Accelerating Genome Analysis

A Primer on an Ongoing Journey

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
16 February 2019
AACBB Keynote Talk

SAFARI ETH:zurich CarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Overview

System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

This talk is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

Many bottlenecks exist in accessing and manipulating huge
amounts of genomic data during analysis

We will cover various recent ideas to accelerate read mapping
o My personal journey since September 2006

SAFARI 2

Our Dream (in 2007)

An embedded device that can perform comprehensive
genome analysis in real time (within a minute)

o Which of these DNAs does this DNA segment match with?

o What is the likely genetic disposition of this patient to this
drug?

SAFARI

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI

What Is a Genome Made Of?

The genes consist of DNA

The chromosome is

made up of genes \

Chromosome - 23 pairs Nucleotide

‘ Base
Sioat /Phosphate
Nucleus l

Cell

SAFARI The discovery of DNA's double-helical structure (Watson+, 1953) >

The Central Dogma of Molecular Biology

Genotypes

Replicay

Translation

SAFARI 6

DNA Under Electron Microscope

human chromosome #12
from Hela’s cell

SAFARI

DNA Sequencing

Goal:
o Find the complete sequence of A, C, G, T's in DNA.

Challenge:

o There is no machine that takes long DNA as an input, and gives
the complete sequence as output

o All sequencing machines chop DNA into pieces and identify
relatively small pieces (but not how they fit together)

SAFARI 8

Untangling Yarn Balls & DNA Sequencing

SAFARI ¥

Genome Sequencets

Illumina MiSeq Complete
Genomics

llumina
NovaSeq
6000

|I»Iumina HiSeq2000 | Pacific Biosciences RS

Oxford Nanopore GridION

i ... and more! All produce data with
SAFARI lon Torrent PGM an
lon Torrent Proton differentproperties.

The Genomic Era

= 1990-2003: The Human Genome Project (HGP) provides a complete
and accurate sequence of all DNA base pairs that make up the
human genome and finds 20,000 to 25,000 human genes

National Edition
Artmora snd New Mexs Y S
Clody In New Mexxs, thundersJRIRS b s
prin” o e A
deserts. Wanther map 44 on P, : 8-

N(LSJJJJ ot 5 4 T S Yo TUESDAY, JUNE 27, 2000

d.:m?;.-:.:e ’ pe— 1) succ

':‘\1 "-/_ Lave Yeen vy umu-&
4 e xf.\(7 2 Rivals' Announcem
_ Marks New Medic:

1 3 yea - Ion g ‘/m Era, Risks and All
$3,000,000,000 [EIEEr
(in 1991 USD) [er:

The Genomic Era (continued)

development of high-throughput
sequencing (HTS) technologies

N I H National | Human Genome
Research Institute

genome.gov/sequencingcosts

o R T P Ry e

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes ENTI A NN
)& - 71,620,00
Sequenced ~ PLopelg

The
Economist

SAFARI

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

High-Throughput Sequencing (HTS)

computer readout

% ~ —> AGT
/+ |= Second Generation
\3 | = Next Generation

__| = Massively Parallel Sequencing
| |= High Throughput Sequencing (HTS) O
l‘a\/"’** = Sequencing by Synthesis (Illumina)

Q.

i /| Ty T > J »” \@'
i | ' ! -l | 'I l l l;_ »? . . r
| 4 O O, :
| : i . . Y
| | 3 3 f?tl.l?a?'gscence,
wash away

SAFARI 13

High-Throughput Sequencing (HTS)

The sequencer adds the molecule“T”

to all bases near the flow cell surface and
SRTRCSTCRIICRI A AR observes the chemical reaction via a CMOS sensor.
If a reaction happens then the base is “"A”

Sequence

Glass flow cell surface

As a workaround, HTS technologies sequence random short DNA fragments (75-300
basepairs long) of copies of the original molecule.

SAFARI 14

High-Throughput Sequencing

Massively parallel sequencing technology
o Illumina, Roche 454, Ion Torrent, SOLID...

Small DNA fragments are first amplified and then

sequenced in parallel, leading to
o High throughput

o High speed

o Low cost

a Short reads

Sequencing is done by either reading optical signals as each base is

added, or by detecting hydrogen ions instead of light, leading to:

o Low error rates (relatively)

o Reads lack information about their order and which part of genome
they are originated from

SAFARI 15

TATAATACG

Billions of Short Reads
FATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

G TACGTA
ACGTACTAGTACGT Short Read

TTAGTACGTACGT
TACGTACTAAAGTACGT

\.TACGTACTAGTACGT
TTTAAAACGTA

GTACTAGTACGT
GGGAGTACGTACGT

!l Sequencing Genome Read Mapping n

QOP=Pp=1>=IOP>

=
=

\
Read

Analysis
reference: TTTATCGCTTCCATGACGCAG
readl: ATCGCATCC
read?: TATCGCATC
read3: CATCCATGA
read4: CGCTTCCAT
read>5: CCATGACGC
read6: TTCCATGAC

B Variant Calling Scientific Discoveryn

Multiple sequence alignment

PHDHEM = eeemeememeeem e m e MMMMMMMMMMMMMMMMMM = = = ===

160826€5 T acid 10 ----MasprsseFQSGAGLI: IfGPaL-PmLVVYMGIANAIIVEIA:IF“PP——— (55)
‘3‘411‘ﬁ T vole 10 ----MaspxusscFQSGAGL LVVYIGIAVAIMVELAXIFWPP--- (595)

RFACO1077 F acid 13 -MrsuaxpnonsnFQSGAGL FLIIYIGIAMGVIVELAXVFWEV--- (358)
L579133c H NRC1 10 ----MsseonsccLMSSAGLVIY SVVAVGAFFGLVVLLAQFFA-———— (53)
RAG221%¢ A fulg 14 nmaxarxexaxrerLMSSAGI TILAAGIVTGVLIIILNAYYGLWP- (68)
RPO0D1000 P abys 9 —----paxExrTIPPTGAG —H TAIHI ICGAVALTLILIIFEIILEVVGPRIFG (56€)
RPEO1741 P hori R MaxsxTTrPPTGAGL A TRATINITIN GATATVLILIIFEIL ‘VVGPnI“G (5€)
AEDQ0914 M ther 10 ----maxxoxxrzPPSGAGLWS BT RGRA LT QVVVMSIILAVECLVLRFSG————— (52)
RMJ09857 M jann 9 ———— MsxRssTeLATSAGL IdEHVICGVEVAFVIIEAILTYGREL——— (353)
15920803 & toko 13 -mMpssxxxxsTveLASMAGL FLLIIISIIMVAGVIVASILIPPP—— (58)
AEQOEEEe2 S solf 11 -mossxxxxsTvaVMSMAGL IVIGASLALTIIVIVITRLF-———-— (55)
RPRODZ24S1 P asro 12 --MaReRxysGINPEVAAGL RARVVISLAIIGLLIAINLLLPPL-- (58)
RAPDO437 A pern s P IVVGAAILVSAVVAAAEIFJPAVD- (59)
5803165 H sapi VESVPVLVMSLLFIASVEMLE IWGKYTRS (96)
13324684 M musc WEHVPVLVMSLLFIAAVEMLE IWGEYTRS (S56)
6002114 D mela F VEVLVMSLLFIAS 43 IWGEYNRS (100)
14574310 C eleg 11CPVPVLVMSLVFIASVFV?EIWGRFTRS (81)
10697176 ip SVDIdVVVMVLSLGFIFSVVALS ILAFVSTE (91)

6320857
6320932

SLVVLFLSVGFIFSVIALELLTEFTEI (88)
VVuFLAVGFIFSVVALEVISKVAGK (82)

Example Question: If I give you a bunch of
sequences, tell me where they are the same
and where they are different.

