
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
29 September 2021

SRC AIHW Annual Review

Memory System Design for AI/ML 
Accelerators & ML/AI Techniques 

for Memory System Design

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu


2

Confidentiality

• By reviewing this presentation or participating in a SRC event, 
you are agreeing not to use the presented information for 
purposes unrelated to the event until approved by SRC;

• Material may be presented that represents current research, 
some of which has not been published or protected. This 
material is not for public disclosure and until potential IP rights 
have been protected, please treat all of the information 
presented as confidential information which is the property 
of the researcher and their university.

SRC Select Disclosure



Agenda

n Problem and Background

n Task Overview

n Technical Challenges, Goals and Ideas

n Ideas, Results and Papers from the Past Year

3



The Problem

Computing
is Bottlenecked by Data

4



Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts 
of data

n Data is increasing
q We can generate more than we can process

5



Data is Key for Future Workloads

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



Data Overwhelms Modern Machines 

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data → performance & energy bottleneck



Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data is Key for Future Workloads



Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data Overwhelms Modern Machines 

Data → performance & energy bottleneck



Data is Key for Future Workloads

10

development of high-throughput 
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes 
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped


Genome 
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 
Alignment

        CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Data → performance & energy bottleneck



New Genome Sequencing Technologies

12

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

Data → performance & energy bottleneck

https://arxiv.org/pdf/1711.08774.pdf


Data Overwhelms Modern Machines …

n Storage/memory capability

n Communication capability

n Computation capability

n Greatly impacts robustness, energy, performance, cost

13



14

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data Overwhelms Modern Machines 

Data → performance & energy bottleneck



n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

15

62.7% of the total system energy 
is spent on data movement

Data Movement Overwhelms Modern Machines 

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Axiom

An Intelligent Architecture
Handles Data Well

16



How to Handle Data Well

n Ensure data does not overwhelm the components
q via intelligent algorithms
q via intelligent architectures
q via whole system designs: algorithm-architecture-devices

n Take advantage of vast amounts of data and metadata
q to improve architectural & system-level decisions 

n Understand and exploit properties of (different) data
q to improve algorithms & architectures in various metrics

17



Corollaries: Architectures Today …
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute 
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast 
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data 
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting 
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware

18



Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
19



Agenda

n Problem and Background

n Task Overview

n Technical Challenges, Goals and Ideas

n Ideas, Results and Papers from the Past Year

20



In This Task… (Task #2946.001)

n We focus on designing memory systems to handle data well

n We aim to solve two different yet related and synergistic 
problems, both focusing on ML/AI and memory system 
design

n We explore (and exploit the synergy between)
q Memory system design for AI/ML workloads/accelerators
q AI/ML techniques for improving memory system designs

21



Our Goals in This Task
n Two Major Goals: 

1. Memory system design for AI/ML workloads/accelerators
à in-depth exploration of memory system designs for cutting-

edge and emerging machine learning accelerators 
à more efficient on-chip and off-chip memory systems

2. AI/ML techniques for improving memory system designs
à take a comprehensive look at memory system design and 

make it data driven, i.e., based on machine learning 
à more effective cache/memory/prefetch/thread controllers 

and data/resource management/mapping/scheduling policies

22



Anticipated Primary Results

n Realistic, practical and effective novel memory system 
designs for ML/AI accelerators

n New ML-based techniques to improve memory system 
efficiency and performance

n Open-source workloads, metrics, methodologies & 
infrastructures to analyze such designs and techniques.

23



Task Description

24



Task Deliverables (2020)

25



Task Deliverables (2021)

26



Task Deliverables (2022)

27



Task Information #2946.001 (1)
n Thrust: AI Hardware

n Task Leader: Onur Mutlu
q https://people.inf.ethz.ch/omutlu/
q onur.mutlu@inf.ethz.ch

n Students
q Rahul Bera (ETH)
q Amirali Boroumand (CMU)
q Geraldo Francisco de Oliveira Junior (ETH)
q Joao Ferreira (ETH)
q Konstantinos Kanellopoulos (ETH)
q Damla Senol Cali (CMU)

28

https://people.inf.ethz.ch/omutlu/
mailto:onur.mutlu@inf.ethz.ch


Task Information #2946.001 (2)
n Senior Researchers

q Juan Gomez Luna (ETH)
q Lois Orosa (ETH)
q Jisung Park (ETH)
q Gagandeep Singh (ETH)

n More students/postdocs to be added as the task evolves

29



Recent PhD Graduates (I)
n Amirali Boroumand 

q December 2020
q Practical Mechanisms for Reducing Processor-Memory Data 

Movement in Modern Workloads

n Gagandeep Singh
q April 2021
q Designing, Modeling, and Optimizing Data-Intensive Computing 

Systems

n Damla Senol Cali
q August 2021
q Accelerating Genome Sequence Analysis via Efficient 

Hardware/Algorithm Co-Design

n Nastaran Hajinazar
q August 2021
q Data-Centric and Data-Aware Frameworks for Fundamentally 

Efficient Data Handling in Modern Computing Systems
30

https://safari.ethz.ch/safari_public_wp/wp-content/uploads/2021/07/ECE-PhD-Thesis-Defense-Damla-Senol-Cali.pdf


Recent PhD Graduates (II) 

n https://safari.ethz.ch/safari-alumni/

n Dr. Saugata Ghose
q Started @ UIUC as Assistant Professor, Fall 2020

31

https://safari.ethz.ch/safari-alumni/


Soon to Finish PhD

n Minesh Patel
q Defense date: October 1, 2021
q Enabling Effective Error Mitigation in Memory Chips That Use

On-Die Error-Correcting Codes

32



Industry Liaisons
n Charles Augustine, Intel
n Pradip Bose, IBM
n Alper Buyuktosunoglu, IBM
n Rosario Cammarota, Intel
n Ramesh Chauhan, Qualcomm
n Prokash Ghosh, NXP
n Jose Joao, ARM
n Arun Joseph, IBM
n Anurag Kar, ARM
n Preetham Lobo, IBM
n Nithyakalyani Sampath, TI
n Willem Sanberg, NXP
n Pushkar Sareen, NXP
n Sreenivas Subramoney, Intel
n Xin Zhang, IBM

n We are having and will have regular and irregular meetings with all liaison companies
n Very open to other collaborators, feedback, internships

33



Agenda

n Problem and Background

n Task Overview

n Technical Challenges, Goals and Ideas

n Ideas, Results and Papers from the Past Year

34



Two Major Thrusts

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

35



Thrust 1 Exploration Ideas
1.1. Comprehensive Energy and Performance Analysis of ML/AI Accelerator 
Execution on Key ML/AI Workloads

1.2. Cache/Buffer, On-Chip Memory, Interconnect, Memory Controller Designs for 
ML Accelerators and Their Interfaces

1.3. Complete on-chip ML/AI accelerator designs with careful data orchestration 
and on-chip memory management. 

1.4. On-chip & off-chip near-data processing (NDP) designs, interfaces, evaluation, 
programming for AI/ML workloads 

1.5. Evaluation and understanding of both short-term and long-term options for 
NDP for AI/ML Workloads

1.6. Use of NVM devices, simple customized DRAM and 3D-stacked Memory+Logic
for AI/ML Acceleration

1.7. High-Fidelity and Highly-Flexible Open Source Simulation & Modeling 
Infrastructures for ML/AI Memory Systems 

36

This 
talk



Memory System Design for AI/ML
n Some background works from the past

n "EDEN: Enabling Energy-Efficient, High-Performance 
Deep Neural Network Inference Using Approximate 
DRAM”, MICRO 2019

n "SMASH: Co-designing Software Compression and 
Hardware-Accelerated Indexing for Efficient Sparse 
Matrix Operations”, MICRO 2019

n "Google Workloads for Consumer Devices: Mitigating 
Data Movement Bottlenecks”, ASPLOS 2018.

37

https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/SMASH-sparse-matrix-software-hardware-acceleration_micro19.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf


Two Major Thrusts

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

38



Thrust 2 Exploration Ideas
2.1. Comprehensive performance and energy analysis of rigid policies in the 
memory hierarchy – how far are they from the ideal policies? What is the 
maximum potential ML techniques can achieve?

