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Overview

System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

This talk is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

Many bottlenecks exist in accessing and manipulating huge
amounts of genomic data during analysis

We will cover various recent ideas to accelerate read mapping
o My personal journey since September 2006
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What Is a2 Genome Made Of?

The chromosome is The genes consist of DNA

made up of genes \
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The Central Dogma of Molecular Biology
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DNA Under Electron Microscope

human chromosome #12

m, from HelLa’s cell
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DNA Sequencing

Goal:
o Find the complete sequence of A, C, G, T's in DNA.

Challenge:

o There is no machine that takes long DNA as an input, and gives
the complete sequence as output

o All sequencing machines chop DNA into pieces and identify
relatively small pieces (but not how they fit together)
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Untangling Yarn Balls & DNA Sequencing
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Genome Sequencers
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The Genomic Era

= 1990-2003: The Human Genome Project (HGP) provides a complete
and accurate sequence of all DNA base pairs that make up the
human genome and finds 20,000 to 25,000 human genes
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The Genomic Era (continued)

development of high-throughput
sequencing (HTS) technologies
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High-Throughput Sequencing (HTS)
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High-Throughput Sequencing (HTS)

The sequencer adds the molecule “T”
to all bases near the flow cell surface and

observes the chemical reaction via a CMOS sensor.
If a reaction happens then the base is "A”

Sequence

CATA GCTG'IT’I'ClTGlGTGAA
— . -"‘.
v‘[ ["-I AN

Glass flow cell surface

As a workaround, HTS technologies sequence random short DNA fragments (75-300
basepairs long) of copies of the original molecule.
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High-Throughput Sequencing

Massively parallel sequencing technology
o Illumina, Roche 454, Ion Torrent, SOLID...

Small DNA fragments are first amplified and then

sequenced in parallel, leading to
o High throughput

o High speed

o Low cost
a

Short reads
Amplification step limits the read length since too short or too long
fragments are not amplified well.

Sequencing is done by either reading optical signals as each base is

added, or by detecting hydrogen ions instead of light, leading to:

o Low error rates (relatively)

o Reads lack information about their order and which part of genome
they are originated from
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TATAATACG
0f1]2 ‘

Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

G TACGTA o |
AGCGTAGT AGTACGT Short Read ) ; Read

TTAGTACGTACGT
TACGTACTAAAGTACGT
. TACGTACTAGTACGT
TTTAAAACGTA

GTACTAGTACGT

GGGAGTACGTACGT

OOP—B—AB—OD

Reference Genome

!l Sequencing Genome Read Mapping n

Analysis
reference: TTTATCGCTTCCATGACGCAG
readl: ATCGCATCC
read2: TATCGCATC
read3: CATCCATGA
read4: CGCTTCCAT
read5: CCATGACGC
read6: TTCCATGAC

B Variant Calling Scientific Discoveryn



Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
ATACGTACTAGTACG

G ACGTA

ACGTACTAGTACG

AGTACGTACG

ACGTACTAAAGTACG
[ TACGTACTAGTACG
AAAACGTA

GTACTAGTACG

GGGAGTACGTACG

Reference Genome

Sequencing Read Mapping

67
lllumina HiSeq4000 4, ‘G, 11
C | G,qC

300 M

bases/min

2 M

bases/min

(0.6%)




The Read Mapping Bottleneck

ACGTACGTACGTACGT
CCCCCCTATATATACGTACTAGTACGT

NCGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

A\CGTACGCCCCTACGTA

TATATATACGTACTAGTACGT
"EGACTTTAGTACGTACGT

'TATATATACGTACTAAAGTACGT
" TATATATACGTACTAGTACGT

[CGTTTTTAAAACGTA
: '}GACGGGGAGTACGTACGT
" . ATATATACGTACTAAAGTACGT
[Ilumina HiSeq4000
3 OO Million lelhon
bases/minute bases/minute

150X slower
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Read Mapping Execution Time Breakdown

candidate alignment
locations (CAL)
4%

SAM printing
3%

Read Verification
93%

SAFARI



Read Mapping

= Map many short DNA fragments (reads) to a known
reference genome with some minor differences
allowed

Reference genome

19



Challenges in Read Mapping

Need to find many mappings of each read

o A short read may map to many locations, especially with High-
Throughput DNA Sequencing technologies

o How can we find all mappings efficiently?

Need to tolerate small variances/errors in each read

o Each individual is different: Subject’s DNA may slightly differ from
the reference (Mismatches, insertions, deletions)

o How can we efficiently map each read with up to e errors present?

Need to map each read very fast (i.e., performance is important)

o Human DNA is 3.2 billion base pairs long - Millions to billions of
reads (State-of-the-art mappers take weeks to map a human’s DNA)

o How can we design a much higher performance read mapper?

