
Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

16 February 2019

AACBB Keynote Talk

Accelerating Genome Analysis

A Primer on an Ongoing Journey

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu


Overview

◼ System design for bioinformatics is a critical problem

❑ It has large scientific, medical, societal, personal implications

◼ This talk is about accelerating a key step in bioinformatics: 

genome sequence analysis

❑ In particular, read mapping

◼ Many bottlenecks exist in accessing and manipulating huge 
amounts of genomic data during analysis

◼ We will cover various recent ideas to accelerate read mapping

❑ My personal journey since September 2006

2



Our Dream (in 2007)

◼ An embedded device that can perform comprehensive 
genome analysis in real time (within a minute)

❑ Which of these DNAs does this DNA segment match with?

❑ What is the likely genetic disposition of this patient to this 
drug?

❑ . . . 

3



Agenda

◼ The Problem: DNA Read Mapping

❑ State-of-the-art Read Mapper Design

◼ Algorithmic Acceleration 

❑ Exploiting Structure of the Genome

❑ Exploiting SIMD Instructions

◼ Hardware Acceleration

❑ Specialized Architectures

❑ Processing in Memory

◼ Future Opportunities: New Sequencing Technologies

4



What Is a Genome Made Of?

5

Cell
Nucleus

The discovery of DNA’s double-helical structure (Watson+, 1953) 



The Central Dogma of Molecular Biology

6

Phenotypes Genotypes 



7

human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope



DNA Sequencing

◼ Goal: 

❑ Find the complete sequence of A, C, G, T’s in DNA.

◼ Challenge: 

❑ There is no machine that takes long DNA as an input, and gives 
the complete sequence as output

❑ All sequencing machines chop DNA into pieces and identify 

relatively small pieces (but not how they fit together)

8



Untangling Yarn Balls & DNA Sequencing

9



Genome Sequencers

… and more! All produce data with 
different properties.

Roche/454

Illumina HiSeq2000

Ion Torrent PGM
Ion Torrent Proton

AB SOLiD

Oxford Nanopore GridION

Oxford Nanopore MinION

Complete
Genomics

Illumina MiSeq

Pacific Biosciences RS
Illumina 
NovaSeq
6000



The Genomic Era

◼ 1990-2003: The Human Genome Project (HGP) provides a complete 
and accurate sequence of all DNA base pairs that make up the 

human genome and finds 20,000 to 25,000 human genes.

11

13 year-long
$3,000,000,000 

(in 1991 USD)



The Genomic Era (continued)

12

development of high-throughput 
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes 
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped


High-Throughput Sequencing (HTS) 

13

= Second Generation 

= Next Generation

= Massively Parallel Sequencing

= High Throughput Sequencing (HTS) 
= Sequencing by Synthesis (Illumina)

flow 
cell



High-Throughput Sequencing (HTS) 

14

A
C
G
C
C
C
G
T

G
C
G
T
A
C
G
T

A
C
G
T
A
C
G
C

A
C
G
T
A
A
G
A

A
C
G
T
A
C
G
T

A
C
G
T
A
C
G
A

A
C
G
T
A
C
G
T

A
C
G
T
G
C
G
G

A
C
G
T
A
C
G
T

A
C
G 
G
G
C
G
C

G
C
G
T
A
C
G
C

A
C
G
T
A
C
G
T

A
C
G
T
A
C
G
T

T
T
T
T
A
C
G
T

T

G

C

A

Glass flow cell surface

As a workaround, HTS technologies sequence random short DNA fragments (75-300 

basepairs long) of copies of the original molecule.

The sequencer adds the molecule “T” 
to all bases near the flow cell surface and 
observes the chemical reaction via a CMOS sensor. 
If a reaction happens then the base is “A”



High-Throughput Sequencing

15

◼ Massively parallel sequencing technology
❑ Illumina, Roche 454, Ion Torrent, SOLID…

◼ Small DNA fragments are first amplified and then 

sequenced in parallel, leading to
❑ High throughput
❑ High speed
❑ Low cost 
❑ Short reads

◼ Sequencing is done by either reading optical signals as each base is 
added, or by detecting hydrogen ions instead of light, leading to:
❑ Low error rates (relatively)
❑ Reads lack information about their order and which part of genome 

they are originated from



Genome 
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 

Alignment

        CCTATAATACG
C

C
A

T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery



17

Example Question: If I give you a bunch of 
sequences, tell me where they are the same 

and where they are different.

Multiple sequence alignment



The Genetic Similarity Between Species

18

99.9%

96%

Human ~ Chimpanzee

Human ~ Human

90%

Human ~ Cat

80%

Human ~ Cow

50-60%

Human ~ Banana



19

Metagenomics, genome assembly, de novo sequencing

http://math.oregonstate.edu/~koslickd

uncleaned de Bruijn graph

Question 2: Given a bunch of short sequences, 
Can you identify the approximate species cluster 
for genomically unknown organisms (bacteria)?

http://math.oregonstate.edu/~koslickd


Problem

Need to construct 

the entire genome 

from many reads

20



A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 

Alignment

        CCTATAATACG
C

C
A

T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

300 M
bases/min

Illumina HiSeq4000  

2 M
bases/min

on average

(0.6%)

Bottlenecked in Mapping!!



The Read Mapping Bottleneck

22

Read Sequencing Read Mapping

* BWA-MEM

** HiSeqX10, MinION

*
**

150x slower

Million
bases/minute300 Million

bases/minute2



candidate alignment 
locations (CAL)

4%

Read Verification
93%

SAM printing
3%

Read Mapping Execution Time Breakdown 



Read Mapping

◼ Map many short DNA fragments (reads) to a known 
reference genome with some differences allowed

24

Reference genome

Reads
DNA, logicallyDNA, physically

Mapping short reads to reference genome is 
challenging (billions of 50-300 base pair reads)



Challenges in Read Mapping
◼ Need to find many mappings of each read

❑ A short read may map to many locations, especially with High-
Throughput DNA Sequencing technologies

❑ How can we find all mappings efficiently?

◼ Need to tolerate small variances/errors in each read

❑ Each individual is different: Subject’s DNA may slightly differ from 
the reference (Mismatches, insertions, deletions)

❑ How can we efficiently map each read with up to e errors present?

