https://arxiv.org/abs/2003.00110

Bottlenecked in Read Mapping!!

G,
Human whole ZZ?%% 11
4 Human

genomes genome
at 30x coverage 32 CPU hours
in about 2 days T T on a 48-core processor
Illumina NovaSeq 6000 k o 4 71
%

Read Mapping
m Others

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT processor for precision medicine”, Open Journal of Genetics, 2017.

187 ‘

https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

Stencil Computation in Weather Modeling

COSMO (Consortium for Small-Scale Modeling)

« Around 80 complex stencils

‘‘‘‘‘‘

« Horizontal diffusion
Vertical advection

Image Sourc

NERO: Weather Prediction Accelerator [FPL 2020]

« Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gomez-Luna, Sander Stuijk,
Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic and Applications (FPL),
Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
One of the four papers nominated for the Stamatis Vassiliadis Memorial Best Paper Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator
for Weather Prediction Modeling

Gagandeep Singh®?¢ Dionysios Diamantopoulos® Christoph Hagleitner® Juan Gémez-Luna®
Sander Stuijk? Onur Mutlu® Henk Corporaal®
“Eindhoven University of Technology bETH Ziirich ‘IBM Research Europe, Zurich

189 ‘

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

otivation a oa

Memory bound with limited performance and high energy consumption on IBM POWER9 CPU
104 ' ' :

POWERS9 socket (486.4 Gflops/socket)

)

o

=}

8 102

e 10 + .

g ‘ 58.5 Gflops

| 9.1 Gf I (64 threads) e : :

O .l -1 5tlopsy Vertical Advection

£ 10° F 0.28 Gops (64 threads)] | =) =

i') 64 threads) @ 1 1 = = Horizontal Diffusion :
109 mimEEH ‘== Prealignment Filter |

1071 10° 101 102

Arithmetic Intensity [flop/byte]
Goal:

- Mitigate the performance bottleneck of modern data-intensive applications in an energy-
efficient way

190 ‘

Near-Memotry Acceleration

—
-
e
-
-
-
-

N i

Source: IBM Source: AlphaData

IBM POWERY9 CPU HBM-based FPGA board

Near-HBM FPGA-based accelerator

191 ‘

Key Results of Near-Memory Acceleration

! =
[POWERS sodkel (64 treads) __ 510
) ~ =e= HBM+OCAPI D
- —e= HBM_multi+OCAPI 3 8
S == HBM+CAPI2 2
o 100 —e= DDR4+CAPI2 = 6
= | 5
= : S 4| == HBM+OCAPI
% 0.27 E e=t==HBM_multi+OCAPI
o — Y 5| == HBM+CAPI2
0.21 % = DDR4+CAPI2
07533 z 2 B ol ONERE socket (Gvends) |
Number of PEs Number of PEs

192 ‘

Key Results of Near-Memory Acceleration

10" :
}__ | POWERQ socket_(64 threads .L__.‘

—_— LIPAA . AN AP

Near-memory acceleration |mproves performance and
energy efficiency by 5-27x and 12-133X%, respectively,
over a 1_6_core (64 hardware threads) IBM POWER9 CPU

S HBM_mult+OCAPI
' ”i 5| == HBM+CAPI2 ‘
T g =e=_ DDR4+CAPI2
1071 ‘ 5 5 S POWERS socket (64 threads)
1 2 3 4 8 12 e B 7 iy g s
Number of PEs

Number of PEs

193 ‘

Key Results of Near-Memory Acceleration

10" v
}____f__ POWER socket (64 threadsl__ ‘

=
®
I T ——— E

—_— LIPAA . AN AP

Near-memory acceleration improves performance and
energy efficiency by 5-27x and 12-133X%, respectively,
over a 1_6_core (64 hardware threads) IBM POWER9 CPU

= 0.41° _ 0.29 0.27 HBM: multi+OCAPI
=) . : - ,
e 0.29 T Bmeg m—.4 i o= HBM+CAPI2 ‘
026 ’ o9 . = 2
| 0= 0.21 g «=¢= DDR4+CAPI2
-1 S N N s z c C
10 123 4 8 12 W gl VERD socket (64 threads)

- —~— 1234 8 12
Single channel & multiple channel HBM designs
Open-source: https://qgithub.com/CMU-SAFARI

194 ‘

https://github.com/CMU-SAFARI

®

Semiconductor
Research
Corporation

FPGA-Based Near-Memory Acceleration
of Modern Data-Intensive Applications

Gagandeep Singh, Mohammed Alser, Damla Senol Cali,
Dionystos Diamantopoulos, Juan Gomez-Luna, Henk Corporaal, and
Onur Mutlu

TU/e ol =7 1, P AV Y4 B\ Research | Zurich

-