20



Read Alignment/Verification

Edit distance is defined as the minimum number of edits
(i.e. insertions, deletions, or substitutions) needed to make
the read exactly match the reference segment.

organization x operation organization x translation
Ref oIIrganization Ref organizlation
Read ation Read tr-an-slation
Ref oIIrganization Ref organ.ization
Read oIIr-a----tion Read tr-an.l-ation

match Ref organization

deletion Read tr-anslation

- insertion

mismatch
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Read Mapping Algorithms: Two Styles

Hash based seed-and-extend (hash table, suffix array, suffix tree)
o Index the “k-mers” in the genome into a hash table (pre-processing)

o When searching a read, find the location of a k-mer in the read; then
extend through alignment

o More sensitive, but slow
o Requires large memory; this can be reduced with cost to run time

Burrows-Wheeler Transform & Ferragina-Manzini Index based
aligners

o BWT is a compression method used to compress the genome index

o Perfect matches can be found very quickly, memory lookup costs
increase for imperfect matches

o Reduced sensitivity

SAFARI



Hash Table Based Read Mappers

= Key Idea
a Preprocess the reference into a Hash Table

a Use Hash Table to map reads

SAFARI
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Hash Table-Based Mappers [Alkan+ Nature Gen’09]

k-mer or 12-mer Location list—where the k-mer
(string of length k) occurs in reference gnome

_ SENEREACT Reference genorne

AAAAAAAAAAAC | 13 | 421 | 412 {765 1889
AAAAAAAAAAAT | NULL

CCCCCcccceecc 24 | 459 | 744 | 988 | 989

RERRRRRRRRR 36 | 535 | 123

Once for a reference
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Hash Table Based Read Mappers

= Key Idea
a Preprocess the reference into a Hash Table

o Use Hash Table to map reads

26



Hash Table-Based Mappers [lkan+ Nature Gen’09)

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTITIT &

3 read
Innnnrr'irid;éty [T & k-merS
.
Reference
(HT)

324 |557 |940 |

AAAAAAAAAAAA i = .
N Valid .

CCCCCCCCCCCC iz fso | 7aa [oss | om0 | mapping

I
(TTTTITTTTTT ENIZEE

Verification/Local Alignment read
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Advantages of Hash Table Based Mappers

= + Guaranteed to find a/ mappings = sensitive
= + Can tolerate up to eerrors

nature |
genetlcs http://mrfast.sourceforge.net/

Personalized copy number and segmental duplication
maps using next-generation sequencing

Can Alkan'?, Jeffrey M Kidd!, Tomas Marques-Bonet!%, Gozde Aksay', Francesca Antonaccil,

Fereydoun Hormozdiari?, Jacob O Kitzman', Carl Baker!, Maika Malig', Onur Mutlu’, S Cenk Sahinalp?,
Richard A Gibbs® & Evan E Eichler!?

Alkan+, "Personalized copy humber and segmental duplication ’8
maps using next-generation sequencing”, Nature Genetics 2009.



http://mrfast.sourceforge.net/
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html

Problem and Goal

= Poor performance of existing read mappers: Very slow
o Verification/alignment takes too long to execute

o Verification requires a memory access for reference genome +
many base-pair-wise comparisons between the reference and
the read (edit distance computation)

Execution u Verification
e (8] | 95% [
m Other
0 5000 10000 15000 20000

= Goal: Speed up the mapper by reducing the cost of
verification

29
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Reducing the Cost of Verification

= We observe that most verification (edit distance
computation) calculations are unnecessary

o 1 out of 1000 potential locations passes the verification
process

= We observe that we can get rid of unnecessary verification
calculations by

o Detecting and rejecting early invalid mappings (filtering)
o Reducing the number of potential mappings

31



Key Observations [Xin+, BMC Genomics 2013]

Observation 1

o Adjacent k-mers in the read should also be adjacent in the
reference genome

o Read mapper can quickly reject mappings that do not satisfy
this property

Observation 2

o Some k-mers are cheaper to verify than others because they
have shorter location lists (they occur less frequently in the
reference genome)

Mapper needs to examine only e+1 k-mers’ locations to tolerate e
errors

o Read mapper can choose the cheapest e+ k-mers and verify
their locations

32



FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Adjacency Filtering (AF): Rejects obviously invalid

mapping locations at early stage to avoid unnecessary
verifications

Cheap K-mer Selection (CKS): Reduces the absolute
number of potential mapping locations

33



Adjacency Filtering (AF)

Goal: detect and filter out invalid mappings at early stage

Key Insight: For a valid mapping, adjacent k-mers in the
read are also adjacent in the reference genome

WAL CC\CQCC_CC_CCC;UH [TTTT | read
- D = - fd_.