SAFARI 17

0O O ki
H

M
u]: h O

iy © <

e

The Genetic Similarity Between Species

\

" Human ~ Chimpanzee
96%

Human ~ Cat
90%

Human ~ Human
99.99%

Human ~ Cow
80%

Human ~ Banana
50-60%

SAFARI

Metagenomics, genome assembly, de novo sequencing

Question 2: Given a bunch of short sequences,
Can you identify the approximate species cluster

for genomically unknown organisms (bacteria)?

/
J”

uncleaned de Bruijn graph

http://math.oregonstate.edu/ ~kos|ickd7" ;A

SAFARI 19

http://math.oregonstate.edu/~koslickd

Problem

SAFARI

Need to construct
the entire genome
from many reads

20

Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
ATACGTACTAGTACG

G ACGTA
ACGTACTAGTACG
AGTACGTACG
ACGTACTAAAGTACG
ACGTACTAGTACG
AAAACGTA
GTACTAGTACG
GGGAGTACGTACG
Reference Genome
Sequencing Read Mapping

Bottlenecked in Mapping!!

G,qG
[llumina HiSeq4000 G4, G4477>
GA(

i e S et
300 M s 2 M
bases/min oM Tt “ bases/min

I (0.6%)

The Read Mapping Bottleneck

U
30 Million =cu> > Million

bases/minute ¢St éAémGAC . dDases/minute
| SO | i
Read Sequencing” < - TT Read Mapping

150x slower

* BWA-MEM
** HiSegX10, MinION

SAFARI 22

Read Mapping Execution Time Breakdown

candidate alignment
locations (CAL)
4%

SAM printing
3%

Read Verification
93%

SAFARI

Read Mapping

= Map many short DNA fragments (reads) to a known
reference genome with some differences allowed

Reference genome

DNA, wysatily

24

Challenges 1n Read Mapping

Need to find many mappings of each read

o A short read may map to many locations, especially with High-
Throughput DNA Sequencing technologies

o How can we find all mappings efficiently?

Need to tolerate small variances/errors in each read

o Each individual is different: Subject’s DNA may slightly differ from
the reference (Mismatches, insertions, deletions)

o How can we efficiently map each read with up to e errors present?

Need to map each read very fast (i.e., performance is important)

o Human DNA is 3.2 billion base pairs long = Millions to billions of
reads (State-of-the-art mappers take weeks to map a human’s DNA)

o How can we design a much higher performance read mapper?

25

Read Alignment/Verification

Edit distance is defined as the minimum number of edits
(i.e. insertions, deletions, or substitutions) needed to make
the read exactly match the reference segment.

NETHERLANDS x SWITZERLAND

NE-THERLANDIS
SWITZERLAND|-

match
deletion

mismatch

SAFARI

Why Is Read Alignment Slow?

= Quadratic-time dynamic-
programming algorithm(s)

= Data dependencies limit the
computation parallelism

= Entire matrix computed even
though strings may be
dissimilar.

QOP=Pp=P>=O>

TATAATA G

Read Alignment

Example: Dynamic Programming Table

NETHERLANDS x SWITZERLAND

E/IT HE|/R LIAIND|S
2(3/4|5/6,7|8/9/|10/11

wn
= =2

immediate left,
upper left,
upper entries of its own

A
PAAY

O | N|(foojun | B~ |W N

[T
o

O Z|/ - A MmN A==

=
=

SAFARI

Dynamic Programming Table

Example

NETHERLANDS x SWITZERLAND

w DS AR R A8 oo~ wvln
0 S22 38288 8ol Nwvin
Z olololoo|alo N wO|ln F| w0
< ||| | w|w|NO|n|T| 0| ©
4N NINNKNNO DL (0O O~
| volvlviov v ol nm s+ mwm o N ©
W momwmwvwwmm|(n|ds v ol~N ol o
I v ||| w0~ al S
Flomo o[+ |(n|jo N G
Wil N[nfnjo Nl S
Z ANt |bn|o N ol a8
O H N[t n|olNoalSd
w2~ NWe dl<|lz|o

« Matrix-filling is O(mn) time and space.

« Backtrace is O(m + n) time.

SAFARI

Example: Dynamic Programming

= Quadratic-time dynamic-
programming algorithm INI e[T[H[e[R[L]A[N]D]S]

WHY?!

NETHERLANDS x SWITZERLAND

NETHERLANDS x S
[NETHERLANDS x SW
¢ NETHERLANDS x SWI
NETERLANDS x SWIT
NETHERLANDS x SWITZ
NETHERLANDS x SWITZE
NETHERLANDS x SWITZER
NETHERLANDS x SWITZERL
» [NETHERLANDS x SWITZERLA
¢ NETHERLANDS x SWITZERLAN

c NETHERLANDS x SWITZERLAND

Oz > |l mN A= = W0
M
=
(9]

SAFARI

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI

31

Read Mapping Algorithms: Two Styles

Hash based seed-and-extend (hash table, suffix array, suffix tree)
o Index the “k-mers” in the genome into a hash table (pre-processing)

o When searching a read, find the location of a k-mer in the read; then
extend through alignment

a More sensitive (can find all mapping locations), but slow
o Requires large memory; this can be reduced with cost to run time

Burrows-Wheeler Transform & Ferragina-Manzini Index based
aligners

o BWT is a compression method used to compress the genome index

o Perfect matches can be found very quickly, memory lookup costs
increase for imperfect matches

o Reduced sensitivity

SAFARI

Hash Table Based Read Mappers

= Key Idea
a Preprocess the reference into a Hash Table

o Use Hash Table to map reads

SAFARI

33

Hash Table-Based Mappers [Alkan+ Nature Gen’09]

k—mer or 12-mer Location list—where the k-mer
(string of length k) occurs in reference gnome

L EEEEAED Reference genome

AAAAAAAAAAAC || 13 | 421 | 412 | 765 889
AAAAAAAAAAAT |{ NULL

CCCCCCCCCCCC 24 | 459 | 744 | 988 | 989

(TTTTITRRTT 36 | 535 | 123

Once for a reference

34

Hash Table Based Read Mappers

= Key Idea
a Preprocess the reference into a Hash Table

a Use Hash Table to map reads

35

Hash Table-Based Mappers [Alkan+ Nature Gen'09]

AAAAAAAAAAAACCCCCCCCCCCCTTTTTITTTIT &

read

P e aalalalalu s s
iU U

« k-mers

-~

Hash Table
(HT)

SAAALARL8000

Reference
Genome

o |

324 |557 |940 |

CCCCCCCCCCCC

Valid

|

d

24 |

459 |744 |988 |989 | mapplng

N

d

36 |

535 |823 |

Verification/Local Alignment read

36

Advantages of Hash Table Based Mappers

= + Guaranteed to find a/ mappings = very sensitive
= + Can tolerate up to eerrors

namre
genetlcs http://mrfast.sourceforge.net/

Personalized copy number and segmental duplication
maps using next-generation sequencing