2.2. New caching, prefetching, mem. controller, runahead, compression policies 
that are directed with appropriate ML techniques

2.3. Rigorous specification and coordination of ML-based on-chip cache, prefetch, 
DRAM, NVM, hybrid mem. Controllers

2.4. Design and evaluation of new ML-based techniques to manage hybrid 
memories consisting of multiple different technologies

2.5. Design and evaluation of new ML-based data mapping policies across on-chip 
caches and memory controllers

2.6. Design and evaluation of new ML-based thread scheduling policies in both 
SMT and memory controllers

2.7. High-Fidelity and Highly-Flexible Open Source Simulation & Modeling 
Infrastructures for ML-Based Controllers

39

This 
talk



AI/ML for Memory System Design
n Some background works from the past

n "Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach”, ISCA 2008

n "NAPEL: Near-Memory Computing Application 
Performance Prediction via Ensemble Learning”,
DAC 2019

40

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf


System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

41

Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

42

How do we start?



Two Major Thrusts & Their Synergies

1. Memory system design for AI/ML workloads/accelerators

2. AI/ML techniques for improving memory system designs

43



Agenda

n Problem and Background

n Task Overview

n Technical Challenges, Goals and Ideas

n Ideas, Results and Papers from the Past Year

44



Initial Results in Year I (2020 Review)
n GenASM: A High-Performance, Low-Power Approximate String Matching 

Acceleration Framework for Genome Sequence Analysis [MICRO 2020]

n NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather 
Prediction Modeling [FPL 2020]

n An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for 
Neural Network Acceleration [DSN 2020]

n NATSA: A Near-Data Processing Accelerator for Time Series Analysis 
[ICCD 2020]

n Robust Machine Learning Systems: Challenges, Current Trends, 
Perspectives, and the Road Ahead [IEEE D&T 2020]

n Accelerating Genome Analysis: A Primer on an Ongoing Journey [IEEE 
Micro 2020]

n SMASH Open Source Software Code Release [GitHub]
45



Initial Results in Year I (2020 Ongoing)
n Efficiently Accelerating Edge ML Inference by Exploiting Layer 

Heterogeneity: An Empirical Study with Google Edge Models [Ongoing]
n A New Methodology and Open-Source Benchmark Suite for Evaluating Data 

Movement Bottlenecks: A Near-Data Processing Case Study [Ongoing]
n Accelerating Profile Hidden Markov Models in Computational Biology 

Applications [Ongoing]
n StenCache: A Near-Cache Accelerator for Stencil Computations [Ongoing]
n SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM 

[Ongoing]
n Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases 

with Specialized Hardware/Software Co-Design [Ongoing]
n Reinforcement Learning based Prefetch Generation [Ongoing]

n Benchmarking a New Paradigm: Understanding a Modern Processing-in-
Memory Architecture [Ongoing]

46



Year II Results (2021 Annual Review I)
n Google Neural Network Models for Edge Devices: Analyzing and Mitigating 

Machine Learning Inference Bottlenecks [PACT 2021]

n Pythia: A Customizable Hardware Prefetching Framework Using Online 
Reinforcement Learning [MICRO 2021]

n Refresh Triggered Computation: Improving the Energy Efficiency of 
Convolutional Neural Network Accelerators [TACO 2020]

n SynCron: Efficient Synchronization Support for Near-Data-Processing 
Architectures [HPCA 2021]

n SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in 
DRAM [ASPLOS 2021]

47



Year II Results (2021 Annual Review II)
n DAMOV: A New Methodology and Benchmark Suite for Evaluating Data 

Movement Bottlenecks [IEEE Access 2021]

n Benchmarking a New Paradigm: An Experimental Analysis of a Real 
Processing-in-Memory Architecture [Arxiv, 2021]

n FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications [IEEE Micro 2021]

n A Modern Primer on Processing in Memory [Arxiv, 2020]

n Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid 
Storage Systems [Ongoing]

48



Second Year Results: More Detail

49



Year II Results (2021 Annual Review - I)
n Google Neural Network Models for Edge Devices: Analyzing and Mitigating 

Machine Learning Inference Bottlenecks [PACT 2021]

n Pythia: A Customizable Hardware Prefetching Framework Using Online 
Reinforcement Learning [MICRO 2021]

n Refresh Triggered Computation: Improving the Energy Efficiency of 
Convolutional Neural Network Accelerators [TACO 2020]

n SynCron: Efficient Synchronization Support for Near-Data-Processing 
Architectures [HPCA 2021]

n SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in 
DRAM [ASPLOS 2021]

50



Google Neural Network Models for Edge Devices: 
Analyzing and Mitigating 

Machine Learning Inference Bottlenecks

Amirali Boroumand Saugata Ghose Berkin Akin
Ravi Narayanaswami Geraldo F. Oliveira Xiaoyu Ma

Eric Shiu Onur Mutlu

PACT 2021



Executive Summary
Context:  We extensively analyze a state-of-the-art edge ML accelerator 
(Google Edge TPU) using 24 Google edge models

– Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem:  The Edge TPU accelerator suffers from three challenges:
– It operates significantly below its peak throughput
– It operates significantly below its theoretical energy efficiency
– It inefficiently handles memory accesses

Key Insight:  These shortcomings arise from the monolithic design of the 
Edge TPU accelerator

– The Edge TPU accelerator design does not account for layer heterogeneity 

Key Mechanism:  A new framework called Mensa
– Mensa consists of heterogeneous accelerators whose dataflow and 

hardware are specialized for specific families of layers

Key Results:  We design a version of Mensa for Google edge ML models
– Mensa improves performance and energy by 3.0X and 3.1X
– Mensa reduces cost and improves area efficiency

52



Google Edge NN Models

53

We analyze inference execution using 24 edge NN models 

13 CNN

Face Detection

6 RNNTransducers

Speech Recognition

2 LSTMs

Language Translation

Image Captioning

3 RCNNGoogle Edge TPU

Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



Diversity Across the Models
Insight 1: there is significant variation in terms of 

layer characteristics across the models

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

FL
O

P
/B

yt
e

Parameter Footprint (MB)

CNN3

CNN4

CNN11

CNN9

CNN13

LSTM1

Layers from 
LSTMs and Transducers

Layers from 
CNNs and RCNNs

54Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



Diversity Within the Models

For example, our analysis of edge CNN models shows: 

1

2

Insight 2: even within each model, layers exhibit 
significant variation in terms of layer characteristics

55Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

50

100

150

200

1 11 21 31 41 51

M
A

C
s 

(M
)

Layers

CNN5

0

2000

4000

6000

1 11 21 31 41 51 61 71
FL

O
P

/B
yt

e
Layers

CNN13

Variation in FLOP/Byte: up to 244x across layers

Variation in MAC intensity: up to 200x across layers



Root Cause of Accelerator Challenges
The key components of Google Edge TPU are completely 

oblivious to layer heterogeneity

While this approach might work for a specific group of layers, it fails 
to efficiently execute inference across a wide variety of edge models

DRAM
PE Array

B
uf

fe
r

Dataflow

Off-chip 
bandwidth

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth

56Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



57

Mensa Framework
Goal: design an edge accelerator that can efficiently run

inference across a wide range of different models and layers

1

2

Instead of running the entire NN model on 
a monolithic accelerator: 

Mensa: a new acceleration framework for edge NN inference

Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



58

Mensa High-Level Overview

Monolithic Accelerator

Model A

Family 2 Family 3

Edge TPU Accelerator Mensa

B
uf

fe
r

N
oC

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

Model B Model C Model A Model B Model C

Runtime

B
uf

fe
r

N
oC

P
E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
E

P
E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
EP

E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
E

P
E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
E

Family 1

Acc. 1
B

uf
fe

r
N

oC

P
E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
E

P
E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
EP

E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
E

P
E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
E

Acc. 2

B
uf

fe
r

N
oC

P
E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
E

P
E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
EP

E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
E

P
E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E
P
E
P
E

Acc. 3
Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



Mensa Runtime Scheduler

Accelerator 
characteristics

Layer 
characteristics

Scheduler

NN model

Layer
Mapping

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
during initial setup 

of a system

Layers tend to group 
together into a small
number of families  

Each of the accelerators 
caters to 

a specific family of layers
59Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●



Mensa Runtime Scheduler

Accelerator 
characteristics

Layer 
characteristics

Scheduler

NN model

Layer
Mapping

The goal of Mensa’s software runtime scheduler is to identify
which accelerator each layer in an NN model should run on

Generated once
during initial setup 

of a system

Layers tend to group 
together into a small
number of families  

Each of the accelerators 
caters to 

a specific family of layers
Introduction TPU and Model Characterization Mensa Framework Mensa-G Evaluation Conclusion 