Valid mapping Invalid mapping ererence genome

Key Idea: search for adjacent locations in the k-mers’
location lists

a If more than e k-mers fail 2 there must be more than e
errors - invalid mapping

34



Adjacency Filtering (AF)

Wﬂ)ﬁe&eeee&mlmml «— read
‘ +24
Innnnrririd;éj\:u 1111 & k-mers
Reference
Hash Table Genome
(HT)
~o
AAAAAAAAAAAA 2 [P | 57 | 90 ) ,&'-\AAAAAAAAAACCCCCCCCCCCU [TTTTTTTTT]
CCCCCCCCCCCC 24 450 | 744 | 988 4 ‘989
MTTTTTTTTTT] —1— ARAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT
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FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Adjacency Filtering (AF): Rejects obviously invalid

mapping locations at early stage to avoid unnecessary
verifications

Cheap K-mer Selection (CKS): Reduces the absolute
number of potential mapping locations

36



Cheap K-mer Selection (CKS)

Goal: Reduce the number of potential mappings

Key insight:

o K-mers have different cost to examine: Some k-mers are
cheaper as they have fewer locations than others (occur less
frequently in reference genome)

Key idea:

o Sort the k-mers based on their number of locations
o Select the k-mers with fewest locations to verify

37



Cheap K-mer Selection

= e=2 (examine 3 k-mers) read
326 338 326 376 388
Cafions1 1451
2 loc. 2 loc.
Nﬂmber of Logatins—
1K loc. 2K loc. 1K loc.
Beapsst Bkanas
Previous work needs FastHASH verifies only:
to verify:
8 locations
3004 locations
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Methodology

Implemented FastHASH on top of state-of-the-art mapper: mrFAST
o New version mrFAST-2.5.0.0 over mrFAST-2.1.0.6

Tested with real read sets generated from Illumina platform
o 1M reads of a human (160 base pairs)

o 500K reads of a chimpanzee (101 base pairs)

o 500K reads of a orangutan (70 base pairs)

Tested with simulated reads generated from reference genome
o 1M simulated reads of human (180 base pairs)

Evaluation system
o Intel Core i7 Sandy Bridge machine
o 16 GB of main memory

39



FastHASH Speedup

Bl human

— 19x [ chimpanzee
[] orangutan
[1 simulated

20

speedup factor over mrFAST 2.1.0.6

e: edit distance 40



Analysis

Reduction of potential mappings with FastHASH

f potential mappings (Log10 Scale)

v
~-—

QV
—

10

©

B Number of potential mappings

0 Number of potential mappings with FastHASH

B Number of valid mappings

0
999 99%

1

— |

99%

99%

FastHASH filters out over 99% of the potential
mappings without sacrificing any valid mappings

Reduction of potential mappings with FastHASH
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FastHASH Conclusion

Problem: Existing read mappers perform poorly in mapping
billions of short reads to the reference genome, in the
presence of errors

Observation: Most of the verification calculations are
unnecessary - filter them out

Key Idea: To reduce the cost of unnecessary verification
o Reject invalid mappings early (Adjacency Filtering)

o Reduce the number of possible mappings to examine (Cheap
K-mer Selection)

Key Result: FastHASH obtains up to 19x speedup over the
state-of-the-art mapper without losing valid mappings

42



More on FastHASH

= Download source code and try for yourself
a Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/S1/S13
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari®, Samihan Yedkar', Onur Mutlu'", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013
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An Example: Shifted Hamming Distance

Bioinformatics, 31(10), 2015, 1553-1560

doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015
Original Paper

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin"*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford?®, Can Alkan** and Onur Mutlu®*

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.
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Shifted Hamming Distance

Key observation:

o If two strings differ by £ edits, then every bp match can be
aligned in at most 2E shifts.

Key idea:

o Compute “Shifted Hamming Distance”: AND of 2E Hamming
Distances of two strings, to identify invalid mappings

Uses bit-parallel operations that nicely map to SIMD instructions

Key result:

o SHD is 3x faster than SegAn (the best implementation of Gene
Myers’ bit-vector algorithm), with only a 7% false positive rate

o The fastest CPU-based filtering (pre-alignment) mechanism

46



New Bottleneck: Filtering (Pre-Alignment)

Sequencing generates many reads, each of which
potentially mapping to many locations

9

Filtering (Pre-alignment) eliminates the need to verify/align
read to invalid mapping locations

9

Alignment/verification (costly edit distance computation) is
performed only on reads that pass the filter)

New bottleneck in read mapping becomes the “filtering
(pre-alignment)” step
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Location Filtering

Alignment is expensive
o We need to align millions to billions of reads

M ¢
' Our goal is to accelerate read mapping
by improving the filtering step

JUU 1111111l GO \vlul\.al\ly

Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck (xin+, BMc Genomics 2013]

SAFARI 49



Ideal Filtering Algorithm

Filter out all
incorrect mappings

Minimal False Maximal True
Accept Rate Reject Rate

Sy s

o ""‘mero Is Faster Than
Reject Rate Mapper

Do not filter out any
correct mappings

50



Alignment vs. Pre-alignment (Filtering)

Needleman-Wunsch GateKeeper
TATAATACG TATAATACG

0]1]2
Altl]o A 1

« Independent vectors can be processed in parallel using
hardware technologies

|dp[i]1[j-1]1 // Inser. dp[il[jl=|@ if X[i]=Y[]]

dp[i][j]=1+max|dp[i-1][j] // Del. |1 if X[i]2Y[7]
|dp[i-1][j-1]// Subs.