◼ Need to map each read very fast (i.e., performance is important)

❑ Human DNA is 3.2 billion base pairs long → Millions to billions of 
reads (State-of-the-art mappers take weeks to map a human’s DNA)

❑ How can we design a much higher performance read mapper?

25



Read Alignment/Verification

◼ Edit distance is defined as the minimum number of edits 
(i.e. insertions, deletions, or substitutions) needed to make 

the read exactly match the reference segment.

N E - T H E R L A N D S

S W I T Z E R L A N D -

NETHERLANDS x SWITZERLAND

match

deletion

insertion

mismatch



Why Is Read Alignment Slow?

◼ Quadratic-time dynamic-
programming algorithm(s)

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Read Alignment

        CCTATAATACG
C

C
A

T
A
T
A
T
A
C
G

etc

etc
◼ Data dependencies limit the 

computation parallelism

◼ Entire matrix computed even 
though strings may be 

dissimilar.



N E T H E R L A N D S

0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10

W 2 2 2 3 4 5 6 7 8 9 10 11

I 3 3 3 3 4 5 6 7 8 9 10 11

T 4 4 4 3 4 5 6 7 8 9 10 11

Z 5 5 5 4 4 5 6 7 8 9 10 11

E 6 6 5 5 5 4 5 6 7 8 9 10

R 7 7 6 6 6 5 4 5 6 7 8 9

L 8 8 7 7 7 6 5 4 5 6 7 8

A 9 9 8 8 8 7 6 5 4 5 6 7

N 10 9 9 9 9 8 7 6 5 4 5 6

D 11 10 10 10 10 9 8 7 6 5 4 5

Example: Dynamic Programming Table

NETHERLANDS x SWITZERLAND

immediate left, 
upper left,
upper entries of its own



N E T H E R L A N D S

0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10

W 2 2 2 3 4 5 6 7 8 9 10 11

I 3 3 3 3 4 5 6 7 8 9 10 11

T 4 4 4 3 4 5 6 7 8 9 10 11

Z 5 5 5 4 4 5 6 7 8 9 10 11

E 6 6 5 5 5 4 5 6 7 8 9 10

R 7 7 6 6 6 5 4 5 6 7 8 9

L 8 8 7 7 7 6 5 4 5 6 7 8

A 9 9 8 8 8 7 6 5 4 5 6 7

N 10 9 9 9 9 8 7 6 5 4 5 6

D 11 10 10 10 10 9 8 7 6 5 4 5

Example: Dynamic Programming Table

• Matrix-filling is O(mn) time and space.
• Backtrace is O(m + n) time.

NETHERLANDS x SWITZERLAND



N E T H E R L A N D S

0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10

W 2 2 2 3 4 5 6 7 8 9 10 11

I 3 3 3 3 4 5 6 7 8 9 10 11

T 4 4 4 3 4 5 6 7 8 9 10 11

Z 5 5 5 4 4 5 6 7 8 9 10 11

E 6 6 5 5 5 4 5 6 7 8 9 10

R 7 7 6 6 6 5 4 5 6 7 8 9

L 8 8 7 7 7 6 5 4 5 6 7 8

A 9 9 8 8 8 7 6 5 4 5 6 7

N 10 9 9 9 9 8 7 6 5 4 5 6

D 11 10 10 10 10 9 8 7 6 5 4 5

Example: Dynamic Programming

◼ Quadratic-time dynamic-
programming algorithm

etc

etc

◼ Data dependencies limit the 
computation parallelism

◼ Entire matrix is computed 
even though strings can be 

dissimilar.

WHY?!

NETHERLANDS x SWITZERLAND

NETHERLANDS x S

NETHERLANDS x SW
NETHERLANDS x SWI

NETERLANDS x SWIT

NETHERLANDS x SWITZ
NETHERLANDS x SWITZE

NETHERLANDS x SWITZER
NETHERLANDS x SWITZERL

NETHERLANDS x SWITZERLA

NETHERLANDS x SWITZERLAN
NETHERLANDS x SWITZERLAND 



Agenda

◼ The Problem: DNA Read Mapping

❑ State-of-the-art Read Mapper Design

◼ Algorithmic Acceleration 

❑ Exploiting Structure of the Genome

❑ Exploiting SIMD Instructions

◼ Hardware Acceleration

❑ Specialized Architectures

❑ Processing in Memory

◼ Future Opportunities: New Sequencing Technologies

31



Read Mapping Algorithms: Two Styles

◼ Hash based seed-and-extend (hash table, suffix array, suffix tree)

❑ Index the “k-mers” in the genome into a hash table (pre-processing)

❑ When searching a read, find the location of a k-mer in the read; then 
extend through alignment

❑ More sensitive (can find all mapping locations), but slow

❑ Requires large memory; this can be reduced with cost to run time

◼ Burrows-Wheeler Transform & Ferragina-Manzini Index based 
aligners

❑ BWT is a compression method used to compress the genome index

❑ Perfect matches can be found very quickly, memory lookup costs 
increase for imperfect matches

❑ Reduced sensitivity



Hash Table Based Read Mappers

◼ Key Idea

❑ Preprocess the reference into a Hash Table

❑ Use Hash Table to map reads

33



Hash Table-Based Mappers [Alkan+ Nature Gen’09]

34

12 324 577 940AAAAAAAAAAAA

AAAAAAAAAAAC

AAAAAAAAAAAT

13 421 412 765 889

......

CCCCCCCCCCCC

......

24 459 744 988 989

......

......