Can Alkan'2, Jeffrey M Kidd!, Tomas Marques-Bonet!?, Gozde Aksay', Francesca Antonaccil,
Fereydoun Hormozdiari?, Jacob O Kitzman!, Carl Baker!, Maika Malig!, Onur Mutlu’, S Cenk Sahinalp?,
Richard A Gibbs® & Evan E Eichler!-2

Alkan+, "Personalized copy humber and segmental duplication
maps using next-generation sequencing”, Nature Genetics 2009.

http://mrfast.sourceforge.net/
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html

Problem and Goal

= Poor performance of existing read mappers: Very slow
o Verification/alignment takes too long to execute

o Verification requires a memory access for reference genome +
many base-pair-wise comparisons between the reference and
the read (edit distance computation)

e (s) j - verteater
time (s)

m Other
0 5000 10000 15000 20000

= Goal: Speed up the mapper by reducing the cost of
verification

38

Overarching Key Idea

Filter fast before you align

Minimize costly
edit distance computations

39

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI

40

Reducing the Cost ot Veritication

= We observe that most verification (edit distance
computation) calculations are unnecessary

o 1 out of 1000 potential locations passes the verification
process

= We observe that we can get rid of unnecessary verification
calculations by

o Detecting and rejecting early invalid mappings (filtering)
o Reducing the number of potential mappings to examine

41

I<€Y Observations [Xin+, BMC Genomics 2013]

Observation 1

o Adjacent k-mers in the read should also be adjacent in the
reference genome

o Read mapper can quickly reject mappings that do not satisfy
this property

Observation 2

o Some k-mers are cheaper to verify than others because they
have shorter location lists (they occur less frequently in the
reference genome)

Mapper needs to examine only e+1 k-mers’ locations to tolerate e
errors

o Read mapper can choose the cheapest e+1 k-mers and verify
their locations

42

FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Adjacency Filtering (AF): Rejects obviously invalid

mapping locations at early stage to avoid unnecessary
verifications

Cheap K-mer Selection (CKS): Reduces the absolute
number of potential mapping locations to verify

43

Adjacency Filtering (AF)

Goal: detect and filter out invalid mappings at early stage

Key Insight: For a valid mapping, adjacent k-mers in the
read are also adjacent in the reference genome

TTTT <« read

=

Reference genome

S C(ECCCCCCC_(,I [

Valid mapping Invalid mapping

Key Idea: search for adjacent locations in the k-mers’
location lists

o If more than e k-mers fail > there must be more than e
errors - invalid mapping

44

Adjacency Filtering (AF)

Weeeeeeeeeéllllmlm < read
‘ +24
AAAA L\a*\a\a\addd(i"“‘} [T < k-mers
-
Reference
Hash Table 9 » eferenc
(HT)
9527 | -
\
AAAAAAAAAAAA 2l |57 | 5% JABAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT
v
CCCCCCCCCCCC Hzathso [7as | o8 F30
MTTTTTTTTTT —1— ARAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT

45

FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Adjacency Filtering (AF): Rejects obviously invalid

mapping locations at early stage to avoid unnecessary
verifications

Cheap K-mer Selection (CKS): Reduces the absolute
number of potential mapping locations to verify

46

Cheap K-mer Selection (CKS)

Goal: Reduce the number of potential mappings to examine

Key insight:

o K-mers have different cost to examine: Some k-mers are
cheaper as they have fewer locations than others (occur less
frequently in reference genome)

Key idea:

o Sort the k-mers based on their number of locations
o Select the k-mers with the fewest number locations to verify

47

Cheap K-mer Selection

= e=2 (examine 3 k-mers) read
326 338 326 376 388
Lpfakions1 1451
2 loc. . 2 loc.

N-Ll'nber of Logatigusem——

1K loc. 2K loc. 1K loc.
Effeapsst 3 kmeas
Previous work needs FastHASH verifies only:
to verify:
8 locations

3004 locations

48

Methodology

Implemented FastHASH on top of state-of-the-art mapper: mrFAST
o New version mrFAST-2.5.0.0 over mrFAST-2.1.0.6

Tested with real read sets generated from Illumina platform
o 1M reads of a human (160 base pairs)

o 500K reads of a chimpanzee (101 base pairs)

o 500K reads of a orangutan (70 base pairs)

Tested with simulated reads generated from reference genome
o 1M simulated reads of human (180 base pairs)

Evaluation system
o Intel Core i7 Sandy Bridge machine
a 16 GB of main memory

49

FastHASH Speedup: Entire Read Mapper

O

<

Ql

— B human
2 g - 19X | @ chimpanzee
L'E‘ [] orangutan
. [] simulated
g w© -

o _

§ _
O

g o _]

Q_ b pa

>

go]

O

O

Q 10 —

N

L

0p)

<<

L o -

Analysis

Reduction of potential mappings with FastHASH

of potential mappings (Logl10 Scale)

< — | ® Number of potential mappings
0 Number of potential mappings with FastHASH
E Number of valid mappings

AN

—

o

m 99% %
- ., I [99% "Wl %
99%

w —

@ —

<

FastHASH filters out over 99% of the potential
mappings without sacrificing any valid mappings

51

FastHASH Conclusion

Problem: Existing read mappers perform poorly in mapping
millions of short reads to the reference genome, in the
presence of errors

Observation: Most of the verification calculations are
unnecessary - filter them out

Key Idea: Exploit the structure of the genome to
o Reject invalid mappings early (Adjacency Filtering)

o Reduce the number of possible mappings to examine (Cheap
K-mer Selection)

Key Result: FastHASH obtains up to 19x speedup over the
state-of-the-art mapper without losing valid mappings

52

More on FastHASH

= Download source code and try for yourself
o Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513

http://www.biomedcentral.com/1471-2164/14/51/513
BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari®, Samihan Yedkar', Onur Mutlu'", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013

Xin+, "Accelerating Read Mapping with FastHASH", BMC Genomics 2018. 53

http://mrfast.sourceforge.net/
http://www.biomedcentral.com/1471-2164/14/S1/S13/

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

54

An Example: Shifted Hamming Distance

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 15531560

doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015
Original Paper

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford®, Can Alkan** and Onur Mutlu®*

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.

55

http://bioinformatics.oxfordjournals.org/content/early/2015/01/10/bioinformatics.btu856.abstract?keytype=ref&ijkey=iQ4UOCzdu7rxIAr
http://bioinformatics.oxfordjournals.org/content/early/2015/01/10/bioinformatics.btu856.abstract?keytype=ref&ijkey=iQ4UOCzdu7rxIAr
https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

Shifted Hamming Distance

Key observation:

o If two strings differ by £ edits, then every bp match can be
aligned in at most 2£ shifts (of one of the strings).