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 60



For More on Mensa [PACT 2021]

61



Year II Results (2021 Annual Review - I)
n Google Neural Network Models for Edge Devices: Analyzing and Mitigating 

Machine Learning Inference Bottlenecks [PACT 2021]

n Pythia: A Customizable Hardware Prefetching Framework Using Online 
Reinforcement Learning [MICRO 2021]

n Refresh Triggered Computation: Improving the Energy Efficiency of 
Convolutional Neural Network Accelerators [TACO 2020]

n SynCron: Efficient Synchronization Support for Near-Data-Processing 
Architectures [HPCA 2021]

n SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in 
DRAM [ASPLOS 2021]

62



Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning



64

Executive Summary
• Background: Prefetchers learns to predict future addresses by associating 

patterns with program context (called feature)

• Problem: Three key shortcomings in prior prefetchers:
- Predicts mainly using a single program feature
- Lacks inherent system awareness
- Lacks online customization ability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback
- Can be customized online to change features and/or objective

• Contribution: Pythia, that formulates prefetching as reinforcement learning
- Adaptive, autonomous learning using multiple features and system-level feedback

- Realistic, practical implementation without any changes to software

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite

- Outperforms prior SOTA by 3.4%, 7.7% and 16.9% in 1/4/bandwidth-constrained cores

• Open sourced: https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia


65

Our Goal

A prefetching framework that:

1. Can learn to prefetch using multiple features and 
inherent system-level feedback information

2. Can be easily customized in silicon to change feature 
type and/or prefetcher’s objective



66

Basics of Reinforcement Learning (RL)

• Algorithmic approach to learn to take an action in a 
given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pairs
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)



67

Formulating Prefetching as RL

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor & 
Memory Subsystem

Reward
Prefetch from address 

A+offset (O)

Features of memory 
request to address A 

(e.g., PC)



68

Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs

• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to 

corresponding EQ entry

Look up 
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action & 
State-Action pair in EQ

6

Prefetch Fill 

A1 A2 A3

Memory 
Hierarchy

Generate
prefetch

Evict EQ entry and 
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max



69

Simulation Methodology
• Champsim trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]

- Bingo [Bakhshalipour+, HPCA’19]

- MLOP [Shakerinava+, Prefetching Championship-3]

- SPP+DSPatch [Bera+, MICRO’19]

- SPP+PPF [Bhatia+, ISCA’20]



70

Performance with Varying Core Count

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n 

sp
ee

du
p

ov
er

 n
o 

pr
ef

et
ch

in
g

Number of cores

Bingo
MLOP
SPP

Pythia

1 channel 2 channels 4 channels

3.4%
7.7%



71

Performance with Varying Core Count

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n 

sp
ee

du
p

ov
er

 n
o 

pr
ef

et
ch

in
g

Number of cores

Bingo
MLOP
SPP

Pythia

1 channel 2 channels 4 channels

3.4%
7.7%

Pythia consistently provides higher 
performance in all system configurations 

from single core to twelve cores



72

Pythia is Completely Open Source
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated

• Champsim source code + Chisel modeling code

• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia


73

More in the Paper
• Automatic design-space exploration for Pythia

• Details about reward assignment and QVStore update

• More results
üPerformance comparison against multi-level prefetchers
üDetailed analysis of single-core and four-core performance
üPerformance comparison with unseen traces
üUnderstanding Pythia’s learning with a case study
üPerformance benefits via customization



Year II Results (2021 Annual Review - I)
n Google Neural Network Models for Edge Devices: Analyzing and Mitigating 

Machine Learning Inference Bottlenecks [PACT 2021]

n Pythia: A Customizable Hardware Prefetching Framework Using Online 
Reinforcement Learning [MICRO 2021]

n Refresh Triggered Computation: Improving the Energy Efficiency of 
Convolutional Neural Network Accelerators [TACO 2020]

n SynCron: Efficient Synchronization Support for Near-Data-Processing 
Architectures [HPCA 2021]

n SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in 
DRAM [ASPLOS 2021]

74



Refresh Triggered Computation

75



Refresh Triggered Computation

n Syed M. A. H. Jafri, Hasan Hassan, Ahmed Hemani, and Onur Mutlu,
"Refresh Triggered Computation: Improving the Energy 
Efficiency of Convolutional Neural Network Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO), 
December 2020.

76

https://people.inf.ethz.ch/omutlu/pub/RTC-Refresh-Triggered-Computation_taco20.pdf
http://taco.acm.org/


Year II Results (2021 Annual Review - I)
n Google Neural Network Models for Edge Devices: Analyzing and Mitigating 

Machine Learning Inference Bottlenecks [PACT 2021]

n Pythia: A Customizable Hardware Prefetching Framework Using Online 
Reinforcement Learning [MICRO 2021]

n Refresh Triggered Computation: Improving the Energy Efficiency of 
Convolutional Neural Network Accelerators [TACO 2020]

n SynCron: Efficient Synchronization Support for Near-Data-Processing 
Architectures [HPCA 2021]

n SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in 
DRAM [ASPLOS 2021]

77



SynCron
Efficient	Synchronization	Support

for	Near-Data-Processing	Architectures

Christina	Giannoula
christina.giann@gmail.com

Nandita	Vijaykumar,	Nikela Papadopoulou,	Vasileios	Karakostas
Ivan	Fernandez,	Juan	Gómez	Luna,	Lois	Orosa

Nectarios Koziris,	Georgios	Goumas,	Onur Mutlu



79

Problem:
• Synchronization	support	is	challenging	for	NDP	systems
• Prior schemes	are	not	suitable	or	efficient for	NDP	systems

Contribution:
• SynCron:	the	first	end-to-end	synchronization	solution	for	
NDP architectures

Key	Results:

• SynCron	comes	within	9.5% and	6.2% of	performance	and	
energy	of	an	Ideal zero-overhead	synchronization	scheme

Executive	Summary



80

NDP	Synchronization	Solution	Space

(1)	Shared	Memory (2)	Message-passing

Hardware	
Cache
Coherence

Remote	
Atomics

Specialized	
Hardware	
Support

Software-
based	
Schemes

Specialized	
Hardware	
Support

NDPs:

SynCron	
[HPCA’21]

Hardware	Message-passing	
to	Avoid	Synchronization	via	Shared	Memory

Hierarchical	Communication	
to	Eliminate	Expensive	Network	Traffic

Specialized	Cache	Structure	
to	Minimize	Latency	Costs

SynCron’s	Design	Choices



81

• Synchronization	is	a	major	system	challenge	for	NDP	systems

• Prior schemes	are	not	suitable	or	efficient for	NDP	systems

• SynCron is	the	first	end-to-end	synchronization	solution	for	
NDP	architectures

• Syncron	consists	of	four key	techniques:
i.						Hardware	support	for	synchronization	acceleration
ii.					Direct	buffering	of	synchronization	variables
iii.				Hierarchicalmessage-passing	communication
iv.				Integrated	hardware-only	overflow	management

• SynCron’s	benefits:	90.5% and	93.8% of	performance	and	
energy	of	an	Ideal zero-overhead	scheme

• SynCron	is	highly-efficient,	low-cost,	easy-to-use,	and	general	
to	support	many	synchronization	primitives

Summary	&	Conclusion



More on SynCron
n Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan 

Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu,
"SynCron: Efficient Synchronization Support for Near-Data-Processing 
Architectures"
Proceedings of the 27th International Symposium on High-Performance Computer 
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Short Talk Video (7 minutes)]

82

https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=2DNDjQjNDTw
https://www.youtube.com/watch?v=kGiN-YjeUUA


Year II Results (2021 Annual Review - I)
n Google Neural Network Models for Edge Devices: Analyzing and Mitigating 

Machine Learning Inference Bottlenecks [PACT 2021]

n Pythia: A Customizable Hardware Prefetching Framework Using Online 
Reinforcement Learning [MICRO 2021]

n Refresh Triggered Computation: Improving the Energy Efficiency of 
Convolutional Neural Network Accelerators [TACO 2020]

n SynCron: Efficient Synchronization Support for Near-Data-Processing 
Architectures [HPCA 2021]

n SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in 
DRAM [ASPLOS 2021]

83



SIMDRAM Framework
n Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri 

Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

84

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116


• Motivation: Processing-using-Memory	(PuM)	architectures	can	efficiently	perform	bulk	
bitwise	computation