TTTTTTTTTTTT 36 535 123

NULL

Reference genome

k-mer or 12-mer
(string of length k)

Location list—where the k-mer
occurs in reference gnome

Once for a reference



Hash Table Based Read Mappers

◼ Key Idea

❑ Preprocess the reference into a Hash Table

❑ Use Hash Table to map reads

35



12

Hash Table-Based Mappers [Alkan+ Nature Gen’09]

12 324 557 940

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT

CCCCCCCCCCCCTTTTTTTTTTTT

Reference 
GenomeHash Table 

(HT)

read
k-mers

AAAAAAAAAAAA

CCCCCCCCCCCC

TTTTTTTTTTTT

24 459 744 988 989

36 535 823

…AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT…

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT

AAAAAAAAAAAA

324

..  AAAAAAAAAAAAAACGCTTCCACCTTAATCTGGTTG..

read

***

..****************************************..
Invalid 

mapping

36

Valid 
mapping

✔
Verification/Local Alignment



Advantages of Hash Table Based Mappers

◼ + Guaranteed to find all mappings → very sensitive

◼ + Can tolerate up to e errors

37

http://mrfast.sourceforge.net/

Alkan+, "Personalized copy number and segmental duplication 
maps using next-generation sequencing”, Nature Genetics 2009.

http://mrfast.sourceforge.net/
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html


Problem and Goal

◼ Poor performance of existing read mappers: Very slow 

❑ Verification/alignment takes too long to execute

❑ Verification requires a memory access for reference genome + 
many base-pair-wise comparisons between the reference and 
the read (edit distance computation)

◼ Goal: Speed up the mapper by reducing the cost of 

verification

38

0 5000 10000 15000 20000

Execution
time (s)

Verification

Other

95%



Overarching Key Idea

Filter fast before you align

Minimize costly 

edit distance computations

39



Agenda

◼ The Problem: DNA Read Mapping

❑ State-of-the-art Read Mapper Design

◼ Algorithmic Acceleration 

❑ Exploiting Structure of the Genome

❑ Exploiting SIMD Instructions

◼ Hardware Acceleration

❑ Specialized Architectures

❑ Processing in Memory

◼ Future Opportunities: New Sequencing Technologies

40



Reducing the Cost of Verification

◼ We observe that most verification (edit distance 
computation) calculations are unnecessary

❑ 1 out of 1000 potential locations passes the verification 
process

◼ We observe that we can get rid of unnecessary verification 
calculations by

❑ Detecting and rejecting early invalid mappings (filtering)

❑ Reducing the number of potential mappings to examine

41



Key Observations [Xin+, BMC Genomics 2013]

◼ Observation 1

❑ Adjacent k-mers in the read should also be adjacent in the 
reference genome

❑ Read mapper can quickly reject mappings that do not satisfy 
this property

◼ Observation 2

❑ Some k-mers are cheaper to verify than others because they 
have shorter location lists (they occur less frequently in the 
reference genome)

◼ Mapper needs to examine only e+1 k-mers’ locations to tolerate e
errors

❑ Read mapper can choose the cheapest e+1 k-mers and verify 
their locations

42



FastHASH Mechanisms [Xin+, BMC Genomics 2013]

◼ Adjacency Filtering (AF): Rejects obviously invalid 
mapping locations at early stage to avoid unnecessary 

verifications

◼ Cheap K-mer Selection (CKS): Reduces the absolute 
number of potential mapping locations to verify

43



Adjacency Filtering (AF)

◼ Goal: detect and filter out invalid mappings at early stage

◼ Key Insight: For a valid mapping, adjacent k-mers in the 
read are also adjacent in the reference genome

◼ Key Idea: search for adjacent locations in the k-mers’ 
location lists

❑ If more than e k-mers fail → there must be more than e 

errors → invalid mapping

44

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT read

Reference genome
Valid mapping Invalid mapping



12

Adjacency Filtering (AF)

12 324 557 940

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT

CCCCCCCCCCCCTTTTTTTTTTTT

Reference 
GenomeHash Table 

(HT)

read

k-mers

AAAAAAAAAAAA

CCCCCCCCCCCC

TTTTTTTTTTTT

24 459 744 988 989

36 535 123

…AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT…

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT

AAAAAAAAAAAA

324

24?36?336?

***

+12 +24

557

569?

940

952?

✗

45



◼ Adjacency Filtering (AF): Rejects obviously invalid 
mapping locations at early stage to avoid unnecessary 

verifications

◼ Cheap K-mer Selection (CKS): Reduces the absolute 
number of potential mapping locations to verify

46

FastHASH Mechanisms [Xin+, BMC Genomics 2013]



Cheap K-mer Selection (CKS)

◼ Goal: Reduce the number of potential mappings to examine

◼ Key insight:

❑ K-mers have different cost to examine: Some k-mers are 
cheaper as they have fewer locations than others (occur less 
frequently in reference genome)

◼ Key idea:

❑ Sort the k-mers based on their number of locations

❑ Select the k-mers with the fewest number locations to verify

47



Cheap K-mer Selection

◼ e=2 (examine 3 k-mers)

48

AAGCTCAATTTC CCTCCTTAATTT TCCTCTTAAGAA GGGTATGGCTAG AAGGTTGAGAGC CTTAGGCTTACC

read

314

1231

4414

9219

4 loc.

338

…

…

…

…

1K loc.

376

…

…

…

…

2K loc.

326

1451

2 loc.

326

1451

2 loc.

388

…

…

…

…

1K loc.

Previous work needs 
to verify:

3004 locations

FastHASH verifies only:

8 locations

Locations

Number of Locations

Cheapest 3 k-mersExpensive 3 k-mers



Methodology
◼ Implemented FastHASH on top of state-of-the-art mapper: mrFAST

❑ New version mrFAST-2.5.0.0 over mrFAST-2.1.0.6

◼ Tested with real read sets generated from Illumina platform

❑ 1M reads of a human (160 base pairs)

❑ 500K reads of a chimpanzee (101 base pairs)

❑ 500K reads of a orangutan (70 base pairs)

◼ Tested with simulated reads generated from reference genome

❑ 1M simulated reads of human (180 base pairs)

◼ Evaluation system

❑ Intel Core i7 Sandy Bridge machine

❑ 16 GB of main memory

49



FastHASH Speedup: Entire Read Mapper

50

orangutan

simulated 

human

chimpanzee19x

With FastHASH, new mrFAST obtains up to 19x speedup 
over previous version, without losing valid mappings



Analysis

◼ Reduction of potential mappings with FastHASH

51

99%
99%

99% 99% 99%

e=1 e=2 e=3 e=4 e=5

Number of potential mappings
Number of potential mappings with FastHASH

Number of valid mappings

Reduction of potential mappings with FastHASH

#
 o

f 
p

o
te

n
ti
a
l 
m

a
p

p
in

g
s
 (

L
o
g

1
0
 S

c
a
le

)

4
6

8
1

0
1
2

1
4

FastHASH filters out over 99% of the potential 
mappings without sacrificing any valid mappings