Insight: Shifting a string by one “corrects” for one “error”

Key idea:
o Compute “Shifted Hamming Distance”: AND of 2E Hamming
Distances of two strings, to filter out invalid mappings

Uses bit-parallel operations that nicely map to SIMD instructions

Key result:

o SHD is 3x faster than SegAn (the best implementation of Gene
Myers’ bit-vector algorithm), with only a 7% false positive rate

o The fastest CPU-based filtering (pre-alignment) mechanism
56

Hamming Distance (),@D)

3 matches 5 mismatches
Edit = 1 Deletion

T||A N B U L
! :i \4/ \’K :y \4/
v

== N

‘-- —

1 [|S||T N||B{|U||L

To cancel the effect of a
) deletion, we need to shift in

the right direction

SAFARI >7

Insight: Shifting a String Helps Similarity Search

3 matches 5 mismatches

& (N

TIJA[IN]|B[JU||L
I
:

¢-- —

| 1IS|T|IN|B[|U]IL

To cancel the effect of the
) deletion, we need to shift in

the right direction

58

Insight: Shifting a String Helps Similarity Search

7 matches 1 mismatches

LHsHTHALNI B UL L
I P f F
I8 00 I L L
ISTNBULﬂE

VV*:
HsHTIHNIBI UL L

59

Shifted Hamming Distance

7 matches 1 mismatches
Edit = 1 Deletion

| {[|S|IT|JA|IN{/B[|U[|L
XOR . 1 1 | bor
- b b0
Y YV :
|OHOHO||1H1HI|' l

AND (AR LR
1111(/1]/0(/0}|0(|0O

SAFARI 60

Highly Parallel Matrix Computation

Query

@QOP=P=LP>=-0OP

Reference

CTATAATACG

\ ”,4”

2 Deletion Hamming masks

K L~

We need to compute 2E+1
vectors, E=edit distance
threshold

dp[i][j]= @ if X[1]=Y[]]
1 if X[i]=zY[]j]
No data dependencies!

2 Insertion Hamming

masks

61

Key Idea of SHD Filtering

Generate 2E+1
NMERS

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

Amend random zeros:
101 > 111 & 1001 - 1111

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :/00000000001/0000000000001111111011110001110110101101111111110001000§01%11011010010101
1-Deletion Mask :11111111111001111101111
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110

1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000
2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001
3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011

0§11101101001010
10310111011101111
01@11101110111110
11311000111101100
01311010111001000

-—-- Masks after amendment ---

Hamming Mask :000000000010000000000001111111111110001111111101111111111110001000001111111111111111
1-Deletion Mask :11111111111111111111111100011000000000000000
2-Deletion Mask :000000001111111111111111111111111111000111111111111111111111000100011111111111111110
3-Deletion Mask :11111111111111111111111111111111100011

l1-Insertion Mask :111111111111111111111111111111100011111111111111111111111111111000111111111111111110
2-Insertion Mask :0000001111111111111111111111000111000111111100
3-Insertion Mask :1111111111111111111000111000

AND Mask :000000000010000000000001001000000000000000

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch o
Alignment : LLVLELLIEE TRREEEIEEEEE CEEREEEE R e i e bbb bbb e e = ey

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

62

Alignment vs. Pre-alignment (Filtering)

Needleman-Wunsch SHD
TATAATA G TATAATACG

P=P>=0OP>
P=P=-0OP

Independent vectors can be processed in parallel using
hardware technologies

DRAM Layers

1

[- d

J
A
I
Logic Layer

N\

63

New Bottleneck: Filtering (Pre-Alignment)

Sequencing generates many reads, each of which
potentially mapping to many locations

9

Filtering (Pre-alignment) eliminates the need to verify/align
read to invalid mapping locations

9

Alignment/verification (costly edit distance computation) is
performed only on reads that pass the filter

New bottleneck in read mapping becomes the “filtering
(pre-alignment)” step

64

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI

65

Location Filtering

Alignment is expensive
o We need to align millions to billions of reads

v .
' Our goal is to accelerate read mapping
by improving the filtering step

\WICLURRRIICIRRICL0W | L ST \.albll\.al\ly

Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck (xin+, BMc Genomics 20133

SAFARI 66

Ideal Filtering Algorithm

eSS

Filter out all
incorrect mappings

Maximal True
Reject Rate

Minimal False
Accept Rate

Faster Than
Mapper

Zero False
Reject Rate

Do not filter out any
correct mappings

67

Alignment vs. Pre-alignment (Filtering)

Needleman-Wunsch SHD
TATAATA G TATAATACG

P=P>=0OP>
P=P=-0OP

Independent vectors can be processed in parallel using
hardware technologies

DRAM Layers

1

[- d

J
A
I
Logic Layer

N\

68

Our Solution: GateKeeper

St

Alignment
Filter

FPGA-based
Alignment Filter.

x103

mappings

Low Speed & High Accuracy
Medium Speed, Medium Accurac
High Speed, Low Accuracy

x1012

mappings
=)

ACGTACGTACGTACGT
TATATATACGTACTAG

TATAATACG
- 01]2
1|0
o]

T ACTAGTACGT
TTTAGTACGTACGT
AGTACGT

OOP=EP=->P=-0Op>

ATATATACGTACTAAAGTACGT
Billions of Short Reads

High throughput DNA . Read Pre-Alignment Filtering . Read Alighment
sequencing (HTS) technologies Fast & Low False Positive Rate Slow & Zero False Positives

69

GateKeeper Walkthrough

Generate 2E+1
NMERS

Amend random zeros:
101 > 111 & 1001 - 1111

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :000000000010000000000001111111011110001110110101101111111110001000001111011010010101
1-Deletion Mask :11111111111001111101111100011000000000000000
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100010011101101001010
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110010110111011101111

l-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000101011101110111110
2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001111111000111101100
3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011101111010111001000

--—- Masks after amendment ---

Hamming Mask :000000000010000000000001111111111110001111111101111111111110001000001111111111111111
1-Deletion Mask :11111111111111111111111100011000000000000000
2-Deletion Mask :000000001111111111111111111111111111000111111111111111111111000100011111111111111110
3-Deletion Mask :11111111111111111111111111111111100011

1-Insertion Mask :111111111111111111111111111111100011111111111111111111111111111000111111111111111110
2-Insertion Mask :0000001111111111111111111111000111000111111100
3-Insertion Mask :1111111111111111111000111000

AND Mask :000000000010000000000001001000000000000000

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch .
Alignment < LILELLREED DREEEREEEEEE CEREEEER R e b et et b e e e s b e e

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

70

GateKeeper Walkthrough (cont’d)

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

4| « (2E)*(ReadLength) 2-AND
operations.

* (ReadlLength/4) 5-input LUT.

» log,ReadlLength-bit counter.

Generate 2E+1 Amend random zeros:
masks 101 -> 111 & 1001 - 1111

« E right-shift registers (length=ReadLength)
« E left-shift registers (length=ReadLength)
« (2E+1) * (ReadLength) 2-XOR operations.

— 01QQﬁ@d01101000101011001111@bbﬁb010
' T LT
' VVYVYY rlvvvvvvvvlvvvvvvvl A 4

(0111100011&100011111111111100011110
Hamming mask after amending

* (2E+1)*(ReadLength) 5-input LUT.