• Problem:	Existing	PuM architectures	are	not	widely	applicable
– Support	only	a	limited	and	specific	set	of	operations
– Lack	the	flexibility	to	support	new	operations
– Require	significant	changes	to	the	DRAM	subarray

• Goals:	Design	a	processing-using-DRAM	framework	that:	
– Efficiently	implements	complex	operations
– Provides	the	flexibility	to	support	new	desired	operations
– Minimally	changes	the	DRAM	architecture

• SIMDRAM:	An	end-to-end	processing-using-DRAM	framework	that	provides	the	
programming	interface,	the	ISA,	and	the	hardware	support	for:
1. Efficiently	computing	complex	operations
2. Providing	the	ability	to	implement	arbitrary	operations	as	required
3. Using	a	massively-parallel	in-DRAM	SIMD	substrate	that	requires	minimal	changes	to	DRAM

• Key	Results:	SIMDRAM	provides:
– 88x	and		5.8x	the	throughput	and	257x	and	31x	the	energy	efficiency	of	a	baseline	CPU	and	a	

high-end	GPU,	respectively,	for	16	in-DRAM	operations
– 21x	and	2.1x	the	performance	of	the	CPU	and	GPU	for	seven	real-world	applications

Executive	Summary

2



SIMDRAM	Key	Idea	

• SIMDRAM:	An	end-to-end	processing-using-DRAM	
framework	that	provides	the	programming	interface,	the	
ISA,	and	the	hardware support for:

- Efficiently computing	complex operations	in	DRAM

- Providing	the	ability	to	implement	arbitrary operations	as	
required

- Using	an	in-DRAM	massively-parallel	SIMD	substrate that	
requires	minimal changes	to	DRAM	architecture

23



SIMDRAM	Output

Instruction	result	
in	memory

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	

DRAM	commands

foo () {

bbop_new

} 
Control	Unit AC

T/
PR
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

27

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New	SIMDRAM	𝜇Program

𝜇Program



SIMDRAM:	A	Framework	for
Bit-Serial	SIMD	Processing	using	DRAM

Nastaran Hajinazar*	 Geraldo	F.	Oliveira*
Sven	Gregorio Joao	Ferreira											Nika	Mansouri	Ghiasi
Minesh Patel Mohammed	Alser Saugata Ghose

Juan	Gómez–Luna												Onur Mutlu



• PuM:	Exploits	analog	operation	principles	of	the	
memory	circuitry	to	perform	computation

- Leverages	the	large	internal	bandwidth	and	parallelism
available	inside	the	memory	arrays

• A	common	approach	for	PuM architectures	is	to	perform	
bulk	bitwise	operations

- Simple	logical	operations	(e.g.,	AND,	OR,	XOR)

- More	complex	operations	(e.g.,	addition,	multiplication)	

Processing-using-Memory	(PuM)

89



Motivation,	Goal,	and	Key	Idea	
• Existing	PuM	mechanisms	are	not	widely	applicable

- Support	only	a	limited and	mainly	basic set	of	operations
- Lack	the	flexibility	to	support	new	operations
- Require	significant changes to	the	DRAM	subarray

• Goal:	Design	a	PuM	framework	that	
- Efficiently implements	complex operations
- Provides	the	flexibility to	support	new	desired	operations
- Minimally changes	the	DRAM	architecture

• SIMDRAM:	An	end-to-end	processing-using-DRAM	framework	
that	provides	the	programming	interface,	the	ISA,	and	the	
hardware	support	for:
- Efficiently computing	complex operations	in	DRAM
- Providing	the	ability	to	implement	arbitrary operations	as	required
- Using	an	in-DRAM	massively-parallel	SIMD	substrate that	requires	minimal
changes	to	DRAM	architecture

90



SIMDRAM:	PuM Substrate
• SIMDRAM	framework	is	built	around	a	DRAM	substrate	
that	enables	two	techniques:

(1)	Vertical	data	layout

4-
bi
t	e
le
m
en
t	s
iz
e

Ro
w
		D
ec
od
er

most	significant	bit	(MSB)

least	significant	bit	(LSB)

A

B Cout

Cin

MAJ

(2)	Majority-based	computation

Pros compared	to	the	
conventional horizontal	layout:

• Implicit	shift	operation
• Massive	parallelism

Cout=	AB	+	ACin +	BCin

Pros compared	to AND/OR/NOT-
based	computation:

• Higher	performance
• Higher	throughput
• Lower	energy	consumption 91



Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

92



Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

𝜇Program

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

93

Step	1:	
• Builds	an	efficient	MAJ/NOT	representation of	a	given	desired	
operation	from	its	AND/OR/NOT-based	implementation



Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

Step	2:	Generate	
sequence	of	DRAM

commands

𝝁Program

94

Step	2:	
• Allocates	DRAM	rows	to	the	operation’s	inputs	and	outputs
• Generates	the	sequence	of	DRAM	commands (𝝁Program)	to	
execute	the	desired	operation



User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

Step	3:	Execution	according	to	𝛍Program

Memory	Controller

95

Step	3:	
• Executes	the	μProgram	to	perform	the	operation
• Uses	a	control	unit in	the	memory	controller



Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework:	Overview	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New	SIMDRAM	𝜇Program

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	DRAM

commands

foo () {

bbop_new

} 
𝜇ProgramControl	Unit

18

AC
T/
PR
E

SIMDRAM	Output

Instruction	result	
in	memoryACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

96



Key	Results
Evaluated	on:

- 16	complex	in-DRAM	operations
- 7	commonly-used	real-world	applications

SIMDRAM	provides:

• 88× and	5.8× the	throughput of	a	CPU and	a high-end	
GPU,	respectively,	over	16	operations

• 257× and	31× the	energy	efficiency of	a	CPU and	a	
high-end	GPU,	respectively,	over 16	operations

• 21× and	2.1× the	performance of	a	CPU an	a	high-end	
GPU,	over	seven	real-world	applications

97



Conclusion
• SIMDRAM:

- Enables	efficient computation	of	a	flexible set	and	wide	range	
of	operations	in	a	PuM	massively	parallel SIMD	substrate

- Provides	the	hardware,	programming,	and	ISA	support,	to:
• Address	key	system	integration	challenges
• Allow	programmers	to	define	and	employ	new	operations	without	
hardware	changes

• More	in	the	paper:
- Efficiently	transposing	data
- Programming	interface
- Handling	page	faults,	address	translation,	coherence,	and	interrupts
- Security	implications
- Reliability	evaluation
- Comparison	to	in-cache	computing
- And	more	…

98

SIMDRAM is	a	promising	PuM	framework
• Can	ease	the	adoption	of	processing-using-DRAM	

architectures	
• Improve	the	performance	and efficiency of	processing-

using-DRAM	architectures



SIMDRAM:	A	Framework	for
Bit-Serial	SIMD	Processing	using	DRAM

Nastaran Hajinazar*	 Geraldo	F.	Oliveira*
Sven	Gregorio Joao	Ferreira											Nika	Mansouri	Ghiasi
Minesh Patel Mohammed	Alser Saugata Ghose

Juan	Gómez–Luna												Onur Mutlu



More on the SIMDRAM Framework
n Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri 

Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

100

https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116


Year II Results (2021 Annual Review - II)
n DAMOV: A New Methodology and Benchmark Suite for Evaluating Data 

Movement Bottlenecks [IEEE Access 2021]

n Benchmarking a New Paradigm: An Experimental Analysis of a Real 
Processing-in-Memory Architecture [Arxiv, 2021]

n FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications [IEEE Micro 2021]

n A Modern Primer on Processing in Memory [Arxiv, 2020]

n Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid 
Storage Systems [Ongoing]

101



DAMOV:	A	New	Methodology	
and	Benchmark	Suite	for	Evaluating	

Data	Movement	Bottlenecks

Geraldo	F.	Oliveira
Juan	Gómez-Luna Lois	Orosa Saugata Ghose	

Nandita	Vijaykumar					Ivan	Fernandez					Mohammad	Sadrosadati
Onur Mutlu



• Problem:	Data	movement	is	a	major	bottleneck	is	modern	systems.	
However,	it	is	unclear how	to	identify:	
−		different	sources	of	data	movement	bottlenecks	
−		the	most	suitable	mitigation	technique	(e.g.,	caching,	prefetching,	near-data	processing)	
for	a	given	data	movement	bottleneck