Each cell depends on three No data dependencies!

pre-computed cells!
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Our Solution: GateKeeper

st

Alignment
Filter

FPGA-based
Alignment Filter.

x103

mappings
- oo

Low Speed & High Accuracy

Medium Speed, Medium Accurac
High Speed, Low Accuracy

x1012

mappings
Y

ACGTACGTACGTACGT
o TATATATACGTACTAGTACG

GACTTTAGTACGTACGT
rATATATACGTACTAGTACGT

Y TACG v T
GTACG ACGTA
ATATATACGTACTAGTACG'

GACTTTAGTACGTACGT
ATATATACGTACTAAAGTACGT

TATATATACOTACTAGTACO
GTT AAAACGTA
ATATATACGTACTAGTACGT

DOPAPAP-HOD>

TATAT. CT.
BACGGGGAGTACGTACGT
ATATATACOTACTAAAGTACO

Billions of Short Reads

E High throughput DNA Read Pre-Alignment Filtering Read Alignment
sequencing (HTS) technologies Fast & Low False Positive Rate Slow & Zero False Positives
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GateKeeper Walkthrough

Generate 2E+1
masks

Amend random zeros:
101 > 111 & 1001 »> 1111

AND all masks,
ACCEPT iff number of ‘1’ £ Threshold

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :00000000001/0000000000001111111011110001110110101101111111110001000001111011010010101
1-Deletion Mask :111111111110011111011111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100010011101101001010
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110010110111011101111

l1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000101011101110111110
2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001111111000111101100
3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011101111010111001000

—-—-- Masks after amendment ---

Hamming Mask :000000000010000000000001111111111110001111111101111111111110001000001111111111111111
1-Deletion Mask :111111111111111111111111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001111111111111111111111111111000111111111111111111111000100011111111111111110
3-Deletion Mask :111111111111111111111111111111111000111111111111111111111111111111111111111111111111

l1-Insertion Mask :111111111111111111111111111111100011111111111111111111111111111000111111111111111110
2-Insertion Mask :000000111111111111111111111100011111111111111111111111111111111111111111000111111100
3-Insertion Mask :111111111111111111100011111111111111111111111111111111111111111111111111111111111000

AND Mask :000000000010000000000001000000000000000000000000000000000000000000001000000000000000

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
Needleman-Wunsch .
Alignment : LILLEELLLD FEEERRRREEEE DRREERRE R R R e b bbbt b bbb bbb k== e e

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

53



GateKeeper Walkthrough (cont’d)

Generate 2E+1 Amend random zeros:
masks 101 > 111 & 1001 »> 1111

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

« (2E)*(ReadlLength) 2-AND
operations.

» (ReadLength/4) 5-input LUT.

log,ReadlLength-bit counter.

 E right-shift registers (length=ReadlLength) |
 E left-shift registers (length=ReadLength)
« (2E+1) * (ReadLength) 2-XOR operatlons

VVVYVYYVY l v

\_ ' l : .
(0111100011.10001111 11111100011110

Hamming mask after amending

» (2E+1)*(ReadlLength) 5-input LUT.




GateKeeper Accelerator Architecture

= Maximum data throughput =~13.3 billion bases/sec

= Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

= Occupies 50% (100 bp) to 919% (300 bp) of the FPGA slice LUTs and registers

Preprocessing Host (CPU)

D R————— -

read pairs ﬁ

(MIFAST 11 #
output) b

2K

==

reference v
genome (.fasta)

Read .
Encoder ERN

Input stream E
of binary pairs

input reads
(.fastq)

GateKeeper

iAIignment Verification

Alignment Filtering (FPGA)
(CPU/FPGA)

GateKeeper >

ACTATAATACG

Read Controller

read#N

read#1

GateKeeper
Processing
Core #N

GateKeeper
Processing
Core #1

DOP>AP>PAP>PHA0>0

Accepted Alignments
(correct & false positives)
: ‘map.#1]| J---[ I/map.#N |

PCie

SAFARI
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GateKeeper vs. SHD

— Gaekewser | o>

= FPGA (Xilinx VC709) = Intel SIMD

= Multi-core (parallel) = Single-core (sequential)

= Examines a single = Examines a single
mapping @ 125 MHz mapping @ ~2MHz

= Limited to PCle Gen3(4x) = Limited to a read length
transfer rate (128 bits @ of 128 bp (SSE register

250MHz) size)
= Amending requires: = Amending requires:
o (2E+1) 5-input LUT. o 4(2E+1) bitwise OR.

o 4(2E+1) packed shuffle.
a 3(2E+1) shift.
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GateKeeper: Speed & Accuracy Results

90x-130x faster filter

than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate

than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping

with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online

github.com/BilkentCompGen/GateKeeper

SAFARI >


https://github.com/BilkentCompGen/GateKeeper

Conclusions

FPGA-based pre-alignment greatly speeds up read mapping
o 10x speedup of a state-of-the-art mapper (mrFAST)

FPGA-based pre-alignment can be integrated with the
sequencer

o It can help to hide the complexity and details of the FPGA
o Enables real-time filtering while sequencing

SAFARI >8



More on GateKeeper

= Download and test for yourself
https://qgithub.com/BilkentCompGen/GateKeeper

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

Sequence analysis
GateKeeper: A New Hardware Architecture for

Accelerating Pre-Alignment in DNA Short Read
Mapping

Mohammed Alserl’*, Hasan Hassanz, Hongyi Xin? , Oguz Erginz, Onur Mutlu4’*, and
Can Alkan"”

SAFARI
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Next Talki MAGNET

Key observation: the use of AND operation to check if a zero
(match) exists in a column introduces filtering inaccuracy.