FastHASH Conclusion

◼ Problem: Existing read mappers perform poorly in mapping 
millions of short reads to the reference genome, in the 

presence of errors

◼ Observation: Most of the verification calculations are 
unnecessary → filter them out

◼ Key Idea: Exploit the structure of the genome to

❑ Reject invalid mappings early (Adjacency Filtering)

❑ Reduce the number of possible mappings to examine (Cheap 

K-mer Selection)

◼ Key Result: FastHASH obtains up to 19x speedup over the 
state-of-the-art mapper without losing valid mappings

52



More on FastHASH

◼ Download source code and try for yourself

❑ Download link to FastHASH

53Xin+, "Accelerating Read Mapping with FastHASH", BMC Genomics 2018.

http://mrfast.sourceforge.net/
http://www.biomedcentral.com/1471-2164/14/S1/S13/


Agenda

◼ The Problem: DNA Read Mapping

❑ State-of-the-art Read Mapper Design

◼ Algorithmic Acceleration 

❑ Exploiting Structure of the Genome

❑ Exploiting SIMD Instructions

◼ Hardware Acceleration

❑ Specialized Architectures

❑ Processing in Memory

◼ Future Opportunities: New Sequencing Technologies

54



An Example: Shifted Hamming Distance

55

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter 
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

http://bioinformatics.oxfordjournals.org/content/early/2015/01/10/bioinformatics.btu856.abstract?keytype=ref&ijkey=iQ4UOCzdu7rxIAr
http://bioinformatics.oxfordjournals.org/content/early/2015/01/10/bioinformatics.btu856.abstract?keytype=ref&ijkey=iQ4UOCzdu7rxIAr
https://github.com/CMU-SAFARI/Shifted-Hamming-Distance


Shifted Hamming Distance
◼ Key observation:

❑ If two strings differ by E edits, then every bp match can be 
aligned in at most 2E shifts (of one of the strings).

◼ Insight: Shifting a string by one “corrects” for one “error” 

◼ Key idea:

❑ Compute “Shifted Hamming Distance”: AND of 2E Hamming 
Distances of two strings, to filter out invalid mappings 

◼ Uses bit-parallel operations that nicely map to SIMD instructions

◼ Key result:

❑ SHD is 3x faster than SeqAn (the best implementation of Gene 
Myers’ bit-vector algorithm), with only a 7% false positive rate

❑ The fastest CPU-based filtering (pre-alignment) mechanism

56



Hamming Distance (σ⊕)

57

I S T A N B U L

I S T A N B U L

8 matches 0 mismatches3 matches 5 mismatches

To cancel the effect of a 
deletion, we need to shift in 
the right direction

Edit = 1 Deletion



Insight: Shifting a String Helps Similarity Search

58

I S T A N B U L

I S T N B U L

3 matches      5 mismatches

To cancel the effect of the 
deletion, we need to shift in 
the right direction



Insight: Shifting a String Helps Similarity Search

59

I S T A N B U L

I S T N B U L

7 matches      1 mismatches

I S T N B U L



Shifted Hamming Distance

60

7 matches 1 mismatches

I S T N B UI S T N B U L

1 1 1 0 0 0 0

0 0 0 1 1 1

XOR

XOR
AND

Edit = 1 Deletion

I S T A N B U L

L1



Highly Parallel Matrix Computation

61

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A

T
A
T
A
C

G

We need to compute 2E+1 
vectors, E=edit distance 
threshold

dp[i][j]= 0 if X[i]=Y[j]
1 if X[i]≠Y[j]

No data dependencies!

2 Deletion Hamming masks

2 Insertion Hamming 
masks

Reference

Q
u
e
ry



Key Idea of SHD Filtering

62

Generate 2E+1 
masks

Amend random zeros: 
101 → 111 &  1001 → 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 

0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 

0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 

0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 

0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 

0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

Query : 

Reference :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 

0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 

0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 

0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 

0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 

0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

--- Masks after amendment ---

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000AND Mask :

 Alignment :
Needleman-Wunsch



Alignment vs. Pre-alignment (Filtering)

63

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G

C
A

T
A

T
A
T
A
C

G

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A

T
A
T
A
C

G

|dp[i][j-1] // Inser.
dp[i][j]=1+max|dp[i-1][j]  // Del.

|dp[i-1][j-1]// Subs.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch SHD

Independent vectors can be processed in parallel using 
hardware technologies

DRAM Layers

Logic Layer



New Bottleneck: Filtering (Pre-Alignment) 

Sequencing generates many reads, each of which 
potentially mapping to many locations

→

Filtering (Pre-alignment) eliminates the need to verify/align 

read to invalid mapping locations

→

Alignment/verification (costly edit distance computation) is 
performed only on reads that pass the filter

◼ New bottleneck in read mapping becomes the “filtering 
(pre-alignment)” step

64



Agenda

◼ The Problem: DNA Read Mapping

❑ State-of-the-art Read Mapper Design

◼ Algorithmic Acceleration 

❑ Exploiting Structure of the Genome

❑ Exploiting SIMD Instructions

◼ Hardware Acceleration

❑ Specialized Architectures

❑ Processing in Memory

◼ Future Opportunities: New Sequencing Technologies

65



Location Filtering

◼ Alignment is expensive

❑ We need to align millions to billions of reads 

◼ Modern read mappers reduce the time spent on alignment 
for increased performance. Can be done in two ways:

1. Optimize the algorithm for alignment

2. Reduce the number of alignments necessary by filtering
out mismatches quickly 

◼ Both methods are used by mappers today, but filtering has 

replaced alignment as the bottleneck [Xin+, BMC Genomics 2013]

66

Our goal is to accelerate read mapping
by improving the filtering step 



Ideal Filtering Algorithm 

67

Minimal False 
Accept Rate

Zero False 
Reject Rate

Maximal True 
Reject Rate

Faster Than 
Mapper

Filter out all 
incorrect mappings

Do not filter out any 
correct mappings



Alignment vs. Pre-alignment (Filtering)

68

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G

C
A

T
A

T
A
T
A
C

G

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A

T
A
T
A
C

G

|dp[i][j-1] // Inser.
dp[i][j]=1+max|dp[i-1][j]  // Del.

|dp[i-1][j-1]// Subs.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch SHD

Independent vectors can be processed in parallel using 
hardware technologies

DRAM Layers

Logic Layer



69

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G

C

C
A

T
A

T
A
T
A
C

G

High throughput DNA 
sequencing (HTS) technologies 

Read Pre-Alignment Filtering 
Fast & Low False Positive Rate

1 2
Read Alignment
Slow & Zero False Positives

3

Billions of Short Reads

Hardware Acceleratorx1012

mappings
x103

mappings

Low Speed & High Accuracy

Medium Speed, Medium Accuracy

High Speed, Low Accuracy

Our Solution: GateKeeper

Alignment 
Filter

st

1
FPGA-based 

Alignment Filter.