71

GateKeeper Accelerator Architecture

= Maximum data throughput =~13.3 billion bases/sec

= Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

= Occupies 50% (100 bp) to 919%0 (300 bp) of the FPGA slice LUTs and registers

Preprocessing Host (CPU) Alignment Filtering (FPGA) :Alignment Verification

GateKeeper >E (CPU/IFPGA)

Read Controller

read#N

ACTATAATACG

read pairs
(mrFAST
output)

’ K Input stream '
of binary palrsi GateKeeper [GateKeeper

1 1
5 H ' Processing Processing
- - Accepted Alignments

Core #1 IR Core #N
input reads reference '] "
r().fastq) genome (fasta) ; » (correct & false positives)
E Mapping Controller #Imap.#ll Jo=+[|map.#N|

GateKeeper PCle

QOP=P>-HA>-H0>0

SAFARI 72

GateKeeper vs. SHD

— Gackewper | s>

= FPGA (Xilinx VC709) = Intel SIMD

= Multi-core (parallel) = Single-core (sequential)

= Examines a single = Examines a single
mapping @ 125 MHz mapping @ ~2MHz

= Limited to PCIe Gen3(4x) = Limited to a read length
transfer rate (128 bits @ of 128 bp (SSE register
250MHz) Size)

= Amending requires: = Amending requires:
o (2E+1) 5-input LUT. o 4(2E+1) bitwise OR.

o 4(2E+1) packed shuffle.
o 3(2E+1) shift.

73

GateKeeper: Speed & Accuracy Results

90x-130x faster filter

than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate

than the Adjacency Filter (Xin et al.,, 2013)

10x speedup in read mapping

with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online

github.com/BilkentCompGen/GateKeeper

SAFARI 4

https://github.com/BilkentCompGen/GateKeeper

Conclusions

FPGA-based pre-alignment greatly speeds up read mapping
o 10x speedup of a state-of-the-art mapper (mrFAST)

FPGA-based pre-alignment can be integrated with the
sequencer
o It can help to hide the complexity and details of the FPGA

o Enables real-time filtering while sequencing

SAFARI 7>

More on GateKeeper

Download and test for yourself
https://github.com/BilkentCompGen/GateKeeper

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

Sequence analysis
GateKeeper: A New Hardware Architecture for

Accelerating Pre-Alignment in DNA Short Read
Mapping

Mohammed Alser"”, Hasan Hassan?, Hongyi Xin?, Oguz Erginz, Onur Mutlu*”, and
Can Alkan"

SAFARI 76

https://github.com/BilkentCompGen/GateKeeper
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf

MAGNET (AACBB 2018, TIR 2017)

Key observation: the use of AND operation to check if a zero
(match) exists in a column introduces filtering inaccuracy.

Key Idea: count the consecutive zeros in each mask and
select the longest in a divide-and-conquer approach.

MAGNET is 17x to 105x more accurate than GateKeeper
and SHD.

GAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCC
GAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC

000000000000000000000000100000000000001111110111100011101101011011111111100010000(¢11110110100101
000000000000111111111111330011111011113100011000000000000C
000000000000100000000010310111001111%¥1111111101111000111011010110111111111000100030011101101001C
0000000000001011111111113%01110110011¢011011101100010010011111111111110010110011003%01101110111011
0000000000011111111111113%011111011113%10111011000100100111111111111100101100110001¢10111011101111
0000000000100000000010013%11100111111301001000110101010011010111111111111101110011311110001111011
000000000101111111111101310110011000¥11111111010110111111001100101110111111110111@1111010111001C

0000000000000000000000001000000000000100011000000000000¢

AAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCC

Lrrerrerrrerrerrrerrerrr reeererrreer e rer et e et e e e e e e e e e e e e e e e e e e s e e e
AAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC

SAFARI 77

MAGNET Walkthrough

Read :
Reference :

Upper Diagonal-4 :
Upper Diagonal-3 :
Upper Diagonal-2 :
Upper Diagonal-1 :

Main Diagonal :
Lower Diagonal-1 :
Lower Diagonal-2 :
Lower Diagonal-3 :
Lower Diagonal-4 :

MAGNET bit-vector :

ACCEPT iff number of ‘1’ < Threshold

TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA
TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAATTACCGTTTT

<y, b ey, 1)
---1101111111001111 101100001010001011010011111101101100110110011010101011101111111 !!
--01101101010111111 1101111111111100100111101111110010001001000100111111101101111114¢ L

-001111011001011011
0001111101110010011¢ 101111111111100100111101111110010001001000100111111101101111110
110000101000101101001111110110110011011001101010101110111111111

00011111011100100110 101111111110111110111111011111110111111011110111111000010110101(
00111101100101101111¢ 110010001010111001110011101101111111111111101010111101101010100
01101101010111111110 101111111011110111111111101101101111110111110111101111111111111
11011111110011111011¢(111000001011101011001111100101001111100111001001111010110111111

Find the longest segment of consecutive zeros

Exclude the errors from the search space

Divide the problem into two subproblems and repeat

SAFARI

"MAGNET: understanding and improving the accuracy of genome 78
pre-alignment filtering", arXiv preprint 2017

https://arxiv.org/abs/1707.01631

MAGNET Accelerator

Host ‘ ‘
—n Read Controller
- —}
p— FIFO FIFO FIFO
™ ! | 11 |
I I'

=> | e MAGNET#l

s BRTP[q == MAGNET l MAGNET

H i #a +7 [

RLEE

o _’ﬁ’ _ —

)

x 8 MAGNET MAGNET MAGNET

_c'tg 5 #2 #8

) ?-r 1 ¥

D: _

Y A= MAGNET MAGNET MAGNET

= H 43 #9 te
=TI 11T
S FIFO FIFO FIFO
| | - Mapping Controller

FPGA Board

FIFO

i1 1 |

MAGNET
N-2

MAGNET
N-1

MAGNET
#N

111

FIFO

SAFARI

79

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
a Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI

80

Read Mapping & Filtering

= Problem: Heavily bottlenecked by Data Movement

= GateKeeper performance limited by DRAM bandwidth
[Alser+, Bioinformatics 2017]

= Ditto for SHD [Xin+, Bioinformatics 2015]
= Solution: Processing-in-memory can alleviate the bottleneck

= However, we need to design mapping & filtering algorithms
to fit processing-in-memory

SAFARI 81

Hash Tables in Read Mapping

Read Sequence (100 bp) X

AHghifg... Rlignatgh. Fraise

Negative
Hash Table

--
“““

*

. e

Reference Genome

| Filter
37 140 E
894 1203 §
1564 |

.
'''''

SAFARI 82

Read Mapping & Filtering in Memory

We need to design
mapping & filtering algorithms
that fit processing-in-memory

SAFARI 83

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI

84

GRIM-Filter: Bins

= We partition the genome into large sequences (bins).
Bnx-23 Bin x - 1

s GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC ..