Key Idea: count the consecutive zeros in each mask and
select the longest in a divide-and-conquer approach.

MAGNET is 17x to 105x more accurate than GateKeeper
and SHD.

GAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCC
GAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC

0000000000000000000000001300000000000001111110111100011101101011011111111100010000(11110110100101
000000000000111111111111330011111011131000000000000000000000000000000000000000000011000000000000C
0000000000001000000000101410111001111%1111111101111000111011010110111111111000100030011101101001C
0000000000001011111111113%01110110011¢01101110110001001001111111111111001011001100%01101110111011
000000000001111111111111%01111101111410111011000100100111111111111100101100110001¢10111011101111
000000000010000000001001%11100111111301001000110101010011010111111111111101110011§11110001111011
0000000001011111111111013%10110011000%11111111010110111111001100101110111111110111¢1111010111001C

00000000000000000000000010000000000001000000000000000000000000000000000000000000011000000000000C

AAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCC

Frrerrerrrerrerreerrerer reerrerrrerr rererrrer e et e e e et e e et e e e e e e e e e e
AAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC
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o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory
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Read Mapping & Filtering

= Problem: Heavily bottlenecked by Data Movement

= GateKeeper performance limited by DRAM bandwidth
[Alser+, Bioinformatics 2017]

= Ditto for SHD [Xin+, Bioinformatics 2015]
= Solution: Processing-in-memory can alleviate the bottleneck

= However, we need to design mapping & filtering algorithms
to fit processing-in-memory
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Hash Tables in Read Mapping

Read Sequence (100 bp)

—— X
”bﬁhg Blsgnatgh. Fraise

Negative

--------------------------------------------------
“““
o te

Hash Table Reference Genome

; Filter
37 140 §
894 1203 §
1564 ;

‘e
‘e
---------

.
.
.
-------------------------------------------
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Read Mapping & Filtering in Memory

We need to design
mapping & filtering algorithms
that fit processing-in-memory
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI
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GRIM-Filter: Bins

= We partition the genome into large sequences (bins).
Bnx-23 Bin x - 1

i GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC ..

—_— ) I I |
Binx -2 Bin x
o Represent each bin with a bitvector Bitvector ‘
that holds the occurrence of all AAAAA 17| AAAAA
permutations of a small string (token) in AAAAC | 0 | existsin
the bin AAAAT | 1 bin x
cceec | 1
0 T_o account for matches that st_raddle cceer (ol ceeet
bins, we employ overlapping bins CCCCG doesn't
= A read will now always completely fall within o | . | existin
a single bin GGGGG | 1 bin x
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GRIM-Filter: Bitvectors

Bin x Bitvector
_|
)]
>
@ .
— :
(— ] ® ()

Q)
_|
)
. 2
S ) -
®
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GRIM-Filter: Bitvectors

bin,
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA e+

Reference
Genome

Storing all bitvectors
requires 4™ x t bits

by by in memory,
CAAAAA | AAAAA | O where t = number
AAAAC | 1 AAAAC | 1 of bins.
AAAAG | 0 AAAAG | O
AAAAT |0 _ :
: : AGAAA | 1
CCCCT | 1 _ :
: : GAAAA | 1 R
tokens { _ _ _ . o o For bin size ~200,
GACAG | 1 and n =5,
: : . : memory footprint
GCATG | 1 GCATG | 1 ~3.8 GB
TTGCA | 1
LTTTTT | 0 TTTTT | O
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA ... CGAG e Read bitvector for bin_num(x)

e Get tokens ¢

- : s s.\_:\_\ _______________ > 1
-————=-= ‘C:\ --------- '>
e \\\ 1 eSum e Compare
. N I + > Threshold?
[ SN o R 1
tokens \ * IS 1 Nf/ \Es
a 1 Discard Send to
0 Read Mapper
9 Match tokens to bitvector for sequence
0 Alignment

SAFARI 20



Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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Integrating GRIM-Filter into a Read Mapper

INPUT: All Potential Seed Locations

INPUT: Read Sequence «vs( 020128 ). 020131 ) 414415 Jaus
GAACTTGCGAG s s« GTATT 9 ~

’o ) S KEEP " KEEP
GRIM—FiIter: IIIOOO10_OIIIO1_O1OIII
Filter Bitmask Generator DfSCARDl
\ y X
«+:0001010 442011010 a4 QReference Segment Storage
Seed Location Filter Bitmask refarence reference
segment segment
@ 020131 @ 41 4415
@ Read Mapper: Edit-Distance Calculation
Sequence Alignment

v

SAFARI OUTPUT: Correct Mappings



Key Properties of GRIM-Filter

Simple Operations:

o To check a given bin, find the sum of all bits corresponding to
each token in the read

o Compare against threshold to determine whether to align

Highly Parallel: Each bin is operated on independently
and there are many many bins

Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM

SAFARI ™



3D-Stacked Memory

DRAM Layers
//
] B d

: A e TSVs
/% d

//
||||//

Logic Layer

3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer

o Logic Layer enables Processing-in-Memory, via high-
bandwidth low-latency access to DRAM layers

o Embed GRIM-Filter operations into DRAM logic layer and
appropriately distribute bitvectors throughout memory

SAFARI
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3D-Stacked Memory

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png
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3D-Stacked Memory
Micron’s HMC

Micron has working demonstration
components

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png




GRIM-Filter in 3D-Stacked DRAM

Row 0: AAAAA
Row 1: AAAAC
Row 2: AAAAG

Row R—1: TTTTT

o)
Q
>
~

Bitvector for bin 2
Bitvector for bin t—1

Bitvector for bin O
Bitvector for bin 1

X

/ i

Logic Layer

Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

The layout of bitvectors in a bank enables filtering many

bins in parallel
SAFARI
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GRIM-Filter in 3D-Stacked DRAM

Per-Vault
Custom GRIM-Filter Logic

Seed Location Filter Bitmask

Bank -+ DRAM Layers ( 5-% \
Q| |SH®
SIEE
yd P /7 S o oll &
m§ E_ >
= =" | <= TSVs L1518
R lni Q.| 9N
// s Vault S =
4 —— — I=

7:(4
/. Row Data Register
Logic Layer

Customized logic for accumulation and comparison
per genome segment

o Low area overhead, simple implementation

o For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and
comparators in logic layer

SAFARI Details are in [Kim+, BMC Genomics 2018] 29



Methodology

Performance simulated using an in-house 3D-Stacked DRAM
simulator

Evaluate 10 real read data sets (From the 1000 Genomes
Project)
o Each data set consists of 4 million reads of length 100

Evaluate two key metrics
o Performance

o False negative rate
The fraction of locations that pass the filter but result in a mismatch

Compare against a state-of-the-art filter, FastHASH [xin+, BMC
Genomics 20131 When using mrFAST, but GRIM-Filter can be
used with ANY read mapper

SAFARI .



GRIM-Filter Performance

Time (x1000 seconds)

Benchmarks and their Execution Times
[ FastHASH filter I GRIM-Filter

70
28 ] Sequence Alignment
40 - Error Tolerance (&)
30 ﬁ 1 e= 0.05
20 A
NN
0
«’id\/ «“‘9 /\"3 /\"3 /\’ﬁ’ «’ib ’\’9’ ’\Wo’ /\”’Q'x /\”9'% &

/A ’\/’\/’\/’W/
& & EFEEEEE

1.8x-3.7x performance benefit across real data sets
2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design
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GRIM-Filter False Negative Rate

Benchmarks and their False Negative Rates
[ FastHASH filter [ GRIM-Filter

()]

® 05

 o44o~ - - |Sequence Alignment
Q Error Tolerance (e)
2 03-

® 0.2 - e = 0.05
(=)

o 0.1 -

z Jlmlmmimmlmmlmmnm

[+,

(7)) o ¢ A AY W &Y o oY T S &

© @/\f‘/ @/\w vé\’\/ @/\% vQ/\r‘/ @,\'\, @/\ql 09/\% @/\% @/\% v“é’b

L.

5.6x-6.4x False Negative reduction across real data sets
6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter

SAFARI i



More on GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping

Using Processing-in-Memory Technologies

Jeremie S. Kim'%", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee?, Saugata Ghose!,

Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan**, and Onur Mutlu*°:!
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Recall: High-Throughput Sequencing

Massively parallel sequencing technology
o Illumina, Roche 454, Ion Torrent, SOLID...

Small DNA fragments are first amplified and then

sequenced in parallel, leading to
o High throughput

o High speed

o Low cost
a

Short reads
Amplification step limits the read length since too short or too long
fragments are not amplified well.

Sequencing is done by either reading optical signals as each base is

added, or by detecting hydrogen ions instead of light, leading to:

o Low error rates (relatively)

o Reads lack information about their order and which part of genome
they are originated from

SAFARI 85



Nanopore Sequencing Technology

Nanopore sequencing is an emerging and a promising

single-molecule DNA sequencing technology
o No amplification — Less limit on read length — Longer read length

First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore

Technologies (ONT) in May 2014.
o Inexpensive

o Long read length (> 882K bp)

o Portable: Pocket-sized

o Produces data in real-time

SAFARI 86



an emerging and a promising
1cing technology
read length — Longer read length

= First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore
Technologies (ONT) in May 2014.
o Inexpensive
o Long read length (> 882K bp)
o Portable: Pocket-sized
o Produces data in real-time

2?
2°?
2
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Nanopore Sequencing

x"?-*- -
SR

= Nanopore is a nano-scale hole

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

SAFARI 58




Advantages of Nanopore Sequencing

Nanopores:

Do notrequire any labeling of the DNA or nucleotide for
detection during sequencing

Rely on the electronic or chemical structure of the different
nucleotides for identification