GateKeeper Walkthrough

70

Generate 2E+1 
masks

Amend random zeros: 
101 → 111 &  1001 → 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 

0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 

0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 

0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 

0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 

0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 

0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 

0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 

0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 

0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 

0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000

--- Masks after amendment ---

Query : 

Reference :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch



AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 

0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 

0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 

0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 

0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 

0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 

0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 

0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 

0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 

0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 

0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000

--- Masks after amendment ---

Query : 

Reference :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch

GateKeeper Walkthrough (cont’d)

71

Generate 2E+1 
masks

Amend random zeros: 
101 → 111 &  1001 → 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

• (2E+1)*(ReadLength) 5-input LUT. 

0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0

Hamming mask

0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0
Hamming mask after amending

. . . . . . . . . .

5-input

LUT

• E right-shift registers (length=ReadLength)
• E left-shift registers (length=ReadLength)
• (2E+1) * (ReadLength) 2-XOR operations.

• (2E)*(ReadLength) 2-AND 
operations.

• (ReadLength/4) 5-input LUT.
• 𝑙𝑜𝑔2ReadLength-bit counter.



GateKeeper Accelerator Architecture

◼ Maximum data throughput =~13.3 billion bases/sec

◼ Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

◼ Occupies 50% (100 bp) to 91% (300 bp) of the FPGA slice LUTs and registers

72

Preprocessing Host (CPU)

input reads 

(.fastq)

reference 

genome (.fasta)

Read 

Encoder

read pairs 
(mrFAST 

output)

GateKeeper 

Processing 

Core #1

GateKeeper 

Processing 

Core #N. . .  .

. . .  .

Read Controller

Mapping Controller
FIFO

FIFO FIFO

FIFO

read#1 read#N

map.#Nmap.#1

map.#Nmap.#1 …

Accepted Alignments

(correct & false positives)

10...001

Alignment Filtering (FPGA) Alignment Verification 

(CPU/FPGA)
GateKeeper

PCIe

PCIe

Input stream 

of binary pairs 

GateKeeper

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G

C

C

A

T

A

T

A

T

A

C

G

A



GateKeeper vs. SHD

◼ FPGA (Xilinx VC709)

◼ Multi-core (parallel)

◼ Examines a single 
mapping @ 125 MHz

◼ Limited to PCIe Gen3(4x) 
transfer rate (128 bits @ 
250MHz)

◼ Amending requires:

❑ (2E+1) 5-input LUT. 

◼ Intel SIMD

◼ Single-core (sequential)

◼ Examines a single 
mapping @ ~2MHz

◼ Limited to a read length 
of 128 bp (SSE register 
size)

◼ Amending requires:

❑ 4(2E+1) bitwise OR.

❑ 4(2E+1) packed shuffle.

❑ 3(2E+1) shift.

73

GateKeeper SHD



GateKeeper: Speed & Accuracy Results

74

90x-130x faster filter 
than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate
than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping
with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online 
github.com/BilkentCompGen/GateKeeper

https://github.com/BilkentCompGen/GateKeeper


Conclusions

◼ FPGA-based pre-alignment greatly speeds up read mapping

❑ 10x speedup of a state-of-the-art mapper (mrFAST)

◼ FPGA-based pre-alignment can be integrated with the 

sequencer

❑ It can help to hide the complexity and details of the FPGA

❑ Enables real-time filtering while sequencing

75



More on GateKeeper

◼ Download and test for yourself 
https://github.com/BilkentCompGen/GateKeeper

76

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating 
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

https://github.com/BilkentCompGen/GateKeeper
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf


MAGNET (AACBB 2018, TIR 2017)

◼ Key observation: the use of AND operation to check if a zero 
(match) exists in a column introduces filtering inaccuracy.

◼ Key Idea: count the consecutive zeros in each mask and 

select the longest in a divide-and-conquer approach.

◼ MAGNET is 17x to 105x more accurate than GateKeeper 
and SHD. 

77

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Query : 

Reference :

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000000111111011110001110110101101111111110001000001111011010010101 

0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 

0000000000000010111111111110111011001100110111011000100100111111111111100101100110010110111011101111 

0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 

0000000000001000000000100111110011111110100100011010101001101011111111111110111001111111000111101100 

0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

0000000000000000000000000010000000000001000000000000000000000000000000000000000000011000000000000000Final bit-vector :

Needleman-Wunsch 

Alignment:

12 34



MAGNET Walkthrough

78

Build Neighborhood Map
Track the Diagonally Consecutive 

Matches
ACCEPT iff number of ‘1’ ≤ Threshold

Read : TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA 

Reference : TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAATTACCGTTTT

Upper Diagonal-4 : ----110111111100111111110101100001010001011010011111101101100110110011010101011101111111101011000000

Upper Diagonal-3 : ---0110110101011111111111110111111111110010011110111111001000100100010011111110110111111000000110001

Upper Diagonal-2 : --00111101100101101110110000000000000000000000000000000000000000000000000000000000000000010111110011

Upper Diagonal-1 : -000111110111001001100011101111111111100100111101111110010001001000100111111101101111110111111110111

Main Diagonal : 0000000000000000000001110110000101000101101001111110110110011011001101010101110111111111101111111111

Lower Diagonal-1 : 000111110111001001101011010111111111011111011111101111111011111101111011111100001011010101101111111-

Lower Diagonal-2 : 00111101100101101111011111100100010101110011100111011011111111111111010101111011010101001100111111--

Lower Diagonal-3 : 0110110101011111111010110101111111011110111111111101101101111110111110111101111111111111110011111---

Lower Diagonal-4 : 110111111100111110110001111100000101110101100111110010100111110011100100111101011011111111000111----

MAGNET bit-vector : 0000000000000000000001010000000000000000000000000000000000000000000000000000000000000000010001000000

12 345

Exclude the errors from the search space

Divide the problem into two subproblems and repeat

Find the longest segment of consecutive zeros

"MAGNET: understanding and improving the accuracy of genome 

pre-alignment filtering", arXiv preprint 2017

https://arxiv.org/abs/1707.01631


MAGNET Accelerator

79

S
h

o
rt

 R
e

a
d

s
 R

e
p

o
s

it
o

ry

. . .