—_—] —_ —_
Binx -2 Bin x
o Represent each bin with a bitvector Bitvector ‘
that holds the occurrence of all AAAAA |71 AAAAA
permutations of a small string (token) in AAAAC | 0 | exists in
the b|n AAAAT 1 bin x
ccocc | 1
0 T_o account for matches that st_raddle cceer |Joll- coccr
bins, we employ overlapping bins CCCCG | 0 | doesn't
= A read will now always completely fall within o | - | existin
a Sing|e bin GGGGG 1 bin x

SAFARI 85

GRIM-Filter: Bitvectors

Bin x Bitvector
_|
")
>
@
— :
(—) ®)

SAFARI 86

GRIM-Filter: Bitvectors

bin1
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA mm

Reference

Genome Storing all bitvectors

requires 4™ « t bits
by

o
N

iIn memory,
(AAAAA |1 AAAAA | O where t = number
AAAAC |1 AAAAC |1 of bins.
AAAAG | O AAAAG | O
AAAAT | O . .
. . AGAAA |1
CCCCT |1 , .
. . GAAAA |1 S
tokens { | _ | _ . o o For bin size ~200,
GACAG | 1 and n =5,
. . . : memory footprint
GCATG |1 GCATG |1 ~3.8 GB
TTGCA |1
LTTTTT | O TTTTT | O

SAFARI o

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI

88

GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA -« CGAG

o Get tokens

9 Read bitvector for bin_num(x)

v

TSR T - - - E 2
~
_____ e e e e
<~ >
~
~ \\
\\ \\
~ \~‘~ \\\
~ S ~
. \\ \\\ ‘
~ S
\\ \\
m < p
\\
B
tokens N
\\
~
\\A

9 Match tokens to bitvector

P OR

» = Threshold?

1 NV ws

e Sum e Compare
+

=

]'_ Discard Send to
Read Mapper

0 for Sequence

0 Alignment

SAFARI

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI

90

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI o1

Integrating GRIM-Filter into a Read Mapper

INPUT: Read Sequence

GAACTTGCGAG sss GTATT

O)
GRIM-Filter:
Filter Bitmask Generator

_ J

22380001010 222011010uus
Seed Location Filter Bitmask

INPUT: All Potential Seed Locations
111020128). .u(020131 .4 424415)...

\KEEP " KEEP
22000107 02aa017010un=

D./'SC)4RDl
X
9 Reference Segment Storage
reference | 7 reference
segment segment
@ 020131 @ 414415

@ Read Mapper:
Sequence Alignment

Edit-Distance Calculation

SAFARI

v

OUTPUT: Correct Mappings

Key Properties of GRIM-Filter

Simple Operations:

a To check a given bin, find the sum of all bits corresponding to
each token in the read

o Compare against threshold to determine whether to align

Highly Parallel: Each bin is operated on independently
and there are many many bins

Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM

SAFARI 3

Opportunity: 3D-Stacked Logic+Memory

Logic

Other "True 3D"” technologies
under development

SAFARI 4

DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1&]
Low-Power LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [25], [37]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [%]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Halt-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
SAFARI 95

3D-Stacked Memory

DRAM Layers
/1

T T [T | d

g)
/% d

%
o

Logic Layer

3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer

o Logic Layer enables Processing-in-Memory, via high-
bandwidth low-latency access to DRAM layers

o Embed GRIM-Filter operations into DRAM logic layer and
appropriately distribute bitvectors throughout memory

SAFARI

96

3D-Stacked Memory

http://i1-new s.softpedia-static.com/images/new s2/Micron-and-Samsung-Join-F orce-to -C reate-N ext-Gen-Hy brid-Memory -2.png

SAFARI 77

3D-Stacked Memory
Micron’s HMC

Micron has working demonstration
components

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg

http://il-new s.softpedia-static.com/images/new s2/Micron-and-Samsung-Join-F orce-to -C reate-N ext-Gen-Hy brid-Memory -2.png

SAFARI 8

GRIM-Filter in 3D-Stacked DRAM

o
Q
>
~

Row@:RAAAAA
RowEL:2AAAAC
Row2:RAAAAG

Bank -« DRAMELayers
7

Bitvector for@inD
— Bitvector forbinF

y of
L e

Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

Bitvector forbinz2
)
o)
Bitvector forbinE—1
1\
\l

ROWR-1:BITTTT

X

The layout of bitvectors in a bank enables filtering many
bins in parallel

SAFARI %

GRIM-Filter in 3D-Stacked DRAM

Per-Vault
CustomBEGRIM-Filterflogic

Seedd ocationFilter@Bitmask
Bank -« DRAMPELayers . (§:_§“
/L/ oY |5HE
s S S8 (34 =
= sy | MRS |EH) ||
H [&2 | L
/// s VZUIt 8 :
Z a— / = E
Log Hayer o RowEDataRegister

Customized logic for accumulation and comparison
per genome segment

o Low area overhead, simple implementation

o For HBM2, we use 4096 incrementer LUTS, 7-bit counters, and
comparators in logic layer

SAFARI Details are in [Kim+, BMC Genomics 2018] 100

Methodology

Performance simulated using an in-house 3D-Stacked DRAM
simulator

Evaluate 10 real read data sets (From the 1000 Genomes
Project)
o Each data set consists of 4 million reads of length 100

Evaluate two key metrics
o Performance

o False negative rate
The fraction of locations that pass the filter but result in a mismatch

Compare against a state-of-the-art filter, FastHASH [xin+, BMC
Genomics 20131 when using mrFAST, but GRIM-Filter can be
used with ANY read mapper

SAFARI 1ot

GRIM-Filter Performance

Time (x 1000 seconds)

Benchmarks and their Execution Times
FastHASH filter B GRIM-Filter

70
28 I Sequence Alighment
20 - Error Tolerance (¢)
30 - e= 0.05
20 -

Sl nninlnlninle

O N n% N n% N A% N v N % Q

AL VA R AR s N S A R SR SR

1.8x-3.7x performance benefit across real data sets
2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design
SAFARI 102

GRIM-Filter False Negative Rate

Benchmarks and their False Negative Rates
[FastHASH filter I GRIM-Filter

Q

TB' 0.5

o044 - - - - |Sequence Alignment
Q Error Tolerance (e
2> 0.3 7

™ 02 e=0.05
(=)

® 0.1 -

z lmlmmmlmnlnnnlEn

Q

()] ¢ e A A Y oY oY Y oY

[@,\q/ @,\'\, vQ/\q/ @,\% @/\q’ @,\q, @/\f\/ @,\% @/\% @/\% @Q’@

L.

5.6x-6.4x False Negative reduction across real data sets
6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter
SAFARI 103

More on GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies”

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S. Kim'®", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee?, Saugata Ghose',
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018

SAFARI 104

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

Aside: In-Memory Graph Processing

= Large graphs are everywhere (circa 2015)

oo [

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users Instagram Photos

= Scalable large-scale graph processing is challenging

128 _ +420/0—

0 1 2 3 4
Speedup

105

Key Bottlenecks 1n Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank

w.edges

2. Little amount of computation

SAFARI 106

Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface :
Noncacheable, Physically Addressed) :

~ n LS =
- | oy Nl =
° 2 \ il ’ 1
|]
b e | J N 1
< “K | ik S8 B j K
o s3 ¥ " 1
e ety S0 11 4] 1
150 0] 1
1
1 N N /’
1 ! ,
1 < 1 ,
1 1 /7
1 1 ’
1 1 ’
| 1 / I
;/ n-vraer Lore
/7
7
/7
II /
1

v

X

>

] , Z

———) =

o

2o Y I TN LP PF Buffer - =

Crossbar Network o

S S |)
| | =9 R

v

Message Queue NI

SAFARI Ahn+, A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Communications via
Remote Function Calls

Message Queue

Communications In Tesseract (I)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

w.next_rank += weight * v.rank;

SAFARI

109

Communications In Tesseract (1I)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

SAFARI

w.next_rank += weight * v.rank;

Vault #1

-""4-._____.
_—

Vault #2

——

—
———

——p

110

Communications In Tesseract (I111)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
i Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put |
Y &w
_-——-—"’// ‘\
put \\\
TSl put
\\\.__,__._H '-----_._____________b W
put |

SAFARI i

Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

Local
Core

.