• Goals:	
1.	Design	a	methodology	to	identify sources	of	data	movement	bottlenecks
2.	Compare compute- and	memory-centric	data	movement	mitigation	techniques

• Key	Approach:	Perform	a	large-scale	application	characterization to	identify	
key	metrics that	reveal	the	sources	to	data	movement	bottlenecks

• Key	Contributions:
−		Experimental	characterization	of	77K	functions	across	345	applications
−		A	methodology	to	characterize	applications	based	on	data	movement	bottlenecks	and			
their	relation	with	different	data	movement	mitigation	techniques

−		DAMOV:	a	benchmark	suite	with	144	functions	for	data	movement	studies
−		Four	case-studies	to	highlight	DAMOV’s	applicability	to	open	research	problems	

2

Executive	Summary	

DAMOV:	https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV


Near-Data	Processing	(2/2)	
Samsung	FIMDRAM	(2021)

The	goal	of	Near-Data	Processing	(NDP)	is
to	mitigate	data	movement	

UPMEM	(2019)

Near-DRAM-banks	processing	
for	neural	networks	

1.2	TFLOPS	compute	throughput2

Near-DRAM-banks	processing	
for	general-purpose	computing

0.9	TOPS	compute	throughput1

7[1]	Devaux,	"The	True	Processing	In	Memory	Accelerator,”	HCS,	2019
[2]	Kwon+,	“A	20nm	6GB	Function-In-Memory	DRAM,	Based	on	HBM2	with	a	1.2TFLOPS	Programmable	Computing	Unit	Using	
Bank-Level	Parallelism,	for	Machine	Learning	Applications,"	ISSCC,	2021



When	to	Employ	Near-Data	Processing?	

Near-Data	
Processing

Mobile	consumer	workloads
(GoogleWL2)

Neural	networks
(GoogleWL2)

Graph	processing
(Tesseract1)

Time	series	analysis
(NATSA6)

DNA	
sequence	mapping
(GenASM3; GRIM-Filter4)...

[1]	Ahn+,	“A	Scalable	Processing-in-Memory	Accelerator	for	Parallel	Graph	Processing,"	ISCA,	2015
[2]	Boroumand+,	"Google	Workloads	for	Consumer	Devices:	Mitigating	Data	Movement	Bottlenecks,”	ASPLOS,	2018
[3]	Cali+,	"GenASM:	A	High-Performance,	Low-Power	Approximate	String	Matching	Acceleration	Framework	for	Genome	Sequence	Analysis,”	MICRO,	2020	
[4]	Kim+,	"GRIM-Filter:	Fast	Seed	Location	Filtering	in	DNA	Read	Mapping	Using	Processing-in-Memory	Technologies,”	BMC	Genomics, 2018
[5]	Boroumand+,	"Polynesia:	Enabling	Effective	Hybrid	Transactional/Analytical	Databases	with	Specialized	Hardware/Software	Co-Design,”	
arXiv:2103.00798	[cs.AR],	2021
[6]	Fernandez+,	“NATSA:	A	Near-Data	Processing	Accelerator	for	Time	Series	Analysis,”	ICCD,	2020

8

Databases
(Polynesia5)



Key	Approach
• New	workload	characterization	methodology	to	analyze:

- data	movement	bottlenecks
- suitability	of	different	data	movement	mitigation	mechanisms

• Two	main	profiling	strategies:	

Architecture-independent	profiling:

characterizes	the	memory	behavior	independently
of	the	underlying	hardware

Architecture-dependent	profiling:

evaluates	the	impact	of	the	system	configuration	
on	the	memory	behavior

15



DAMOV-SIM	Simulator

Methodology	Overview

#	Cores

Scalability	Analysis

ld 0xFF
st 0xAF
ld 0xFF
st 0xAF
ld 0xFF

Memory	Traces

Temp.	
Locality

LFMR

LFMR Low

High

High

Low

…

roi_begin

roi_end

Profiler

Step	1
Application	ProfilingTarget	Application

So
ur
ce
	C
od
e

User	Input

Temporal	Locality

Spatial	Locality

Step	2
Locality-based	Clustering

DRAM	Bandwidth

DRAM	Latency

L1/L2	Cache	Capacity

L3	Cache	Contention

L1	Cache	Capacity

Compute-Bound

M
em

or
y	
Bo
tt
le
ne
ck
	C
la
ss
es

Methodology	Output

LLC	MPKI

Last-to-First	
Miss	Ratio	(LFMR)

Arithmetic	Intensity

Step	3
Memory	Bottleneck	Class.

16



Step	1:	Application	Profiling	
• We	analyze	345	applications from	distinct	domains:

25

- Graph	Processing
- Deep	Neural	Networks
- Physics
- High-Performance	Computing
- Genomics	
- Machine	Learning	
- Databases	
- Data	Reorganization
- Image	Processing
- Map-Reduce
- Benchmarking	
- Linear	Algebra			
…

Physics

Security

Machine	
learning

Database
Graph	

processing

Data	
analytics

Data	reorganization

Genomics

Deep	Neural	
Networks

Image	
processing

Linear	
algebra

Signal	
processing

Data	
mining



Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing

High
MPKI

High
AI

AI

MPKI AI

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Memory	Bottleneck	Class

Six	classes	of	
data	movement	bottlenecks:

each	class	↔ data	movement
mitigation	mechanism	

31



DAMOV	is	Open-Source
• We	open-source	our	benchmark	suite	and	our	toolchain

DAMOV-SIM

DAMOV	
Benchmarks

44



DAMOV	is	Open-Source
• We	open-source	our	benchmark	suite	and	our	toolchain

DAMOV-SIM

DAMOV	
Benchmark

44

Get	DAMOV	at:
https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV


More on DAMOV

n Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata
Ghose, Nandita Vijaykumar, Ivan fernandez, Mohammad 
Sadrosadati, and Onur Mutlu,
"DAMOV: A New Methodology and Benchmark Suite for 
Evaluating Data Movement Bottlenecks"
Preprint in arXiv, 8 May 2021.
[arXiv preprint]
[DAMOV Suite and Simulator Source Code]

112

https://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://github.com/CMU-SAFARI/DAMOV


More on DAMOV Analysis Methodology & Workloads

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3


DAMOV Analysis Methodology & Workloads

https://arxiv.org/pdf/2105.03725.pdf

https://arxiv.org/pdf/2105.03725.pdf


Year II Results (2021 Annual Review - II)
n DAMOV: A New Methodology and Benchmark Suite for Evaluating Data 

Movement Bottlenecks [IEEE Access 2021]

n Benchmarking a New Paradigm: An Experimental Analysis of a Real 
Processing-in-Memory Architecture [Arxiv, 2021]

n FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications [IEEE Micro 2021]

n A Modern Primer on Processing in Memory [Arxiv, 2020]

n Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid 
Storage Systems [Ongoing]

115



PIM Review and Open Problems

116

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf


117



118



PIM Review and Open Problems (II)

119

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Year II Results (2021 Annual Review - II)
n DAMOV: A New Methodology and Benchmark Suite for Evaluating Data 

Movement Bottlenecks [IEEE Access 2021]

n Benchmarking a New Paradigm: An Experimental Analysis of a Real 
Processing-in-Memory Architecture [Arxiv, 2021]

n FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications [IEEE Micro 2021]

n A Modern Primer on Processing in Memory [Arxiv, 2020]

n Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid 
Storage Systems [Ongoing]

120



Near-Data	Processing
Samsung	FIMDRAM	(2021)

The	goal	of	Near-Data	Processing	(NDP)	is
to	mitigate	data	movement	

UPMEM	(2019)

Near-DRAM-banks	processing	
for	neural	networks	

1.2	TFLOPS	compute	throughput2

Near-DRAM-banks	processing	
for	general-purpose	computing

0.9	TOPS	compute	throughput1

7[1]	Devaux,	"The	True	Processing	In	Memory	Accelerator,”	HCS,	2019
[2]	Kwon+,	“A	20nm	6GB	Function-In-Memory	DRAM,	Based	on	HBM2	with	a	1.2TFLOPS	Programmable	Computing	Unit	Using	
Bank-Level	Parallelism,	for	Machine	Learning	Applications,"	ISSCC,	2021



UPMEM Processing-in-DRAM Engine (2019)