FPGA Board

P
C

Ie

Host

. . .

. . .

MAGNET 

# 3

MAGNET 

# 2

MAGNET 

# 6

MAGNET 

# 5

MAGNET 

# 4

MAGNET 

# 9

MAGNET 

# 8

MAGNET 

# 7

MAGNET 

# N

MAGNET 

# N-1

MAGNET 

# N-2

Read Controller

Mapping Controller

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

R
IF

F
A

 R
X

 E
n

g
in

e
R

IF
F

A
 T

X
 E

n
g

in
e

R
IF

F
A

 D
ri

v
e

r

BSD

3 filtering 
stages

MAGNET # 1

LME

RLEE



Agenda

◼ The Problem: DNA Read Mapping

❑ State-of-the-art Read Mapper Design

◼ Algorithmic Acceleration 

❑ Exploiting Structure of the Genome

❑ Exploiting SIMD Instructions

◼ Hardware Acceleration

❑ Specialized Architectures

❑ Processing in Memory

◼ Future Opportunities: New Sequencing Technologies

80



Read Mapping & Filtering

◼ Problem: Heavily bottlenecked by Data Movement

◼ GateKeeper performance limited by DRAM bandwidth 
[Alser+, Bioinformatics 2017]

◼ Ditto for SHD [Xin+, Bioinformatics 2015]

◼ Solution: Processing-in-memory can alleviate the bottleneck

◼ However, we need to design mapping & filtering algorithms 
to fit processing-in-memory

81



Filter

8943715641401203

1564

894 1203

37 140

Hash Table Based Read Mapping

6

Hash Table

Read Sequence

Hash Tables in Read Mapping

82

Hash Table

Read Sequence (100 bp)

✔

Reference Genome

37 140
894 1203 

1564

Aligning .. .Match! Aligning .. .Mismatch

✘
✘
✘

False 
Negative

✘



Read Mapping & Filtering in Memory

We need to design 

mapping & filtering algorithms 

that fit processing-in-memory

83



Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

84



GRIM-Filter: Bins

85

◼ We partition the genome into large sequences (bins). 

… GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC …

Bin x - 3

Bin x - 2

Bin x - 1

Bin x

1
0
1
…
1
0
0
…
1

Bitvector

AAAAA
AAAAC
AAAAT

…
CCCCC

CCCCT
CCCCG

…
GGGGG

AAAAA
exists in 
bin x

CCCCT
doesn’t 
exist in 
bin x

❑ Represent each bin with a bitvector
that holds the occurrence of all 
permutations of a small string (token) in 
the bin

❑ To account for matches that straddle 
bins, we employ overlapping bins

◼ A read will now always completely fall within 

a single bin



GRIM-Filter: Bitvectors

86

… C     G     T     G     A     G     T     C …

Bin x

0
…

…

…

…

…

B
in

 x
 B

it
v

e
c
to

r
AAAAA

…

CGTGA
…

TGAGT
…

GAGTC

…
GTGAG

…

C     G     T     G     AG     T     G     A     GT     G     A     G     TG     A     G     T     C

10

0

0

0

1

1

1



GRIM-Filter: Bitvectors

87

Storing all bitvectors
requires 4𝑛 ∗ 𝑡 bits
in memory, 
where t = number 
of bins.

For bin size ~200, 
and n = 5, 
memory footprint
~3.8 GB 

Reference
Genome

AAAAA
AAAAC

AAAAG

AAAAT

.

CCCCT
.

.

.

.

GCATG
.

TTGCA

.

TTTTT

1
1

0

0

.

1
.

.

.

.

1
.

1

.

0

0
1

0

.

1

.
1

.

1

.

1
.

.

.

0

AAAAA
AAAAC

AAAAG

.

AGAAA

.
GAAAA

.

GACAG

.

GCATG
.

.

.

TTTTT

� � � �

b1 b2

b2:	bitvector
for	bin2

1
0

0

0

1

1
1

.

.

.

.
1

1

1

0

0
0

1

0

1

0
1

.

.

.

.
0

1

1

0

1
0

1

1

1

1
1

.

.

.

.
1

0

0

0

AAAAA
AAAAC

AAAAG

AAAAT

AAACA

AAACC
AAACG

.

.

.

.
TTTTA

TTTTC

TTTTG

TTTTT

*	t	=	number	of	bins

bt-2 bt-1	bt *

L
e
n
g
th
	=
	4
5

GACAG
exists	in	
2nd bin

TTTTT	
doesn’t	
exist	in	
2nd bin

bin2

bin3

AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA

bin1

tokens

(a)

(b)

���

bin4

AAAAA

AAAAC
AAAAG
AAAAT

.
CCCCT

.

.

.

.
GCATG

.
TTGCA

.

TTTTT

1

1
0
0

.
1

.

.

.

.
1

.
1
.

0

0

1
0
.

1
.

1
.
1

.
1

.

.

.

0

AAAAA

AAAAC
AAAAG

.

AGAAA
.

GAAAA
.

GACAG

.
GCATG

.

.

.

TTTTT

  

b1 b2

tokens



Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

88



TTGGAGAACTAACTTACTTGCTTGG

INPUT: Read Sequence r

GAACTTGGAGTCTA     CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens

Discard

NO YES

Sum

GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential 
match locations in a given bin prior to alignment

3

2

4 5

1

0

1

0

1

1 

1

0

0

...

...

Get tokens

Match tokens to bitvector

Compare



Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

90



Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

91



Integrating GRIM-Filter into a Read Mapper

GRIM-Filter:
Seed Location Checker

0 0 0 1 0 1 0     0 1 1 0 1 0... ......