Allow sequencing very long reads, and

Provide portability, low cost, and high throughput.
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Challenges ot Nanopore Sequencing

One major drawback: high error rates

Nanopore sequence analysis tools have a critical role to:
o overcome high error rates
o take better advantage of the technology

Faster tools are critically needed to:

o Take better advantage of the real-time data production
capability of MinION
o Enable fast, real-time data analysis

SAFARI
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Nanopore Genome Assembly Pipeline

Raw signal
data

Assembly

Improved
assembly

4 )
Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano
\. J
( )
Read-to-Read Overlap Finding
Tools: GraphMap, Minimap
( )
< Assembly
Tools: Canu, Miniasm

J/

( )
Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)
L J
( )
Polishin
<« NS
Tools: Nanopolish, Racon

\ J

DNA reads

Overlaps

Draft assembly

Mappings of reads
against draft
assembly

Figure 1. The analyzed genome assembly pipeline using nanopore
sequence data, with its five steps and the associated tools for each

~ step.
SAFARI
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More on Nanopore Sequencing & Tools

Nanopore Sequencing Technology and Tools for
Genome Assembly: Computational Analysis of the
Current State, Bottlenecks, and Future Directions

Damla Senol Cali ':*, Jeremie Kim -3, Saugata Ghose !, Can Alkan 2*
and Onur Mutlu 3:1*

"Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
2Department of Computer Engineering, Bilkent University, Bilkent, Ankara, Turkey
3Department of Computer Science, Systems Group, ETH Zirich, Ziirich, Switzerland

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” to appear in Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]
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Conclusion

System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

This talk is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

We covered various recent ideas to accelerate read mapping
o My personal journey since September 2006

Many future opportunities exist
o Especially with new sequencing technologies
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Accelerating Genome Analysis

A Primer on an Ongoing Journey

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
January 24, 2018
AACBB Keynote, Vienna

Sstms ETHane ETHzurich
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High-Throughput Sequencing
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Nanopore Sequencing

Basecalling translates the raw signal output of the
nanopore sequencer into bases (A, C, G, T) to generate
DNA reads.

o 1) The raw current signal is divided into discrete blocks (events).
o 2) Each event is decoded into a most-likely set of bases.

Deletions are the dominant error of nanopore sequencing.

o In the ideal case, each consecutive event should differ by one
base. However, in practice, this is not the case because of the
non-stable speed of the translocation.

o Determining the correct length of the homopolymers (/e
repeating stretches of one kind of base, e.g., AAAAAAA) is
challenging.

SAFARI I8



The Importance ot Genome Analysis?
Helps, for example, to answer the following 3 questions:

SAFARI
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69-92% of the respondents in these studies had positive attitudes
towards genomics research and donating their DNA samples.

Eriko Kobayashi - Nobunori Satoh

Public involvement in pharmacogenomics research:
a national survey on public attitudes towards
pharmacogenomics research and the willingness

to donate DNA samples to a DNA bank in Japan

Attitudes and perceptions of patients towards methods
of establishing a DNA biobank

Genetic research participation in a young adult

community sample

Carla

L. Storr - Flora Or - William W. Eaton -

Nicholas lalongo

Pulley - Margaret M. Brace * Gordon R. Bernard -
Masys

30 May 2007/ Accepted: 3 July 2007 / Published online: 25 October 2007
Ir Science+Business Media B.V. 2007

210 8 oy 48t 4 4 10 -y y ae1 e

1Spn

European Journal of Public Health, Vol. 16, No. 4, 433-440
© The Author 2005. Published by Oxford University Press on behalf of the European Public Health Assof
doz:10.1093/eurpub/ckil 98 Advance Access published on October 5, 2005

Genetic research and donation of tissi
samples to biobanks. What do potent

sample donors in the Swedish genera

© 2008 Wiley-Liss, Inc. American Journal of Medical Genetics Part A 146A:1696-1706 (2008)

Relationship Between Public Attitudes Toward
Genomic Studies Related to Medicine and Their Level
of Genomic Literacy in Japan

Izumi lshiynmz,’ Akiko Nﬂgal,' Kaori Muto,” Akiko Tamakoshi,’ Minori Kokado,"
Kyoko Mimura,’ Tetsuro Tanzawa,” and Zentaro Yamagata'*

public think?

Asa Kettis-Lindblad', Lena Ring"?, Eva Viberth', Mats G. Hansson® 100
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Pairwise sequence alignment

Distribution of 116 Blast Hits on the Query Sequence
. ; > Query Sequence ) AgT

A57075 tensin - chicken (fragment) gi|63805|emb|CAAT79215.1| (..S= 492 E=1e-137

|

Color Key for Alignnent Scores

........

Question #1: If I give you a gene sequence,
tell me which of the billions of known
sequences is most similar to it.

SAFARI
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CODIS: Combined DNA Index System

FBI's program of support for criminal justice.

CODIS defines 13 human DNA regions (loci) to be stored in
the database for personal identification purposes.

Stored 14.5 million DNA profiles (for offenders, arrestees ..