122

n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/


123

UPMEM Memory Modules
• E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz
• P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz

www.upmem.com

http://www.upmem.com/


124

PIM System Organization
• UPMEM-based PIM system with 20 UPMEM memory 

modules of 16 chips each (40 ranks) à 2560 DPUs

CPU 0

CPU 1
DRAM

DRAM

PIM-enabled 
memory

PIM-enabled 
memory

PIM-enabled 
memory

PIM-enabled 
memory



More on the UPMEM PIM System

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26


Experimental Analysis of the UPMEM PIM Engine

https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf


Juan Gómez Luna, Izzat El Hajj, 
Ivan Fernandez, Christina Giannoula, 

Geraldo F. Oliveira, Onur Mutlu

Understanding a Modern 
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks


128

Executive Summary
• Data movement between memory/storage units and compute units is a major 

contributor to execution time and energy consumption
• Processing-in-Memory (PIM) is a paradigm that can tackle the data movement 

bottleneck
- Though explored for +50 years, technology challenges prevented the successful materialization

• UPMEM has designed and fabricated the first publicly-available real-world PIM 
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

• Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

• Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture
- PrIM (Processing-In-Memory) benchmarks: 

• 16 workloads that are memory-bound in conventional processor-centric systems
• Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

• Takeaways:
- Workload characteristics for PIM suitability
- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems



129

Understanding a Modern PIM Architecture

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks


130

Observations, Recommendations, Takeaways
GENERAL	PROGRAMMING	RECOMMENDATIONS
1. Execute	on	the	DRAM	Processing	Units (DPUs)	

portions	of	parallel	code that	are	as	long	as	possible.	
2. Split	the	workload	into	independent	data	blocks,	

which	the	DPUs	operate	on	independently.	
3. Use	as	many	working	DPUs	in	the	system	as	possible.
4. Launch	at	least	11	tasklets (i.e.,	software	threads)

per	DPU.	

PROGRAMMING	RECOMMENDATION	1
For	data	movement	between	the	DPU’s	MRAM	bank	and	the	
WRAM,	use	large	DMA	transfer	sizes	when	all	the	accessed	
data	is	going	to	be	used.	

KEY	OBSERVATION	7

Larger	CPU-DPU	and	DPU-CPU	
transfers	between	the	host	main	
memory	and	the	DRAM	Processing	
Unit’s	Main	memory	(MRAM)	banks	
result	in	higher	sustained	bandwidth.	 KEY	TAKEAWAY	1

The	UPMEM	PIM	architecture	is	fundamentally	compute	
bound.	As	a	result,	the	most	suitable	work- loads	are	
memory-bound.



131

Outline
• Introduction

- Accelerator Model
- UPMEM-based PIM System Overview

• UPMEM PIM Programming
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication
- CPU-DPU/DPU-CPU Transfer Bandwidth

• DRAM Processing Unit
- Arithmetic Throughput
- WRAM and MRAM Bandwidth

• PrIM Benchmarks
- Roofline Model
- Benchmark Diversity

• Evaluation
- Strong and Weak Scaling
- Comparison to CPU and GPU

• Key Takeaways



132

Key Takeaway 1

12345678910111213141516
12345678910111213141516

12345678910111213141516
12345678910111213141516 1

2345678910111213141516 1
2345678910111213141516

1
2
345678910111213141516

1
2
34
5678910111213141516

1
2
34
56
78910111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

1
2
34
56
789

10111213141516

0.03
0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

    
1/4

096

    
1/2

048

    
1/1

024

    
1/5

12

    
1/2

56

    
1/1

28

    
1/6

4

    
1/3

2

    
1/1

6
    

1/8
    

1/4
    

1/2
1 2 4 8

Ar
ith

m
et

ic
 T

hr
ou

gh
pu

t (
M

O
PS

, l
og

 sc
al

e)

Operational Intensity (OP/B)

(a) INT32, ADD (1 DPU)

21 84

Memory-bound 
region

Compute-bound 
region

The throughput 
saturation point is as low 

as ¼ OP/B, 
i.e., 1 integer addition per 

every 32-bit element 
fetched

KEY	TAKEAWAY	1
The	UPMEM	PIM	architecture	is	fundamentally	compute	bound.	
As	a	result,	the	most	suitable	workloads	are	memory-bound.



133

Key Takeaway 2

0.001
0.004
0.016
0.063
0.250
1.000
4.000

16.000
64.000

256.000
1024.000

VA SE
L

U
N

I

BS

H
ST

-S

H
ST

-L

RE
D

SC
AN

-S
SA

SC
AN

-R
SS

TR
N

S

G
EM

V

Sp
M

V TS BF
S

M
LP N
W

G
M

EA
N

 (1
)

G
M

EA
N

 (2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

Sp
ee

du
p 

ov
er

 C
PU

 (l
og

 sc
al

e)

CPU GPU 640 DPUs 2556 DPUs

G
M

EA
N

(1
)

G
M

EA
N

(2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

KEY	TAKEAWAY	2
The	most	well-suited	workloads	for	the	UPMEM	PIM	architecture	
use	no	arithmetic	operations	or	use	only	simple	operations (e.g.,	
bitwise	operations	and	integer	addition/subtraction).	



134

Key Takeaway 3

0.001
0.004
0.016
0.063
0.250
1.000
4.000

16.000
64.000

256.000
1024.000

VA SE
L

U
N

I

BS

H
ST

-S

H
ST

-L

RE
D

SC
AN

-S
SA

SC
AN

-R
SS

TR
N

S

G
EM

V

Sp
M

V TS BF
S

M
LP N
W

G
M

EA
N

 (1
)

G
M

EA
N

 (2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

Sp
ee

du
p 

ov
er

 C
PU

 (l
og

 sc
al

e)

CPU GPU 640 DPUs 2556 DPUs

G
M

EA
N

(1
)

G
M

EA
N

(2
)

G
M

EA
N

More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

KEY	TAKEAWAY	3
The	most	well-suited	workloads	for	the	UPMEM	PIM	
architecture	require	little	or	no	communication	across	DPUs	
(inter-DPU	communication).		



135

Key Takeaway 4

KEY	TAKEAWAY	4
•	UPMEM-based	PIM	systems	outperform	state-of-the-art	CPUs	in	
terms	of	performance	and	energy	efficiency	on	most	of	PrIM
benchmarks.

•	UPMEM-based	PIM	systems	outperform	state-of-the-art	GPUs	on	
a	majority	of	PrIM benchmarks,	and	the	outlook	is	even	more	
positive	for	future	PIM	systems.	

•	UPMEM-based	PIM	systems	are	more	energy-efficient	than	state-
of-the-art	CPUs	and	GPUs	on	workloads	that	they	provide	
performance	improvements	over	the	CPUs	and	the	GPUs.	



136

Understanding a Modern PIM Architecture

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks


137

PrIM Repository
• All microbenchmarks, benchmarks, and scripts
• https://github.com/CMU-SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks


Juan Gómez Luna, Izzat El Hajj, 
Ivan Fernandez, Christina Giannoula, 

Geraldo F. Oliveira, Onur Mutlu

Understanding a Modern 
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

el1goluj@gmail.com

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks


Experimental Analysis of the UPMEM PIM Engine

https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf


More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9


More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159


More on PRIM Benchmarks
n Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina 

Giannoula, Geraldo F. Oliveira, and Onur Mutlu,
"Benchmarking a New Paradigm: An Experimental 
Analysis of a Real Processing-in-Memory 
Architecture"
Preprint in arXiv, 9 May 2021.
[arXiv preprint]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Long Talk Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[SAFARI Live Seminar Slides (pptx) (pdf)]
[SAFARI Live Seminar Video (2 hrs 57 mins)]
[Lightning Talk Video (3 minutes)]

142

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/abs/2105.03814
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pdf
https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152


Year II Results (2021 Annual Review - II)
n DAMOV: A New Methodology and Benchmark Suite for Evaluating Data 

Movement Bottlenecks [IEEE Access 2021]

n Benchmarking a New Paradigm: An Experimental Analysis of a Real 
Processing-in-Memory Architecture [Arxiv, 2021]

n FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications [IEEE Micro 2021]

n A Modern Primer on Processing in Memory [Arxiv, 2020]

n Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid 
Storage Systems [Ongoing]

143



FPGA-based Processing Near Memory
n Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios

Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications"
IEEE Micro (IEEE MICRO), to appear, 2021.