GAACTTGCGAG GTATT ...
INPUT: Read Sequence

GRIM-Filter:
Filter Bitmask Generator

Seed Location Filter Bitmask

0 0 0 1 0 1 0     0 1 1 0 1 0... ......

020128 020131 414415... ... ... ...

KEEP

x

DISCARD

KEEP

INPUT: All Potential Seed Locations

Read Mapper:
Sequence Alignment

Reference Segment Storage

Edit-Distance Calculation

reference 
segment

@ 020131

reference 
segment

@ 414415
. . .

OUTPUT: Correct Mappings

1

2

4

3



Key Properties of GRIM-Filter

1. Simple Operations:

❑ To check a given bin, find the sum of all bits corresponding to 
each token in the read

❑ Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently 
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large 
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter                 

a good algorithm to be run in 3D-Stacked DRAM
93



Opportunity: 3D-Stacked Logic+Memory

94

Logic

Memory

Other “True 3D” technologies
under development



DRAM Landscape (circa 2015)

95

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.



3D-Stacked Memory

◼ 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer

❑ Logic Layer enables Processing-in-Memory, via high-
bandwidth low-latency access to DRAM layers

❑ Embed GRIM-Filter operations into DRAM logic layer and 
appropriately distribute bitvectors throughout memory

96

DRAM Layers

Logic Layer

TSVs



DRAM	Layers

Logic	Layer

TSVs

Bank

Vault

3D-Stacked Memory

◼ 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer

❑ Logic Layer enables Processing in Memory, offloading 
computation to this layer and alleviating the memory bus

❑ Embed GRIM-Filter operations into DRAM logic layer and 
appropriately distribute bitvectors throughout memory

97

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to -C reate-Next-Gen-Hy brid-Memory -2.png



DRAM	Layers

Logic	Layer

TSVs

Bank

Vault

3D-Stacked Memory

◼ 3D-stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer

❑ Logic Layer enables Processing in Memory, offloading 
computation to this layer and alleviating the memory bus

❑ Embed GRIM-Filter operations into DRAM logic layer and 
appropriately distribute bitvectors throughout memory

98
http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to -C reate-Next-Gen-Hy brid-Memory -2.png

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg



GRIM-Filter in 3D-Stacked DRAM

◼ Each DRAM layer is organized as an array of banks

❑ A bank is an array of cells with a row buffer to transfer data

◼ The layout of bitvectors in a bank enables filtering many 

bins in parallel
99

DRAM	Layers

Logic	Layer

TSVs

Bank

Row	Buffer

Bank

Row	0:	AAAAA
Row	1:	AAAAC
Row	2:	AAAAG

.

.

.
Row	R–1:	TTTTT

.	.	.

Vault

...

DRAM	Layers

Logic	Layer

TSVs

Bank

B
it
ve
ct
o
r
fo
r	
bi
n	
0

B
it
ve
ct
o
r
fo
r	
bi
n	
1

B
it
ve
ct
o
r
fo
r	
bi
n	
2

B
it
ve
ct
o
r
fo
r	
b
in
	t
–
1

Row	Buffer

Bank

Row	0:	AAAAA
Row	1:	AAAAC
Row	2:	AAAAG

.

.

.
Row	R–1:	TTTTT

.	.	.

Vault



GRIM-Filter in 3D-Stacked DRAM

◼ Customized logic for accumulation and comparison 
per genome segment

❑ Low area overhead, simple implementation

❑ For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and 
comparators in logic layer

100

DRAM	Layers

Logic	Layer

TSVs

Bank

Seed	Location	Filter	Bitmask

Row	Data	Register

In
cr
.

A
cc
um

ul
at
or

C
om

pa
ra
to
r

Pe
r-
B
in
	

Lo
gi
c	
M
od
ul
e

.		.		..		.		

Per-Vault
Custom	GRIM-Filter	Logic

Vault

Details are in [Kim+, BMC Genomics 2018]



Methodology
◼ Performance simulated using an in-house 3D-Stacked DRAM 

simulator

◼ Evaluate 10 real read data sets (From the 1000 Genomes 

Project)

❑ Each data set consists of 4 million reads of length 100

◼ Evaluate two key metrics

❑ Performance

❑ False negative rate

▪ The fraction of locations that pass the filter but result in a mismatch

▪ Compare against a state-of-the-art filter, FastHASH [Xin+, BMC 

Genomics 2013] when using mrFAST, but GRIM-Filter can be 
used with ANY read mapper

101



GRIM-Filter Performance

102

2.1x average performance benefit

1.8x-3.7x performance benefit across real data sets

0
10
20
30
40
50
60
70

e = 0.05

Sequence Alignment

Error Tolerance (e)

T
im

e
 (
×

1
0
0
0
 s

e
co

n
d
s)

FastHASH filter GRIM-Filter

Benchmarks and their Execution Times

GRIM-Filter gets performance due to its hardware-software co-design



GRIM-Filter False Negative Rate

103

6.0x average reduction in False Negative Rate

5.6x-6.4x False Negative reduction across real data sets

F
a

ls
e

 N
e

g
a

ti
v

e
 R

a
te

e = 0.05

FastHASH filter GRIM-Filter

0.0

0.1

0.2

0.3

0.4

0.5

0
1
2
3
4
5

0
1
2
3
4
5

0
1

2
3
4
5

0

5

10

15

0
5

10
15
20
25
30

0

20

40

60

Ex
ec
u
ti
o
n
	T
im
e	
(×
10
00
	s
ec
on
ds
)

Sequence	Alignment
Error	Tolerance	(e)

e =	0.00

e =	0.01

e =	0.02

e =	0.03

e =	0.04

e =	0.05

mrFAST with	FastHASH GRIM-3D

Benchmarks and their False Negative Rates

Sequence Alignment

Error Tolerance (e)

GRIM-Filter utilizes more information available in the read to filter



More on GRIM-Filter

◼ Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

104

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Aside: In-Memory Graph Processing

105

◼ Large graphs are everywhere (circa 2015)

◼ Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup



Key Bottlenecks in Graph Processing

106

for (v: graph.vertices) {

for (w: v.successors) {

w.next_rank += weight * v.rank;

}

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…



Tesseract System for Graph Processing

Crossbar Network

…

…

…
…

D
R

A
M

 C
o

n
tro

ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Logic

Memory

Tesseract System for Graph Processing

108

Crossbar Network

…

…

…
…

D
R

A
M

 C
o

n
tro

ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls



Communications In Tesseract (I)