NI

&func, &w, value

NI

>

Remote
Core b
MQ -

put(w.id, function() { w.next_rank += value; })

SAFARI

112

Prefetching

LP PF Buffer

MTP

Evaluated Systems

DDR3-000 HMC-000 HMC-MC Tesseract

I | | | | | |
| | | |
I | | | | | | . .
I T . T I I T . T I A A A A ! A A A A ! 32
= 1 e T . . Tesseract
2 A A A A i A A A A i Cores
Y y A 4 A vy \A 4 \A 4 vy 1 \A 4 \A 4 \A 4 \A 4 1
128 128
8 000 || 8000 8000 | 8000 i order s 1r-Order
4GHz 4GHz 4GHz 4GHz > GHz > GHz I e I i
7y % “ - 3 v
v \ 4 PR <
128 128
8000 | 8000 8000 | 8000 " order Ll 1n-Order 3 3
4GHz 4GHz 4GHz 4GHz 2GHz 2GHz g [
A A A A A A A A AA AA ¢ ¢ ¢ ¢
v v v v \4 y \4 \4 \4 \ 4 \ 4 \ 4 PR PN <
I I | I | I I | | I |
I | | I | | |
| | | | v v \ 4 y ' A \ 4 A 4 v
I | | | | | |
1 1 1 1
I | | | | | |
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFARI Ahn+, A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

>13X Performance Improvement

16
Y On five graph processing algorithms 13.8x
19 11.6x
o 10 9.0x
>
o 8
Q
o
Y6
4
2 +36% +25%
., == B B
DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFARI Anhn+,"A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
0GB/ "o

DDR3-000 HMC-O000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

Etfect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s)] Tesseract Bandwidth (8TB/s)

Programming Model

3.0x

2.3X

Speedup

A4

, I

HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)

SAFARI 17

Tesseract Graph Processing System Energy

B Memory Layers [Logic Layers [Cores
1.2

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-0o00O Tesseract with Prefetching

SAFARI Anhn+,"A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University $0racle Labs fCarnegie Mellon University

SAFARI 19

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI 120

Recall: High-Throughput Sequencing

Massively parallel sequencing technology
o Illumina, Roche 454, Ion Torrent, SOLID...

Small DNA fragments are first amplified and then

sequenced in parallel, leading to
o High throughput

o High speed

o Low cost
a

Short reads
Amplification step limits the read length since too short or too long
fragments are not amplified well.

Sequencing is done by either reading optical signals as each base is

added, or by detecting hydrogen ions instead of light, leading to:

o Low error rates (relatively)

o Reads lack information about their order and which part of genome
they are originated from

SAFARI 121

Nanopore Sequencing Technology

Nanopore sequencing is an emerging and a promising
single-molecule DNA sequencing technology

First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore
Technologies (ONT) in May 2014.

o Inexpensive

a Long read length (> 882K bp)

o Portable: Pocket-sized

o Produces data in real-time

SAFARI 122

Nanopore Sequencmg Technology

an emerging and a promising

ncing technology
read length — Longer read length

= First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore
Technologies (ONT) in May 2014.
o Inexpensive
o Long read length (> 882K bp)
o Portable: Pocket-sized
o Produces data in real-time

?

»?
\ D ?
»?

SAFARI 123

Nanopore Sequencing

_{

= Nanopore is a nano-scale hole

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

SAFARI 124

Advantages of Nanopore Sequencing

Nanopores:

Do not require any labeling of the DNA or nucleotide for
detection during sequencing

Rely on the electronic or chemical structure of the different
nucleotides for identification

Allow sequencing very long reads, and

Provide portability, low cost, and high throughput.

SAFARI 125

Challenges of Nanopore Sequencing

One major drawback: high error rates

Nanopore sequence analysis tools have a critical role to:
o overcome high error rates
o take better advantage of the technology

Faster tools are critically needed to:

o Take better advantage of the real-time data production
capability of MinION

o Enable fast, real-time data analysis

SAFARI 126

Nanopore Genome Assembly Pipeline

Raw signal
data

Assembly <—

Improved
assembly

<—

~ B
Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano
. y,
r \
Read-to-Read Overlap Finding
Tools: GraphMap, Minimap
\. J
e 2
Assembly
Tools: Canu, Miniasm
J
s ~
Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

\. J
s N
Polishing

. Tools: Nanopolish, Racon
J

DNA reads

Overlaps

Draft assembly

Mappings of reads
against draft
assembly

Figure 1. The analyzed genome assembly pipeline using nanopore
sequence data, with its five steps and the associated tools for each

step.

SAFARI Assembly” Briefings in Bioinformatics, 2018.

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome

127

Nanopore Genome Assembly Tools (I)

Table 12. Accuracy analysis results for the full pipeline with a focus on the last two steps.

Number of Number of Identity Coverage Number of Number of

Bases Contigs (%) (%) Mismatches Indels

1 | Metrichor + — + Canu + BWA-MEM + Nanopolish| 4,683,072 1 9948 99.93 8,198 15,581
2 | Metrichor + Minimap + Miniasm+ BWA-MEM + Nanopolish | 4,540,352 1 92.33 96.31 162,884 182,965
3 | Metrichor + GraphMap+ Miniasm+ BWA-MEM + Nanopolish | 4,637,916 2 9238 95.80 159,206 180,603
4 | Metrichor + — + Canu + BWA-MEM + Racon 4,650,502 1 98.46 100.00 18,036 51,842
5 | Metrichor + — + Canu + Minimap + Racon 4,648,710 1 98.45 100.00 17,906 52,168
6 | Metrichor + Minimap + Miniasm+ BWA-MEM + Racon 4,598,267 1 97.70 99.91 24,014 82,906
7 | Metrichor + Minimap + Miniasm+ Minimap + Racon 4,600,109 1 97.78 100.00 23,339 79,721
8 | Nanonet + — + Canu + BWA-MEM + Racon 4,622,285 1 98.48 100.00 16,872 52,509
9 | Nanonet + — + Canu + Minimap + Racon 4,620,597 1 98.49 100.00 16,874 52,232
10| Nanonet + Minimap + Miniasm+ BWA-MEM + Racon 4,593,402 1 98.01 99.97 20,322 72,284
11| Nanonet + Minimap + Miniasm+ Minimap + Racon 4,592,907 1 98.04 100.00 20,170 70,705
12| Scrappie + — + Canu + BWA-MEM + Racon 4,673,871 1 9840 99.98 13,583 60,612
13| Scrappie + — + Canu + Minimap + Racon 4,673,606 1 98.40 99.98 13,798 60,423
14| Scrappie + Minimap + Miniasm+ BWA-MEM + Racon 5,157,041 8 9787 99.80 18,085 78,492
15| Scrappie + Minimap + Miniasm+ Minimap + Racon 5,156,375 8§ 9787 99.94 17,922 77,807
16| Nanocall + — + Canu + BWA-MEM + Racon 1,383,851 86 93.49 28.82 19,057 65,244
17| Nanocall + — + Canu + Minimap + Racon 1,367,834 86 9443 28.74 15,610 55,275
18| Nanocall + Minimap + Miniasm+ BWA-MEM + Racon 4,707,961 5 90.75 97.11 91,502 347,005
19| Nanocall + Minimap + Miniasm+ Minimap + Racon 4,673,069 5 9223 97.10 72,646 291,918
20| DeepNano + — + Canu + BWA-MEM + Racon 7,429,290 106 96.46 99.24 27,811 102,682
21| DeepNano + — + Canu + Minimap + Racon 7,404,454 106 96.03 99.21 34,023 110,640
22 | DeepNano + Minimap + Miniasm+ BWA-MEM + Racon 4,566,253 1 96.76 99.86 25,791 125,386
23 | DeepNano + Minimap + Miniasm+ Minimap + Racon 4,571,810 1 96.90 99.97 24,994 119,519

SAFARI] Assembly” Briefings in Bioinformatics, 2018. 128

Nanopore Genome Assembly Tools (1)

Table 13. Performance analysis results for the full pipeline with a focus on the last two steps.