144

https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/


145



Year II Results (2021 Annual Review - II)
n DAMOV: A New Methodology and Benchmark Suite for Evaluating Data 

Movement Bottlenecks [IEEE Access 2021]

n Benchmarking a New Paradigm: An Experimental Analysis of a Real 
Processing-in-Memory Architecture [Arxiv, 2021]

n FPGA-based Near-Memory Acceleration of Modern Data-Intensive 
Applications [IEEE Micro 2021]

n A Modern Primer on Processing in Memory [Arxiv, 2020]

n Sibyl: A Reinforcement Learning Approach to Data Placement in Hybrid 
Storage Systems [Ongoing]

146



Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera,                   
Nastaran Hajinazar,  Juan Gómez-Luna, Onur Mutlu



Executive Summary
Motivation: Complement different storage technologies to extend the overall capacity and
reduce the system cost with minimal effect on the application performance
Problem: Data allocation and movement between the heterogeneous devices to achieve optimal
(near-optimal) performance of the storage system is challenging

Goal: Develop an efficient, high-performant data-placement mechanism for hybrid storage
systems that can flexibly adapt to the behavior of the workload as well as the storage device
characteristics

Sibyl

• Uses reinforcement learning (RL) to develop a data-placement policy that decides which 
data should be stored in the fast storage while minimizing the migration overhead

• Performs dynamic data-placement decision by learning device characteristics while taking 
into account workload’s inherent behavior

• QRator improves I/O performance by 24.1%, 34.7%, and 27.9% on average compared to two 
state-of-the-art heuristic-based baselines and a supervised learning-based baseline, 
respectively, and achieves 80% performance of the oracle policy that has knowledge of future 
access patterns

148



Fast Slow

Write 
from host

Read from 
host

(1)

(1) (2)

(1)
(2)

(3)

Frozen data eviction: (Migration)
(1) Evict cold data to the slow 

device
(2) In case of many reads to slow 

memory (hot data) move 
data to the fast device. Cold 
and sequential is read 
directly from the slow device

(3) (3)

Read operation:
(1) Read hot and random data 

from the fast device
(2) Read cold and sequential from 

the slow device

Write operation:
(1) Write hot and random data to the fast 

device
(2) Cold and sequential data to the slow 

device

(2)(3) (3)

Background: Hybrid Storage Systems

52



Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
29 September 2021

SRC AIHW Annual Review

Memory System Design for AI/ML 
Accelerators & ML/AI Techniques 

for Memory System Design

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning



152

Executive Summary
• Background: Prefetchers learns to predict addresses of future memory 

requests by associating patterns with program context (called feature)

• Problem: Three key shortcomings in prior prefetchers:
- Predicts mainly using a single program feature
- Lacks inherent system awareness
- Lacks in-silicon customization ability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback

- Can be customized in silicon to change features and/or objective

• Contribution: Pythia, that formulates prefetching as reinforcement learning
- Adaptive, autonomous learning using multiple features and system-level feedback

- Realistic, practical implementation without any changes to software

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite

- Outperforms prior SOTA by 3.4%, 7.7% and 16.9% in 1/4/bandwidth-constrained cores

• Open sourced: https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia


153

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia Overview

Evaluation of Pythia and Key Results

Conclusion



154

Prefetching Basics
• Predicts address of long-latency memory requests

and fetches data before the program demands

• Associates access patterns from past memory requests 
to program context information

• PC, Page#, Page offset, Cacheline delta, …
- Any combination of these

Program context à Access PatternProgram Feature



155

Key Shortcomings in Prior Prefetchers

• We observe three key shortcomings that significantly 
limits performance benefits

Predicts mainly using a single program feature

Lacks inherent system awareness

Lacks in-silicon customization ability

1

2

3



156

(1) Single-Feature Prefetch Prediction

• Provides benefits mainly on those workloads where 
the feature to pattern correlation exists

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-
765B

Ligra-CC Ligra-
PageRankDelta

Fr
ac

tio
n 

of
 

ba
se

lin
e 

LL
C 

m
iss

es

Covered Uncovered Overpredicted

574% 302% 368% 529%

-20%

0%

20%

40%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B Ligra-CC Ligra-PageRankDelta

IP
C 

im
pr

ov
em

en
t 

ov
er

 b
as

el
in

e 
(%

) SPP Bingo Pythia
(b)

(a)

Bingo performs better SPP performs better



157

(1) Single-Feature Prefetch Prediction

• Provides benefits mainly on those workloads where 
the feature to pattern correlation exists

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-
765B

Ligra-CC Ligra-
PageRankDelta

Fr
ac

tio
n 

of
 

ba
se

lin
e 

LL
C 

m
iss

es

Covered Uncovered Overpredicted

574% 302% 368% 529%

-20%

0%

20%

40%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B Ligra-CC Ligra-PageRankDelta

IP
C 

im
pr

ov
em

en
t 

ov
er

 b
as

el
in

e 
(%

) SPP Bingo Pythia
(b)

(a)

Bingo performs better SPP performs better

Relying on single feature for prediction leaves 
significant performance improvement on table



158

(2) Lack of Inherent System Awareness

• Little understanding of undesirable effects (e.g., 
memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations 

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-
765B

Ligra-CC Ligra-
PageRankDelta

Fr
ac

tio
n 

of
 

ba
se

lin
e 

LL
C 

m
iss

es

Covered Uncovered Overpredicted

574% 302% 368% 529%

-20%

0%

20%

40%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B Ligra-CC Ligra-PageRankDelta

IP
C 

im
pr

ov
em

en
t 

ov
er

 b
as

el
in

e 
(%

) SPP Bingo Pythia
(b)

(a)

Similar coverage, lower overpredictions
Yet lower performance



159

(2) Lack of Inherent System Awareness

• Little understanding of undesirable effects (e.g., 
memory bandwidth usage, cache pollution, …)
- Performance loss in resource-constrained configurations 

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-
765B

Ligra-CC Ligra-
PageRankDelta

Fr
ac

tio
n 

of
 

ba
se

lin
e 

LL
C 

m
iss

es

Covered Uncovered Overpredicted

574% 302% 368% 529%

-20%

0%

20%

40%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B Ligra-CC Ligra-PageRankDelta

IP
C 

im
pr

ov
em

en
t 

ov
er

 b
as

el
in

e 
(%

) SPP Bingo Pythia
(b)

(a)

Similar coverage, lower overpredictions
Yet lower performance

Prefetchers often lose performance gains due 
to the lack of inherent system awareness



160

(3) Lack of In-silicon Customizability

• Feature statically selected at design time
- Rigid hardware designed specifically to exploit that feature

Design from scratch Verify Fabricate



161

Our Goal

A prefetching framework that:

1. Can learn to prefetch using multiple features and 
inherent system-level feedback information

2. Can be easily customized in silicon to change feature 
type and/or prefetcher’s objective



162

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia Overview

Evaluation of Pythia and Key Results

Conclusion



163

Basics of Reinforcement Learning (RL)

• Algorithmic approach to learn to take an action in a 
given situation to maximize a numerical reward

• Agent stores Q-values for every state-action pairs
- Given a state, selects action that provides highest Q-value

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)



164

Formulating Prefetching as RL

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Prefetcher

Processor & 
Memory Subsystem

Reward
Prefetch from address 

A+offset (O)

Features of memory 
request to address A 

(e.g., PC)



165

What is State?
• k-dimensional vector of features

• Feature = control-flow + data-flow

• Control-flow
- PC
- Branch PC
- Last-3 PCs, …

• Data-flow
- Cacheline address
- Page#
- Delta between two cacheline address
- Last 4 deltas, …



166

What is Action?
• Selection of a prefetch offset

- Add to demanded cacheline to get
prefetch cacheline address

• A zero offset means no prefetch is generated



167

What is Reward?
• Defines the objective of Pythia

• Five distinct levels
- Accurate and timely (RAT)
- Accurate but late (RAL)
- Loss of coverage (RCL)
- Inaccurate

• When memory b/w usage is low (RIN-L)
• When memory b/w usage is high (RIN-H)

- No-prefetch
• When memory b/w usage is low (RNP-L)
• When memory b/w usage is high (RNP-H)

• Values are set at design time via automatic design-
space exploration
- Can be customized further in silicon for higher performance



168

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia Overview

Evaluation of Pythia and Key Results

Conclusion



169

Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs

• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to 

corresponding EQ entry

Look up 
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action & 
State-Action pair in EQ

6

Prefetch Fill 

A1 A2 A3

Memory 
Hierarchy

Generate
prefetch

Evict EQ entry and 
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max



170

Pythia Overview
• Q-Value Store: Records Q-values for all state-action pairs

• Evaluation Queue: A FIFO queue of recently-taken actions

Evaluation Queue (EQ)