109



Communications In Tesseract (II)

110



Communications In Tesseract (III)

111



Remote Function Call (Non-Blocking)

112



Logic

Memory

Tesseract System for Graph Processing

113

Crossbar Network

…

…

…
…

D
R

A
M

 C
o

n
tro

ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching



Evaluated Systems

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

DDR3-OoO Tesseract

32 
Tesseract 

Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee

d
u

p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing Performance

116

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee

d
u

p

80GB/s 190GB/s 243GB/s

1.3TB/s

2.2TB/s

2.9TB/s

0

0.5

1

1.5

2

2.5

3

3.5

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

M
em

o
ry

 B
an

d
w

id
th

 (T
B

/s
)

Memory Bandwidth Consumption



Effect of Bandwidth & Programming Model

117

2.3x

3.0x

6.5x

0

1

2

3

4

5

6

7

HMC-MC HMC-MC +
PIM BW

Tesseract +
Conventional BW

Tesseract

Sp
ee

d
u

p

HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)



Tesseract Graph Processing System Energy

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]

119

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf


Agenda

◼ The Problem: DNA Read Mapping

❑ State-of-the-art Read Mapper Design

◼ Algorithmic Acceleration 

❑ Exploiting Structure of the Genome

❑ Exploiting SIMD Instructions

◼ Hardware Acceleration

❑ Specialized Architectures

❑ Processing in Memory

◼ Future Opportunities: New Sequencing Technologies

120



Recall: High-Throughput Sequencing

121

◼ Massively parallel sequencing technology
❑ Illumina, Roche 454, Ion Torrent, SOLID…

◼ Small DNA fragments are first amplified and then 

sequenced in parallel, leading to
❑ High throughput
❑ High speed
❑ Low cost 
❑ Short reads

◼ Amplification step limits the read length since too short or too long 
fragments are not amplified well.

◼ Sequencing is done by either reading optical signals as each base is 
added, or by detecting hydrogen ions instead of light, leading to:
❑ Low error rates (relatively)
❑ Reads lack information about their order and which part of genome 

they are originated from



Nanopore Sequencing Technology

122

◼ Nanopore sequencing is an emerging and a promising 
single-molecule DNA sequencing technology

◼ First nanopore sequencing device, MinION, made 
commercially available by Oxford Nanopore 
Technologies (ONT) in May 2014. 
❑ Inexpensive 

❑ Long read length (> 882K bp)
❑ Portable: Pocket-sized
❑ Produces data in real-time



Nanopore Sequencing Technology

123

◼ Nanopore sequencing is an emerging and a promising 
single-molecule DNA sequencing technology
❑ No amplification → Less limit on read length → Longer read length

◼ First nanopore sequencing device, MinION, made 
commercially available by Oxford Nanopore 
Technologies (ONT) in May 2014. 
❑ Inexpensive 

❑ Long read length (> 882K bp)
❑ Portable: Pocket-sized
❑ Produces data in real-time



Nanopore Sequencing

124

◼ Nanopore is a nano-scale hole
◼ In nanopore sequencers, an ionic current passes through the nanopores
◼ When the DNA strand passes through the nanopore, the sequencer 

measures the the change in current
◼ This change is used to identify the bases in the strand with the help of 

different electrochemical structures of the different bases



Advantages of Nanopore Sequencing

125

Nanopores: 

◼ Do not require any labeling of the DNA or nucleotide for 
detection during sequencing

◼ Rely on the electronic or chemical structure of the different 
nucleotides for identification 

◼ Allow sequencing very long reads, and 

◼ Provide portability, low cost, and high throughput. 



Challenges of Nanopore Sequencing

126

◼ One major drawback: high error rates 

◼ Nanopore sequence analysis tools have a critical role to:

❑ overcome high error rates 

❑ take better advantage of the technology 

◼ Faster tools are critically needed to: 
❑ Take better advantage of the real-time data production

capability of MinION
❑ Enable fast, real-time data analysis



Nanopore Genome Assembly Pipeline

127
Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 

Assembly” Briefings in Bioinformatics, 2018.



Nanopore Genome Assembly Tools (I)

128
Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 

Assembly” Briefings in Bioinformatics, 2018.



Nanopore Genome Assembly Tools (II)

129
Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 

Assembly” Briefings in Bioinformatics, 2018.



Nanopore Genome Assembly Tools (III)

130
Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 

Assembly”  to appear in Briefings in Bioinformatics, 2018.



More on Nanopore Sequencing & Tools

131

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

BiB arXiv

https://arxiv.org/pdf/1711.08774.pdf


Agenda

◼ The Problem: DNA Read Mapping

❑ State-of-the-art Read Mapper Design

◼ Algorithmic Acceleration 

❑ Exploiting Structure of the Genome

❑ Exploiting SIMD Instructions

◼ Hardware Acceleration

❑ Specialized Architectures

❑ Processing in Memory

◼ Future Opportunities: New Sequencing Technologies

132



Conclusion

◼ System design for bioinformatics is a critical problem

❑ It has large scientific, medical, societal, personal implications

◼ This talk is about accelerating a key step in bioinformatics: 

genome sequence analysis

❑ In particular, read mapping

◼ We covered various recent ideas to accelerate read mapping

❑ My personal journey since September 2006

◼ Many future opportunities exist

❑ Especially with new sequencing technologies

❑ Especially with new applications and use cases
133



Acknowledgments

◼ Can Alkan, Bilkent University

◼ Many students at ETH, CMU, Bilkent

❑ Mohammed Alser, Damla Senol Cali, Jeremie Kim, Hasan 
Hassan, Donghyuk Lee, Hongyi Xin, …

◼ Funders:

❑ NIH and Industrial Partners (Alibaba, AMD, Google, Facebook, 
HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, 
Qualcomm, Rambus, Samsung, Seagate, VMware)

◼ All papers, source code, and more are at:

❑ https://people.inf.ethz.ch/omutlu/projects.htm

134

https://people.inf.ethz.ch/omutlu/projects.htm


Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

16 February 2019

AACBB Keynote Talk

Accelerating Genome Analysis

A Primer on an Ongoing Journey

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