Step 4: Read Mapper Step 5: Polisher
Wall Wall
Clock CPUTime ™| Clock CPUTime MmO
. Usage . Usage
Time (h:m:s) (GB) Time (h:m:s) (GB)
(h:m:s) (h:m:s)
1 | Metrichor + — + Canu + BWA-MEM + Nanopolish 24:43 15:47:21 526 5:51:00 191:18:52 13.38
2 |Metrichor + Minimap + Miniasm + BWA-MEM + Nanopolish 12:33 7:50:54 3.75] 122:52:00 4458:36:10 31.36
3 | Metrichor + GraphMap + Miniasm + BWA-MEM + Nanopolish 12:47 7:57:58 3.60 | 129:46:00 4799:03:51 31.31
4 | Metrichor + — + Canu + BWA-MEM + Racon 24:20 15:43:40 6.60 14:44 9:09:22 8.11
5 | Metrichor + — + Canu + Minimap + Racon 3 1:35 0.26 15:12 9:45:33 14.55
6 |Metrichor + Minimap + Miniasm + BWA-MEM + Racon 12:10 7:48:10 5.19 15:43 9:33:39 9.98
7 |Metrichor + Minimap + Miniasm + Minimap + Racon 3 1:24 0.26 20:28 8:57:40 18.24
8 | Nanonet + — + Canu + BWA-MEM + Racon 9:08 5:53:18 4.84 6:33 4:02:10 4.47
9 |Nanonet + — + Canu + Minimap + Racon 2 54 0.26 6:45 4:17:26 7.93
10 | Nanonet + Minimap + Miniasm + BWA-MEM + Racon 4:40 2:58:02 3.88 7:08 4:19:30 5.35
11 | Nanonet + Minimap + Miniasm + Minimap + Racon 2 46 0.26 7:01 4:18:48 9.53
12 | Scrappie + — + Canu + BWA-MEM + Racon 33:41 21:11:06 8.66 13:32 8:24:44 7.58
13 | Scrappie + — + Canu + Minimap + Racon 3 1:39 0.27 18:45 T:43:17 13.20
14 | Scrappie =+ Minimap + Miniasm + BWA-MEM + Racon 22:41 14:31:00 6.08 14:37 8:53:59 9.50
15 | Scrappie =+ Minimap + Miniasm + Minimap + Racon 3 1:27 0.27 15:10 9:02:45 12.72
16 | Nanocall + — + Canu + BWA-MEM + Racon 4:52 3:01:15 3.80 11:07 3:26:52 5.63
17 | Nanocall + — + Canu + Minimap + Racon 3 1:16 0.22 7:28 2:50:35 3.62
18 | Nanocall + Minimap + Miniasm + BWA-MEM + Racon 16:06 10:27:20 5.06 18:56 11:32:45 11.47
19 | Nanocall + Minimap + Miniasm + Minimap + Racon 4 1:18 0.26 11:49 7:08:59 10.98
20 | DeepNano + — + Canu + BWA-MEM + Racon 17:36 11:30:20 4.43 12:48 7:13:04 8.88
21 | DeepNano + — + Canu + Minimap + Racon 3 1:24 0.28 11:39 6:55:01 3.73
22 | DeepNano + Minimap + Miniasm + BWA-MEM + Racon 8:15 5:22:29 4.11 14:16 8:34:32 10.30
23 | DeepNano + Minimap + Miniasm + Minimap + Racon 3 1:10 0.26 12:29 7:55:32 17.11

Sengl Ca“ | “Nallﬂp ore Sl : - I I I I I I E E
SAFARI Assembly” Briefings in Bioinformatics, 2018.

Nanopore Genome Assembly Tools (I1I)

“®-Nanocall ®Nanonet —*Scrappie

Nanocall vs. Nanonet vs. Scrappie @desktop

Nanocall vs. Nanonet vs. Scrappie @big-mem

(a) 35000 (b) 70000
E‘ 30000 o 60000
i‘, 25000 ~ 50000
E 20000 £
£ i 40000
- E 3
¥ 15000 g 30000
= 10000 < 20000
m 1]
2 5000 = 10000
—_— — I\
[} * o &]
o 2 4 6 8 o 20 40 60 8o
Number of Threads Number of Threads
() 16 (d) _ 160
) @
[CX 14 0 140
£ 12 ¥ 120
a ©
£ 10 S 100
E 8 g‘ 8o
E 6 E 60
2. = 40
E 2 o o - - -'E 20
o & o
o 2 A 6 8 o 20 40 60 8o
Number of Threads Number of Threads
(e) ; i ® 45 ' #threads < #physical ! #threads > #physical
#threads < #physical cores| #threads > #physical cor 40 reads < #physical cores ; #inreags > #physical cores
————y 1
g4 S35 |
b g3
Q3 g3 i
& &5 ;
E 2 o 20 |
g 15 |
& 1 10 E
5 i
o o
o 2 4 6 8 o 20 40 60 8o
Number of Threads Number of Threads
A\ H

SAFARI

Assembly” to appear in Briefings in Bioinformatics, 2018.

130

More on Nanopore Sequencing & Tools

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™=, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 E -
Published: 02 April2018 Article history v

] EE%E

BiB arXiv

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Preliminary arxiv.org version]

SAFARI 131

https://arxiv.org/pdf/1711.08774.pdf

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI 132

Conclusion

= System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

= This talk is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

= We covered various recent ideas to accelerate read mapping
o My personal journey since September 2006

= Many future opportunities exist
o Especially with new sequencing technologies
o Especially with new applications and use cases

SAFARI 133

Acknowledgments

Can Alkan, Bilkent University

Many students at ETH, CMU, Bilkent

o Mohammed Alser, Damla Senol Cali, Jeremie Kim, Hasan
Hassan, Donghyuk Lee, Hongyi Xin, ...

Funders:

o NIH and Industrial Partners (Alibaba, AMD, Google, Facebook,
HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle,
Qualcomm, Rambus, Samsung, Seagate, VMware)

All papers, source code, and more are at:
o https://people.inf.ethz.ch/omutlu/projects.htm

SAFARI 134

https://people.inf.ethz.ch/omutlu/projects.htm

Accelerating Genome Analysis

A Primer on an Ongoing Journey

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
16 February 2019
AACBB Keynote Talk

SAFARI ETH:zurich CarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