Demand
Request

1
Assign reward to 

corresponding EQ entry

Look up 
QVStoreState

Vector

Q-Value Store
(QVStore)

2

3

5
Insert prefetch action & 
State-Action pair in EQ

6

Prefetch Fill 

A1 A2 A3

Memory 
Hierarchy

Generate
prefetch

Evict EQ entry and 
update QVStore

4

Find the Action with max Q-Value

7

S1
S2
S3
S4

Set filled bit

Max



171

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia Overview

Evaluation of Pythia and Key Results

Conclusion



172

Simulation Methodology
• Champsim trace-driven simulator

• 150 single-core memory-intensive workload traces
- SPEC CPU2006 and CPU2017
- PARSEC 2.1
- Ligra
- Cloudsuite

• Five state-of-the-art prefetchers
- SPP [Kim+, MICRO’16]

- Bingo [Bakhshalipour+, HPCA’19]

- MLOP [Shakerinava+, Prefetching Championship-3]

- SPP+DSPatch [Bera+, MICRO’19]

- SPP+PPF [Bhatia+, ISCA’20]



173

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n 

sp
ee

du
p

ov
er

 n
o 

pr
ef

et
ch

in
g

Number of cores

Performance with Varying Core Count

Bingo
MLOP
SPP

Pythia

3.4%
7.7%



174

Performance with Varying Core Count

1.1

1.15

1.2

1.25

1.3

1.35

0 2 4 6 8 10 12

Ge
om

ea
n 

sp
ee

du
p

ov
er

 n
o 

pr
ef

et
ch

in
g

Number of cores

Bingo
MLOP
SPP

Pythia

1 channel 2 channels 4 channels

3.4%
7.7%

1. Pythia consistently provides higher 
performance in all core configurations

2. Pythia’s gain increases with core count



175

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n 

sp
ee

du
p 

ov
er

 n
o 

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%



176

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

100
200

400
800

1600
3200

6400
12800

Ge
om

ea
n 

sp
ee

du
p 

ov
er

 n
o 

pr
ef

et
ch

in
g

DRAM MTPS (in log scale)

Performance with Varying DRAM Bandwidth

~Intel Xeon 6258R

~AMD EPYC Rome 7702P

~AMD Threadripper 3990x

SPP

Bingo
MLOP

Pythia

Baseline

3%

17%

Pythia consistently outperforms 
in all DRAM bandwidth configurations 

with 1/16x to 4x bandwidth of the baseline



177

More in the Paper
• Automatic design-space exploration for Pythia

• Details about reward assignment and QVStore update

• More results
üPerformance comparison against multi-level prefetchers
üDetailed analysis of single-core and four-core performance
üPerformance comparison with unseen traces
üUnderstanding Pythia’s learning with a case study
üPerformance benefits via customization



178

More in the Paper
• Automatic design-space exploration for Pythia

• Details about reward assignment and QVStore update

• More results
üPerformance comparison against multi-level prefetchers
üDetailed analysis of single-core and four-core performance
üPerformance comparison with unseen traces
üUnderstanding Pythia’s learning with a case study
üPerformance benefits via customization



179

Pythia is Open-sourced
https://github.com/CMU-SAFARI/Pythia

• MICRO’21 artifact evaluated

• Champsim source code + Chisel modeling code

• All traces used for evaluation

https://github.com/CMU-SAFARI/Pythia


180

Talk Outline

Key Shortcomings of Prior Prefetchers

Formulating Prefetching as Reinforcement Learning

Pythia Overview

Evaluation of Pythia and Key Results

Conclusion



181

Conclusion
• Background: Prefetchers learns to predict future addresses by associating 

patterns with program context (called feature)

• Problem: Three key shortcomings in prior prefetchers:
- Predicts mainly using a single program feature
- Lacks inherent system awareness
- Lacks online customization ability

• Goal: Design a prefetching framework that:
- Learns from multiple features and inherent system-level feedback

- Can be customized online to change features and/or objective

• Contribution: Pythia, that formulates prefetching as reinforcement learning
- Adaptive, autonomous learning using multiple features and system-level feedback

- Realistic, practical implementation without any changes to software

• Key Results:
- Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite

- Outperforms prior SOTA by 3.4%, 7.7% and 16.9% in 1/4/bandwidth-constrained cores

• Open sourced: https://github.com/CMU-SAFARI/Pythia

https://github.com/CMU-SAFARI/Pythia


Rahul Bera,  Konstantinos Kanellopoulos,  Anant V. Nori,
Taha Shahroodi,  Sreenivas Subramoney,  Onur Mutlu

Pythia
A Customizable Hardware Prefetching Framework 

Using Online Reinforcement Learning



Gagandeep Singh, Mohammed Alser, Damla Senol Cali,                 
Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and        

Onur Mutlu

FPGA-Based Near-Memory Acceleration 
of  Modern Data-Intensive Applications



Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gomez-Luna, 
Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications“
IEEE Micro, 2021.
[Source Code]

Near-Memory Acceleration

184

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM


How to Analyze a Genome?

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAA
GGACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTT
CTTCATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGAT
ACATTGGAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTT
GAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAA
TTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAA
AAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAA
TGTAGCCAGAATGGTTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGT
GGTTTCTCTGAGTGAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAA
GCTTTTTCATGTCAAGGACCTAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCA

CTTCCCAGAAAGCTTCTTCA……

machine gives the complete 
sequence of genome as output

NO

185



Genome Analysis in Real Life

Current sequencing machine provides 
small randomized fragments 

of the original DNA sequence

Alser+, "Technology dictates algorithms: Recent developments in read alignment", Genome Biology, 2021

Read Mapping

Reads

186

https://arxiv.org/abs/2003.00110


GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

Bottlenecked in Read Mapping!!

Human whole 
genomes 

Human 1
Illumina NovaSeq 6000 

48
at 30× coverage

in about 2 days

genome
32 CPU hours 

on a 48-core processor

71
%

29
%

Read Mapping

Others

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT processor for precision medicine”, Open Journal of Genetics, 2017.

187

https://www.scirp.org/journal/paperinformation.aspx?paperid=74603


Stencil Computation in Weather Modeling

COSMO (Consortium for Small-Scale Modeling)                                     

• Around 80 complex  stencils

• Horizontal diffusion
Vertical advection

Image Source: NVIDIA/MeteoSwiss: An example of COSMO simulation with cloud patterns over Switzerland and surrounding areas

188



NERO: Weather Prediction Accelerator [FPL 2020]

• Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, 
Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic and Applications (FPL), 
Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
One of the four papers nominated for the Stamatis Vassiliadis Memorial Best Paper Award.

189

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0


110 GBps DRAM3.3 TBps L3-cache

Arithmetic Intensity [flop/byte]

Pe
rf

or
m

an
ce

 [G
flo

ps
]

10!

10"

10#

10!10$" 10" 10%

10&

10%

Vertical Advection
Horizontal Diffusion
Prealignment Filter

POWER9 socket (486.4 Gflops/socket)

29.1 Gflops
(64 threads)

58.5 Gflops
(64 threads)

0.28 Gops
(64 threads)

Motivation and Goal

Goal:
• Mitigate the performance bottleneck of modern data-intensive applications in an energy-

efficient way

Memory bound with limited performance and high energy consumption on IBM POWER9 CPU

190



Near-Memory Acceleration

IBM POWER9 CPU HBM-based FPGA board 

OCAPI

Source: AlphaDataSource: IBM

Near-HBM FPGA-based accelerator

191



Key Results of  Near-Memory Acceleration

192



Key Results of  Near-Memory Acceleration

Near-memory acceleration improves performance and                
energy efficiency by 5-27× and 12-133×, respectively,                       
over a 16-core  (64 hardware threads) IBM POWER9 CPU

193



Key Results of  Near-Memory Acceleration

Single channel & multiple channel HBM designs
Open-source: https://github.com/CMU-SAFARI

Near-memory acceleration improves performance and                
energy efficiency by 5-27× and 12-133×, respectively,                       
over a 16-core  (64 hardware threads) IBM POWER9 CPU

194

https://github.com/CMU-SAFARI


Gagandeep Singh, Mohammed Alser, Damla Senol Cali,                 
Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and        

Onur Mutlu

FPGA-Based Near-Memory Acceleration 
of  Modern Data-Intensive Applications