As of September 2016, CODIS has produced over 346,880
hits assisting in more than 332,776 investigations.

N’

https://www.fbi.gov/services/laboratory/biometric-analysis/codis/ndis-statistics
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Multiple sequence alignment

-------------------------------------- MMMMMMMMOVINVMME MMM = = == ——

10 ----m3s5pRKsEGFQSGAGLIIYF I FGPALDI  LVVYMGIAVAIIVEIARIFWRPP - -~
10 ----MaspxrsEcFQSGAGLIRYFE Il FGPALDI LVVY IGIAVAIMVELARIFWPP——-
13 -MrsuaxonoNsNFQSGAGLINIY IAIFGPAT LIIYIGIAMGVIVELAXVFWPV---
10 ----ms56oNseeLMSSAGLVIRYFDSERSNALG IDINR SVVAVGAFFGLVVLLAQFFA-———-
14 maxapxexaxTePLMSSAGIMIYFE =I F TILAAGIVTGVLIIILNAYYGLWP>-
9 - MaxExTTLPPTGAGLMIFFD {GAVALTLILIIFEIILEVVGPRIFG
9 —---- MAxExTTLPPTGAGLMIFFD uGAIALVLILIIFEILLEVVGPRI?G

10 ----rmaxxoxxrZPPSGAGLVE Y FEI-IB I RGP LT QVVVMS I ILAVECLVLRFSG—————
9 —-ee- MsxREsTGLATSAGL I YM I HVIGVEVAFVIIEAILTYGREL——-

13 -MpssuxxxsTveLASMAGLIIRYY STSI L L ITIISIIMVAGVIVASILIPPP -
11 -MpssuuxxsTVvAVMSMAGLIINYY IVIGASIALTIIVIVITRLF-———-

12 --M3RRx¥sGINPFVAAGL
13 -M5VRRRRERRAZEVTAAGLLSFY TEGEIINIS)Y IWGAAILVSAVVAAAEIFLPAV?-

VEVLVMSLLFIASV 4s IWGEYNRS
JIGVPVLVMSLVEIASVEVLS IWGEKETRS
SVDIHVVVMVLSLGFIFSVVALS ILAFKVSTE
SLVVLEFLSVGFEFI FSVIAI-Ji LLEKFTEI
TG VVLELAVGFEFI FSVVAI-JiVI SEVAGK

MWW w o
O 0 W)y Y W nn

P — — — — — p—
B

won

Question #2: If I give you a bunch of
sequences, tell me where they are the same

and where they are different.
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Phylogenetic tree
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http://www.nature.com/nature/journal/v465/n7300/fig_tab/nature09113 F3.html
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The genetic similarity between species

g

*~ @’ % Human ~ Chimpanzee

96%

Human ~ Cat
90%

Human ~ Human
99.9%

Human ~ Cow
80%

Human ~ Banana
50-60%
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Metagenomics, genome assembly, de novo sequencing

Question #3: Given a bunch of short sequences,
Can you identify the approximate species cluster

for genomically unknown organisms (bacteria)?

/
‘f

uncleaned de Bruijn graph

http://math.oregonstate.edu/ ~kos|ickd o
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ANALYZING THE PROBLEM
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Read Mapping

o High Throughput Sequencing e Alignment Verification
4 N

— — —A7 4 e.g. Smith-Waterman alignment algorithm
e — T — o o o o o o o o o o
g — =— T SEER A SR SR AE
_k # G 0 (1] 2 [+ 3 2 3 1
\ — A 0 2 1 5 6 4 3 2
— — S— cTo 2T a2 218 & als

We want ultra fast and accurate alignment.
Detection of genomic variation.

=== | ]

e Read Mapping - Referenpe Genome
S (>3 gigabases)
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Key Observations:

Alignment Verification 2> 90% of mapper’s
execution time.

>989%b of candidate locations have high
dissimilarity with a given read.

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)
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Read Mappers Timeline

CUSHAW?2
CUSHAW =CUSHAW2-GPU
SARUMAN
= CPU BFAS'I; BFAST—OIS(S)r; BFAST-Yus
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—GPU SHRIMP =  SHRIMP2
W= FPGA BWA-Waidyasooriyas BWA-W
s SSE-SIMD BWA BWA-SW=BWA-MEM=BWA-MEM-FPG A
mrFAST \mrsFAST +FastHASH
CloudBurst
ProbeMatch WHAM
Bowtie Bowtie2 FHAST:
PASS PASS-bis
Slider = Sliderll
SOCS
MAQ
SeqMap
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Filters, Alignment, and Mappers

Year Purpose Architecture Platform alignments#/1sec
Filter Intel SSE 3x faster 3583

Shifted Hamming Distance

2015
Mapr-

Mo
2014fF 1deal filter = fast & accurate to

- compensate the computation
N overhead
2013 — B
~ Mapper BWT-FM FPGA(Virtex6)
Mapper BWT-FM GPU 17
Mapper Hash-Based (BFAST) FPGA(Virtex6)

2012

A&AMRIInance for various state-of-the-art mappers and filters for 100 bp reads with at most 2% mismatch rate. 32



